Sample records for constrained geometry catalyst

  1. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    PubMed

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  2. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    1999-01-01

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar'R4(O)Ar"R'.sub.4 M(CH.sub.2 Ph).sub.2 where Ar' is a phenyl or naphthyl group; Ar" is a cyclopentadienyl or indenyl group, R and R' are H or alkyl substituents (C.ltoreq.10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a "one-pot" procedure. The catalyst, when combined with a cocatalyst such as Pb.sub.3 C.sup.+ B(Ar.sub.3.sup.F).sub.4 BAr.sub.3.sup.F or methyl alumoxane where Ar.sup.F is a fluoroaryl group, is an effective catalyst for the polymerization of .alpha.-olefins such as ethylene, propylene and styrene.

  3. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOEpatents

    Marks, T.J.; Chen, Y.X.

    1999-01-05

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar{prime}R4(O)Ar{double_prime}R{prime}{sub 4}M(CH{sub 2}Ph){sub 2} where Ar{prime} is a phenyl or naphthyl group; Ar{double_prime} is a cyclopentadienyl or indenyl group, R and R{prime} are H or alkyl substituents (C{<=}10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a ``one-pot`` procedure. The catalyst, when combined with a cocatalyst such as Pb{sub 3}C{sup +}B(Ar{sub 3}{sup F}){sub 4}BAr{sub 3}{sup F} or methyl alumoxane where Ar{sup F} is a fluoroaryl group, is an effective catalyst for the polymerization of {alpha}-olefins such as ethylene, propylene and styrene. 1 fig.

  4. Origin of diastereoselectivity in the organolanthanide-mediated intramolecular hydroamination/cyclisation of aminodienes: a computational exploration of constrained geometry CGC-Ln catalysts.

    PubMed

    Tobisch, Sven

    2007-01-01

    The regulation of ring-substituent diastereoselectivity in the intramolecular hydroamination/cyclisation (IHC) of alpha-substituted aminodienes by constrained geometry CGC-lanthanide catalysts (CGC=[Me(2)Si(eta(5)-Me(4)C(5))(tBuN)](2-)) has been elucidated by means of a reliable DFT method. The first survey of relevant elementary steps for the 1-methyl-(4E,6)-heptadienylamine substrate (1) and the [{Me(2)Si(eta(5)-Me(4)C(5))(tBuN)}Sm{N(TMS)(2)}] starting material (2) identified the following general mechanistic aspects of Ln-catalysed aminodiene IHC. The substrate-adduct 3-S of the active CGC-Ln-amidodiene compound represents the catalyst's resting state, but the substrate-free form 3' with a chelating amidodiene functionality is the direct precursor for cyclisation. This step proceeds with almost complete regioselectivity through exocyclic ring closure by means of a frontal trajectory, giving rise to the CGC-Ln-azacycle intermediate 4. Subsequent protonolysis of 4 is turnover limiting, whilst the ring-substituent diastereoselectivity is dictated by exocyclic ring closure. Unfavourable close interatomic contacts between the substrate's alpha-substituent and the catalyst backbone have been shown to largely govern the trans/cis selectivity. Substituents of sufficient bulk in the alpha-position of the substrate have been identified as being vital for stereochemical induction. The present study has indicated that the diastereoselectivity of ring closure can be considerably modulated. The variation of the lanthanide's ionic radius and introduction of extra steric pressure at the substrate's alpha-position and/or the CGC N centre have been identified as effective handles for tuning the selectivity. The quantification of these factors reported herein represents the first step toward the rational design of improved CGC-Ln catalyst architectures and will thus aid this process.

  5. Olefin polymerization from single site catalysts confined within porous media

    NASA Astrophysics Data System (ADS)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE of higher percent crystallinity (greater than 60% crystalline). High-density polyethylene with crystallinity of 40--60% can be prepared by using cocatalysts tethered to AMPS or silica in conjunction with analogous soluble, homogeneous CGCs (Chapter 6). Preparative methods to assemble piano stool complexes on hydroxy polystyrenes have been designed. These supported catalysts in conjunction with cocatalysts act as both oligomerization and copolymerization catalysts and allow the preparation of branched polyethylenes from ethylene only feed (Chapter 7).

  6. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  7. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  8. Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles

    DOE PAGES

    Timoshenko, Janis; Lu, Deyu; Lin, Yuewei; ...

    2017-09-29

    Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less

  9. Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timoshenko, Janis; Lu, Deyu; Lin, Yuewei

    Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less

  10. Curriculum Forms: On the Assumed Shapes of Knowing and Knowledge.

    ERIC Educational Resources Information Center

    Davis, Brent; Sumara, Dennis J.

    2000-01-01

    Draws on the new field of mathematical study called fractal geometry. Illustrates the pervasiveness and constraining tendencies of classical geometries. Suggests that fractal geometry is a mathematical analogue to fields such as post-modernism, post-structuralism, and ecological theory. Examines how fractal geometry can complement other emergent…

  11. High-Flux, High Performance H2O2 Catalyst Bed for ISTAR

    NASA Technical Reports Server (NTRS)

    Ponzo, J.

    2005-01-01

    On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.

  12. 250-W RF-excited slab CO2 lasers using gold catalyst

    NASA Astrophysics Data System (ADS)

    Kyun, V. V.; Samorodov, V. G.; Shishkanov, E. F.

    2003-11-01

    The investigations and constructions of compact RF-excitation CO2 lasers with slab discharge channel geometry and unstable-waveguide resonators are described. The output average power scale up to 260 W from electrode area of 198 cm2 have been obtained in sealed-off mode because use a catalyst effect in discharge volume.

  13. Constraining the geometry of AGN outflows with reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Buisson, D. J. K.; Jiang, J.; Gallo, L. C.; Kara, E.; Matzeu, G. A.; Walton, D. J.

    2018-06-01

    We collate active galactic nuclei (AGN) with reported detections of both relativistic reflection and ultra-fast outflows. By comparing the inclination of the inner disc from reflection with the line-of-sight velocity of the outflow, we show that it is possible to meaningfully constrain the geometry of the absorbing material. We find a clear relation between the velocity and inclination, and demonstrate that it can potentially be explained either by simple wind geometries or by absorption from the disc surface. Due to systematic errors and a shortage of high-quality simultaneous measurements our conclusions are tentative, but this study represents a proof-of-concept that has great potential.

  14. Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance

    DOE PAGES

    Ren, Zheng; Guo, Yanbing; Gao, Pu-Xian

    2015-03-20

    Monolithic catalysts, also known as structured catalysts, represent an important catalyst configuration widely used in automotive, chemical, and energy industries. However, several issues associated with washcoat based monolithic catalyst preparation are ever present, such as compromised materials utilization efficiency due to a less-than-ideal wash coating process, difficulty in precise and optimum microstructure control and lack of structure-property correlation. Here, in this mini-review, we introduce the concept of nano-array catalyst, a new type of monolithic catalyst featuring high catalyst utilization efficiency, good thermal/mechanical robustness, and catalytic performance tunability. A comprehensive overview is presented with detailed discussion of the strategies for nano-arraymore » catalyst preparation and rational catalytic activity adjustment enabled by the well-defined nano-array geometry. Specifically their scalable fabrication processes are reviewed in conjunction with discussion of their various catalytic oxidation reaction performances at low temperature. Finally, we hope this review will serve as a timely and useful research guide for rational design and utilization of the new type of monolithic catalysts.« less

  15. 21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint... shoulder joint. The device limits translation and rotation in one or more planes via the geometry of its...

  16. 21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint... shoulder joint. The device limits translation and rotation in one or more planes via the geometry of its...

  17. 21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint... shoulder joint. The device limits translation and rotation in one or more planes via the geometry of its...

  18. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    PubMed

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  19. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts

    PubMed Central

    2017-01-01

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation. PMID:29225721

  20. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...

    2017-01-23

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  1. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  2. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.

    PubMed

    Antolini, Ermete

    2017-02-13

    Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.

  3. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    PubMed Central

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  4. Catalyst and process development for the H/sub 2/ preparation from future fuel cell feedstocks. Quarterly progress report, October 1, 1978-December 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarrington, R M; Feins, I R; Hwang, H S

    1979-01-01

    The work done under this contract in the last quarter of 1978 was concerned with Phase I, which involved preliminary catalyst and process evaluation. The processes under study are hydrogen assisted steam reforming (HASR), catalytic partial oxidation (CPO), and autothermal steam reforming (ATR). Existing Engelhard test units were modified to carry out preliminary runs using the first two processes. Technical analysis to support work in this area consisted of heat and material balances constrained by equilibrium considerations. In a third task, the steam reforming of methanol to produce hydrogen was studied over two commercial low-temperature shift catalysts. Aging runs indicatedmore » good initial performance on both catalysts, but methanol conversion started to decline after a few hundred hours on stream.« less

  5. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  6. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  7. In situ generation of N-Boc-protected alkenyl imines: controlling the E/Z geometry of alkenyl moieties in the Mukaiyama-Mannich reaction.

    PubMed

    Bai, Jian-Fei; Sasagawa, Hajime; Yurino, Taiga; Kano, Taichi; Maruoka, Keiji

    2017-07-18

    Readily available Boc-protected Z-alkenyl aminals could be used as Z-alkenyl and E-alkenyl imine precursors under acidic conditions. In the Mukaiyama-Mannich reaction of Z-alkenyl Boc-aminals, the E/Z geometry of the products was controlled by the catalyst used. The present method was also applied to asymmetric Mukaiyama-Mannich reactions.

  8. Fe local structure in Pt-free nitrogen-modified carbon based electrocatalysts: XAFS study

    NASA Astrophysics Data System (ADS)

    Witkowska, Agnieszka; Giuli, Gabriele; Renzi, Marco; Marzorati, Stefania; Yiming, Wubulikasimu; Nobili, Francesco; Longhi, Mariangela

    2016-05-01

    The paper presents a new results on the bonding environment (coordination number and geometry) and on oxidation states of Fe in nitrogen-modified Fe/C composites used as Pt-free catalysts for oxygen reduction in Direct Hydrogen Fuel Cells. Starting from glucose or fructose, two catalysts displaying different electrochemical performance were prepared and studied in the form of pristine powder and thin catalytic layer of electrode by Fe K-edge XAFS spectroscopy. The results show how the Fe local structure varies as a function of different synthesis conditions and how changes in the structural properties of the catalysts are related to fuel cell electrochemical performance increase during a cell activation period.

  9. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    NASA Astrophysics Data System (ADS)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  10. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor

    NASA Astrophysics Data System (ADS)

    Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko

    2014-06-01

    Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.

  11. Roller Coasters without Differential Equations--A Newtonian Approach to Constrained Motion

    ERIC Educational Resources Information Center

    Muller, Rainer

    2010-01-01

    Within the context of Newton's equation, we present a simple approach to the constrained motion of a body forced to move along a specified trajectory. Because the formalism uses a local frame of reference, it is simpler than other methods, making more complicated geometries accessible. No Lagrangian multipliers are necessary to determine the…

  12. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  13. Reliability of Source Mechanisms for a Hydraulic Fracturing Dataset

    NASA Astrophysics Data System (ADS)

    Eyre, T.; Van der Baan, M.

    2016-12-01

    Non-double-couple components have been inferred for induced seismicity due to fluid injection, yet these components are often poorly constrained due to the acquisition geometry. Likewise non-double-couple components in microseismic recordings are not uncommon. Microseismic source mechanisms provide an insight into the fracturing behaviour of a hydraulically stimulated reservoir. However, source inversion in a hydraulic fracturing environment is complicated by the likelihood of volumetric contributions to the source due to the presence of high pressure fluids, which greatly increases the possible solution space and therefore the non-uniqueness of the solutions. Microseismic data is usually recorded on either 2D surface or borehole arrays of sensors. In many cases, surface arrays appear to constrain source mechanisms with high shear components, whereas borehole arrays tend to constrain more variable mechanisms including those with high tensile components. The abilities of each geometry to constrain the true source mechanisms are therefore called into question.The ability to distinguish between shear and tensile source mechanisms with different acquisition geometries is investigated using synthetic data. For both inversions, both P- and S- wave amplitudes recorded on three component sensors need to be included to obtain reliable solutions. Surface arrays appear to give more reliable solutions due to a greater sampling of the focal sphere, but in reality tend to record signals with a low signal to noise ratio. Borehole arrays can produce acceptable results, however the reliability is much more affected by relative source-receiver locations and source orientation, with biases produced in many of the solutions. Therefore more care must be taken when interpreting results.These findings are taken into account when interpreting a microseismic dataset of 470 events recorded by two vertical borehole arrays monitoring a horizontal treatment well. Source locations and mechanisms are calculated and the results discussed, including the biases caused by the array geometry. The majority of the events are located within the target reservoir, however a small, seemingly disconnected cluster of events appears 100 m above the reservoir.

  14. High aspect ratio catalytic reactor and catalyst inserts therefor

    DOEpatents

    Lin, Jiefeng; Kelly, Sean M.

    2018-04-10

    The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.

  15. Transversely-illuminated high current photoconductive switches with geometry-constrained conductivity path

    DOEpatents

    Nelson, Scott D.

    2016-05-10

    A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.

  16. Rational Design of N- S- Fe- Doped Nanoporous Carbon Catalysts from Covalent Triazine Framework for High Efficient ORR.

    PubMed

    Zhu, Yuanzhi; Chen, Xifan; Liu, Jing; Zhang, Junfeng; Xu, Danyun; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2018-05-15

    Porous organic polymers (POFs) are promising precursors for developing high performance transition metal-nitrogen-carbon (M-N/C) catalysts towards ORR. But the rational design of POFs precursors remain a great challenge, because of the elusive structural association between the sacrificial POFs and the final M-N/C catalysts. Based on covalent triazine frameworks (CTFs), we developed a series of sulfur-doped Fe-N/C catalysts by selecting six different aromatic nitriles as building blocks. A new mixed solvent of molten FeCl3 and S was used for CTF polymerization, which benefit the formation of Fe-Nx site and make the subsequent pyrolysis process more convenient. Comprehensive study on these CTF-derived catalysts shows their ORR activities are not directly dependent on the theoretical N/C ratio of the building block, but closely correlated to the ratios of the nitrile group to benzene ring (Nnitrile/Nbenzene) and geometries of the building blocks. The high ratios of the Nnitrile/Nbenzene are crucial for ORR activity of the final catalysts due to the formation of more N-doped microporous and Fe-Nx sites in pyrolysis possess. The optimized catalyst shows high ORR performances in acid and superior ORR activity to the Pt/C catalysts under alkaline conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carbon Nanotubes: On the Origin of Helicity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Avetik

    2015-03-01

    The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.

  18. Three-dimensional analysis of flow-chemical interaction within a single square channel of a lean NO x trap catalyst.

    PubMed

    Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo

    2018-02-01

    A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.

  19. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    PubMed

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, Miranda Huang

    Many industrial catalysts used for homogeneous hydrogenation and dehydrogenation of unsaturated substrates are derived from metal complexes that include (air-sensitive) ligands that are often expensive and difficult to synthesize. In particular, catalysts used for many hydrogenations are based on phosphorus containing ligands (in particular PNP pincer systems). These ligands are often difficult to make, are costly, are constrained to having two carbon atoms in the ligand backbone and are susceptible to oxidation at phosphorus, making their use somewhat complicated. Los Alamos researchers have recently developed a new and novel set of ligands that are based on a NNS (ENENES) skeletonmore » (i.e. no phosphorus donors, just nitrogen and sulfur).« less

  1. Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Božić, Ognjan; Porrmann, Dennis; Lancelle, Daniel; May, Stefan

    2016-06-01

    A new innovative hybrid rocket engine concept is developed within the AHRES program of the German Aerospace Center (DLR). This rocket engine based on hydroxyl-terminated polybutadiene (HTPB) with metallic additives as solid fuel and high test peroxide (HTP) as liquid oxidizer. Instead of a conventional ignition system, a catalyst chamber with a silver mesh catalyst is designed to decompose the HTP. The newly modified catalyst chamber is able to decompose up to 1.0 kg/s of 87.5 wt% HTP. Used as a monopropellant thruster, this equals an average thrust of 1600 N. The catalyst chamber is designed using the self-developed software tool SHAKIRA. The applied kinetic law, which determines catalytic decomposition of HTP within the catalyst chamber, is given and commented. Several calculations are carried out to determine the appropriate geometry for complete decomposition with a minimum of catalyst material. A number of tests under steady state conditions are carried out, using 87.5 wt% HTP with different flow rates and a constant amount of catalyst material. To verify the decomposition, the temperature is measured and compared with the theoretical prediction. The experimental results show good agreement with the results generated by the design tool. The developed catalyst chamber provides a simple, reliable ignition system for hybrid rocket propulsion systems based on hydrogen peroxide as oxidizer. This system is capable for multiple reignition. The developed hardware and software can be used to design full scale monopropellant thrusters based on HTP and catalyst chambers for hybrid rocket engines.

  2. Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Tysoe, Wilfred T.

    The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.

  3. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

    PubMed Central

    Wendlandt, Alison E.; Stahl, Shannon S.

    2014-01-01

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193

  4. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.

    PubMed

    Guess, Trent M; Stylianou, Antonis P; Kia, Mohammad

    2014-02-01

    Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the "Grand Challenge Competition to Predict in-vivo Knee Loads" for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, "Grand Challenge Competition to Predict in vivo Knee Loads," J. Orthop. Res., 30, pp. 503-513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left leg and upper body and tracked muscle length errors for the right leg. The one cycle RMS errors between the predicted and measured tibia contact were 178 N and 168 N for the medial and lateral sides for the first gait cycle and 209 N and 228 N for the medial and lateral sides for the faster second gait cycle. One cycle RMS errors between predicted and measured ground reaction forces were 12 N, 13 N, and 65 N in the anterior-posterior, medial-lateral, and vertical directions for the first gait cycle and 43 N, 15 N, and 96 N in the anterior-posterior, medial-lateral, and vertical directions for the second gait cycle.

  5. RMT focal plane sensitivity to seismic network geometry and faulting style

    USGS Publications Warehouse

    Johnson, Kendra L.; Hayes, Gavin; Herrmann, Robert B.; Benz, Harley M.; McNamara, Daniel E.; Bergman, Eric A.

    2016-01-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained by Scenario 1, with a range of 26°. We draw two main conclusions from this study. (1) Station distribution impacts our ability to constrain RMTs using waveform time-series; however, in some tectonic settings, faulting style also plays a significant role and (2) increasing station density and data quantity (both the number of stations and the number of individual channels) does not necessarily improve RMT constraint. These results may be useful when organizing future seismic deployments (e.g. by concentrating stations in alignment with anticipated nodal planes), and in computing RMTs, either by guiding a more rigorous data selection process for input data or informing variable weighting among the selected data (e.g. by eliminating the transverse component when strike-slip mechanisms are expected).

  6. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  7. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    DOE PAGES

    Ogawa, S.; Komini Babu, S.; Chung, H. T.; ...

    2016-08-22

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

  8. Effect of catalyst on deposition of vanadium oxide in plasma ambient

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.

    2018-05-01

    In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.

  9. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    DOE PAGES

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; ...

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation.more » γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.« less

  10. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Komini Babu, S.; Chung, H. T.

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

  11. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    PubMed

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity. © 2011 American Chemical Society

  12. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - A probabilistic approach

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.

    2009-01-01

    A key step in many earthquake source inversions requires knowledge of the geometry of the fault surface on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocentre and CMT mechanism can be problematic when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. Here, we attempt to improve the quality of fast finite-fault inversion results by combining several independent and complementary data sets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the ‘most-likely’ fault plane. Examples are shown for the trench in the source region of the Mw 8.6 Southern Sumatra earthquake of March 2005, and for the Northern Chile Trench in the source region of the November 2007 Antofagasta earthquake. We also show examples using only the historic catalogues in regions without recent great earthquakes, such as the Japan and Kamchatka Trenches. In most cases, this method produces a fault plane that is more consistent with all of the data available than is the plane implied by the initial hypocentre and CMT mechanism. Using the aggregated data sets, we have developed an algorithm to rapidly determine more accurate initial fault plane geometries for source inversions of future earthquakes.

  13. Palladium(II)-Catalyzed Annulation between ortho-Alkenylphenols and Allenes. Key Role of the Metal Geometry in Determining the Reaction Outcome.

    PubMed

    Casanova, Noelia; Del Rio, Karina P; García-Fandiño, Rebeca; Mascareñas, José L; Gulías, Moisés

    2016-05-06

    2-Alkenylphenols react with allenes, upon treatment with catalytic amounts of Pd(II) and Cu(II), to give benzoxepine products in high yields and with very good regio- and diastereoselectivities. This contrasts with the results obtained with Rh catalysts, which provided chromene-like products through a pathway involving a β-hydrogen elimination step. Computational studies suggest that the square planar geometry of the palladium is critical to favor the reductive elimination process required for the formation of the oxepine products.

  14. A jellium model of a catalyst particle in carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Artyukhov, Vasilii I.; Liu, Mingjie; Penev, Evgeni S.; Yakobson, Boris I.

    2017-06-01

    We show how a jellium model can represent a catalyst particle within the density-functional theory based approaches to the growth mechanism of carbon nanotubes (CNTs). The advantage of jellium is an abridged, less computationally taxing description of the multi-atom metal particle, while at the same time in avoiding the uncertainty of selecting a particular atomic geometry of either a solid or ever-changing liquid catalyst particle. A careful choice of jellium sphere size and its electron density as a descriptive parameter allows one to calculate the CNT-metal interface energies close to explicit full atomistic models. Further, we show that using jellium permits computing and comparing the formation of topological defects (sole pentagons or heptagons, the culprits of growth termination) as well as pentagon-heptagon pairs 5|7 (known as chirality-switching dislocation).

  15. Method of making MEA for PEM/SPE fuel cell

    DOEpatents

    Hulett, Jay S.

    2000-01-01

    A method of making a membrane-electrode-assembly (MEA) for a PEM/SPE fuel cell comprising applying a slurry of electrode-forming material directly onto a membrane-electrolyte film. The slurry comprises a liquid vehicle carrying catalyst particles and a binder for the catalyst particles. The membrane-electrolyte is preswollen by contact with the vehicle before the electrode-forming slurry is applied to the membrane-electrolyte. The swollen membrane-electrolyte is constrained against shrinking in the "x" and "y" directions during drying. Following assembly of the fuel cell, the MEA is rehydrated inside the fuel cell such that it swells in the "z" direction for enhanced electrical contact with contiguous electrically conductive components of the fuel cell.

  16. Morphological Control of Co3O4 and Its Photocatalytic Properties

    EPA Science Inventory

    Cobaltosic oxide (Co3O4), a p-type semiconductor, belongs to the normal spinel crystal structure based on a cubic close packing array of oxide ions. The size, surface, geometry, and crystal phase of catalysts are important parameters for controlling their chemical, optical, and ...

  17. Freehand Sketching as a Catalyst for Developing Concept Driven Competencies

    ERIC Educational Resources Information Center

    Lane, Diarmaid; Seery, Niall

    2011-01-01

    At a time when concept driven competencies are perceived to be critical in redefining effective technological education, the introduction of Design and Communication Graphics at senior cycle in Irish high schools has broad implications. Students now have the potential to explore applied geometries, integrated with conceptual thinking in addition…

  18. A brief survey of constrained mechanics and variational problems in terms of differential forms

    NASA Technical Reports Server (NTRS)

    Hermann, Robert

    1994-01-01

    There has been considerable interest recently in constrained mechanics and variational problems. This is in part due to applied interests (such as 'non-holonomic mechanics in robotics') and in other part due to the fact that several schools of 'pure' mathematics have found that this classical subject is of importance for what they are trying to do. I have made various attempts at developing these subjects since my Lincoln lab days of the late 1950's. In this Chapter, I will sketch a Unified point of view, using Cartan's approach with differential forms. This has the advantage from the C-O-R viewpoint being developed in this Volume that the extension from 'smooth' to 'generalized' data is very systematic and algebraic. (I will only deal with the 'smooth' point of view in this Chapter; I will develop the 'generalized function' material at a later point.) The material presented briefly here about Variational Calculus and Constrained Mechanics can be found in more detail in my books, 'Differential Geometry and the Calculus of Variations', 'Lie Algebras and Quantum Mechanics', and 'Geometry, Physics and Systems'.

  19. Analysis of the critical step in catalytic carbodiimide transformation: proton transfer from amines, phosphines, and alkynes to guanidinates, phosphaguanidinates, and propiolamidinates with Li and Al catalysts.

    PubMed

    Rowley, Christopher N; Ong, Tiow-Gan; Priem, Jessica; Richeson, Darrin S; Woo, Tom K

    2008-12-15

    While lithium amides supported by tetramethylethylenediamine (TMEDA) are efficient catalysts in the synthesis of substituted guanidines via the guanylation of an amine with carbodiimide, as well as the guanylation of phosphines and conversion of alkynes into propiolamidines, aluminum amides are only efficient catalysts for the guanylation of amides. Density functional theory (DFT) calculations were used to explain this difference in activity. The origin of this behavior is apparent in the critical step where a proton is transferred from the substrate to a metal guanidinate. The activation energies of these steps are modest for amines, phosphines, and alkynes when a lithium catalyst was used, but are prohibitively high for the analogous reactions with phosphines and alkynes for aluminum amide catalysts. Energy decomposition analysis (EDA) indicates that these high activations energies are due to the high energetic cost of the detachment of a chelating guanidinate nitrogen from the aluminum in the proton transfer transition state. Amines are able to adopt an ideal geometry for facile proton transfer to the aluminum guanidinate and concomitant Al-N bond formation, while phosphines and alkynes are not.

  20. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    NASA Astrophysics Data System (ADS)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2018-01-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  1. Fault structure in the Nepal Himalaya as illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake recorded by the local NAMASTE network

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Mendoza, M.; LI, B.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2017-12-01

    Geometry of the Main Himalayan Thrust (MHT), that accommodates majority of the plate motion between Indian and Eurasian plate, is being debated for a long time. Different models have been proposed; some of them are significantly different from others. Obtaining a well constrained geometry of the MHT is challenging mainly because of the lack of high quality data, inherent low resolution and non-uniqueness of the models. We used a dense local seismic network - NAMASTE - to record and analyze a prolific aftershock sequence following the 2015 Mw 7.8 Gorkha earthquake, and determine geometry of the MHT constrained by precisely located well-constrained aftershocks. We detected and located more than 15,000 aftershocks of the Gorkha earthquake using Hypoinverse and then relatively relocated using HypoDD algorithm. We selected about 7,000 earthquakes that are particularly well constrained to analyze the geometry of the megathrust. They illuminate fault structure in this part of the Himalaya with unprecedented detail. The MHT shows two subhorizontal planes connected by a duplex structure. The duplex structure is characterized by multiple steeply dipping planes. In addition, we used four large-aperture continental-scale seismic arrays at teleseismic distances to backproject high-frequency seismic radiation. Moreover, we combined all arrays to significantly increase the resolution and detectability. We imaged rupture propagation of the mainshock showing complexity near the end of the rupture that might help arresting of the rupture to the east. Furthermore, we continuously scanned teleseismic data for two weeks starting from immediately after the mainshock to detect and locate aftershock activity only using the arrays. Spatial pattern of the aftershocks was similar to the existing global catalog using conventional seismic network and technique. However, we detected more than twice as many aftershocks using the array technique compared to the global catalog including many aftershocks that were undetected by the global network. This method might provide new tool to rapidly detect aftershock activity immediately after a large damaging earthquake to guide fast and more effective disaster response.

  2. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  3. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOEpatents

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  4. Computational predictions of stereochemistry in asymmetric thiazolium- and triazolium-catalyzed benzoin condensations.

    PubMed

    Dudding, Travis; Houk, Kendall N

    2004-04-20

    The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6-31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6-31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally.

  5. Mechanistic insights into heterogeneous methane activation

    DOE PAGES

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...

    2017-01-11

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  6. Mechanistic insights into heterogeneous methane activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  7. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    NASA Astrophysics Data System (ADS)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  8. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  9. Homogeneous Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide by Ni(cyclam)

    NASA Astrophysics Data System (ADS)

    Froehlich, Jesse Dan

    The homogeneous electrochemical reduction of CO2 by the molecular catalyst [Ni(cyclam)]2+ was studied by electrochemistry and infrared spectroelectrochemistry. This catalyst has been previously shown to have increased CO2 reduction activity when adsorbed on a mercury electrode. The homogeneous reactivity, without a mercury electrode, was often ignored in the literature. Ni(cyclam) was found to efficiently and selectively produce CO at moderate overpotentials in both aqueous and mixed organic solvent systems in a homogenous fashion at an inert glassy carbon electrode. Methylated analogs of Ni(cyclam) were also studied and observed to have more positive reduction potentials and attenuated CO2 reduction activity. The electrochemical kinetics were probed by varying CO2 substrate and proton concentrations. Products of CO2 reduction are observed in infrared spectra obtained from spectroelectrochemical experiments. The two major species observed were a Ni(I) carbonyl, [Ni(cyclam)(CO)]+, and a Ni(II) coordinated bicarbonate, [Ni(cyclam)(CO2OH)] +. The rate-limiting step during electrocatalysis was determined to be CO loss from the deactivated species, [Ni(cyclam)(CO)]+, to produce the active catalyst, [Ni(cyclam)]+. Another macrocyclic complex, [Ni(TMC)]+, was deployed as a CO scavenger in order to inhibit the deactivation of [Ni(cyclam)] + by CO. Addition of the CO scavenger was shown to dramatically increase the catalytic current observed for CO2 reduction by [Ni(cyclam)] +. Evidence for the [Ni(TMC)]+ acting as a CO scavenger includes the observation of [Ni(TMC)(CO)]+ by IR. Density functional theory calculations, probing the optimized geometry of the [Ni(cyclam)(CO)] + species, are also presented. These findings have implications on the increased activity for CO2 reduction when [Ni(cyclam)] + is adsorbed on a mercury electrode. The [Ni(cyclam)(CO)] + structure has significant distortion of the Ni center out of the plane of the cyclam nitrogens. This distortion strengthens the Ni-CO interaction by increasing back-bonding interactions. This leads to the hypothesis that the mercury surface, through Hg-Ni interactions, prevents the distorted geometry seen in solution leading to a more planar geometry. This helps to destabilize the carbonyl adduct which inhibits the extent of CO poisoning of the catalyst when adsorbed on a mercury electrode. Alternative approaches to prevent CO poisoning without using such a toxic substance as mercury are critical to improving this unique catalytic system.

  10. Improving catalytic selectivity through control of adsorption orientation

    NASA Astrophysics Data System (ADS)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a monolayer formed by 1,2-benzenedithiol, we determined that hydrodeoxygenation selectively occurred on catalyst particle steps and edges from an upright structure, whereas decarbonylation occurred on particle terraces from a flat-lying structure. Control of furfural adsorption orientation was also achieved through the use of NiCu bimetallic catalysts. The aromatic furan ring was repelled from surface Cu, leading to an upright structure. However, under hydrogenation conditions, Ni tended to be near the surface of thin films and catalysts, leading to less dramatic selectivity enhancement. The presence of a 1-octadecanethiol monolayer kinetically stabilized the surface termination, allowing Cu to remain at the surface.

  11. Preliminary potential-field constraints on the geometry of the San Fernando basin, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.

    2000-01-01

    Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.

  12. Diffusion of a Concentrated Lattice Gas in a Regular Comb Structure

    NASA Astrophysics Data System (ADS)

    Garcia, Paul; Wentworth, Christopher

    2008-10-01

    Understanding diffusion in constrained geometries is of interest in a variety of contexts as varied as mass transport in disordered solids, such as a percolation cluster, or intercellular transport of water molecules in biological tissue. In this investigation we explore diffusion in a very simple constrained geometry: a comb-like structure involving a one-dimensional backbone of lattice sites with regularly spaced teeth of fixed length. The model considered assumes a fixed concentration of diffusing particles can hop to nearest-neighbor sites only, and they do not interact with each other except that double occupancy is not allowed. The system is simulated using a Monte Carlo simulation procedure. The mean-square displacement of a tagged particle is calculated from the simulation as a function of time. The simulation shows normal diffusive behavior after a period of anomalous diffusion that increases as the tooth size increases.

  13. Reversible patterning of spherical shells through constrained buckling

    NASA Astrophysics Data System (ADS)

    Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.

    2017-07-01

    Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.

  14. Building a viable decollement geometry for the Central Nepal Himalaya through integrating surface geology, thermochronology and data from the 2015 Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; McQuarrie, N.; Robinson, D. M.; Olree, E.; Valentino, C.; Olsen, J.

    2017-12-01

    Recent field mapping in the Central Himalaya revealed a marked change in the location and orientation of exposed Greater Himalayan rocks around the epicenter of the April 2015 Gorkha earthquake, arguing for a lateral structure in the Main Himalayan Thrust (MHT). The earthquake provided new insight into the geometry of the MHT, but left the position and depth of the mid-crustal ramp in dispute. Combining new field data with existing thermochronometric data from the region emphasizes that both the mapped geology and young cooling ages step abruptly southward from east to west, immediately adjacent to the earthquake epicenter. The distribution of cooling ages is strongly influenced by the location of ramps in the decollement surface, as the vertical component of uplift concentrates exhumation over the ramp, producing the youngest ages there. We propose that the existence and location of frontal and lateral ramps can be evaluated using the regional distribution of thermochronometric ages. Sequentially deformed cross-sections present a model of how structurally induced uplift varies in time and space, as well as a predicted geometry of the active, modern fault. We created new balanced cross-sections, constrained by surface geology and the proposed decollement geometries. For an accurate representation of the subsurface, the geometries must reproduce cooling ages measured at the surface. Each cross section was sequentially deformed, allowing for flexure and erosion. The resulting displacement field was used to predict cooling ages for muscovite 40Ar/39Ar, zircon (U-Th)/He, and apatite fission-track, using the thermokinematic model Pecube. The different closure temperatures for these systems allow them to represent different times and locations of exhumation driven by evolving fault geometries. The modeled cooling ages are the cumulative effect of the entire deformational sequence. However, the ages are particularly sensitive to the modern active decollement fault geometry, allowing us to evaluate the different proposed cross-section geometries, and identify the best match to the regional distribution of cooling ages. We argue that this final geometry is the most accurate representation of the subsurface, being constrained by surface geology, thermochronological ages, and data from the earthquake.

  15. Gaining insight into the T _2^*-T2 relationship in surface NMR free-induction decay measurements

    NASA Astrophysics Data System (ADS)

    Grombacher, Denys; Auken, Esben

    2018-05-01

    One of the primary shortcomings of the surface nuclear magnetic resonance (NMR) free-induction decay (FID) measurement is the uncertainty surrounding which mechanism controls the signal's time dependence. Ideally, the FID-estimated relaxation time T_2^* that describes the signal's decay carries an intimate link to the geometry of the pore space. In this limit the parameter T_2^* is closely linked to a related parameter T2, which is more closely linked to pore-geometry. If T_2^* ˜eq {T_2} the FID can provide valuable insight into relative pore-size and can be used to make quantitative permeability estimates. However, given only FID measurements it is difficult to determine whether T_2^* is linked to pore geometry or whether it has been strongly influenced by background magnetic field inhomogeneity. If the link between an observed T_2^* and the underlying T2 could be further constrained the utility of the standard surface NMR FID measurement would be greatly improved. We hypothesize that an approach employing an updated surface NMR forward model that solves the full Bloch equations with appropriately weighted relaxation terms can be used to help constrain the T_2^*-T2 relationship. Weighting the relaxation terms requires estimating the poorly constrained parameters T2 and T1; to deal with this uncertainty we propose to conduct a parameter search involving multiple inversions that employ a suite of forward models each describing a distinct but plausible T_2^*-T2 relationship. We hypothesize that forward models given poor T2 estimates will produce poor data fits when using the complex-inversion, while forward models given reliable T2 estimates will produce satisfactory data fits. By examining the data fits produced by the suite of plausible forward models, the likely T_2^*-T2 can be constrained by identifying the range of T2 estimates that produce reliable data fits. Synthetic and field results are presented to investigate the feasibility of the proposed technique.

  16. Computational predictions of stereochemistry in asymmetric thiazolium- and triazolium-catalyzed benzoin condensations

    PubMed Central

    Dudding, Travis; Houk, Kendall N.

    2004-01-01

    The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6–31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6–31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally. PMID:15079058

  17. Complete characterization of the constrained geometry bimolecular reaction O(1D)+N2O-->NO+NO by three-dimensional velocity map imaging

    NASA Astrophysics Data System (ADS)

    Gödecke, Niels; Maul, Christof; Chichinin, Alexey I.; Kauczok, Sebastian; Gericke, Karl-Heinz

    2009-08-01

    The bimolecular reaction O(D1)+N2O→NO+NO was photoinitiated in the (N2O)2 dimer at a wavelength of 193 nm and was investigated by three-dimensional (3D) velocity map imaging. State selective 3D momentum vector distributions were monitored and analyzed. For the first time, kinetic energy resolution and stereodynamic information about the reaction under constrained geometry conditions is available. Directly observable NO products exhibit moderate vibrational excitation and are rotationally and translationally cold. Speed and spatial distributions suggest a pronounced backward scattering of the observed products with respect to the direction of motion of the O(D1) atom. Forward scattered partner products, which are not directly detectable are also translationally cold, but carry very large internal energy as vibration or rotation. The results confirm and extend previous studies on the complex initiated reaction system. The restricted geometry of the van der Waals complex seems to favor an abstraction reaction of the terminal nitrogen atom by the O(D1) atom, which is in striking contrast to the behavior observed for the unrestricted gas phase reaction under bulk conditions.

  18. Three-Dimensional Mantle Flow Near an Oceanic Paleotransform Fault System: Geological Constraints From the Bogota Peninsula, New Caledonia

    NASA Astrophysics Data System (ADS)

    Chatzaras, V.; Kruckenberg, S. C.; Titus, S.; Tikoff, B.; Teyssier, C. P.; Drury, M. R.

    2016-12-01

    We provide geological constraints on mantle deformation across a system of two oceanic paleotransform faults exposed in the Bogota Peninsula area, New Caledonia. Mantle deformation occurred at depths corresponding to temperatures of 900 oC and is highly heterogeneous. The paleotransform faults consist of mylonitic shear zones ( 1 km wide), and are surrounded by broader areas in which rotation of both the shape fabric (foliation and lineation) and olivine crystallographic preferred orientation (CPO) takes place. Outside the plaeotransform faults, mantle flows oblique to the strike of the mylonitic zones and is characterized by lateral variations in the flow direction. To further constrain the kinematics and type of deformation, we determine the orientation of the crystallographic vorticity axes as an independent tool for constraining deformation geometry (e.g., simple shear, transpression, transtension). The observed mantle flow is associated to lateral variations in: 1) the geometry and degree of anisotropy of spinel shape fabric; 2) olivine CPO type; 3) amount of stretching; and 4) the orientation of the crystallographic vorticity axes. Upper mantle in the vicinity of oceanic transform faults may be characterized by complex, three-dimensional flow patterns and deformation geometries deviating from simple shear.

  19. When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.

    PubMed

    Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-26

    Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Structure-activity correlations in a nickel-borate oxygen evolution catalyst.

    PubMed

    Bediako, D Kwabena; Lassalle-Kaiser, Benedikt; Surendranath, Yogesh; Yano, Junko; Yachandra, Vittal K; Nocera, Daniel G

    2012-04-18

    An oxygen evolution catalyst that forms as a thin film from Ni(aq)(2+) solutions containing borate electrolyte (Ni-B(i)) has been studied by in situ X-ray absorption spectroscopy. A dramatic increase in catalytic rate, induced by anodic activation of the electrodeposited films, is accompanied by structure and oxidation state changes. Coulometric measurements correlated with X-ray absorption near-edge structure spectra of the active catalyst show that the nickel centers in activated films possess an average oxidation state of +3.6, indicating that a substantial proportion of nickel centers exist in a formal oxidation state of Ni(IV). In contrast, nickel centers in nonactivated films exist predominantly as Ni(III). Extended X-ray absorption fine structure reveals that activated catalyst films comprise bis-oxo/hydroxo-bridged nickel centers organized into sheets of edge-sharing NiO(6) octahedra. Diminished long-range ordering in catalyst films is due to their ostensibly amorphous nature. Nonactivated films display a similar oxidic nature but exhibit a distortion in the local coordination geometry about nickel centers, characteristic of Jahn-Teller distorted Ni(III) centers. Our findings indicate that the increase in catalytic activity of films is accompanied by changes in oxidation state and structure that are reminiscent of those observed for conversion of β-NiOOH to γ-NiOOH and consequently challenge the long-held notion that the β-NiOOH phase is a more efficient oxygen-evolving catalyst. © 2012 American Chemical Society

  1. Sealable stagnation flow geometries for the uniform deposition of materials and heat

    DOEpatents

    McCarty, Kevin F.; Kee, Robert J.; Lutz, Andrew E.; Meeks, Ellen

    2001-01-01

    The present invention employs a constrained stagnation flow geometry apparatus to achieve the uniform deposition of materials or heat. The present invention maximizes uniform fluxes of reactant gases to flat surfaces while minimizing the use of reagents and finite dimension edge effects. This results, among other things, in large area continuous films that are uniform in thickness, composition and structure which is important in chemical vapor deposition processes such as would be used for the fabrication of semiconductors.

  2. Understanding and Mitigating Vortex-Dominated, Tip-Leakage and End-Wall Losses in a Transonic Splittered Rotor Stage

    DTIC Science & Technology

    2015-04-23

    blade geometry parameters the TPL design 9   tool was initiated by running the MATLAB script (*.m) Main_SpeedLine_Auto. Main_SpeedLine_Auto...SolidWorks for solid model generation of the blade shapes. Computational Analysis With solid models generated of the gas -path air wedge, automated...287 mm (11.3 in) Constrained by existing TCR geometry Number of Passages 12 None A blade tip-down design approach was used. The outputs of the

  3. Modelling the aqueous and nonaqueous interfaces for CO2 electro-reduction over Sn catalysts

    NASA Astrophysics Data System (ADS)

    Sheng, Tian; Sun, Shi-Gang

    2018-01-01

    In CO2 electroreduction, Sn catalysts with a high overpotential for hydrogen evolution reaction and a high selectivity towards formic acid formation are very attractive. Many efforts have been made for improving the catalytic performance and for understanding the mechanisms. In electrochemistry, the role of solvents for surface reactions was deserved to be investigated, in particular for some nonaqueous solvents. Here, we have modeled the aqueous (water) and nonaqueous (acetonitrile and dichloromethane) for investigation of CO2 electroreduction on Sn surface, by constrained ab initio molecular dynamics simulations and thermodynamic integrations, including a number of explicit solvent molecules in computational models. It was found that CO2 reduction is initiated from formate formation and solvents, in particular, water can effectively facilitate the reaction.

  4. Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation

    NASA Astrophysics Data System (ADS)

    Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo

    2009-03-01

    We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.

  5. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts?

    DOE PAGES

    Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian

    2017-08-28

    The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less

  6. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian

    The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less

  7. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    PubMed

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  8. Numerical analysis of ammonia homogenization for selective catalytic reduction application.

    PubMed

    Baleta, Jakov; Martinjak, Matija; Vujanović, Milan; Pachler, Klaus; Wang, Jin; Duić, Neven

    2017-12-01

    Selective catalytic reduction based on urea water solution as ammonia precursor is a promising method for the NO x abatement form exhaust gasses of mobile diesel engine units. It consists of injecting the urea-water solution in the hot flue gas stream and reaction of its products with the NO x over the catalyst surface. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO x reductant, and isocyanic acid are generated. The uniformity of the ammonia before the catalyst as well as ammonia slip to the environment are important counteracting design requirements, optimization of which is crucial for development of efficient deNO x systems. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE ® , to simulate physical processes of all relevant phenomena occurring during the SCR process including chemical reactions taking part in the catalyst. First, mathematical models for description of SCR process are presented and afterwards, models are used on the 3D geometry of a real SCR reactor in order to predict ammonia generation, NO x reduction and resulting ammonia slip. Influence of the injection direction and droplet sizes was also investigated on the same geometry. The performed study indicates importance of droplet sizes on the SCR process and shows that counterflow injection is beneficial, especially in terms of minimizing harmful ammonia slip to environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less

  10. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  11. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  12. Probing the geometry of copper and silver adatoms on magnetite: quantitative experiment versus theory† †Electronic supplementary information (ESI) available: Experimental and computational details, as well as further details on the results and analyses. See DOI: 10.1039/c7nr07319d

    PubMed Central

    Meier, Matthias; Jakub, Zdeněk; Balajka, Jan; Hulva, Jan; Bliem, Roland; Thakur, Pardeep K.; Lee, Tien-Lin; Franchini, Cesare; Schmid, Michael; Diebold, Ulrike; Allegretti, Francesco; Parkinson, Gareth S.

    2018-01-01

    Accurately modelling the structure of a catalyst is a fundamental prerequisite for correctly predicting reaction pathways, but a lack of clear experimental benchmarks makes it difficult to determine the optimal theoretical approach. Here, we utilize the normal incidence X-ray standing wave (NIXSW) technique to precisely determine the three dimensional geometry of Ag1 and Cu1 adatoms on Fe3O4(001). Both adatoms occupy bulk-continuation cation sites, but with a markedly different height above the surface (0.43 ± 0.03 Å (Cu1) and 0.96 ± 0.03 Å (Ag1)). HSE-based calculations accurately predict the experimental geometry, but the more common PBE + U and PBEsol + U approaches perform poorly. PMID:29334395

  13. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia Nationalmore » Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.« less

  14. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site-specific thermometer; these experiments also provide a reference frame for reporting mass spectrometric data. Differential H-exchange rates of the two molecular sites in propane could be a new tool to constrain thermal history of sub-surface propane. Our experimental and mass spectrometric approaches should be generalizable to other hydrocarbon compounds.

  15. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  16. Lamb wave propagation in a restricted geometry composite pi-joint specimen

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Soni, Som

    2012-05-01

    The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.

  17. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  18. Iridium clusters in KLTL zeolite: Structure and catalytic selectivity for n-hexane aromatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafillou, N.D.; Miller, J.T.; Gates, B.C.

    Catalysts consisting of Ir clusters in zeolite KLTL were prepared by reduction of [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2} in the zeolite with H{sub 2} at temperatures 300 or 500{degrees}C. The catalysts were tested for reactions of n-hexane and H{sub 2} at 400, 440 and 480{degrees}C and were characterized by temperature-programmed reduction, hydrogen chemisorption, transmission electron microscopy, infrared spectroscopy of adsorbed CO, and extended X-ray absorption fine structure spectroscopy. The clusters consist of 4 to 6 Ir atoms on average and are sufficiently small to reside within the pores of the zeolite. The infrared spectra characteristic of terminal CO suggest that themore » support environment is slightly basic and that the Ir clusters are electron rich relative to the bulk metal. Notwithstanding the small cluster size, the support basicity, and the confining geometry of the LTL zeolite pore structure, the catalytic performance is similar to those of other Ir catalysts, with a poor selectivity for aromatization and a high selectivity for hydrogenolysis. These results are consistent with the inference that the principal requirements for selective naphtha aromatization catalysts are both a nonacidic support and a metal with a low hydrogenolsis activity, i.e., Pt. 47 refs., 6 figs., 3 tabs.« less

  19. A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M1/γ-Al2O3 (M=Pd, Fe, Co, and Ni).

    PubMed

    Yang, Tao; Fukuda, Ryoichi; Hosokawa, Saburo; Tanaka, Tsunehiro; Sakaki, Shigeyoshi; Ehara, Masahiro

    2017-04-07

    Single-atom catalysts have attracted much interest recently because of their excellent stability, high catalytic activity, and remarkable atom efficiency. Inspired by the recent experimental discovery of a highly efficient single-atom catalyst Pd 1 /γ-Al 2 O 3 , we conducted a comprehensive DFT study on geometries, stabilities and CO oxidation catalytic activities of M 1 /γ-Al 2 O 3 (M=Pd, Fe, Co, and Ni) by using slab-model. One of the most important results here is that Ni 1 /Al 2 O 3 catalyst exhibits higher activity in CO oxidation than Pd 1 /Al 2 O 3 . The CO oxidation occurs through the Mars van Krevelen mechanism, the rate-determining step of which is the generation of CO 2 from CO through abstraction of surface oxygen. The projected density of states (PDOS) of 2 p orbitals of the surface O, the structure of CO-adsorbed surface, charge polarization of CO and charge transfer from CO to surface are important factors for these catalysts. Although the binding energies of Fe and Co with Al 2 O 3 are very large, those of Pd and Ni are small, indicating that the neighboring O atom is not strongly bound to Pd and Ni, which leads to an enhancement of the reactivity of the O atom toward CO. The metal oxidation state is suggested to be one of the crucial factors for the observed catalytic activity.

  20. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  1. Preparation and Structure Study of Water-Blown Polyurethane/RDX Gun Propellant Foams

    NASA Astrophysics Data System (ADS)

    Yang, Weitao; Yang, Jianxing; Zhao, Yuhua; Zhang, Yucheng

    2018-01-01

    Water-blown polyurethane/RDX foamed propellants were prepared using polyols and isocyanate as reactive binder system, hexogen (RDX) as energetic component, triethanolamine (TEA)/Ditin butyl dilaurate (T-12) as composite catalysts, and H2O as blowing agent. The influences of catalyst ratio, blowing agent amount, and solid filler content on the inner porous structure were studied. The results show that the balance of gel rate and cream rate that could be adjusted by catalyst ratio is a major influencing factor on porous structure of foamed propellants. When the ratio of TEA/T-12 was adjusted to 1/0.7, the morphology of the foamed propellant exhibited spherical and closed porous structure. Besides, when the water amount was increased from 0.1% to 0.5%, the pore size increased from 0.43 to 0.64 mm. The contents of RDX particles affected the cell nucleation and thus, the cell geometry. When the blowing agent amount was constant, the increased content of RDX filler led to a decreased pore size. The closed bomb test results showed that foamed propellants burned progressively in an in-depth combustion mode.

  2. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  3. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  4. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The presented study combines top-down and bottom-approaches by integrating the catalyst patterning and carbon nanotube growth directly on structures. Large array of iron-rich catalyst are patterned on an substrate for subsequent carbon nanotubes synthesis. The dependence of probe geometry and substrate wetting is assessed by modeling and experimental studies. Finally preliminary results on synthesis of carbon nanotube by catalyst assisted chemical vapor deposition suggest increasing the catalyst yield is critical. Such work will enable high throughput nanomanufacturing of carbon nanotube based devices.

  5. Hyperbolic geometry of Kuramoto oscillator networks

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-09-01

    Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \

  6. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT). Quarterly report No. 7, January--March 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  7. The Holometer: An instrument to probe Planckian quantum geometry

    DOE PAGES

    Chou, Aaron; Glass, Henry; Gustafson, H. Richard; ...

    2017-02-28

    This paper describes the Fermilab Holometer, an instrument for measuring correlations of position variations over a four-dimensional volume of space-time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. A noise model constrained by diagnostic and environmental data distinguishes among physical origins of measured correlations, and is used to verify shot-noise-limited performance. These features allow searches for exoticmore » quantum correlations that depart from classical trajectories at spacelike separations, with a strain noise power spectral density sensitivity smaller than the Planck time. As a result, the Holometer in current and future configurations is projected to provide precision tests of a wide class of models of quantum geometry at the Planck scale, beyond those already constrained by currently operating gravitational wave observatories.« less

  8. Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler

    NASA Technical Reports Server (NTRS)

    Nast, T. C.; Hsu, I. C.

    1984-01-01

    Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.

  9. Atomically precise cluster catalysis towards quantum controlled catalysts

    PubMed Central

    Watanabe, Yoshihide

    2014-01-01

    Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. PMID:27877723

  10. Hawaiian fissure fountains: Quantifying vent and shallow conduit geometry, episode 1 of the 1969-1974 Mauna Ulu eruption: Chapter 17

    USGS Publications Warehouse

    Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with <50 m high Hawaiian fountains along a 4.5 km fissure on 24 May 1969, provides a unique opportunity to measure the detailed geometry of a shallow magmatic pathway, as the western vents remain unobstructed to depths >30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution <4 cm. We define the form of the fissure in terms of aspect ratio, flaring ratio, irregularity, sinuosity, and segmentation and discuss the factors influencing these parameters. In the past, simplified first-order fissure geometries have been used in computational modeling. Our data can provide more accurate conduit shapes for better understanding of shallow fissure fluid dynamics and how it controls eruptive behavior, especially if incorporated into computer models.

  11. Sparsity-promoting inversion for modeling of irregular volcanic deformation source

    NASA Astrophysics Data System (ADS)

    Zhai, G.; Shirzaei, M.

    2016-12-01

    Kīlauea volcano, Hawaíi Island, has a complex magmatic system. Nonetheless, kinematic models of the summit reservoir have so far been limited to first-order analytical solutions with pre-determined geometry. To investigate the complex geometry and kinematics of the summit reservoir, we apply a multitrack multitemporal wavelet-based InSAR (Interferometric Synthetic Aperture Radar) algorithm and a geometry-free time-dependent modeling scheme considering a superposition of point centers of dilatation (PCDs). Applying Principal Component Analysis (PCA) to the time-dependent source model, six spatially independent deformation zones (i.e., reservoirs) are identified, whose locations are consistent with previous studies. Time-dependence of the model allows also identifying periods of correlated or anti-correlated behaviors between reservoirs. Hence, we suggest that likely the reservoir are connected and form a complex magmatic reservoir [Zhai and Shirzaei, 2016]. To obtain a physically-meaningful representation of the complex reservoir, we devise a new sparsity-promoting modeling scheme assuming active magma bodies are well-localized melt accumulations (i.e., outliers in background crust). The major steps include inverting surface deformation data using a hybrid L-1 and L-2 norm regularization approach to solve for sparse volume change distribution and then implementing a BEM based method to solve for opening distribution on a triangular mesh representing the complex reservoir. Using this approach, we are able to constrain the internal excess pressure of magma body with irregular geometry, satisfying uniformly pressurized boundary condition on the surface of magma chamber. The inversion method with sparsity constraint is tested using five synthetic source geometries, including torus, prolate ellipsoid, and sphere as well as horizontal and vertical L-shape bodies. The results show that source dimension, depth and shape are well recovered. Afterward, we apply this modeling scheme to deformation observed at Kilauea summit to constrain the magmatic source geometry, and revise the kinematics of Kilauea's shallow plumbing system. Such a model is valuable for understanding the physical processes in a magmatic reservoir and the method can readily be applied to other volcanic settings.

  12. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    USGS Publications Warehouse

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  13. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    NASA Astrophysics Data System (ADS)

    Mayr, Lukas; Rameshan, Raffael; Klötzer, Bernhard; Penner, Simon; Rameshan, Christoph

    2014-05-01

    An ultra-high vacuum (UHV) setup for "real" and "inverse" model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, "magic angle") and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  14. A Theoretical Investigation on CO Oxidation by Single‐Atom Catalysts M1/γ‐Al2O3 (M=Pd, Fe, Co, and Ni)

    PubMed Central

    Yang, Tao; Fukuda, Ryoichi; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-01-01

    Abstract Single‐atom catalysts have attracted much interest recently because of their excellent stability, high catalytic activity, and remarkable atom efficiency. Inspired by the recent experimental discovery of a highly efficient single‐atom catalyst Pd1/γ‐Al2O3, we conducted a comprehensive DFT study on geometries, stabilities and CO oxidation catalytic activities of M1/γ‐Al2O3 (M=Pd, Fe, Co, and Ni) by using slab‐model. One of the most important results here is that Ni1/Al2O3 catalyst exhibits higher activity in CO oxidation than Pd1/Al2O3. The CO oxidation occurs through the Mars van Krevelen mechanism, the rate‐determining step of which is the generation of CO2 from CO through abstraction of surface oxygen. The projected density of states (PDOS) of 2p orbitals of the surface O, the structure of CO‐adsorbed surface, charge polarization of CO and charge transfer from CO to surface are important factors for these catalysts. Although the binding energies of Fe and Co with Al2O3 are very large, those of Pd and Ni are small, indicating that the neighboring O atom is not strongly bound to Pd and Ni, which leads to an enhancement of the reactivity of the O atom toward CO. The metal oxidation state is suggested to be one of the crucial factors for the observed catalytic activity. PMID:28515795

  15. Importance of Low Dimensional CeO x Nanostructures in Pt/CeO x –TiO 2 Catalysts for the Water–Gas Shift Reaction

    DOE PAGES

    Luo, Si; Barrio, Laura; Nguyen-Phan, Thuy-Duong; ...

    2017-03-15

    CO 2 and H 2 production from the water–gas shift (WGS) reaction was studied over Pt/CeO x–TiO 2 catalysts with incremental loadings of CeO x, which adopts variations in the local morphology. The lowest loading of CeO x (1 wt % to 0.5 at. %) that is configured in its smallest dimensions exhibited the best WGS activity over larger dimensional structures. We attribute this to several factors including the ultrafine dispersed one-dimensional nanocluster geometry, a large concentration of Ce 3+ and enhanced reducibility of the low loadings. We utilized several in situ experiments to monitor the active state of themore » catalyst during the WGS reaction. X-ray diffraction (XRD) results showed lattice expansion that indicated reduced ceria was prevalent during the WGS reaction. On the surface, Ce 3+ related hydroxyl groups were identified by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The enhanced reducibility of the catalyst with the introduction of ceria was further revealed by H 2-temperature programed reduction (H 2-TPR) and good thermal stability was confirmed by in situ environmental transmission electron microscopy (ETEM). Finally, we also investigated the formation of the low dimensional structures during catalyst preparation, through a two-stage crystal growth of ceria crystallite on TiO 2 nanoparticle: fine crystallites ~1D formed at ~250 °C, followed by crystal growth into 2D chain and 3D particle from 250–400 °C.« less

  16. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    PubMed Central

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-01-01

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408

  17. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  18. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    PubMed

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is transformed into Fe(2+), while the local Fe-O coordination number of 4-5 is maintained, suggesting that the reduction involves a rearrangement of the oxygen neighbours rather than their removal. In conclusion, the variogram-based analysis of Fe K-edge spectra proves to be very useful in catalysis research.

  19. Efficient Terahertz Emission from InAs Nanowires

    DTIC Science & Technology

    2011-09-16

    are specific to high aspect ratio geometries. DOI: 10.1103/PhysRevB.84.115421 PACS number(s): 73.21.−b, 81.07.Gf I . MOTIVATION Manipulation of...43 The symmetric nature of the I -V curve in Fig. 4(b) afforded by the two ohmic41,42 contacts despite their geometrically asymmetric nature, is...consistent with SCLC (a bulk-limited regime). This is in marked contrast to rectifying I -V characteristics observed for Au catalyst/Ge nanowire contacts

  20. Multicomponent self-assembly of a pentanuclear Ir-Zn heterometal-organic polyhedron for carbon dioxide fixation and sulfite sequestration.

    PubMed

    Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying

    2016-04-14

    By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration.

  1. Excitations of interface pinned domain walls in constrained geometries

    NASA Astrophysics Data System (ADS)

    Martins, S. M. S. B.; Oliveira, L. L.; Rebouças, G. O. G.; Dantas, Ana L.; Carriço, A. S.

    2018-05-01

    We report a theoretical investigation of the equilibrium pattern and the spectra of head-to-head and Neel domain walls of flat Fe and Py stripes, exchange coupled with a vicinal antiferromagnetic substrate. We show that the domain wall excitation spectrum is tunable by the strength of the interface field. Furthermore, strong interface coupling favors localized wall excitations.

  2. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology.

    PubMed

    Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius

    2012-12-28

    As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.

  3. Constraining the strength of megathrusts from fault geometries and application to the Alpine collision zone

    NASA Astrophysics Data System (ADS)

    Dielforder, Armin

    2017-09-01

    Using Coulomb wedge solutions, we show that the effective strength of megathrusts (μb‧) can be determined from the geometry of out-of-sequence thrusts cutting through an accretionary or orogenic wedge. The method is first tested on central Chilean margin for which it yields a frictional strength of μb‧ = 0.053 (+ 0.043 / - 0.024). The inferred value agrees well with previous strength estimates and with the tectonic response of the central Chilean wedge to 2010 Mw 8.8 Maule earthquake. We then use the approach to constrain the strength of the collision megathrust of the central European Alps ∼30-20 million years ago. We find that the collision megathrust had a strength of μb‧ = 0.065 (+ 0.035 / - 0.026), which is similarly low than the strength of subduction megathrusts. The result is integrated into a static force balance model to examine potential implications of a weak megathrust for the Alpine orogeny. The model results suggest that the Alpine megathrust supported a mean maximum elevation of ∼2,000 m and that growth of the wedge up to this elevation supported a switch from contractional to extensional tectonics in the interior of the Alps around 20 Ma. Finally, using the example of the Himalayas, we show how the strength of megathrusts may be also derived from the geometry of crustal ramps, which provides a valuable alternative if details on out-of-sequence thrusts are missing.

  4. Geometry and Dynamics of the Mesopotamian Foreland Basin

    NASA Astrophysics Data System (ADS)

    Pirouz, M.; Avouac, J. P.; Gualandi, A.; Hassanzadeh, J.; Sternai, P.

    2016-12-01

    We have constrained the geometry of the Zagros foreland basin along the entire northern edge of the Arabian plate using subsurface data from Iran, Iraq and Syria. We use the Oligo-Miocene marine Asmari Formation and its equivalents in the region to reconstruct high resolution foreland basin geometry. This extensive carbonate platform limestone unit separates pre-collisional passive margin marine sediments from the Cenozoic foreland deposits dominated by continental sources; and therefore it can be used as a measure of post-collisional deflection. The 3D reconstructed Asmari Formation shows along-strike thickness variations of the foreland basin deposits from 1 to 6 km. The deepest part of the foreland basin coincides with the Dezful embayment in Iran, and its depth decreases on both sides. In principle the basin geometry should reflect the loading resulted from overthrusting in the Zagros fold-thrust belt, the sediment fill and dynamic stresses due to lithospheric and upper mantle deformation. To estimate these various sources of loads we analyze the basin geometry in combination with gravity, free air anomaly, and Moho depths determined from seismological observations. Our analysis suggests in particular that redistribution of surface load by surface processes is a primary controlling factor of the basin geometry. The wavelength of a foreland basin may bear little information on the elastic flexural rigidity of the lithosphere.

  5. Characterization of the High-Albedo NEA 3691 Bede

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; hide

    2016-01-01

    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv˜0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.

  6. Characterization of the high-albedo NEA 3691 Bede

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David Emerson

    2016-10-01

    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.

  7. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.

    The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.

  8. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    NASA Astrophysics Data System (ADS)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  9. Formation of Ordered and Disordered Dielectric/metal Nanowire Arrays and their Plasmonic Behavior

    DTIC Science & Technology

    2007-01-01

    sheath geometry. 2. EXPERIMENTAL PROCEDURES Several different nanowire systems have been grown, including random Ga2O3 nanowires, InAs...nanowires, ZnO nanowires, as well as Au lines produced by e-beam lithography. The growth of the Ga2O3 nanowires was achieved by the controlled oxidation...CLOSELY-SPACED PARALLEL ZnO NANOWIRES AND CROSSED Ga2O3 NANOWIRES. As discussed above, due to the far separation of the gold colloid catalyst in the

  10. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation

    PubMed Central

    Sáenz, P. J.; Wray, A. W.; Che, Z.; Matar, O. K.; Valluri, P.; Kim, J.; Sefiane, K.

    2017-01-01

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications. PMID:28294114

  11. Unfreezing the behaviour of two orb spiders.

    PubMed

    Zschokke, S; Vollrath, F

    1995-12-01

    Spider's webs reflect the builders behaviour pattern; yet there are aspects of the construction behaviour that cannot be "read" from the geometry of the finished web alone. Using computerised image analysis we developed an automatic surveillance method to track a spider's path during web-building. Thus we collected data on two orb-weaving spiders--the cribellate Uloborus walckenaerius and the ecribellate Araneus diadematus--for web geometry, movement pattern and time allocation. Representatives of these two species built webs of similar geometry but they used different movement patterns both spatially (which we describe qualitatively) and temporally (which we analyse quantitatively). Most importantly, temporal analysis showed that the two spiders differed significantly in some but not all web-building stages; and from this we deduce that Uloborus--unlike Araneus--was constrained by speed of silk production during the construction of its capture but not its auxiliary spiral.

  12. Phase space methods in HMD systems

    NASA Astrophysics Data System (ADS)

    Babington, James

    2017-06-01

    We consider using phase space techniques and methods in analysing optical ray propagation in head mounted display systems. Two examples are considered that illustrate the concepts and methods. Firstly, a shark tooth freeform geometry, and secondly, a waveguide geometry that replicates a pupil in one dimension. Classical optics and imaging in particular provide a natural stage to employ phase space techniques, albeit as a constrained system. We consider how phase space provides a global picture of the physical ray trace data. As such, this gives a complete optical world history of all of the rays propagating through the system. Using this data one can look at, for example, how aberrations arise on a surface by surface basis. These can be extracted numerically from phase space diagrams in the example of a freeform imaging prism. For the waveguide geometry, phase space diagrams provide a way of illustrating how replicated pupils behave and what these imply for design considerations such as tolerances.

  13. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation.

    PubMed

    Sáenz, P J; Wray, A W; Che, Z; Matar, O K; Valluri, P; Kim, J; Sefiane, K

    2017-03-15

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications.

  14. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less

  15. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE PAGES

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...

    2016-11-01

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less

  16. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  17. Biodegradable porous silicon barcode nanowires with defined geometry

    PubMed Central

    Chiappini, Ciro; Liu, Xuewu; Fakhoury, Jean Raymond; Ferrari, Mauro

    2010-01-01

    Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode nanowiresby nanolithography and we characterize their multicolor reflectance and photoluminescence. We develop phase diagrams for the different nanostructures obtained as a function of metal catalyst, H2O2 concentration, ethanol concentration and silicon resistivity, and propose a mechanism that explains these observations. We demonstrate that these nanowires are biodegradable, and their degradation time can be modulated by surface treatments. PMID:21057669

  18. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  19. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta. For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru; for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.

  20. Monte Carlo Volcano Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  1. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  2. Catalytic EGR-Loop Reforming for High Efficiency in a Stoichiometric SI Engine through TCR and Dilution Limit Extension. 1. Catalyst Performance and Fuel Effects

    DOE PAGES

    Chang, Yan; Szybist, James P.; Pihl, Josh A.; ...

    2017-12-19

    The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less

  3. Catalytic EGR-Loop Reforming for High Efficiency in a Stoichiometric SI Engine through TCR and Dilution Limit Extension. 1. Catalyst Performance and Fuel Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan; Szybist, James P.; Pihl, Josh A.

    The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less

  4. exocartographer: Constraining surface maps orbital parameters of exoplanets

    NASA Astrophysics Data System (ADS)

    Farr, Ben; Farr, Will M.; Cowan, Nicolas B.; Haggard, Hal M.; Robinson, Tyler

    2018-05-01

    exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.

  5. 1981N1 - A Neptune arc?

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    An object in the vicinity of Neptune detected in 1981 by simultaneous stellar occultation measurements at observatories near Tucson, Arizona, was interpreted as a new Neptune satellite. A reinterpretation suggests that it may have instead been a Neptune arc similar to one observed in 1984. The 1981 object, however, did not occult the star during simultaneous observations at Flagstaff, Arizona. This result constrains possible arc geometries.

  6. Washington Geothermal Play Fairway Analysis Data From Potential Field Studies

    DOE Data Explorer

    Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William

    2017-12-20

    A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.

  7. Carbon Nanotube Switches for Communication and Memory Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry; Wong, Eric W.; Kowalczyk, Robert

    2008-01-01

    Lateral CNT Switches: a) dc CNT switches were demonstrated to operate at low voltages, low powers and high speeds. b) RF simulations of switch in series configuration with metallized tube yielded good RF performance 1) Isolation simulated to be approx. 20 dB at 100 GHz. 2) Insertion loss simulated to be < 0.5 dB at 100 GHz. Vertical CNT Switches: a) Thermal CVD was used to mechanically constrain tubes in nanopockets; tubes not self-supporting. b) Demonstrated growth of vertically aligned arrays and single-few MWNTs using dc PECVD with Ni catalyst using optical lithography.

  8. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  9. Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst.

    PubMed

    Nandan, R; Nanda, K K

    2017-08-31

    Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.

  10. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils.

    PubMed

    Ciesielski, Peter N; Matthews, James F; Tucker, Melvin P; Beckham, Gregg T; Crowley, Michael F; Himmel, Michael E; Donohoe, Bryon S

    2013-09-24

    Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils.

  11. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane

    DOEpatents

    Thoma, Steven G [Albuquerque, NM; Nenoff, Tina M [Albuquerque, NM

    2006-10-10

    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  12. A Cartesian-based embedded geometry technique with adaptive high-order finite differences for compressible flow around complex geometries

    NASA Astrophysics Data System (ADS)

    Uddin, H.; Kramer, R. M. J.; Pantano, C.

    2014-04-01

    An immersed boundary methodology to solve the compressible Navier-Stokes equations around complex geometries in Cartesian fluid dynamics solvers is described. The objective of the new approach is to enable smooth reconstruction of pressure and viscous stresses around the embedded objects without spurious numerical artifacts. A standard level set represents the boundary of the object and defines a fictitious domain into which the flow fields are smoothly extended. Boundary conditions on the surface are enforced by an approach inspired by analytic continuation. Each fluid field is extended independently, constrained only by the boundary condition associated with that field. Unlike most existing methods, no jump conditions or explicit derivation of them from the boundary conditions are required in this approach. Numerical stiffness that arises when the fluid-solid interface is close to grid points of the mesh is addressed by preconditioning. In addition, the embedded geometry technique is coupled with a stable high-order adaptive discretization that is enabled around the object boundary to enhance resolution. The stencils used to transition the order of accuracy of the discretization are derived using the summation-by-parts technique that ensures stability. Applications to shock reflections, shock-ramp interactions, and supersonic and low-Mach number flows over two- and three-dimensional geometries are presented.

  13. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst showsmore » the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.« less

  14. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst showsmore » the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.« less

  15. Interferometric tests of Planckian quantum geometry models

    DOE PAGES

    Kwon, Ohkyung; Hogan, Craig J.

    2016-04-19

    The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographicmore » bounds on directional information. Lastly, predictions in this case are shown to be close to current and projected experimental bounds.« less

  16. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I - Rankine-Hugoniot geometry, currents, and stationarity

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.

    1986-01-01

    Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.

  17. FIRST MAGNETIC FIELD MODELS FOR RECENTLY DISCOVERED MAGNETIC {beta} CEPHEI AND SLOWLY PULSATING B STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubrig, S.; Ilyin, I.; Schoeller, M.

    2011-01-01

    In spite of recent detections of magnetic fields in a number of {beta} Cephei and slowly pulsating B (SPB) stars, their impact on stellar rotation, pulsations, and element diffusion has not yet been sufficiently studied. The reason for this is the lack of knowledge of rotation periods, the magnetic field strength distribution and temporal variability, and the field geometry. New longitudinal field measurements of four {beta} Cephei and candidate {beta} Cephei stars, and two SPB stars were acquired with FORS 2 at the Very Large Telescope. These measurements allowed us to carry out a search for rotation periods and tomore » constrain the magnetic field geometry for four stars in our sample.« less

  18. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.

    PubMed

    Rotondi, Kenneth S; Gierasch, Lila M

    2006-01-01

    This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.

  19. Studies on piston bowl geometries using single blend ratio of various non-edible oils.

    PubMed

    Viswanathan, Karthickeyan; Pasupathy, Balamurugan

    2017-07-01

    The depletion of fossil fuels and hike in crude oil prices were some of the main reasons to explore new alternatives from renewable source of energy. This work presents the impact of various bowl geometries on diesel engine with diesel and biodiesel samples. Three non-edible oils were selected, namely pumpkin seed oil, orange oil and neem oil. These oils were converted into respective biodiesel using transesterification process in the presence of catalyst and alcohol. After transesterification process, the oils were termed as pumpkin seed oil methyl ester (PSOME), orange oil methyl ester (OME) and neem oil methyl ester (NOME), respectively. The engine used for experimentation was a single-cylinder four-stroke water-cooled direct-injection diesel engine and loads were applied to the engine using eddy current dynamometer. Two bowl geometries were developed, namely toroidal combustion chamber (TCC) and trapezoidal combustion chamber (TRCC). Also, the engine was inbuilt with hemispherical combustion chamber (HCC). The base line readings were recorded using neat diesel fuel with HCC for various loads. Followed by 20% of biodiesel mixed with 80% neat diesel for all prepared methyl esters and termed as B1 (20% PSOME with 80% diesel), B2 (20% OME with 80% diesel) and B3 (20% NOME with 80% diesel). All fuel samples were tested in HCC, TCC and TRCC bowl geometries under standard injection timing and with compression ratio of 18. Increased brake thermal efficiency and reduced brake specific fuel consumption were observed with diesel in TCC geometry. Also, higher heat release and cylinder pressures with lower ignition delay were recorded with TCC bowl geometry. TCC bowl geometry showed lower CO, HC and smoke emissions with B2 fuel sample than diesel and other biodiesel samples. But, higher NOx emission was observed in HCC and TCC than that in TRCC bowl geometry. Graphical abstract ᅟ.

  20. Assessment of density functional methods for the study of olefin metathesis catalysed by ruthenium alkylidene complexes

    NASA Astrophysics Data System (ADS)

    Śliwa, Paweł; Handzlik, Jarosław

    2010-06-01

    Performance of 31 DFT methods in thermochemistry of olefin metathesis involving the model catalyst (PH 3) 2(Cl) 2Ru dbnd CH 2 is studied using the CCSD(T) reference energies. The best methods are M06, ωB97X-D and PBE0, followed by MPW1B95, LC-ωPBE, M05-2X and B1B95. Among 20 functionals tested in reproduction of experimental PCy 3 dissociation energy for the Grubbs catalyst (H 2IMes)(PCy 3)(Cl) 2Ru dbnd CHPh, the M06-class and M05-2X methods are most accurate. ωB97X-D overestimates the dissociation energy, whereas MPW1B95, LC-ωPBE, PBE0 and B1B95 underestimate it, similarly to other methods, which give larger errors. LC-ωPBE, B1B95, MPW1B95 and PBE0 provide the best geometries.

  1. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo 2C Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Weiming; Jiang, Zhifeng; Chen, Jingguang G.

    It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo 2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo 2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces,more » with Fe/Mo 2C/Mo(110) being more thermally stable than Fe/Pt(111). As a result, the combined theoretical and experimental results demonstrated that Fe/Mo 2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.« less

  2. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo 2C Surfaces

    DOE PAGES

    Wan, Weiming; Jiang, Zhifeng; Chen, Jingguang G.

    2018-01-19

    It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo 2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo 2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces,more » with Fe/Mo 2C/Mo(110) being more thermally stable than Fe/Pt(111). As a result, the combined theoretical and experimental results demonstrated that Fe/Mo 2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.« less

  3. Interface dynamics and crystal phase switching in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C.; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A.; Ross, Frances M.

    2016-03-01

    Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

  4. Growth of carbon nanofibers on tipless cantilevers: process development and applications in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Kalinin, Sergei; Yang, Xiaojing; Lowndes, Douglas

    2005-03-01

    Carbon nanofibers (CNFs) are grown on tipless cantilevers as probe tips for scanning probe microscopy. A catalyst dot pattern is formed on the surface of the tipless cantilever using electron beam lithography and CNF growth is performed in a direct-current plasma enhanced chemical vapor deposition reactor. Because the CNF is aligned with the electric field near the edge of the cantilever during growth, it is tilted with respect to the cantilever surface, which compensates partially for the probe tilt introduced when used in scanning probe microscopy. CNFs with different shapes and tip radii can be produced by variation of experimental conditions. The tip geometries of the CNF probes are defined by their catalyst particles, whose magnetic nature also imparts a capability for imaging magnetic samples. We have demonstrated their use in both atomic force and magnetic force surface imaging. These probe tips may provide information on magnetic phenomena at the nanometer scale in connection with the drive for ever-increasing storage density of magnetic hard disks.

  5. Interface dynamics and crystal phase switching in GaAs nanowires.

    PubMed

    Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A; Ross, Frances M

    2016-03-17

    Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

  6. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    PubMed

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  7. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    NASA Astrophysics Data System (ADS)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  8. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Gammie, Charles, F.; McKinney, Jonathan C.; Tóth, Gábor

    2012-09-01

    HARM uses a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, & van Leer scheme. A variant of constrained transport, proposed earlier by Tóth, is used to maintain a divergence-free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. On smooth flows HARM converges at second order.

  9. Evidence of strong proton shape fluctuations from incoherent diffraction

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-07-25

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  10. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  11. Testing the Kerr metric with the iron line and the KRZ parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Jiang, Jiachen; Bambi, Cosimo, E-mail: yyni13@fudan.edu.cn, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    The spacetime geometry around astrophysical black holes is supposed to be well approximated by the Kerr metric, but deviations from the Kerr solution are predicted in a number of scenarios involving new physics. Broad iron Kα lines are commonly observed in the X-ray spectrum of black holes and originate by X-ray fluorescence of the inner accretion disk. The profile of the iron line is sensitively affected by the spacetime geometry in the strong gravity region and can be used to test the Kerr black hole hypothesis. In this paper, we extend previous work in the literature. In particular: i )more » as test-metric, we employ the parametrization recently proposed by Konoplya, Rezzolla, and Zhidenko, which has a number of subtle advantages with respect to the existing approaches; ii ) we perform simulations with specific X-ray missions, and we consider NuSTAR as a prototype of current observational facilities and eXTP as an example of the next generation of X-ray observatories. We find a significant difference between the constraining power of NuSTAR and eXTP. With NuSTAR, it is difficult or impossible to constrain deviations from the Kerr metric. With eXTP, in most cases we can obtain quite stringent constraints (modulo we have the correct astrophysical model).« less

  12. Paleo-hydraulic Reconstructions of Topographically Inverted River Deposits on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2015-12-01

    River deposits are one of the keys to understanding the history of flowing water and sediment on Earth and Mars. Deposits of some ancient Martian rivers have been topographically inverted resulting in sinuous ridges visible from orbit. However, it is unclear what aspects of the fluvial deposits these ridges represent, so reconstructing paleo-hydraulics from ridge geometry is complicated. Most workers have assumed that ridges represent casts of paleo-river channels, such that ridge widths and slopes, for example, can be proxies for river widths and slopes at some instant in time. Alternatively, ridges might reflect differential erosion of extensive channel bodies, and therefore preserve a rich record of channel conditions and paleoenvironment over time. To explore these hypotheses, we examined well exposed inverted river deposits in the Jurassic Morrison and Early Cretaceous Cedar Mountain Formations across the San Rafael Swell of central Utah. We mapped features on foot and by UAV, measured stratigraphic sections and sedimentary structures to constrain deposit architecture and river paleo-hydraulics, and used field observations and drainage network analyses to constrain recent erosion. Our work partly confirms earlier work in that the local trend of the ridge axis generally parallels paleo-flow indicators. However, ridge relief is much greater than reconstructed channel depths, and ridge widths vary from zero to several times the reconstructed channel width. Ridges instead appear to record a rich history of channel lateral migration, floodplain deposition, and soil development over significant time. The ridge network is disjointed owing to active modern fluvial incision and scarp retreat. Our results suggest that ridge geometry alone contains limited quantitative information about paleo-rivers, and that stratigraphic sections and observations of sedimentary structures within ridge-forming deposits are necessary to constrain ancient river systems on Mars.

  13. Modular Homogeneous Chromophore–Catalyst Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulfort, Karen L.; Utschig, Lisa M.

    2016-05-17

    Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less

  14. Simultaneous travel time tomography for updating both velocity and reflector geometry in triangular/tetrahedral cell model

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu

    2018-05-01

    To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.

  15. Simultaneous travel time tomography for updating both velocity and reflector geometry in triangular/tetrahedral cell model

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu

    2017-12-01

    To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.

  16. A magnetic method for determining the geometry of hydraulic fractures

    USGS Publications Warehouse

    Byerlee, J.D.; Johnston, M.J.S.

    1976-01-01

    We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.

  17. TiO2-PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation.

    PubMed

    Sboui, Mouheb; Nsib, Mohamed Faouzi; Rayes, Ali; Swaminathan, Meenakshisundaram; Houas, Ammar

    2017-10-01

    A novel photocatalyst based on TiO 2 -PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO 2 on cork. The TiO 2 -PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO 2 -PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency. Copyright © 2017. Published by Elsevier B.V.

  18. Nanofluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  19. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells.

    PubMed

    Kongkanand, Anusorn; Mathias, Mark F

    2016-04-07

    Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.

  20. Three VO2+ complexes of the pyridoxal-derived Schiff bases: Synthesis, experimental and theoretical characterizations, and catalytic activity in a cyclocondensation reaction

    NASA Astrophysics Data System (ADS)

    Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali

    2018-02-01

    Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.

  1. SHERMAN - A shape-based thermophysical model II. Application to 8567 (1996 HW1)

    NASA Astrophysics Data System (ADS)

    Howell, E. S.; Magri, C.; Vervack, R. J.; Nolan, M. C.; Taylor, P. A.; Fernández, Y. R.; Hicks, M. D.; Somers, J. M.; Lawrence, K. J.; Rivkin, A. S.; Marshall, S. E.; Crowell, J. L.

    2018-03-01

    We apply a new shape-based thermophysical model, SHERMAN, to the near-Earth asteroid (NEA) 8567 (1996 HW1) to derive surface properties. We use the detailed shape model of Magri et al. (2011) for this contact binary NEA to analyze spectral observations (2-4.1 microns) obtained at the NASA IRTF on several different dates to find thermal parameters that match all the data. Visible and near-infrared (0.8-2.5 microns) spectral observations are also utilized in a self-consistent way. We find that an average visible albedo of 0.33, thermal inertia of 70 (SI units) and surface roughness of 50% closely match the observations. The shape and orientation of the asteroid is very important to constrain the thermal parameters to be consistent with all the observations. Multiple viewing geometries are equally important to achieve a robust solution for small, non-spherical NEAs. We separate the infrared beaming effects of shape, viewing geometry and surface roughness for this asteroid and show how their effects combine. We compare the diameter and albedo that would be derived from the thermal observations assuming a spherical shape with those from the shape-based model. We also discuss how observations from limited viewing geometries compare to the solution from multiple observations. The size that would be derived from the individual observation dates varies by 20% from the best-fit solution, and can be either larger or smaller. If the surface properties are not homogeneous, many solutions are possible, but the average properties derived here are very tightly constrained by the multiple observations, and give important insights into the nature of small NEAs.

  2. The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie

    2012-01-01

    One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.

  3. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.

  4. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.

    PubMed

    Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K

    2013-01-01

    The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos Mavrikakis; James Dumesic; Rahul Nabar

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts weremore » prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.« less

  6. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    NASA Astrophysics Data System (ADS)

    Abad, E.; Kozak, J. J.

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0

  7. Stabilization of metallic catalyst microstructures against high-temperature thermal coarsening

    NASA Astrophysics Data System (ADS)

    Driscoll, David Robert

    The size and shape of metal particulate at high temperature is dictated by surface energy. In systems containing very small metal particles, smaller particles shrink and disappear as they grow into larger particles in a process referred to as coarsening. Coarsening causes irreversible degradation in a number of important systems including automotive catalytic converters and solid oxide fuel cells (SOFC) through a loss of catalyst (metal) surface area. This phenomenon is exemplified by nickel metal catalyst that is supported on ytrria-stabilized zirconia (YSZ) which represents a materials system critical to the function of SOFCs. It has been demonstrated that additions of aluminum titanate (ALT) to the Ni-YSZ system with subsequent thermal treatment can act to stabilize the geometry of Ni on YSZ. In demonstration SOFCs, ALT has increased the time required for the first 10% of degradation by a factor of 115. This work has sought to elucidate the mechanisms by which ALT imparts increased stability. The work contained here demonstrates that ALT easily decomposes to Al 2O3 and TiO2. During thermal treatment, the alumina reacts with NiO to form nickel aluminate and the titania interacts with the YSZ where it can form Zr5Ti7O24--a mixed ion electron conducting phase. In this way, the Al and Ti components of ALT have been determined to act independently where alumina appears to be dominant in microstructural stabilization. During cell operation, the nickel aluminate decomposes to nickel metal decorated with alumina nano-particulate. This geometry forms the basis of "diffusion caging" as a stabilization mechanism which is the subject of Chapter 8. The role of titania appears to be less important except when processing occurs in a way that facilitates formation of the MIEC phase. However, Ni-YSZ cermets have also shown a strength enhancement when doped with ALT. This strength enhancement is likely due to the influence of titania (Chapter 7). Future work has the potential to extend concepts discussed here to a number of high temperature catalytic systems.

  8. AKSZ construction from reduction data

    NASA Astrophysics Data System (ADS)

    Bonechi, Francesco; Cabrera, Alejandro; Zabzine, Maxim

    2012-07-01

    We discuss a general procedure to encode the reduction of the target space geometry into AKSZ sigma models. This is done by considering the AKSZ construction with target the BFV model for constrained graded symplectic manifolds. We investigate the relation between this sigma model and the one with the reduced structure. We also discuss several examples in dimension two and three when the symmetries come from Lie group actions and systematically recover models already proposed in the literature.

  9. Systematic Lithologic Calibration of Neogene Mass-Transport Deposits Seismic Character in Mississippi Canyon of the Northern Gulf of Mexico, USA.

    NASA Astrophysics Data System (ADS)

    Gutierrez, M. A.; Snedden, J.

    2017-12-01

    Few publications have attempted detailed lithologic calibration of Mass Transport Deposits, usually as a byproduct of mud log descriptions. While the principal motivation for further understanding these slope failure deposits are driven by the economics of deep-water hydrocarbon exploration, the geohazard-related risks of storm-wave loading, and the shallow gas, also provide a driving concern for these deposits. Such risks can be mitigated and prevented by in depth analysis of slope stability and failure. The Mississippi Canyon of the Northern Gulf of Mexico is one of the few basins to contain enough available density of seismic and well data to provide a well-constrained lithologic characterization throughout a MTD-rich continental margin. The proposed hypothesis evaluates: 1) the differences between attached and detached MTDs in the Neogene Northern Gulf of Mexico through seismic characterization and well log analysis, 2) variations of MTD dimensions and map geometries in relation to depositional age throughout the northeastern and northcentral Gulf of Mexico, and 3) the differentiation between sand-prone and shale-prone MTD's in relation to associated depositional mechanisms. This study will attempt lithologic calibration of MTDs in Pleistocene -Miocene strata of the study area through integration of seismic observations (focused in supra-salt basins, which have the highest seismic data quality) and lithologic related information extracted from logs, mud logs (cuttings), and available core data to further constrain the distribution of MTD types, lithology, and geometries. Initial interpretations reflect a variance of seismic character responses to the presence of sandstone and shale (constrained by wells) throughout different regions and salt tectonic domains of the MTD geobodies. Further analysis will relate different seismic facies throughout MTDs to improve the understanding of seismic character and related lithologic facies throughout the deposits, in addition to also constraining the potential reservoir quality and seal integrity uncertainties of selected MTDs. Additionally, this approach can stand as an analog to other similar areas with much less well control, such as the southern Gulf of Mexico.

  10. Modelling guided waves in the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide. The velocity structure of this relatively young subducting plate is compared to the velocity structure resolved in the older oceanic lithosphere subducted beneath Northern Japan. We also use guided wave observations to investigate the thickness and low velocity structure of the subducting Yakutat terrain. Additionally we discuss the dependence of the inferred slab geometry on the earthquake catalogues that are used.

  11. The effect of electrospun nanofibers alignment on the synthesis of one-dimensional silicon carbide nanostructure

    NASA Astrophysics Data System (ADS)

    Hooshyar, Ali; Kokabi, Mehrdad

    2018-01-01

    One-dimensional silicon carbide (1D SiC) nanostructure has shown unusual properties such as extremely high strength, good flexibility, fracture toughness, wide band gap ( 3.2eV), large breakdown electric field strength (>2 MV cm-1, 10 times that of silicon), and inverse Hall-Petch effect. Because of these advantages, 1D SiC nanomaterial has gained extensive attention on the wide range of applications in microelectronics, optoelectronics, nanocomposites, and catalyst supports. Many methods have been used for the synthesis of 1D SiC nanostructures such as chemical vapor deposition, carbon nanotube-confined reaction, laser ablation, high-frequency induction heating, and arc discharge. However, these methods have also some shortcomings such as using catalyst, high-cost, low yield, irregular geometry and impurity. In this work, electrospinning was used to prepare aligned PVA/SiO2 composite nanofibers and the effect of fiber alignment on the production efficiency and quality of 1D SiC nanostructure was investigated. For this purpose, aligned electrospun nanofibers, as the desirable precursor, were put in a tube furnace and heated up to 1250°C under a controlled program in an inert atmosphere. Finally, the grown 1D SiC nanostructure product was characterized using SEM, XRD, and FTIR. The results confirmed the successful synthesis of pure crystalline1D β-SiC nanostructure with high yield, more regular, and metal catalyst-free.

  12. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations.

    PubMed

    Tang, Qian-Lin; Zou, Wen-Tian; Huang, Run-Kun; Wang, Qi; Duan, Xiao-Xuan

    2015-03-21

    The elucidation of chemical reactions occurring on composite systems (e.g., copper (Cu)/zincite (ZnO)) from first principles is a challenging task because of their very large sizes and complicated equilibrium geometries. By combining the density functional theory plus U (DFT + U) method with microkinetic modeling, the present study has investigated the role of the phase boundary in CO2 hydrogenation to methanol over Cu/ZnO. The absence of hydrogenation locations created by the interface between the two catalyst components was revealed based on the calculated turnover frequency under realistic conditions, in which the importance of interfacial copper to provide spillover hydrogen for remote Cu(111) sites was stressed. Coupled with the fact that methanol production on the binary catalyst was recently believed to predominantly involve the bulk metallic surface, the spillover of interface hydrogen atoms onto Cu(111) facets facilitates the production process. The cooperative influence of the two different kinds of copper sites can be rationalized applying the Brönsted-Evans-Polanyi (BEP) relationship and allows us to find that the catalytic activity of ZnO-supported Cu catalysts is of volcano type with decrease in the particle size. Our results here may have useful implications in the future design of new Cu/ZnO-based materials for CO2 transformation to methanol.

  13. HST Observations Reveal the Curious Geometry of Circumgalactic Gas

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.

    2016-06-01

    We have discovered that warm gas flows along galaxy major and minor axes detected out to 200 kpc. Our results are derived from a sample of HST-imaged isolated galaxies with nearby background quasars used to probe their 105K CGM detected in HST/COS UV spectra (traced by OVI absorption). We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strong absorption systems tend to be found along the minor axes of star-forming galaxies. All of our results are consistent with the current view of the CGM originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows.

  14. HST Observations Reveal the Curious Geometry of Circumgalactic Gas

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.

    2017-03-01

    We have discovered that warm gas flows along galaxy major and minor axes detected out to 200 kpc. Our results are derived from a sample of HST-imaged isolated galaxies with nearby background quasars used to probe their 105K CGM detected in HST/COS UV spectra (traced by Ovi absorption). We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strong absorption systems tend to be found along the minor axes of star-forming galaxies. All of our results are consistent with the current view of the CGM originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows.

  15. Statistical Properties of Cell Topology and Geometry in a Tissue-Growth Model

    NASA Astrophysics Data System (ADS)

    Sahlin, Patrik; Hamant, Olivier; Jönsson, Henrik

    Statistical properties of cell topologies in two-dimensional tissues have recently been suggested to be a consequence of cell divisions. Different rules for the positioning of new walls in plants have been proposed, where e.g. Errara’s rule state that new walls are added with the shortest possible path dividing the mother cell’s volume into two equal parts. Here, we show that for an isotropically growing tissue Errara’s rule results in the correct distributions of number of cell neighbors as well as cellular geometries, in contrast to a random division rule. Further we show that wall mechanics constrain the isotropic growth such that the resulting cell shape distributions more closely agree with experimental data extracted from the shoot apex of Arabidopsis thaliana.

  16. Spectator electric fields, de Sitter spacetime, and the Schwinger effect

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2018-03-01

    During a de Sitter stage of expansion, the spectator fields of different spin are constrained by the critical density bound and by further requirements determined by their specific physical nature. The evolution of spectator electric fields in conformally flat background geometries is occasionally concocted by postulating the existence of ad hoc currents, but this apparently innocuous trick violates the second law of thermodynamics. Such a problem occurs, in particular, for those configurations (customarily employed for the analysis of the Schwinger effect in four-dimensional de Sitter backgrounds) leading to an electric energy density which is practically unaffected by the expansion of the underlying geometry. The obtained results are compared with more mundane situations where Joule heating develops in the early stages of a quasi-de Sitter phase.

  17. 3D geometries of normal faults in a brittle-ductile sedimentary cover: Analogue modelling

    NASA Astrophysics Data System (ADS)

    Vasquez, Lina; Nalpas, Thierry; Ballard, Jean-François; Le Carlier De Veslud, Christian; Simon, Brendan; Dauteuil, Olivier; Bernard, Xavier Du

    2018-07-01

    It is well known that ductile layers play a major role in the style and location of deformation. However, at the scale of a single normal fault, the impact of rheological layering is poorly constrained and badly understood, and there is a lack of information regarding the influence of several décollement levels within a sedimentary cover on the single fault geometry under purely extensive deformation. We present small-scale experiments that were built with interbedded layers of brittle and ductile materials and with minimum initial constraints (only a velocity discontinuity at the base of the experiment) on the normal fault geometry in order to investigate the influence of controlled parameters such as extension velocity, rate of extension, ductile thickness and varying stratigraphy on the 3D fault geometry. These experiments showed a broad-spectrum of tectonic features such as grabens, ramp-flat-ramp normal faults and reverse faults. Forced folds are associated with fault flats that develop in the décollement levels (refraction of the fault angle). One of the key points is that the normal fault geometry displays large variations in both direction and dip, despite the imposed homogeneous extension. This result is exclusively related to the presence of décollement levels, and is not associated with any global/regional variation in extension direction and/or inversion.

  18. Application of an inverse method for calculating three-dimensional fault geometries and clip vectors, Nun River Field, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, H.G.; White, N.

    A general, automatic method for determining the three-dimensional geometry of a normal fault of any shape and size is applied to a three-dimensional seismic reflection data set from the Nun River field, Nigeria. In addition to calculating fault geometry, the method also automatically retrieves the extension direction without requiring any previous information about either the fault shape or the extension direction. Solutions are found by minimizing the misfit between sets of faults that are calculated from the observed geometries of two or more hanging-wall beds. In the example discussed here, the predicted fault surface is in excellent agreement with themore » shape of the seismically imaged fault. Although the calculated extension direction is oblique to the average strike of the fault, the value of this parameter is not well resolved. Our approach differs markedly from standard section-balancing models in two important ways. First, we do not assume that the extension direction is known, and second, the use of inverse theory ensures that formal confidence bounds can be determined for calculated fault geometries. This ability has important implications for a range of geological problems encountered at both exploration and production scales. In particular, once the three-dimensional displacement field has been constrained, the difficult but important problem of three-dimensional palinspastic restoration of hanging-wall structures becomes tractable.« less

  19. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes.

    PubMed

    Reddy, P Muralidhar; Shanker, K; Srinivas, V; Krishna, E Ravi; Rohini, R; Srikanth, G; Hu, Anren; Ravinder, V

    2015-03-15

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Particle Size Distribution in Saturn’s C Ring from UVIS and VIMS Stellar Occultations and RSS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Jerousek, Richard Gregory; Colwell, Josh; Hedman, Matthew M.; French, Richard G.; Marouf, Essam A.; Esposito, Larry; Nicholson, Philip D.

    2017-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured ring optical depths over a wide range of viewing geometries at effective wavelengths of 0.15 μm and 2.9 μm respectively. Using Voyager S and X band radio occultations and the direct inversion of the forward scattered S band signal, Marouf et al. (1982), (1983), and Zebker et al. (1985) determined the power-law size distribution parameters assuming a minimum particle radius of 1 mm. Many further studies have also constrained aspects of the particle size distribution throughout the main rings. Marouf et al. (2008a) determined the smallest ring particles to have radii of 4-5 mm using Cassini RSS data. Harbison et al. (2013) used VIMS solar occultations and also found minimum particle sizes of 4-5 mm in the C ring with q ~ 3.1, where n(a)da=Ca^(-q)da is the assumed differential power-law size distribution for particles of radius a. Recent studies of excess variance in stellar signal by Colwell et al. (2017, submitted) constrain the cross-section-weighted effective particle radius to 1 m to several meters. Using the wide range of viewing geometries available to VIMS and UVIS stellar occultations we find that normal optical depth does not strongly depend on viewing geometry at 10km resolution (which would be the case if self-gravity wakes were present). Throughout the C ring, we fit power-law derived optical depths to those measured by UVIS, VIMS, and by the Cassini Radio Science Subsystem (RSS) at 0.94 and 3.6 cm wavelengths to constrain the four parameters of the size distribution at 10km radial resolution. We find significant amounts of particle size sorting throughout the region with a positive correlation between maximum particles size (amax) and normal optical depth with a mean value of amax ~ 3 m in the background C ring. This correlation is negative in the C ring plateaus. We find an inverse correlation in minimum particle radius with normal optical depth and a mean value of amin ~ 4 mm in the background C ring with slightly larger smallest particles in the C ring plateaus.

  1. Periodic buckling of constrained cylindrical elastic shells

    NASA Astrophysics Data System (ADS)

    Marthelot, Joel; Brun, Pierre-Thomas; Lopez Jimenez, Francisco; Reis, Pedro M.

    We revisit the classic problem of buckling of a thin cylindrical elastic shell loaded either by pneumatic depressurization or axial compression. The control of the resulting dimpled pattern is achieved by using a concentric inner rigid mandrel that constrains and stabilizes the post-buckling response. Under axial compression, a regular lattice of diamond-like dimples appears sequentially on the surface of the shell to form a robust spatially extended periodic pattern. Under pressure loading, a periodic array of ridges facets the surface of the elastic cylindrical shell. The sharpness of these ridges can be readily varied and controlled through a single scalar parameter, the applied pressure. A combination of experiments, simulations and scaling analyses is used to rationalize the combined role of geometry and mechanics in the nucleation and evolution of the diamond-like dimples and ridges networks.

  2. Resonant Raman spectra of diindenoperylene thin films

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Gisslén, L.; Schuster, B.-E.; Casu, M. B.; Chassé, T.; Heinemeyer, U.; Schreiber, F.

    2011-01-01

    Resonant and preresonant Raman spectra obtained on diindenoperylene (DIP) thin films are interpreted with calculations of the deformation of a relaxed excited molecule with density functional theory (DFT). The comparison of excited state geometries based on time-dependent DFT or on a constrained DFT scheme with observed absorption spectra of dissolved DIP reveals that the deformation pattern deduced from constrained DFT is more reliable. Most observed Raman peaks can be assigned to calculated A_g-symmetric breathing modes of DIP or their combinations. As the position of one of the laser lines used falls into a highly structured absorption band, we have carefully analyzed the Raman excitation profile arising from the frequency dependence of the dielectric tensor. This procedure gives Raman cross sections in good agreement with the observed relative intensities, both in the fully resonant and in the preresonant case.

  3. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  4. Resonant Raman spectra of diindenoperylene thin films.

    PubMed

    Scholz, R; Gisslén, L; Schuster, B-E; Casu, M B; Chassé, T; Heinemeyer, U; Schreiber, F

    2011-01-07

    Resonant and preresonant Raman spectra obtained on diindenoperylene (DIP) thin films are interpreted with calculations of the deformation of a relaxed excited molecule with density functional theory (DFT). The comparison of excited state geometries based on time-dependent DFT or on a constrained DFT scheme with observed absorption spectra of dissolved DIP reveals that the deformation pattern deduced from constrained DFT is more reliable. Most observed Raman peaks can be assigned to calculated A(g)-symmetric breathing modes of DIP or their combinations. As the position of one of the laser lines used falls into a highly structured absorption band, we have carefully analyzed the Raman excitation profile arising from the frequency dependence of the dielectric tensor. This procedure gives Raman cross sections in good agreement with the observed relative intensities, both in the fully resonant and in the preresonant case.

  5. Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems

    NASA Astrophysics Data System (ADS)

    Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.

    2016-11-01

    Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.

  6. Movement Timing and Invariance Arise from Several Geometries

    PubMed Central

    Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar

    2009-01-01

    Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain uses different mixtures of these geometries to encode movement duration and speed, and the ontogeny of such representations. PMID:19593380

  7. Dynamic rupture simulation of the 2017 Mw 7.8 Kaikoura (New Zealand) earthquake: Is spontaneous multi-fault rupture expected?

    NASA Astrophysics Data System (ADS)

    Ando, R.; Kaneko, Y.

    2017-12-01

    The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al. (2017). We conclude that the first order characteristics of this event may be interpreted by the effect of irregularity in the fault geometry.

  8. Computational Investigation of a Boundary-Layer Ingesting Propulsion System for the Common Research Model

    NASA Technical Reports Server (NTRS)

    Blumenthal, Brennan T.; Elmiligui, Alaa; Geiselhart, Karl A.; Campbell, Richard L.; Maughmer, Mark D.; Schmitz, Sven

    2016-01-01

    The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into a typical commercial aircraft using the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for CFD analysis. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2 deg for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.4% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from Boundary-Layer Ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of eighteen counts over the baseline geometry.

  9. Computational Investigation of a Boundary-Layer Ingestion Propulsion System for the Common Research Model

    NASA Technical Reports Server (NTRS)

    Blumenthal, Brennan

    2016-01-01

    This thesis will examine potential propulsive and aerodynamic benefits of integrating a boundary-layer ingestion (BLI) propulsion system with a typical commercial aircraft using the Common Research Model geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment will be used to generate engine conditions for CFD analysis. Improvements to the BLI geometry will be made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2deg for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.3% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from boundary-layer ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of eighteen counts over the baseline geometry.

  10. Constraints on cosmic superstrings from Kaluza-Klein emission.

    PubMed

    Dufaux, Jean-François

    2012-07-06

    Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.

  11. Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry

    NASA Astrophysics Data System (ADS)

    Carey, Christina; Cheng, Yuen-Kit; Rossky, Peter J.

    2000-08-01

    The concave substrate binding pocket of α-chymotrypsin binds specifically hydrophobic side chains. In order to understand the hydration structure present in the absence of substrate, and elucidate the character of the solvent displaced on binding, molecular dynamics computer simulation of the solvent in a fully hydrated protein has been carried out and analyzed. The pocket is found to be characterized in terms of a mixed polar and apolar macromolecular surface. It is shown that the simulated solvent structure within it is spatially consistent with that seen via crystallography. The solvent structure is energetically characterized by large losses in hydrogen bonding among solvent molecules except at the mouth of the pocket where exposure to bulk-like solvent is possible. The loss in hydrogen bonding is attributed to the highly constrained geometry available to the solvent, preventing formation of a hydrogen bonding network, with only partial compensation by interactions with the macromolecular surface. The solvent displacement concomitant with substrate binding will therefore be associated with a large enthalpic driving force. This result is at the extreme of a continuum of variable cases of "hydrophobic" hydration, which differ most basically in surface curvature. These range from convex solute surfaces, inducing clathrate-like structures, with negligible hydrogen bond loss, to flat surfaces with significant interfacial loss, to the present concave case with hydrogen bonding losses exceeding 50%.

  12. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  13. Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry

    NASA Astrophysics Data System (ADS)

    Stevens, Kimberly A.; Esplin, Christian D.; Davis, Taylor M.; Butterfield, D. Jacob; Ng, Philip S.; Bowden, Anton E.; Jensen, Brian D.; Iverson, Brian D.

    2018-05-01

    The use of carbon nanotubes to create superhydrophobic coatings has been considered due to their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs or the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting in a composite structure with improved mechanical stability. Additionally, the native surface can be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as 160° and contact angle hysteresis on the order of 1°. The CICNT diameter, static contact angle, sliding angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to determine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior and tunable geometry were also observed with CICNTs grown directly on stainless steel without an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, anti-microbial surfaces, and other bio-applications where control over the nanostructure is beneficial.

  14. An efficient sensitivity analysis method for modified geometry of Macpherson suspension based on Pearson correlation coefficient

    NASA Astrophysics Data System (ADS)

    Shojaeefard, Mohammad Hasan; Khalkhali, Abolfazl; Yarmohammadisatri, Sadegh

    2017-06-01

    The main purpose of this paper is to propose a new method for designing Macpherson suspension, based on the Sobol indices in terms of Pearson correlation which determines the importance of each member on the behaviour of vehicle suspension. The formulation of dynamic analysis of Macpherson suspension system is developed using the suspension members as the modified links in order to achieve the desired kinematic behaviour. The mechanical system is replaced with an equivalent constrained links and then kinematic laws are utilised to obtain a new modified geometry of Macpherson suspension. The equivalent mechanism of Macpherson suspension increased the speed of analysis and reduced its complexity. The ADAMS/CAR software is utilised to simulate a full vehicle, Renault Logan car, in order to analyse the accuracy of modified geometry model. An experimental 4-poster test rig is considered for validating both ADAMS/CAR simulation and analytical geometry model. Pearson correlation coefficient is applied to analyse the sensitivity of each suspension member according to vehicle objective functions such as sprung mass acceleration, etc. Besides this matter, the estimation of Pearson correlation coefficient between variables is analysed in this method. It is understood that the Pearson correlation coefficient is an efficient method for analysing the vehicle suspension which leads to a better design of Macpherson suspension system.

  15. Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato

    Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.

  16. 3D finite element models of shoulder muscles for computing lines of actions and moment arms.

    PubMed

    Webb, Joshua D; Blemker, Silvia S; Delp, Scott L

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.

  17. 3D Finite Element Models of Shoulder Muscles for Computing Lines of Actions and Moment Arms

    PubMed Central

    Webb, Joshua D.; Blemker, Silvia S.; Delp, Scott L.

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterize the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account the large attachment areas, muscle-muscle interactions, and complex muscle fiber trajectories typical of shoulder muscles. To better represent shoulder muscle geometry we developed three-dimensional finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fiber paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fiber moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the three-dimensional model of supraspinatus showed that the anterior fibers provide substantial internal rotation while the posterior fibers act as external rotators. Including the effects of large attachment regions and three-dimensional mechanical interactions of muscle fibers constrains muscle motion, generates more realistic muscle paths, and allows deeper analysis of shoulder muscle function. PMID:22994141

  18. On the impact of ice-ocean interaction on Greenland glaciers versus calving speed.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Menemenlis, D.; Morlighem, M.; Wood, M.; Millan, R.; Mouginot, J.; An, L.

    2016-12-01

    Glacier retreat from frontal ablation is a delicate balance between subaqueous melt, calving processes and bed geometry. Here, we model subaqueous melt from a large number of Greenland tidewater glaciers using generalized 3D, high resolution simulations of ice melt from the MITgcm ocean model constrained by subglacial melt from RACMO2.3 and ISSM, ocean temperature from ECCO2-4km Arctic, and bed topography from OMG and MC for 1992-2015. The results are analyzed in combination with ice-front retreat and glacier speed from Landsat and imaging radar data since the 1990s. We find that subaqueous melt is 2-3 times greater in summer than in winter and doubled in magnitude since the 1990s because of enhanced ice sheet runoff and warmer ocean temperature. Glaciers that retreated rapidly are characterized by subaqueous melt rates comparable to their calving speed and favorable bed geometry. Glaciers dominated by calving processes are in contrast more resilient to thermal forcing from the ocean, especially in the presence of stabilizing geometry. The study highlights the fundamental importance of calving processes in controlling glacier retreat in Greenland.

  19. Constraining Viewing Geometries of Pulsars with Single-Peaked Gamma-ray Profiles Using a Multiwavelength Approach

    NASA Technical Reports Server (NTRS)

    Seyffert, A. S.; Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the launch of the Large Area Telescope (LAT) on board the Fermi spacecraft in June 2008, the number of observed gamma-ray pulsars has increased dramatically. A large number of these are also observed at radio frequencies. Constraints on the viewing geometries of 5 of 6 gamma-ray pulsars exhibiting single-peaked gamma-ray profiles were derived using high-quality radio polarization data [1]. We obtain independent constraints on the viewing geometries of 6 by using a geometric emission code to model the Fermi LAT and radio light curves (LCs). We find fits for the magnetic inclination and observer angles by searching the solution space by eye. Our results are generally consistent with those previously obtained [1], although we do find small differences in some cases. We will indicate how the gamma-ray and radio pulse shapes as well as their relative phase lags lead to constraints in the solution space. Values for the flux correction factor (f(omega)) corresponding to the fits are also derived (with errors).

  20. The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1,3-dipolar cycloadditions of azides and alkynes

    NASA Astrophysics Data System (ADS)

    Mohtat, Bita; Siadati, Seyyed Amir; Khalilzadeh, Mohammad Ali; Zareyee, Daryoush

    2018-03-01

    After hot debates on the concerted or stepwise nature of the mechanism of the catalyst-free 1,3-dipolar cycloadditions (DC)s, nowadays, it is being believed that for the reaction of each dipole and dipolarophile, there is a possibility that the reaction mechanism becomes stepwise, intermediates emerge, and the reaction becomes non-stereospecific. Yield of even minimal amounts of unwanted side products or stereoisomers as impurities could bring many troubles like difficult purification steps. In this project, we have made attempts to study all probable reaction channels of the azide cycloadditions with two functionalized alkynes, in order to answer this question: "is there any possibility that intermediates evolve in the catalyst-free click 1,3-DC reaction of azide-alkynes?". During the calculations, several multi-station reaction pathways supporting the stepwise and concerted mechanisms were detected. Also, the born-oppenheimer molecular dynamic (BOMD) simulation was used to find trustable geometries which could be emerged during the reaction coordinate.

  1. Combinatorial Search for High-Activity Hydrogen Catalysts Based on Transition-Metal-Embedded Graphitic Carbons

    DOE PAGES

    Choi, Woon Ih; Wood, Brandon C.; Schwegler, Eric; ...

    2015-09-22

    Transition metal (TM) atoms in porphyrin–like complexes play important roles in many protein and enzymetic systems, where crystal–field effects are used to modify d–orbital levels. Inspired by the tunable electronic structure of these motifs, a high–throughput computational search for synthetic hydrogen catalysts is performed based on a similar motif of TM atoms embedded into the lattice of graphene. Based on an initial list of 300 possible embedding geometries, binders, and host atoms, descriptors for stability and catalytic activity are applied to extract ten promising candidates for hydrogen evolution, two of which are expected to exhibit high activity for hydrogen oxidation.more » In several instances, the active TM atoms are earth–abundant elements that show no activity in the bulk phase, highlighting the importance of the coordination environment in tuning the d–orbitals. In conclusion, it is found that the most active candidates involve a hitherto unreported surface reaction pathway that involves a Kubas–complex intermediate, which significantly lowers the kinetic barrier associated with hydrogen dissociation and association.« less

  2. Porous Metal Organic Polyhedral Framework Containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorptions: A Heterogeneous Catalyst for Chemical Fixation of CO2.

    PubMed

    Biradha, Kumar; Maity, Kartik; Karan, Chandan Kumar

    2018-06-11

    Development of active porous materials that can efficiently adsorb H2 and CO2 are in need due to their practical utilities. Here we present the design and synthesis of an interpenetrated Cu(II)-MOF that is thermally stable, highly porous and can act as a heterogeneous catalyst. The Cu(II)-MOF contains highly symmetric polyhedral metal cluster (Cu24) with cuboctahedron geometry as SBU. The double interpenetration of such huge cluster containing nets provides high density of open metal sites due to which it exhibits remarkable H2 storage capacity (313 cm3g-1 at 1bar and 77K) as well as high CO2 capture ability (159 cm3g-1 at 1bar and 273K). Further, its propensity towards the CO2 sorption utilized for the heterogeneous catalysis of chemical conversion of CO2 into the corresponding cyclic carbonates upon reaction with epoxides with high TON and TOF values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  4. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    NASA Astrophysics Data System (ADS)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for converting carbon monoxide to chemical fuels, and should prove useful in the broader context of performing complex multi-electron transformations at a single metal site.

  5. Stereoselective aminoacylation of RNA

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Needels, M. C.; Brenner, T.

    1986-01-01

    Prebiotic chemistry is faced with a major problem: how could a controlled and selective reaction occur, when there is present in the same solution a large number of alternative possible coreactants? This problem is solved in the modern cell by the presence of enzymes, which are not only highly efficient and controllable catalysts, but which also can impose on their substrates a precise structural requirement. However, enzymes are the result of billions of years of evolution, and we cannot invoke them as prebiotic catalysts. One approach to solving this problem in the prebiotic context is to make use of template-directed reactions. These reactions increase the number of structural requirements that must be simultaneously present in a molecule for it to be able to react, and thereby increase the selectivity of the reaction. They also can give a large increase in the rate of a reaction, if the template constrains two potential coreactants to lie close together. A third benefit is that information that is present in the template molecule can be passed on to the product molecules. If the earliest organisms were based on proteins and nucleic acids, then the investigation of peptide synthesis on an oligonucleotide template is highly relevant to the study of the origin of life.

  6. Computational evaluation of aortic occlusion and the proposal of a novel, improved occluder: Constrained endo-aortic balloon occlusion.

    PubMed

    de Vaal, M H; Gee, M W; Stock, U A; Wall, W A

    2016-12-01

    Because aortic occlusion is arguably one of the most dangerous aortic manipulation maneuvers during cardiac surgery in terms of perioperative ischemic neurological injury, the purpose of this investigation is to assess the structural mechanical impact resulting from the use of existing and newly proposed occluders. Existing (clinically used) occluders considered include different cross-clamps (CCs) and endo-aortic balloon occlusion (EABO). A novel occluder is also introduced, namely, constrained EABO (CEABO), which consists of applying a constrainer externally around the aorta when performing EABO. Computational solid mechanics are employed to investigate each occluder according to a comprehensive list of functional requirements. The potential of a state of occlusion is also considered for the first time. Three different constrainer designs are evaluated for CEABO. Although the CCs were responsible for the highest strains, largest deformation, and most inefficient increase of the occlusion potential, it remains the most stable, simplest, and cheapest occluder. The different CC hinge geometries resulted in poorer performance of CC used for minimally invasive procedures than conventional ones. CEABO with a profiled constrainer successfully addresses the EABO shortcomings of safety, stability, and positioning accuracy, while maintaining its complexities of operation (disadvantage) and yielding additional functionalities (advantage). Moreover, CEABO is able to achieve the previously unattainable potential to provide a clinically determinable state of occlusion. CEABO offers an attractive alternative to the shortcomings of existing occluders, with its design rooted in achieving the highest patient safety. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Multistep modeling (MSM) of biomolecular structure application to the A-G mispair in the B-DNA environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Raghunathan, G.; Shibata, M.; Rein, R.

    1986-01-01

    A multistep modeling procedure has been evolved to study the structural changes introduced by lesions in DNA. We report here the change in the structure of regular B-DNA geometry due to the incorporation of Ganti-Aanti mispair in place of a regular G-C pair, preserving the helix continuity. The energetics of the structure so obtained is compared with the Ganti-Asyn configuration under similar constrained conditions. We present the methodology adopted and discuss the results.

  8. Lithospheric strength of Ganymede: Clues to early thermal profiles from extensional tectonic features

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1985-01-01

    While it is generally agreed that the strength of a planet's lithosphere is controlled by a combination of brittle sliding and ductile flow laws, predicting the geometry and initial characteristics of faults due to failure from stresses imposed on the lithospheric strength envelope has not been thoroughly explored. Researchers used lithospheric strength envelopes to analyze the extensional features found on Ganymede. This application provides a quantitative means of estimating early thermal profiles on Ganymede, thereby constraining its early thermal evolution.

  9. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  10. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    NASA Technical Reports Server (NTRS)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  11. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  12. Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhou, Xiaoyan; Wang, Dongqi; Yin, Jun-Jie; Chen, Hanqing; Gao, Xingfa; Zhang, Jing; Ibrahim, Kurash; Chai, Zhifang; Feng, Weiyue; Zhao, Yuliang

    2015-01-01

    Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing π electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C&z.dbd;C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C π* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media.Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing π electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C&z.dbd;C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C π* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media. Electronic supplementary information (ESI) available: Optimization of the mass ratios of HA to CNTs and the reaction pH conditions for Fe loading; scanning electron microscope (SEM), UV-Vis-near-infrared, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) for CNT-HA; EPR experiment and UPLC-ESI-MS analysis; and DFT calculation. See DOI: 10.1039/c4nr06665k

  13. Porous media for catalytic renewable energy conversion

    NASA Astrophysics Data System (ADS)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  14. A Hamiltonian approach to Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less

  15. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  16. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  17. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  18. Constrained Metric Learning by Permutation Inducing Isometries.

    PubMed

    Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle

    2016-01-01

    The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.

  19. Geologic and Geophysical Framework of the Santa Rosa 7.5' Quadrangle, Sonoma County, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Sarna-Wojcicki, A. M.; Fleck, R.J.; McPhee, D.K.; Roberts, C.W.; McCabe, C.A.; Wan, Elmira

    2008-01-01

    The geologic and geophysical maps of Santa Rosa 7.5? quadrangle and accompanying structure sections portray the sedimentary and volcanic stratigraphy and crustal structure of the Santa Rosa 7.5? quadrangle and provide a context for interpreting the evolution of volcanism and active faulting in this region. The quadrangle is located in the California Coast Ranges north of San Francisco Bay and is traversed by the active Rodgers Creek, Healdsburg and Maacama Fault Zones. The geologic and geophysical data presented in this report, are substantial improvements over previous geologic and geophysical maps of the Santa Rosa area, allowing us to address important geologic issues. First, the geologic mapping is integrated with gravity and magnetic data, allowing us to depict the thicknesses of Cenozoic deposits, the depth and configuration of the Mesozoic basement surface, and the geometry of fault structures beneath this region to depths of several kilometers. This information has important implications for constraining the geometries of major active faults and for understanding and predicting the distribution and intensity of damage from ground shaking during earthquakes. Secondly, the geologic map and the accompanying description of the area describe in detail the distribution, geometry and complexity of faulting associated with the Rodgers Creek, Healdsburg and Bennett Valley Fault Zones and associated faults in the Santa Rosa quadrangle. The timing of fault movements is constrained by new 40Ar/39Ar ages and tephrochronologic correlations. These new data provide a better understanding of the stratigraphy of the extensive sedimentary and volcanic cover in the area and, in particular, clarify the formational affinities of Pliocene and Pleistocene nonmarine sedimentary units in the map area. Thirdly, the geophysics, particularly gravity data, indicate the locations of thick sections of sedimentary and volcanic fill within ground water basins of the Santa Rosa plain and Rincon, Bennett, and northwestern Sonoma Valleys, providing geohydrologists a more realistic framework for groundwater flow models.

  20. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Ahn, Dukju; Ghovanloo, Maysam

    2016-02-01

    This paper presents a design methodology for RF power transmission to millimeter-sized implantable biomedical devices. The optimal operating frequency and coil geometries are found such that power transfer efficiency (PTE) and tissue-loss-constrained allowed power are maximized. We define receiver power reception susceptibility (Rx-PRS) and transmitter figure of merit (Tx-FoM) such that their multiplication yields the PTE. Rx-PRS and Tx-FoM define the roles of the Rx and Tx in the PTE, respectively. First, the optimal Rx coil geometry and operating frequency range are identified such that the Rx-PRS is maximized for given implant constraints. Since the Rx is very small and has lesser design freedom than the Tx, the overall operating frequency is restricted mainly by the Rx. Rx-PRS identifies such operating frequency constraint imposed by the Rx. Secondly, the Tx coil geometry is selected such that the Tx-FoM is maximized under the frequency constraint at which the Rx-PRS was saturated. This aligns the target frequency range of Tx optimization with the frequency range at which Rx performance is high, resulting in the maximum PTE. Finally, we have found that even in the frequency range at which the PTE is relatively flat, the tissue loss per unit delivered power can be significantly different for each frequency. The Rx-PRS can predict the frequency range at which the tissue loss per unit delivered power is minimized while PTE is maintained high. In this way, frequency adjustment for the PTE and tissue-loss-constrained allowed power is realized by characterizing the Rx-PRS. The design procedure was verified through full-wave electromagnetic field simulations and measurements using de-embedding method. A prototype implant, 1 mm in diameter, achieved PTE of 0.56% ( -22.5 dB) and power delivered to load (PDL) was 224 μW at 200 MHz with 12 mm Tx-to-Rx separation in the tissue environment.

  1. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    NASA Astrophysics Data System (ADS)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor displacement, in 2D. Finally, we use the same rheology in a large-scale 3D scenario of the 2004 Sumatra earthquake to shed light to the source process that caused the subsequent devastating tsunami.

  2. Constraining the geometry of PSR J0855-4644: A nearby pulsar wind nebula with double torus/jet morphology

    NASA Astrophysics Data System (ADS)

    Maitra, C.; Acero, F.; Venter, C.

    2017-01-01

    Aims: PSR J0855-4644 is a fast-spinning, energetic pulsar discovered at radio wavelengths near the south-eastern rim of the supernova remnant RX J0852.0-4622. A follow-up XMM-Newton observation revealed the X-ray counterpart of the pulsar and a slightly asymmetric pulsar wind nebula, which suggests possible jet structures. Lying at a distance d ≤ 900 pc, PSR J0855-4644 is a pulsar with one of the highest Ė/d2 from which no GeV γ-ray pulsations have been detected. With a dedicated Chandra observation we aim to further resolve the possible jet structures of the nebula and study the pulsar geometry to understand the lack of γ-ray pulsations. Methods: We performed detailed spatial modelling to constrain the geometry of the pulsar wind nebula and in particular the pulsar line of sight (observer angle) ζPSR, which is defined as the angle between the direction of the observer and the pulsar spin axis. We also performed geometric radio and γ-ray light-curve modelling using a hollow-cone radio beam model together with two-pole caustic and outer gap models to further constrain ζPSR and the magnetic obliquity α defined as the angle between the magnetic and spin axes of the pulsar. Results: The Chandra observation reveals that the compact XMM source, thought to be the X-ray pulsar, can be further resolved into a point source surrounded by an elongated axisymmetric nebula with a longitudinal extent of 10''. The pulsar flux represents only 1% of the XMM compact source, and its spectrum is well described by a blackbody of temperature kT = 0.2 keV, while the surrounding nebula has a much harder spectrum (Γ = 1.1 for a power-law model). Assuming the origin of the extended emission is a double torus yields ζPSR = 32.5° ± 4.3°. The detection of thermal X-rays from the pulsar may point to a low value of | ζ-α | if this emission originates from a heated polar cap. Independent constraints from geometric light-curve modelling yield α ≲ 55° and ζ ≲ 55°, and 10° ≲ | ζ-α | ≲ 30°. A χ2 fit to the radio light curve yields a best fit at (α,ζPSR) = (22°,8°), with an alternative fit at (α,ζPSR) = (9°,25°) within 3σ. The lack of non-thermal X-ray emission from the pulsar further supports low values for α and ζ under the assumption that X-rays and γ-rays are generated in the same region of the pulsar magnetosphere. Such a geometry would explain, in the standard caustic pulsar model picture, the radio-loud and γ-ray-quiet behaviour of this high Ė/d2 pulsar.

  3. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  4. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    PubMed

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  5. Mapping the Active Vents of Stromboli Volcano with an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Turner, N.; Houghton, B. F.; von der Lieth, J.; Hort, M. K.; Taddeucci, J.; Kueppers, U.; Ricci, T.; Gaudin, D.

    2016-12-01

    We present a new detailed map of the active vents of Stromboli volcano obtained from UAV flights in May 2016, when the active NE and SW craters were repeatedly mapped. Due to high levels of gas emissions and frequent explosions, fine-scale measurements of vent geometry from single flights were challenging. However, the compilation of data acquired over 12 flights used with Structure from Motion software allowed us to create a 10 cm Digital Elevation Model (DEM) offering a non-obstructed view into the active craters. Such direct observations permits us to constrain parameters such as vent geometry and depth with an unprecedented precision, thus potentially reducing the uncertainty of models depending on such inputs (e.g. conduit and acoustic models). Furthermore, the low-cost and safety of UAVs allows mapping changes at small temporal and spatial resolutions, making this technique complementary to monitoring efforts at active volcanoes.

  6. Rapid variability as a probe of warped space-time around accreting black holes

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564, and compare these to the time-averaged spectrum and the spectrum of the rapid (<0.1 s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, softer at larger radii closer to the truncated disc and harder in the innermost parts where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole.

  7. Why do galactic spins flip in the cosmic web? A Theory of Tidal Torques near saddles

    NASA Astrophysics Data System (ADS)

    Pichon, Christophe; Codis, Sandrine; Pogosyan, Dmitry; Dubois, Yohan; Desjacques, Vincent; Devriendt, Julien

    2016-10-01

    Filaments of the cosmic web drive spin acquisition of disc galaxies. The point process of filament-type saddle represent best this environment and can be used to revisit the Tidal Torque Theory in the context of an anisotropic peak (saddle) background split. The constrained misalignment between the tidal tensor and the Hessian of the density field generated in the vicinity of filament saddle points simply explains the corresponding transverse and longitudinal point-reflection symmetric geometry of spin distribution. It predicts in particular an azimuthal orientation of the spins of more massive galaxies and spin alignment with the filament for less massive galaxies. Its scale dependence also allows us to relate the transition mass corresponding to the alignment of dark matter halos' spin relative to the direction of their neighboring filament to this geometry, and to predict accordingly it's scaling with the mass of non linearity, as was measured in simulations.

  8. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    PubMed

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  9. Computational studies of the geometry and electronic structure of an all-inorganic and homogeneous tetra-Ru-polyoxotungstate catalyst for water oxidation and its four subsequent one-electron oxidized forms.

    PubMed

    Quiñonero, David; Kaledin, Alexey L; Kuznetsov, Aleksey E; Geletii, Yurii V; Besson, Claire; Hill, Craig L; Musaev, Djamaladdin G

    2010-01-14

    Geometry and electronic structure of five species [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](10-) (1), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](9-) (2), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](8-) (3), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](7-) (4), and [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](6-) (5) with different oxidation states of Ru centers were studied at the density functional and COSMO levels of theory. These species are expected to be among the possible intermediates of the recently reported 1-catalyzed water oxidation (Geletii, Y. V.; Botar, B.; Kogerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896-3899 and Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006-5007). It was shown that RI-BP86 correctly describes the geometry and energy of the low-lying electronic states of compound 1, whereas the widely used B3LYP approach overestimates the energy of its high-spin states. Including the solvent and/or countercation effects into calculations improves the agreement between the calculated and experimental data. It was found that the several HOMOs and LUMOs of the studied complexes are bonding and antibonding orbitals of the [Ru(4)O(4)(OH)(2)(H(2)O)(4)](6+) core, and four subsequent one-electron oxidations of 1, leading to formation of 2, 3, 4, and 5, respectively, involve only {Ru(4)} core orbitals. In other words, catalyst instability due to ligand oxidation in the widely studied Ru-blue dimer, [(bpy)(2)(O)Ru(V)-(mu-O)-Ru(V)(O)(bpy)(2)](4+), is not operable for 1: the latter all-inorganic catalyst is predicted to be stable under water oxidation turnover conditions. The calculated HOMOs and LUMOs of all the studied species are very close in energy and exhibit a "quasi-continuum" or "nanoparticle-type" electronic structure similar to that of nanosized transition metal clusters. This conclusion closely correlates with the experimentally reported oxidation and reduction features of 1 and explains the unusual linear dependence of oxidation potential versus charges for these compounds. The decrease in total negative charge of the system via 1 > 2 > 3 > 4 > 5, on average, decreases the {Ru(4)}-{SiW(10)} distance. It is predicted that at higher pH compound 1 will, initially, release protons from the mu-O(Ru) oxygen centers.

  10. Tropomodulin 1 Constrains Fiber Cell Geometry during Elongation and Maturation in the Lens Cortex

    PubMed Central

    Nowak, Roberta B.

    2012-01-01

    Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature. PMID:22473940

  11. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  12. Modeling Crustal Deformation Due to the Landers, Hector Mine Earthquakes Using the SCEC Community Fault Model

    NASA Astrophysics Data System (ADS)

    Gable, C. W.; Fialko, Y.; Hager, B. H.; Plesch, A.; Williams, C. A.

    2006-12-01

    More realistic models of crustal deformation are possible due to advances in measurements and modeling capabilities. This study integrates various data to constrain a finite element model of stress and strain in the vicinity of the 1992 Landers earthquake and the 1999 Hector Mine earthquake. The geometry of the model is designed to incorporate the Southern California Earthquake Center (SCEC), Community Fault Model (CFM) to define fault geometry. The Hector Mine fault is represented by a single surface that follows the trace of the Hector Mine fault, is vertical and has variable depth. The fault associated with the Landers earthquake is a set of seven surfaces that capture the geometry of the splays and echelon offsets of the fault. A three dimensional finite element mesh of tetrahedral elements is built that closely maintains the geometry of these fault surfaces. The spatially variable coseismic slip on faults is prescribed based on an inversion of geodetic (Synthetic Aperture Radar and Global Positioning System) data. Time integration of stress and strain is modeled with the finite element code Pylith. As a first step the methodology of incorporating all these data is described. Results of the time history of the stress and strain transfer between 1992 and 1999 are analyzed as well as the time history of deformation from 1999 to the present.

  13. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst···acidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-03

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.

  14. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  15. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE PAGES

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.; ...

    2015-04-17

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  16. Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2012-01-01

    We propose a filter bank consisting of an ordinary current-state extended Kalman filter, and two similar but constrained filters: one is constrained by a null hypothesis that the miss distance between two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest approach, and one is constrained by an alternative complementary hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also governs measurement editing for all three filters, and predicts the time of closest approach. The constrained filters operate only when conjunctions of interest occur. The computed likelihoods of the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test. The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed detection criteria. Since only current-state Kalman filtering is required to compute the innovations for the likelihood ratio, the present approach does not require the mapping of probability density forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update time by applying a sigma-point transformation to a projection function. Although many projectors are available, we choose one based on Lambert-style differential correction of the current-state velocity. We have tested our method using a scenario based on the Magnetospheric Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two 12,000-case Monte Carlo simulations, we found the method achieved a missed detection rate of 0.1%, and a false alarm rate of 2%.

  17. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE PAGES

    Schoonen, Martin; Smirnov, Alexander

    2016-12-01

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  18. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonen, Martin; Smirnov, Alexander

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  19. Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sheng, Tian; Sun, Shi-Gang

    2017-11-01

    Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.

  20. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  1. The Reverberation Lag in the Low-mass X-ray Binary H1743-322

    NASA Astrophysics Data System (ADS)

    De Marco, Barbara; Ponti, Gabriele

    2016-07-01

    The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.

  2. Bearing diagnostics: A method based on differential geometry

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng

    2016-12-01

    The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.

  3. Using exhumation histories to constrain Main Himalayan Thrust geometry and seismic hazard in the western Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Burbank, D.

    2016-12-01

    The Himalaya of western Nepal present a challenge to conventional understanding of the geometry and behavior of the Main Himalayan Thrust (MHT), a major seismogenic structure which accommodates 2 cm/yr of Indo-Asian convergence. Slip along a steeper ramp in the MHT drives long-term uplift of the Greater Himalaya along >1000 km of the central range front, resulting in a conspicuous physiographic transition known as PT2. This physiographic break is seemingly absent in western Nepal, which suggests a structural geometry and/or kinematic history distinct from areas along strike. This anomaly must be investigated to clarify how seismic hazard may differ from better-understood areas along strike. The importance of this work is heightened by the recent and catastrophic Gorkha earthquake in 2015. We present a suite of 7 relief transects comprising a mix of apatite and zircon U-Th/He and muscovite Ar-Ar cooling ages. These transects were collected across the more gradual mountain front in western Nepal in an effort to clarify where uplift and exhumation have been focused over the past 10 Ma. We invert these cooling ages using the thermo-kinematic model Pecube in order to constrain exhumation histories that best fit the measured cooling ages. Results confirm that MHT geometry and kinematic history in western Nepal are far more complex than in better-studied areas along strike. Exhumation rates in the along-strike projection of PT2 are slow ( 0.1-0.2 km/Myr) compared with rates 50 km toward the hinterland ( 1.0-1.5 km/Myr), suggesting that exhumation has been more rapid in this more northerly position for the past several Ma. Although a range of kinematic scenarios could explain the anomalous cooling histories, it is likely that a recently active midcrustal ramp in the MHT sits beneath this more northerly position. If the 2015 Gorkha earthquake initiated near the up-dip end of the MHT ramp in central Nepal, it is conceivable that similarly hazardous earthquakes could trigger from an analogous structural position in western Nepal, which puts seismic hazard well north of where one would expect by simply projecting PT2 across western Nepal. In addition to clarifying the seismic hazard posed by the MHT to populations in the region, these results are especially relevant to the proposed large hydroelectric dam projects in the region.

  4. Study of the In2O3 molecule in the free state and in the crystal

    NASA Astrophysics Data System (ADS)

    Kaplan, Ilya G.; Miranda, Ulises; Trakhtenberg, Leonid I.

    2018-03-01

    The nanomaterials based on the In2O3 molecule are widely used as catalysts and sensors among other applications. In the present study, we discuss the possibility of using nanoclusters of In2O3 as molecular photomotors. A comparative analysis of the electronic structure of the In2O3 molecule in the free state and in the crystal is performed. For the free In2O3 molecule the geometry of its lowest structures, V-shape and linear, was optimised at the CCSD(T) level, which is the most precise computational method applied up to date to study In2O3. Using experimental crystallographic data, we determined the geometry of In2O3 in the crystal. It has a zigzag, not symmetric structure and possesses a dipole moment with magnitude slightly smaller than that of the V-structure of the free molecule (the linear structure due to its symmetry has no dipole moment). According to the Natural Atomic population analysis, the chemical structure of the linear In2O3 can be represented as O = In-O-In = O; the V-shaped molecule has the similar double- and single-bond structure. The construction of nanoclusters from ´bricksʼ of In2O3 with geometry extracted from crystal (or nanoclusters extracted directly from crystal) and their use as photo-driven molecular motors are discussed.

  5. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine

    NASA Astrophysics Data System (ADS)

    Khattar, Raghvi; Yadav, Anjana; Mathur, Pavan

    2015-05-01

    Two new mononuclear copper(II) complexes [Cu (L) (NO3)2] (1) and [Cu (L) Br2] (2) where (L = bis(1-(pyridin-2-ylmethyl)-benzimidazol-2-ylmethyl)ether) are synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, UV-Visible, IR spectroscopy, EPR and cyclic voltammetry. The complexes exhibit different coordination structures; the E1/2 value of the complex (1) is found to be relatively more cathodic than that of complex (2). X-band EPR spectra at low temperature in DMF supports a tetragonally distorted complex (1) while complex (2) shows three different g values suggesting a rhombic geometry. These complexes were utilized as a catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine assisted by molecular oxygen. The initial rate of reaction is dependent on the concentration of Cu(II) complex as well as substrate, and was found to be higher for the nitrate bound complex, while presence of acetate anion acts as a mild inhibitor of the reaction, as it is likely to pick up protons generated during the course of reaction. The inhibition suggests that the generated protons are further required in another important catalytic step.

  6. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  7. Molecular-orbital models for the catalytic activity and selectivity of coordinatively unsaturated platinum surfaces and complexes

    NASA Astrophysics Data System (ADS)

    Balazs, A. C.; Johnson, K. H.

    1982-01-01

    Electronic structures have been calculated for 5-, 6-, and 10-atom Pt clusters, as well as for a Pt(PH 3) 4 coordination complex, using the self-consistent-field X-alpha scattered-wave (SCF-Xα-SW) molecular-orbital technique. The 10-atom cluster models the local geometry of a flat, unreconstructed Pt(100) surface, while the 5- and 6-atom clusters show features of a stepped Pt surface. Pt(PH 3) 4 resembles the chemically similar homogeneous catalyst Pt(PPh 3) 4. Common to all these coordinatively unsaturated complexes are orbitals lying near or coinciding with the highest occupied molecular orbital ("Fermi level") which show pronounced d lobes pointing directly into the vacuum. Under the hypothesis that these molecular orbitals are mainly responsible for the chemical activities of the above species, one can account for the relative similarities and differences in catalytic activity and selectivity displayed by unreconstructed Pt(100) surfaces, stepped Pt surfaces or particles, and isolated Pt(PPh 3) 4 coordination complexes. The relevance of these findings to catalyst-support interactions is also discussed. Finally, relativistic corrections to the electronic structures are calculated and their implications on catalytic properties discussed.

  8. Excellent Field Emission Properties of Short Conical Carbon Nanotubes Prepared by Microwave Plasma Enhanced CVD Process

    PubMed Central

    2008-01-01

    Randomly oriented short and low density conical carbon nanotubes (CNTs) were prepared on Si substrates by tubular microwave plasma enhanced chemical vapor deposition process at relatively low temperature (350–550 °C) by judiciously controlling the microwave power and growth time in C2H2 + NH3gas composition and Fe catalyst. Both length as well as density of the CNTs increased with increasing microwave power. CNTs consisted of regular conical compartments stacked in such a way that their outer diameter remained constant. Majority of the nanotubes had a sharp conical tip (5–20 nm) while its other side was either open or had a cone/pear-shaped catalyst particle. The CNTs were highly crystalline and had many open edges on the outer surface, particularly near the joints of the two compartments. These films showed excellent field emission characteristics. The best emission was observed for a medium density film with the lowest turn-on and threshold fields of 1.0 and 2.10 V/μm, respectively. It is suggested that not only CNT tip but open edges on the body also act as active emission sites in the randomly oriented geometry of such periodic structures.

  9. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  10. Fracture characterization from near-offset VSP inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, S.; MacBeth, C.; Queen, J.

    1997-01-01

    A global optimization method incorporating a ray-tracing scheme is used to invert observations of shear-wave splitting from two near-offset VSPs recorded at the Conoco Borehole Test Facility, Kay County, Oklahoma. Inversion results suggest that the seismic anisotropy is due to a non-vertical fracture system. This interpretation is constrained by the VSP acquisition geometry for which two sources are employed along near diametrically opposite azimuths about the well heads. A correlation is noted between the time-delay variations between the fast and slow split shear waves and the sandstone formations.

  11. Generic Design Procedures for the Repair of Acoustically Damaged Panels

    DTIC Science & Technology

    2008-12-01

    plate for component 1 h2 Thickness of plate for component 2 h3 Thickness of plate for component 3 h13 Distance from centroid of component 1 to centroid...E1 View AA Simply supported/clamped plate h13 Ly Lx y x d3 d1 y 2a Figure 4: Geometry for constrained layer damping of a simply...dimensions, properties and parameters Physical dimensions (Figure 4) Material properties Key parameters h1, h2 , h3 , h13 , Lx , Ly , 2a E1 , E3 , G2

  12. Local Operators in the Eternal Black Hole.

    PubMed

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.

  13. From polyethylene waxes to HDPE using an α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chloride pre-catalyst in ethylene polymerisation.

    PubMed

    Huang, Chuanbing; Du, Shizhen; Solan, Gregory A; Sun, Yang; Sun, Wen-Hua

    2017-05-30

    Five examples of α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chlorides (aryl = 2,6-Me 2 Ph Cr1, 2,6-Et 2 Ph Cr2, 2,6-i-Pr 2 Ph Cr3, 2,4,6-Me 3 Ph Cr4, 2,6-Et 2 -4-MePh Cr5) have been synthesized by the one-pot template reaction of α,α'-dioxo-2,3:5,6-bis(pentamethylene)pyridine, CrCl 3 ·6H 2 O and the corresponding aniline. The molecular structures of Cr1 and Cr4 reveal distorted octahedral geometries with the N,N,N-ligand adopting a mer-configuration. On activation with an aluminium alkyl co-catalyst, Cr1-Cr5 exhibited high catalytic activities in ethylene polymerization and showed outstanding thermal stability operating effectively at 80 °C with activities up to 1.49 × 10 7 g of PE (mol of Cr) -1 h -1 . Significantly, the nature of the co-catalyst employed had a dramatic effect on the molecular weight of the polymeric material obtained. For example, using diethylaluminium chloride (Et 2 AlCl) in combination with Cr4 gave high density/high molecular weight polyethylene with broad molecular weight distributions (30.9-39.3). By contrast, using modified methylaluminoxane (MMAO), strictly linear polyethylene waxes of lower molecular weight and narrow molecular weight distribution (1.6-2.0) were obtained with vinyl end-groups.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.

    Here, we explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis ofin situsynchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. Our analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °Cmore » produces metallic Cu 0of two distinct particle sizes: ~4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systemsin situ.« less

  15. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com; Tarannum, Nazia; Butcher, R. J.

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  16. Evaluating competing forces constraining glacial grounding-line stability (Invited)

    NASA Astrophysics Data System (ADS)

    Powell, R. D.

    2013-12-01

    Stability of grounding lines of marine-terminating glaciers and ice sheets is of concern due to their importance in governing rates of ice mass loss and consequent sea level rise during global warming. Although processes are similar at tidewater and floating grounding zones their relative magnitudes in terms of their influence on grounding-line stability vary between these two end members. Processes considered Important for this discussion are ice dynamics, ice surface melting and crevassing, ocean dynamics, subglacial sediment and water dynamics, and subglacial bed geometries. Models have continued to improve in their representation of these complex interactions but reliable field measurements and data continue to be hard earned and too few to properly constrain the range of boundary conditions in this complicated system. Some data will be presented covering a range of regimes from Alaska, Svalbard and Antarctica. Certainly more data are required on subglacial sediment/water dynamics and fluxes to fully represent the spectrum of glacial regimes and to assess the significance of grounding-zone sediment systems in counteracting the other processes to force grounding-line stability. Especially important here is constraining the duration of the stability that could be maintained by sediment flux - present data appear to show that it is likely to be a limited period.

  17. Fedosov Deformation Quantization as a BRST Theory

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. A.; Lyakhovich, S. L.

    The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle ?*ρM which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?*ρM and the tangent bundle TM. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.

  18. Resolving polarized stellar features thanks to polarimetric interferometry

    NASA Astrophysics Data System (ADS)

    Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel

    2003-02-01

    Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.

  19. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    NASA Astrophysics Data System (ADS)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  20. Optimization of constrained density functional theory

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Teobaldi, Gilberto

    2016-07-01

    Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.

  1. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  2. Programmable motion of DNA origami mechanisms.

    PubMed

    Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E

    2015-01-20

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

  3. Programmable motion of DNA origami mechanisms

    PubMed Central

    Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.

    2015-01-01

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550

  4. RX J1856-3754: Evidence for a Stiff Equation of State

    NASA Astrophysics Data System (ADS)

    Braje, Timothy M.; Romani, Roger W.

    2002-12-01

    We have examined the soft X-ray plus optical/UV spectrum of the nearby isolated neutron star RX J1856-3754, comparing it with detailed models of a thermally emitting surface. Like previous investigators, we find that the spectrum is best fitted by a two-temperature blackbody model. In addition, our simulations constrain the allowed viewing geometry from the observed pulse fraction upper limits. These simulations show that RX J1856-3754 is very likely to be a normal young pulsar, with the nonthermal radio beam missing Earth's line of sight. The spectral energy distribution limits on the model parameter space put a strong constraint on the star's M/R. At the measured parallax distance, the allowed range for MNS=1.5Msolar is RNS=13.7+/-0.6km. Under this interpretation, the equation of state (EOS) is relatively stiff near nuclear density, and the quark star EOS posited in some previous studies is strongly excluded. The data also constrain the surface T distribution over the polar cap.

  5. Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations

    NASA Astrophysics Data System (ADS)

    Luna, G. J. M.; Mukai, K.; Orio, M.; Zemko, P.

    2018-01-01

    In magnetically accreting white dwarfs, the height above the white dwarf surface where the standing shock is formed is intimately related with the accretion rate and the white dwarf mass. However, it is difficult to measure. We obtained new data with NuSTAR and Swift that, together with archival Chandra data, allow us to constrain the height of the shock in the intermediate polar EX Hya. We conclude that the shock has to form at least at a distance of about one white dwarf radius from the surface in order to explain the weak Fe Kα 6.4 keV line, the absence of a reflection hump in the high-energy continuum, and the energy dependence of the white dwarf spin pulsed fraction. Additionally, the NuSTAR data allowed us to measure the true, uncontaminated hard X-ray (12-40 keV) flux, whose measurement was contaminated by the nearby galaxy cluster Abell 3528 in non-imaging X-ray instruments.

  6. Compton Reflection in AGN with Simbol-X

    NASA Astrophysics Data System (ADS)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  7. A constrained maximization formulation to analyze deformation of fiber reinforced elastomeric actuators

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav; Krishnan, Girish

    2017-06-01

    Fiber reinforced elastomeric enclosures (FREEs) are soft and smart pneumatic actuators that deform in a predetermined fashion upon inflation. This paper analyzes the deformation behavior of FREEs by formulating a simple calculus of variations problem that involves constrained maximization of the enclosed volume. The model accurately captures the deformed shape for FREEs with any general fiber angle orientation, and its relation with actuation pressure, material properties and applied load. First, the accuracy of the model is verified with existing literature and experiments for the popular McKibben pneumatic artificial muscle actuator with two equal and opposite families of helically wrapped fibers. Then, the model is used to predict and experimentally validate the deformation behavior of novel rotating-contracting FREEs, for which no prior literature exist. The generality of the model enables conceptualization of novel FREEs whose fiber orientations vary arbitrarily along the geometry. Furthermore, the model is deemed to be useful in the design synthesis of fiber reinforced elastomeric actuators for general axisymmetric desired motion and output force requirement.

  8. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity.

  9. Advances in microreaction technology for portable fuel cell applications: Wall coating of thin catalytic films in microreactors

    NASA Astrophysics Data System (ADS)

    Bravo Bersano, Jaime Cristian

    This research has focused on the need to coat microreactor systems composed of channels in the micron size range of 100 to 1000 mum. The experimental procedures and learning are outlined in terms of slurry and surface preparation requirements which are detailed in the experimental section. This system is motivated and applied to micro methanol steam reformers. Thus, a detailed discussion on the driving motivation is given in the introduction. The low temperatures required for steam-reforming of methanol ˜ 493°K (220°C) make it possible to utilize the reformate as a feed to the fuel cell anode. The group of catalysts that shows the highest activity for methanol steam reforming (SR) at low temperature has composition of CuO/ZnO/Al 2O3, which is also the catalyst used for methanol synthesis. Steam reforming of methanol is a highly endothermic process. Conventional reactor configurations, such as a packed bed reactor, operate in a heat transfer limited mode for this reaction. Using catalyst in packed bed form for portable devices is also not convenient due to high pressure drop and possible channeling of gases in addition to poor heat transfer. A wall-coated catalyst represents a superior geometry since it provides lower pressure drop and ease of manufacturing. Due to their small size, microreactors are especially suited for endothermic reactions whose reactivity depends on the rate of heat input. A brief review on microreaction technology is given with a comprehensive survey for catalyst integration into microreactors for catalytic heterogeneous gas phase reactions. The strength of this research is the model that was developed to coat the interior of micron sized capillaries with coats of CuO/ZnO/Al2O 3 slurries as thick as 25 mum in the dry state. The details of the model are given in terms Taylor's theory and Rayleigh's theory. A model is presented that can predict the coat thickness based on experimental conditions The model combines Taylor's experimental work with Lord Rayleigh's instability theory for annular coatings. The model presented serves as a design tool for microreactor design. The model can also estimate the maximum coat thickness possible for a given system. The results are presented in graphical format in the Microchannel Coating Model chapter.

  10. Slab2 - Updated Subduction Zone Geometries and Modeling Tools

    NASA Astrophysics Data System (ADS)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.

    2017-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  11. Spatiotemporal model of Kīlauea's summit magmatic system inferred from InSAR time series and geometry-free time-dependent source inversion

    NASA Astrophysics Data System (ADS)

    Zhai, Guang; Shirzaei, Manoochehr

    2016-07-01

    Kīlauea volcano, Hawai`i Island, has a complex magmatic system including summit reservoirs and rift zones. Kinematic models of the summit reservoir have so far been limited to first-order analytical solutions with predetermined geometry. To explore the complex geometry and kinematics of the summit reservoir, we apply a multitrack wavelet-based InSAR (interferometric synthetic aperture radar) algorithm and a novel geometry-free time-dependent modeling scheme. To map spatiotemporally distributed surface deformation signals over Kīlauea's summit, we process synthetic aperture radar data sets from two overlapping tracks of the Envisat satellite, including 100 images during the period 2003-2010. Following validation against Global Positioning System data, we invert the surface deformation time series to constrain the spatiotemporal evolution of the magmatic system without any prior knowledge of the source geometry. The optimum model is characterized by a spheroidal and a tube-like zone of volume change beneath the summit and the southwest rift zone at 2-3 km depth, respectively. To reduce the model dimension, we apply a principal component analysis scheme, which allows for the identification of independent reservoirs. The first three PCs, explaining 99% (63.8%, 28.5%, and 6.6%, respectively) of the model, include six independent reservoirs with a complex interaction suggested by temporal analysis. The data and model presented here, in agreement with earlier studies, improve the understanding of Kīlauea's plumbing system through enhancing the knowledge of temporally variable magma supply, storage, and transport beneath the summit, and verify the link between summit magmatic activity, seismicity, and rift intrusions.

  12. Functionalization of zeolitic cavities: grafting NH2 groups in framework T sites of B-SSZ-13--a way to obtain basic solids catalysts?

    PubMed

    Regli, Laura; Bordiga, Silvia; Busco, Claudia; Prestipino, Carmelo; Ugliengo, Piero; Zecchina, Adriano; Lamberti, Carlo

    2007-10-10

    Insertion of B atoms into an Al-free zeolitic framework with CHA topology results in the formation of B-SSZ-13 zeotype with Si/B = 11. B K-edge NEXAFS testifies that B forms [B(OSi)4] units in a Td-like geometry (sp3-hybridized B atoms). According to B K-edge NEXAFS and IR, template burning results in the formation of [B(OSi)3] units in a D3h-like geometry (sp2-hybridized B atoms) with a break of a B-O-Si bond and the formation of a Si-OH group. The activated material contains B(III) Lewis acid centers able to specifically coordinate bases like NH3. Such [B(OSi)3] units are reactive toward ammonia, resulting in the formation of B-NH2 surface functionality inside the pores of B-SSZ-13 already under mild conditions, i.e., 35 mbar of NH3 at 373 K for 30 min and without crystallinity degradation. A minor fraction of Si-NH2 cannot be excluded owing to the presence of two IR doublets at 3500 and 3430 cm-1 and at 1600 and 1550 cm-1. Ab initio B3LYP/6-31+G(d,p) calculations on a cluster model, supported by a single-point MP2 on B3LYP/6-31+G(D,P) optimized structures, found the break by NH3 of a B-O-Si bond of the [B(OSi)3] unit with formation of [SiOH] and [H2N-B(OSi)2] species to be energetically favored. Comparison between experimental and computed frequency shifts shows them to be in semiquantitative agreement. The high stability of the B-NH2 surface functionality is probed by N K-edge NEXAFS spectra collected under UHV conditions. These findings can open a new route in the preparation of shape selective solid basic catalysts.

  13. Linking erosion history and mantle processes in southern Africa

    NASA Astrophysics Data System (ADS)

    Stanley, J. R.; Braun, J.; Flowers, R. M.; Baby, G.; Wildman, M.; Guillocheau, F.; Robin, C.; Beucher, R.; Brown, R. W.

    2017-12-01

    The large, low relief, high elevation plateau of southern Africa has been the focus of many studies, but there is still considerable debate about how it formed. Lack of tectonic convergence and crustal thickening suggests mantle dynamics play an important role in the evolution of topography there, but the time and specific mechanisms of topographic development are still contested. Many mantle mechanisms of topographic support have been suggested including dynamic topography associated with either deep or shallow mantle thermal anomalies, thermochemical modification of the lithosphere, and plume tails related to Mesozoic magmatic activity. These mechanisms predict different timing and patterns of surface uplift such that better constraints on the uplift history have the potential to constrain the nature of the source of topographic support. Here we test several of these geodynamic hypotheses using a landscape evolution model that is used to predict the erosional response to surface uplift. Several recent studies have provided a clearer picture of the erosion history of the plateau surface and margins using low temperature thermochronology and the geometries of the surrounding offshore depositional systems. Model results are directly compared with these data. We use an inversion method (the Neighborhood Algorithm) to constrain the range in erosional and uplift parameters that can best reproduce the observed data. The combination of different types of geologic information including sedimentary flux, landscape shape, and thermochronolology is valuable for constraining many of these parameters. We show that both the characteristics of the geodynamic forcing as well as the physical characteristics of the eroding plateau have significant control on the plateau erosion patterns. Models that match the erosion history data well suggest uplift of the eastern margin in the Cretaceous ( 100 Ma) followed by uplift of the western margin 20 Myr later. The amplitude of this uplift is on the order of 1000 m. The data cannot resolve whether there was smaller amplitude phase of uplift in the Cenozoic. These results suggest that the scenario proposed by Braun et al. (2014) of uplift caused by the continent moving over the African superswell is viable. We are currently investigating the compatibility of other uplift geometries.

  14. Estimating glacier response times and disequilibrium in a changing climate

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Koutnik, M.; Roe, G.

    2017-12-01

    Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.

  15. Basal terraces on melting ice shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W.; Corr, Hugh F. J.; Rignot, Eric; Steffen, Konrad

    2014-08-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt. The bases of the ice shelves associated with Pine Island Glacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries, including kilometer-wide, hundreds-of-meter high channels oriented along and across the direction of ice flow. The channels are enhanced by, and constrain, oceanic melt. New meter-scale observations of basal topography reveal peculiar glaciated landscapes. Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wide flat terraces separated by 5-50 m high walls. Melting is shown to be modulated by the geometry: constant across each terrace, changing from one terrace to the next, and greatly enhanced on the ~45° inclined walls. Melting is therefore fundamentally heterogeneous and likely associated with stratification in the ice-ocean boundary layer, challenging current models of ice shelf-ocean interactions.

  16. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  17. Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  18. Statistical measures of Planck scale signal correlations in interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Craig J.; Kwon, Ohkyung

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of informationmore » suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.« less

  19. Diffusion Monte Carlo studies of MB-pol (H2O)2-6 and (D2O)2-6 clusters: Structures and binding energies

    NASA Astrophysics Data System (ADS)

    Mallory, Joel D.; Mandelshtam, Vladimir A.

    2016-08-01

    We employ the diffusion Monte Carlo (DMC) method in conjunction with the recently developed, ab initio-based MB-pol potential energy surface to characterize the ground states of small (H2O)2-6 clusters and their deuterated isotopomers. Observables, other than the ground state energies, are computed using the descendant weighting approach. Among those are various spatial correlation functions and relative isomer fractions. Interestingly, the ground states of all clusters considered in this study, except for the dimer, are delocalized over at least two conformations that differ by the orientation of one or more water monomers with the relative isomer populations being sensitive to the isotope substitution. Most remarkably, the ground state of the (H2O)6 hexamer is represented by four distinct cage structures, while that of (D2O)6 is dominated by the prism, i.e., the global minimum geometry, with a very small contribution from a prism-book geometry. In addition, for (H2O)6 and (D2O)6, we performed DMC calculations to compute the ground states constrained to the cage and prism geometries. These calculations compared results for three different potentials, MB-pol, TTM3/F, and q-TIP4P/F.

  20. Interactive High-Relief Reconstruction for Organic and Double-Sided Objects from a Photo.

    PubMed

    Yeh, Chih-Kuo; Huang, Shi-Yang; Jayaraman, Pradeep Kumar; Fu, Chi-Wing; Lee, Tong-Yee

    2017-07-01

    We introduce an interactive user-driven method to reconstruct high-relief 3D geometry from a single photo. Particularly, we consider two novel but challenging reconstruction issues: i) common non-rigid objects whose shapes are organic rather than polyhedral/symmetric, and ii) double-sided structures, where front and back sides of some curvy object parts are revealed simultaneously on image. To address these issues, we develop a three-stage computational pipeline. First, we construct a 2.5D model from the input image by user-driven segmentation, automatic layering, and region completion, handling three common types of occlusion. Second, users can interactively mark-up slope and curvature cues on the image to guide our constrained optimization model to inflate and lift up the image layers. We provide real-time preview of the inflated geometry to allow interactive editing. Third, we stitch and optimize the inflated layers to produce a high-relief 3D model. Compared to previous work, we can generate high-relief geometry with large viewing angles, handle complex organic objects with multiple occluded regions and varying shape profiles, and reconstruct objects with double-sided structures. Lastly, we demonstrate the applicability of our method on a wide variety of input images with human, animals, flowers, etc.

  1. Seismic constraints on the architecture of the Newport-Inglewood/Rose Canyon fault: Implications for the length and magnitude of future earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve

    2017-03-01

    The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.

  2. Why there is something rather than nothing: cosmological constant from summing over everything in lorentzian quantum gravity.

    PubMed

    Barvinsky, A O

    2007-08-17

    The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.

  3. Emergent propagation modes of ferromagnetic swimmers in constrained geometries

    NASA Astrophysics Data System (ADS)

    Bryan, M. T.; Shelley, S. R.; Parish, M. J.; Petrov, P. G.; Winlove, C. P.; Gilbert, A. D.; Ogrin, F. Y.

    2017-02-01

    Magnetic microswimmers, composed of hard and soft ferromagnets connected by an elastic spring, are modelled under low Reynolds number conditions in the presence of geometrical boundaries. Approaching a surface, the magneto-elastic swimmer's velocity increases and its trajectory bends parallel to the surface contour. Further confinement to form a planar channel generates new propagation modes as the channel width narrows, altering the magneto-elastic swimmer's speed, orientation, and direction of travel. Our results demonstrate that constricted geometric environments, such as occuring in microfluidic channels or blood vessels, may influence the functionality of magneto-elastic microswimmers for applications such as drug delivery.

  4. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    PubMed

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  5. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    NASA Astrophysics Data System (ADS)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  6. Geometry of Thrust Faults Beneath Amenthes Rupes, Mars

    NASA Technical Reports Server (NTRS)

    Vidal, A.; Mueller, K. M.; Golombek, M. P.

    2005-01-01

    Amenthes Rupes is a 380 km-long lobate fault scarp located in the eastern hemisphere of Mars near the dichotomy boundary. The scarp is marked by about 1 km of vertical separation across a northeast dipping thrust fault (top to the SW) and offsets heavily-cratered terrain of Late Noachian age, the visible portion of which was in place by 3.92 Ga and the buried portion in place between 4.08 and 4.27 Ga. The timing of scarp formation is difficult to closely constrain. Previous geologic mapping shows that near the northern end of Amenthes Rupes, Hesperian age basalts terminate at the scarp, suggesting that fault slip predated the emplacement of these flows at 3.69 to 3.9 Ga. Maxwell and McGill also suggest the faulting ceased before the final emplacement of the Late Hesperian lavas on Isidis Planitia. The trend of the faults at Amenthes, like many thrust faults at the dichotomy boundary, parallels the boundary itself. Schultz and Watters used a dislocation modeling program to match surface topography and vertical offset of the scarp at Amenthes Rupes, varying the dip and depth of faulting, assuming a slip of 1.5 km on the fault. They modeled faulting below Amenthes Rupes as having a dip of between 25 and 30 degrees and a depth of 25 to 35 km, based on the best match to topography. Assuming a 25 degree dip and surface measurements of vertical offset of between 0.3 and 1.2 km, Watters later estimated the maximum displacement on the Amenthes Rupes fault to be 2.90 km. However, these studies did not determine the geometry of the thrust using quantitative constraints that included shortening estimates. Amenthes Rupes deforms large preexisting impact craters. We use these craters to constrain shortening across the scarp and combine this with vertical separation to infer fault geometry. Fault dip was also estimated using measurements of scarp morphology. Measurements were based on 460 m (1/128 per pixel) digital elevation data from the Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor (MGS) satellite.

  7. Extensional fault geometry and its flexural isostatic response during the formation of the Iberia - Newfoundland conjugate rifted margins

    NASA Astrophysics Data System (ADS)

    Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan

    2017-04-01

    Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we constrain using target data from the SCREECH 2 seismic profile. We also show that for the successful modelling and quantitative validation of the lithosphere hyper-extension stage it is necessary to first have a good calibrated model of the necking phase. Not surprisingly the evolution of a rifted continental margin cannot be modelled without modelling and calibration of its conjugate margin.

  8. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    NASA Astrophysics Data System (ADS)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep ReMi measurement campaign might provide further corroboration between gravity and seismic results for basement depth. This investigation should be useful for refining geologic and hydrologic models, and informing future scientific pursuits in Yosemite Valley.

  9. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    NASA Astrophysics Data System (ADS)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.

  10. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    PubMed

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  11. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    NASA Astrophysics Data System (ADS)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  12. Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization

    DOE PAGES

    Zhang, Hong-Hai; Ma, Chuanxu; Bonnesen, Peter V.; ...

    2016-07-12

    Whereas Poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI) and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small angle x-ray scattering (SAXS) and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5- 2 butyl-2,3-thiophene) (P5BT) on highly oriented pyrolyticmore » graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV-vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5- thiophene) (P3HT) (λ = 450 nm) indicated that the degree of conjugation of the backbone in P5HT is less than in P3HT, which may be a consequence of the helical geometry of the former compared to the more planar geometry of the latter. Moreover, we found that P5HT can emit green fluorescence under UV (λ = 360 nm) irradiation« less

  13. Novelmetal-organic photocatalysts: Synthesis, characterization and decomposition of organic dyes

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Murali Krishna, P.; Kottam, Nagaraju

    2015-02-01

    An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N‧-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed.

  14. Analytical and numerical performance models of a Heisenberg Vortex Tube

    NASA Astrophysics Data System (ADS)

    Bunge, C. D.; Cavender, K. A.; Matveev, K. I.; Leachman, J. W.

    2017-12-01

    Analytical and numerical investigations of a Heisenberg Vortex Tube (HVT) are performed to estimate the cooling potential with cryogenic hydrogen. The Ranque-Hilsch Vortex Tube (RHVT) is a device that tangentially injects a compressed fluid stream into a cylindrical geometry to promote enthalpy streaming and temperature separation between inner and outer flows. The HVT is the result of lining the inside of a RHVT with a hydrogen catalyst. This is the first concept to utilize the endothermic heat of para-orthohydrogen conversion to aid primary cooling. A review of 1st order vortex tube models available in the literature is presented and adapted to accommodate cryogenic hydrogen properties. These first order model predictions are compared with 2-D axisymmetric Computational Fluid Dynamics (CFD) simulations.

  15. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface geometry to correlate the performance to these two features. The results of this study revealed that the performance of the bird wing was directly affected by feather motion. It was also found that the motion of covert and secondary covert feathers had the greatest influence on the performance. Increased coefficients of lift and drag were found when higher frequencies of these feathers were observed. Noticeable reductions in the coefficient of drag were found to be associated with micron level variations in the depth of surface features on the wing.

  16. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  17. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ideal versus real: simulated annealing of experimentally derived and geometric platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Ellaby, Tom; Aarons, Jolyon; Varambhia, Aakash; Jones, Lewys; Nellist, Peter; Ozkaya, Dogan; Sarwar, Misbah; Thompsett, David; Skylaris, Chris-Kriton

    2018-04-01

    Platinum nanoparticles find significant use as catalysts in industrial applications such as fuel cells. Research into their design has focussed heavily on nanoparticle size and shape as they greatly influence activity. Using high throughput, high precision electron microscopy, the structures of commercially available Pt catalysts have been determined, and we have used classical and quantum atomistic simulations to examine and compare them with geometric cuboctahedral and truncated octahedral structures. A simulated annealing procedure was used both to explore the potential energy surface at different temperatures, and also to assess the effect on catalytic activity that annealing would have on nanoparticles with different geometries and sizes. The differences in response to annealing between the real and geometric nanoparticles are discussed in terms of thermal stability, coordination number and the proportion of optimal binding sites on the surface of the nanoparticles. We find that annealing both experimental and geometric nanoparticles results in structures that appear similar in shape and predicted activity, using oxygen adsorption as a measure. Annealing is predicted to increase the catalytic activity in all cases except the truncated octahedra, where it has the opposite effect. As our simulations have been performed with a classical force field, we also assess its suitability to describe the potential energy of such nanoparticles by comparing with large scale density functional theory calculations.

  19. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  20. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    NASA Astrophysics Data System (ADS)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  1. Performance Analysis of BDS Medium-Long Baseline RTK Positioning Using an Empirical Troposphere Model.

    PubMed

    Shu, Bao; Liu, Hui; Xu, Longwei; Qian, Chuang; Gong, Xiaopeng; An, Xiangdong

    2018-04-14

    For GPS medium-long baseline real-time kinematic (RTK) positioning, the troposphere parameter is introduced along with coordinates, and the model is ill-conditioned due to its strong correlation with the height parameter. For BeiDou Navigation Satellite System (BDS), additional difficulties occur due to its special satellite constellation. In fact, relative zenith troposphere delay (RZTD) derived from high-precision empirical zenith troposphere models can be introduced. Thus, the model strength can be improved, which is also called the RZTD-constrained RTK model. In this contribution, we first analyze the factors affecting the precision of BDS medium-long baseline RTK; thereafter, 15 baselines ranging from 38 km to 167 km in different troposphere conditions are processed to assess the performance of RZTD-constrained RTK. Results show that the troposphere parameter is difficult to distinguish from the height component, even with long time filtering for BDS-only RTK. Due to the lack of variation in geometry for the BDS geostationary Earth orbit satellite, the long convergence time of ambiguity parameters may reduce the height precision of GPS/BDS-combined RTK in the initial period. When the RZTD-constrained model was used in BDS and GPS/BDS-combined situations compared with the traditional RTK, the standard deviation of the height component for the fixed solution was reduced by 52.4% and 34.0%, respectively.

  2. Performance Analysis of BDS Medium-Long Baseline RTK Positioning Using an Empirical Troposphere Model

    PubMed Central

    Liu, Hui; Xu, Longwei; Qian, Chuang; Gong, Xiaopeng; An, Xiangdong

    2018-01-01

    For GPS medium-long baseline real-time kinematic (RTK) positioning, the troposphere parameter is introduced along with coordinates, and the model is ill-conditioned due to its strong correlation with the height parameter. For BeiDou Navigation Satellite System (BDS), additional difficulties occur due to its special satellite constellation. In fact, relative zenith troposphere delay (RZTD) derived from high-precision empirical zenith troposphere models can be introduced. Thus, the model strength can be improved, which is also called the RZTD-constrained RTK model. In this contribution, we first analyze the factors affecting the precision of BDS medium-long baseline RTK; thereafter, 15 baselines ranging from 38 km to 167 km in different troposphere conditions are processed to assess the performance of RZTD-constrained RTK. Results show that the troposphere parameter is difficult to distinguish from the height component, even with long time filtering for BDS-only RTK. Due to the lack of variation in geometry for the BDS geostationary Earth orbit satellite, the long convergence time of ambiguity parameters may reduce the height precision of GPS/BDS-combined RTK in the initial period. When the RZTD-constrained model was used in BDS and GPS/BDS-combined situations compared with the traditional RTK, the standard deviation of the height component for the fixed solution was reduced by 52.4% and 34.0%, respectively. PMID:29661999

  3. Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations

    NASA Astrophysics Data System (ADS)

    Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A. R.; Radu, Eugen; Ferrari, Valeria

    2017-06-01

    Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.

  4. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  5. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO 3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO 3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO 3 composite catalyst material.« less

  6. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000.

    PubMed

    Platero-Prats, Ana E; Li, Zhanyong; Gallington, Leighanne C; Peters, Aaron W; Hupp, Joseph T; Farha, Omar K; Chapman, Karena W

    2017-09-01

    We explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis of in situ synchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. These analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °C produces metallic Cu 0 of two distinct particle sizes: ∼4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0 -NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2 O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systems in situ.

  7. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000

    DOE PAGES

    Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.; ...

    2017-04-03

    Here, we explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis ofin situsynchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. Our analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °Cmore » produces metallic Cu 0of two distinct particle sizes: ~4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systemsin situ.« less

  8. Natural Constraints to Species Diversification

    PubMed Central

    Lewitus, Eric; Morlon, Hélène

    2016-01-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity. PMID:27505866

  9. Mapping the 3-D extent of the Northern Lobe of the Bushveld layered mafic intrusion from geophysical data

    USGS Publications Warehouse

    Finn, Carol A.; Bedrosian, Paul A.; Cole, Janine; Khoza, Tshepo David; Webb, Susan J.

    2015-01-01

    Geophysical models image the 3D geometry of the mafic portion of the Bushveld Complex north of the Thabazimbi-Murchison Lineament (TML), critical for understanding the origin of the world's largest layered mafic intrusion and platinum group element deposits. The combination of the gravity and magnetic data with recent seismic, MT, borehole and rock property measurements powerfully constrains the models. The intrusion north of the TML is generally shallowly buried (generally <1500 m) with a modeled area of ∼160 km × ∼125 km. The modeled thicknesses are not well constrained but vary from ∼<1000 to >12,000 m, averaging ∼4000 m. A feeder, suggested by a large modeled thickness (>10,000 m) and funnel shape, for Lower Zone magmas could have originated near the intersection of NS and NE trending TML faults under Mokopane. The TML has been thought to be the feeder zone for the entire Bushveld Complex but the identification of local feeders and/or dikes in the TML in the models is complicated by uncertainties on the syn- and post-Bushveld deformation history. However, modeled moderately thick high density material near the intersection of faults within the central and western TML may represent feeders for parts of the Bushveld Complex if deformation was minimal. The correspondence of flat, high resistivity and density regions reflect the sill-like geometry of the Bushveld Complex without evidence for feeders north of Mokopane. Magnetotelluric models indicate that the Transvaal sedimentary basin underlies much of the Bushveld Complex north of the TML, further than previously thought and important because the degree of reaction and assimilation of the Transvaal rocks with the mafic magmas resulted in a variety of mineralization zones.

  10. Reconstruction of pre-rift Pyrenean relief in the Oligo-Quitanian Camargue Basin (Gulf of Lion passive margin, SE France): Implications on thermal history of basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedicto, A.; Labaume, P.; Seranne, M.

    1995-08-01

    Fault reconstruction techniques commonly assume horizontal pre-rift level datum to calculate fault geometry from hanging-wall geometry or viceversa. Example from Camargue basin shows that neglecting pre-rift relief may lead to important errors in calculating the fault and hanging-wall geometries, and the total extension. These errors have direct implications on reconstruction of the thermal history of basins. The Camargue basin results front NW-SE extension and rifting of the Gulf of Lion passive margin. More than 4000m of Oligo-Aquitanian syn-rift series unconformably overlie a crust previously thickened during Pyrenean orogeny. The half-graben basin is controlled by the SE-dipping listric Nimes basement faultmore » which generated a typical roll-over. As both fault and hanging-wall geometries are constrained, the pre-rift surface topography can be restored, using three reconstruction techniques. Either the constant-bed-length and constant-heave techniques produce a depression in the axis of the basin and a relief (1500m and 12(X)m respectively) atop the roll-over. The simple-shear (a=60{degrees}) technique generates a 1500m topography atop the roll-over, more coherent with regional data. Testing the hypothesis of a pre-rift horizontal datum leads to a roll-over 1400m too deep. Pre-rift surface elevation corresponds to the residual topography herited from the Pyrenean orogeny. Consequently, there has been some 1000m subsidence more than predicted by the syn-rift sedimentary record.« less

  11. Employing 2D Forward Modeling of Gravity and Magnetic Data to Further Constrain the Magnitude of Extension Recorded by the Caetano Caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Ritzinger, B. T.; Glen, J. M. G.; Athens, N. D.; Denton, K. M.; Bouligand, C.

    2015-12-01

    Regionally continuous Cenozoic rocks in the Basin and Range that predate the onset of major mid-Miocene extension provide valuable insight into the sequence of faulting and magnitude of extension. An exceptional example of this is Caetano caldera, located in north-central Nevada, that formed during the eruption of the Caetano Tuff at the Eocene-Oligocene transition. The caldera and associated deposits, as well as conformable caldera-filling sedimentary and volcanic units allow for the reconstruction of post Oligocene extensional faulting. Extensive mapping and geochronologic, geochemical and paleomagnetic analyses have been conducted over the last decade to help further constrain the eruptive and extensional history of the Caetano caldera and associated deposits. Gravity and magnetic data, that highlight contrasts in density and magnetic properties (susceptibility and remanence), respectively, are useful for mapping and modeling structural and lithic discontinuities. By combining existing gravity and aeromagnetic data with newly collected high-resolution gravity data, we are performing detailed potential field modeling to better characterize the subsurface within and surrounding the caldera. Modeling is constrained by published geologic map and cross sections and by new rock properties for these units determined from oriented drill core and hand samples collected from outcrops that span all of the major rock units in the study area. These models will enable us to better map the margins of the caldera and more accurately determine subsurface lithic boundaries and complex fault geometries, as well as aid in refining estimates of the magnitude of extension across the caldera. This work highlights the value in combining geologic and geophysical data to build an integrated structural model to help characterize the subsurface and better constrain the extensional tectonic history if this part of the Great Basin.

  12. Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces.

    PubMed

    Wyart, Claire; Ybert, Christophe; Bourdieu, Laurent; Herr, Catherine; Prinz, Christelle; Chatenay, Didier

    2002-06-30

    The use of ordered neuronal networks in vitro is a promising approach to study the development and the activity of small neuronal assemblies. However, in previous attempts, sufficient growth control and physiological maturation of neurons could not be achieved. Here we describe an original protocol in which polylysine patterns confine the adhesion of cellular bodies to prescribed spots and the neuritic growth to thin lines. Hippocampal neurons in these networks are maintained healthy in serum free medium up to 5 weeks in vitro. Electrophysiology and immunochemistry show that neurons exhibit mature excitatory and inhibitory synapses and calcium imaging reveals spontaneous activity of neurons in isolated networks. We demonstrate that neurons in these geometrical networks form functional synapses preferentially to their first neighbors. We have, therefore, established a simple and robust protocol to constrain both the location of neuronal cell bodies and their pattern of connectivity. Moreover, the long term maintenance of the geometry and the physiology of the networks raises the possibility of new applications for systematic screening of pharmacological agents and for electronic to neuron devices.

  13. Multivariate constrained shape optimization: Application to extrusion bell shape for pasta production

    NASA Astrophysics Data System (ADS)

    Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco

    2017-10-01

    Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.

  14. Anomalously Soft Non-Euclidean Springs

    NASA Astrophysics Data System (ADS)

    Levin, Ido; Sharon, Eran

    2016-01-01

    In this work we study the mechanical properties of a frustrated elastic ribbon spring—the non-Euclidean minimal spring. This spring belongs to the family of non-Euclidean plates: it has no spontaneous curvature, but its lateral intrinsic geometry is described by a non-Euclidean reference metric. The reference metric of the minimal spring is hyperbolic, and can be embedded as a minimal surface. We argue that the existence of a continuous set of such isometric minimal surfaces with different extensions leads to a complete degeneracy of the bulk elastic energy of the minimal spring under elongation. This degeneracy is removed only by boundary layer effects. As a result, the mechanical properties of the minimal spring are unusual: the spring is ultrasoft with a rigidity that depends on the thickness t as t7 /2 and does not explicitly depend on the ribbon's width. Moreover, we show that as the ribbon is widened, the rigidity may even decrease. These predictions are confirmed by a numerical study of a constrained spring. This work is the first to address the unusual mechanical properties of constrained non-Euclidean elastic objects.

  15. Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids.

    PubMed

    Catana, Dan-Andrei; Renard, Brice-Loïc; Maturano, Marie; Payrastre, Corinne; Tarrat, Nathalie; Escudier, Jean-Marc

    2012-01-01

    We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.

  16. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Gammie, Charles F.; McKinney, Jonathan C.; Tóth, Gábor

    2003-05-01

    We describe a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, & van Leer scheme. A variant of constrained transport, proposed earlier by Tóth, is used to maintain a divergence-free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. We describe code performance on a full suite of test problems in both special and general relativity. On smooth flows we show that it converges at second order. We conclude by showing some results from the evolution of a magnetized torus near a rotating black hole.

  17. Generalized Pattern Search methods for a class of nonsmooth optimization problems with structure

    NASA Astrophysics Data System (ADS)

    Bogani, C.; Gasparo, M. G.; Papini, A.

    2009-07-01

    We propose a Generalized Pattern Search (GPS) method to solve a class of nonsmooth minimization problems, where the set of nondifferentiability is included in the union of known hyperplanes and, therefore, is highly structured. Both unconstrained and linearly constrained problems are considered. At each iteration the set of poll directions is enforced to conform to the geometry of both the nondifferentiability set and the boundary of the feasible region, near the current iterate. This is the key issue to guarantee the convergence of certain subsequences of iterates to points which satisfy first-order optimality conditions. Numerical experiments on some classical problems validate the method.

  18. Ni-Mn-Ga shape memory nanoactuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.

    2014-01-27

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  19. Ni-Mn-Ga shape memory nanoactuation

    NASA Astrophysics Data System (ADS)

    Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.

    2014-01-01

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  20. The use of optimization techniques to design controlled diffusion compressor blading

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1982-01-01

    A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.

  1. CRUSTAL REFRACTION PROFILE OF THE LONG VALLEY CALDERA, CALIFORNIA, FROM THE JANUARY 1983 MAMMOTH LAKES EARTHQUAKE SWARM.

    USGS Publications Warehouse

    Luetgert, James H.; Mooney, Walter D.

    1985-01-01

    Seismic-refraction profiles recorded north of Mammoth Lakes, California, using earthquake sources from the January 1983 swarm complement earlier explosion refraction profiles and provide velocity information from deeper in the crust in the area of the Long Valley caldera. Eight earthquakes from a depth range of 4. 9 to 8. 0 km confirm the observation of basement rocks with seismic velocities ranging from 5. 8 to 6. 4 km/sec extending at least to depths of 20 km. The data provide further evidence for the existence of a partial melt zone beneath Long Valley caldera and constrain its geometry. Refs.

  2. Designing transition metal surfaces for their adsorption properties and chemical reactivity

    NASA Astrophysics Data System (ADS)

    Montemore, Matthew M.

    Many technological processes, such as catalysis, electrochemistry, corrosion, and some materials synthesis techniques, involve molecules bonding to and/or reacting on surfaces. For many of these applications, transition metals have proven to have excellent chemical reactivity, and this reactivity is strongly tied to the surface's adsorption properties. This thesis focuses on predicting adsorption properties for use in the design of transition metal surfaces for various applications. First, it is shown that adsorption through a particular atom (e.g, C or O) can be treated in a unified way. This allows predictions of all C-bound adsorbates from a single, simple adsorbate, such as CH3. In particular, consideration of the adsorption site can improve the applicability of previous approaches, and gas-phase bond energies correlate with adsorption energies for similarly bound adsorbates. Next, a general framework is presented for understanding and predicting adsorption through any atom. The energy of the adsorbate's highest occupied molecular orbital (HOMO) determines the strength of the repulsion between the adsorbate and the surface. Because adsorbates with similar HOMO energies behave similarly, their adsorption energies correlate. This can improve the efficiency of predictions, but more importantly it constrains catalyst design and suggests strategies for circumventing these constraints. Further, the behavior of adsorbates with dissimilar HOMO energies varies in a systematic way, allowing predictions of adsorption energy differences between any two adsorbates. These differences are also useful in surface design. In both of these cases, the dependence of adsorption energies on surface electronic properties is explored. This dependence is used to justify the unified treatments mentioned above, and is used to gain further insight into adsorption. The properties of the surface's d band and p band control variations in adsorption energy, as does the strength of the adsorbate-surface coupling. A single equation, with only a single adsorbate-dependent fitting parameter as well as a few universal fitting parameters, is developed that can predict the adsorption energy of any radical on any close-packed transition metal surface. The surface electronic properties that are input into this equation can be estimated based on the alloy structure of the surface, improving prospects for high-throughput screening and rational catalyst design. The methods discussed in this thesis are used to design a novel catalyst for ethylene epoxidation, which is experimentally synthesized and tested. Initial tests indicate that this catalyst may have improved selectivity over pure Ag.

  3. Perturbation theory corrections to the two-particle reduced density matrix variational method.

    PubMed

    Juhasz, Tamas; Mazziotti, David A

    2004-07-15

    In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.

  4. Diffusion Monte Carlo studies of MB-pol (H{sub 2}O){sub 2−6} and (D{sub 2}O){sub 2−6} clusters: Structures and binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallory, Joel D.; Mandelshtam, Vladimir A.

    2016-08-14

    We employ the diffusion Monte Carlo (DMC) method in conjunction with the recently developed, ab initio-based MB-pol potential energy surface to characterize the ground states of small (H{sub 2}O){sub 2−6} clusters and their deuterated isotopomers. Observables, other than the ground state energies, are computed using the descendant weighting approach. Among those are various spatial correlation functions and relative isomer fractions. Interestingly, the ground states of all clusters considered in this study, except for the dimer, are delocalized over at least two conformations that differ by the orientation of one or more water monomers with the relative isomer populations being sensitivemore » to the isotope substitution. Most remarkably, the ground state of the (H{sub 2}O){sub 6} hexamer is represented by four distinct cage structures, while that of (D{sub 2}O){sub 6} is dominated by the prism, i.e., the global minimum geometry, with a very small contribution from a prism-book geometry. In addition, for (H{sub 2}O){sub 6} and (D{sub 2}O){sub 6}, we performed DMC calculations to compute the ground states constrained to the cage and prism geometries. These calculations compared results for three different potentials, MB-pol, TTM3/F, and q-TIP4P/F.« less

  5. Refining the Tonga Slab Geometry Using Slab Phases of Seismic Waves

    NASA Astrophysics Data System (ADS)

    Alongi, T.; Wei, S. S.; Blackman, D. K.

    2017-12-01

    Although the Tonga subducting slab geometry has been previously mapped by earthquake distribution, its detailed morphology is poorly constrained. The uncertainties of the slab surface relative to earthquakes can be translated into large errors in predicted temperature of hypocenters that is considered as a chief control of intermediate-depth seismicity. Seismic waves converted at the interface between the slab crust and the overlying mantle wedge can provide additional constraints on the location of the slab surface. A PS phase converted at the slab interface is observable in the horizontal components, whereas an SP converted phase can be seen in the vertical component. In this study, we analyze PS and SP phases in the seismic dataset of the 2009-2010 Ridge2000 Lau Spreading Center project, which consisted of 50 ocean bottom seismographs (OBSs) and 17 island-based seismic stations deployed in Fiji, Tonga, and the Lau Basin for about one year. More than 1,000 PS arrivals from local events were manually picked, predominantly with a 1-3 Hz filter. Next, the PS-P differential travel times will be inverted to determine improved depths of the slab surface relative to the local earthquakes and the receiving stations. The refined slab geometry will allow us to assess the thermal structure and dehydration reactions of the Tonga slab, lending further insight into the mechanisms of intermediate-depth seismicity.

  6. Myocardial Infarct Segmentation from Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology

    PubMed Central

    Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C.

    2016-01-01

    Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology. PMID:26731693

  7. Geometry and growth contributions to cosmic shear observables

    DOE PAGES

    Matilla, Jose Manuel Zorrilla; Haiman, Zoltan; Petri, Andrea; ...

    2017-07-13

    We explore the sensitivity of weak-lensing observables to the expansion history of the Universe and to the growth of cosmic structures, as well as the relative contribution of both effects to constraining cosmological parameters. We utilize ray-tracing dark-matter-only N-body simulations and validate our technique by comparing our results for the convergence power spectrum with analytic results from past studies. We then extend our analysis to non-Gaussian observables which cannot be easily treated analytically. We study the convergence (equilateral) bispectrum and two topological observables, lensing peaks and Minkowski functionals, focusing on their sensitivity to the matter density Ω m and themore » dark energy equation of state w. We find that a cancellation between the geometry and growth effects is a common feature for all observables and exists at the map level. It weakens the overall sensitivity by factors of up to 3 and 1.5 for w and Ω m, respectively, with the bispectrum worst affected. However, combining geometry and growth information alleviates the degeneracy between Ω m and w from either effect alone. As a result, the magnitudes of marginalized errors remain similar to those obtained from growth-only effects, but with the correlation between the two parameters switching sign. Furthermore, these results shed light on the origin of the cosmology sensitivity of non-Gaussian statistics and should be useful in optimizing combinations of observables.« less

  8. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, Uri S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  10. New materials for polymer electrolyte membrane fuel cell current collectors

    NASA Astrophysics Data System (ADS)

    Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.

    Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.

  11. Architected cellular ceramics with tailored stiffness via direct foam writing

    NASA Astrophysics Data System (ADS)

    Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.

    2017-02-01

    Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (˜6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes.

  12. Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures

    NASA Astrophysics Data System (ADS)

    Westerik, P. J.; Vijselaar, W. J. C.; Berenschot, J. W.; Tas, N. R.; Huskens, J.; Gardeniers, J. G. E.

    2018-01-01

    For the definition of wafer scale micro- and nanostructures, in-plane geometry is usually controlled by optical lithography. However, options for precisely patterning structures in the out-of-plane direction are much more limited. In this paper we present a versatile self-aligned technique that allows for reproducible sub-micrometer resolution local modification along vertical silicon sidewalls. Instead of optical lithography, this method makes smart use of inclined ion beam etching to selectively etch the top parts of structures, and controlled retraction of a conformal layer to define a hard mask in the vertical direction. The top, bottom or middle part of a structure could be selectively exposed, and it was shown that these exposed regions can, for example, be selectively covered with a catalyst, doped, or structured further.

  13. Architected cellular ceramics with tailored stiffness via direct foam writing

    PubMed Central

    Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.

    2017-01-01

    Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (∼6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes. PMID:28179570

  14. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  15. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  16. Preliminary findings on the effects of geometry on two-phase flow through volcanic conduits

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Wilson, L.; Lane, S. J.; James, M. R.

    2003-04-01

    We attempt to ascertain whether some of the geometrical assumptions utilised in modelling of flows through volcanic conduits are valid. Flow is often assumed to be through a vertical conduit, but some volcanoes, such as Pu'u 'O'o (Kilauea, Hawai'i) and Stromboli (Italy), are known to exhibit inclined or more complex conduit systems. Our numerical and experimental studies have revealed that conduit inclination is a first-order influence on flow properties and eruptive style. Even a few degrees of inclination from vertical can increase gas-liquid phase separation by locally enhancing the gas volume fraction on the upper surface of the conduit. We explore the consequences of phase separation and slug flow for styles of magmatic eruption, and consider how these apply to particular eruptions. Modellers also tend to assume a simple parallel-sided geometry for volcanic conduits. Some have used a pressure-balanced assumption allowing conduits to choke and flare, resulting in higher eruption velocities. The pressure-balanced assumption is flawed in that it does not deal with the effects of compressibility and associated shocks when the flow is supersonic. Both parallel-sided and pressure-balanced assumptions avoid addressing how conduit shape evolves from an initial dyke-shaped fracture. However, we assert that evolution of conduit shape is impossible to quantify accurately using a deterministic approach. Therefore we adopt a simplified approach, with the initial conduit shape as a blade-shaped dyke, and the potential end-member as a system that is pressure-balanced up to the supersonic choking point and undetermined beyond (flow is constrained by a narrow jet envelope and not by the walls). Intermediate geometries are assumed to change quasi-steadily at locations where conduit wall stresses are high, and the consequences of these geometries are explored. We find that quite small changes in conduit geometry, which are likely to occur in volcanic systems, can have a significant effect on flow speeds.

  17. Theoretical determination of molecular structure and conformation. Part X. Geometry and puckering potential of azetidine, (CH 2) 3NH, combination of electron diffraction and ab initio studies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.

    1981-09-01

    Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.

  18. Stability of the Broad-line Region Geometry and Dynamics in Arp 151 Over Seven Years

    NASA Astrophysics Data System (ADS)

    Pancoast, A.; Barth, A. J.; Horne, K.; Treu, T.; Brewer, B. J.; Bennert, V. N.; Canalizo, G.; Gates, E. L.; Li, W.; Malkan, M. A.; Sand, D.; Schmidt, T.; Valenti, S.; Woo, J.-H.; Clubb, K. I.; Cooper, M. C.; Crawford, S. M.; Hönig, S. F.; Joner, M. D.; Kandrashoff, M. T.; Lazarova, M.; Nierenberg, A. M.; Romero-Colmenero, E.; Son, D.; Tollerud, E.; Walsh, J. L.; Winkler, H.

    2018-04-01

    The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning 2008–2015. We present modeling of these velocity-resolved reverberation mapping data sets using a geometric and dynamical model for the broad-line region (BLR). By modeling each of the three data sets independently, we infer the evolution of the BLR structure in Arp 151 over a total of 7 yr and constrain the systematic uncertainties in nonvarying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of ∼2. The dynamics of the BLR are dominated by inflow, and the inferred black hole mass is consistent for the three data sets, despite the increase in BLR size. Combining the inference for the three data sets yields a black hole mass and statistical uncertainty of log10({M}BH}/{M}ȯ ) = {6.82}-0.09+0.09 with a standard deviation in individual measurements of 0.13 dex.

  19. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  20. Additive Manufactured Superconducting Cavities

    NASA Astrophysics Data System (ADS)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  1. A US coordination Facility for the Spectrum-X-Gamma Observatory

    NASA Technical Reports Server (NTRS)

    Forman, W.; West, Donald (Technical Monitor)

    2001-01-01

    We have completed our efforts in support of the Spectrum X Gamma mission under a NASA grant. These activities have included direct support to the mission, developing unifying tools applicable to SXG and other X-ray astronomy missions, and X-ray astronomy research to maintain our understanding of the importance and relevance of SXG to the field. SXG provides: 1) Simultaneous Multiwavelength Capability; 2) Large Field of View High Resolution Imaging Spectroscopy; 3) Sensitive Polarimetry with SXRP (Stellar X-Ray Polarimeter). These capabilities will ensure the fulfillment of the following objectives: understanding the accretion dynamics and the importance of reprocessing, upscattering, and disk viscosity around black holes; studying cluster mergers; spatially resolving cluster cooling flows to detect cooling gas; detecting cool gas in cluster outskirts in absorption; mapping gas in filaments around clusters; finding the 'missing' baryons in the Universe; determining the activity history of the black hole in the Galactic Center of our own central black hole; determining pulsar beam geometry; searching for the Lense-Thirring effect in black hole sources; constraining emission mechanisms and accretion geometry in AGN.

  2. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  3. Truncated Hexa-Octahedral Magnetite Crystals in Martian Meteorite ALH84001: Evidence of Biogenic Activity on Early Mars

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K.; Clemett, S. J.; Schwartz, C.; McIntosh, J. R.; Bazylinski, D. A.; Kirschvink, J.; McKay, D. S.; Gibson, E. K.; Vali, H.; Romanek, C. S.

    2004-01-01

    The landmark paper by McKay et al. [1] cited four lines of evidence associated with the Martian meteorite ALH84001 to support the hypothesis that life existed on Mars approximately 4 Ga ago. Now, more than five years later, attention has focused on the ALH84001 magnetite grains embedded within carbonate globules in the ALH84001 meteorite. We have suggested that up to approx.25% of the ALH84001 magnetite crystals are products of biological activity [e.g., 2]. The remaining magnetites lack sufficient characteristics to constrain their origin. The papers of Thomas Keprta et al. were criticized arguing that the three dimensional structure of ALH84001 magnetite crystals can only be unambiguously determined using electron tomographic techniques. Clemett et al. [3] confirmed that magnetites produced by magnetotactic bacteria strain MV-I display a truncated hexa-octahedral geometry using electron tomography and validated the use of the multi-tilt classical transmission microscopy technique used by [2]. Recently the geometry of the purported martian biogenic magnetites was shown be identical to that for MV-1 magnetites using electron tomography [6].

  4. Slip History of the 2008 Mw 7.9 Wenchuan Earthquake Constrained by Joint Inverting Seismic, Geodetic, and Geological Observations

    NASA Astrophysics Data System (ADS)

    Shao, G.; Ji, C.; Lu, Z.; Hudnut, K. W.; Liu, J.; Zhang, W.

    2009-12-01

    We study the kinematic rupture process of the 2008 Mw 7.9 Wenchuan earthquake using all geophysical and geological datasets that we are able to access, including the waveforms of teleseismic long period surface waves, broadband body waves and local strong motions, GPS vectors, interferometic radar (INSAR) images, and geological surface offsets. The relocated aftershock locations have also been included to constrain the potential fault geometry. These datasets have very different sensitivities to not only the slip on the fault but also the “a priori” information of the source inversions, such as the local velocity structure and the details of irregular fault surface. Effects have then been made to reconcile these datasets by reasonably perturbing the velocity structure and fault geometry, which are both poorly constrained. We have used two 1D velocity models, one for the Tibet plateau and the other for Sichuan basin, to calculate the static and dynamic earth responses; and developed a complex fault system including two irregular fault planes for Beichuan and Pengguan faults, respectively. The long wavelength errors of the INSAR LOS displacements have also been considered and been corrected simultaneously during the joint inversions. Our preferred model not only explains the geodetic and tele-seismic data very well, but also reasonably matches most strong motion waveforms. According to this result, the Wenchuan earthquake has an unprecedented complex rupture process. It initiated southwest of the town of Yingxiu at a depth of about 12 km, where the low-angle Pengguan fault and the high-angle Beichuan fault intersect. The rupture initiated on the low angle Pengguan fault and then later triggered the rupture on the high angle Beichuan fault. It then unilaterally ruptured northeastward for 270 km, mainly on the Beichuan fault. The entire rupture duration is over 95 seconds with an average rupture velocity of 3.0 km/s. Except for the region near the hypocenter and the region near the northeast end of the rupture, the majority of slip occurred at depths less than 12 km. The total seismic moment released by this earthquake was 1.02 x 1021 Nm, with ~36% on the Pengguan fault. Our analysis also indicates that the aftershock zone along the extension of the Xiaoyudong fault is consistent with the theory of static stress triggering due to the co-seismic rupture.

  5. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  6. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    NASA Astrophysics Data System (ADS)

    Alizadehashrafi, B.

    2015-12-01

    The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define priority for each layer. For instance the priority of the door layer can be higher than window layer which means that window texture cannot be projected on the door layer. Orthogonal and rectified perpendicular symmetric photos of the 3D objects that are proportional to the real façade geometry must be utilized for the generation of the output frame for DPF. The DPF produces very high quality and small data size of output image files in quite smaller dimension compare with the photorealistic texturing method. The disadvantage of DPF is its preprocessing method to generate output image file rather than online processing to generate the texture within the 3D environment such as CityGML. Furthermore the result of DPF can be utilized for 3D model in LOD2 rather than LOD3. In the current work the random textures of the window layers are created based on parameters of DPF within Ruby console of SketchUp Trimble to generate the deeper geometries of the windows and their exact position on the façade automatically along with random textures to increase Level of Realism (LoR)(Scarpino, 2010). As the output frame in DPF is proportional to real geometry (height and width of the façade) it is possible to query the XML database and convert them to units such as meter automatically. In this technique, the perpendicular terrestrial photo from the façade is rectified by employing projective transformation based on the frame which is in constrain proportion to real geometry. The rectified photos which are not suitable for texturing but necessary for measuring, can be resized in constrain proportion to real geometry before measuring process. Height and width of windows, doors, horizontal and vertical distance between windows from upper left corner of the photo dimensions of doors and windows are parameters that should be measured to run the program as a plugins in SketchUp Trimble. The system can use these parameters and texture file names and file paths to create the façade semi-automatically. To avoid leaning geometry the textures of windows, doors and etc, should be cropped and rectified from perpendicular photos, so that they can be used in the program to create the whole façade along with its geometries. Texture enhancement should be done in advance such as removing disturbing objects, exposure setting, left-right up-down transformation, and so on. In fact, the quality, small data size, scale and semantic database for each façade are the prominent advantages of this method.

  7. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-07-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry is presented based on three-dimensional density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into Northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. To the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a terminal depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  8. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-10-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry in Costa Rica is presented based on 3-D density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. Contrary to commonly assumed, to the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a maximum depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth (> 75 km) intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  9. Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin

    PubMed Central

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J.; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought. PMID:24932914

  10. SDM - A geodetic inversion code incorporating with layered crust structure and curved fault geometry

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Diao, Faqi; Hoechner, Andreas

    2013-04-01

    Currently, inversion of geodetic data for earthquake fault ruptures is most based on a uniform half-space earth model because of its closed-form Green's functions. However, the layered structure of the crust can significantly affect the inversion results. The other effect, which is often neglected, is related to the curved fault geometry. Especially, fault planes of most mega thrust earthquakes vary their dip angle with depth from a few to several tens of degrees. Also the strike directions of many large earthquakes are variable. For simplicity, such curved fault geometry is usually approximated to several connected rectangular segments, leading to an artificial loss of the slip resolution and data fit. In this presentation, we introduce a free FORTRAN code incorporating with the layered crust structure and curved fault geometry in a user-friendly way. The name SDM stands for Steepest Descent Method, an iterative algorithm used for the constrained least-squares optimization. The new code can be used for joint inversion of different datasets, which may include systematic offsets, as most geodetic data are obtained from relative measurements. These offsets are treated as unknowns to be determined simultaneously with the slip unknowns. In addition, a-priori and physical constraints are considered. The a-priori constraint includes the upper limit of the slip amplitude and the variation range of the slip direction (rake angle) defined by the user. The physical constraint is needed to obtain a smooth slip model, which is realized through a smoothing term to be minimized with the misfit to data. In difference to most previous inversion codes, the smoothing can be optionally applied to slip or stress-drop. The code works with an input file, a well-documented example of which is provided with the source code. Application examples are demonstrated.

  11. A Quantitative Analysis of the Fretted Terrain Valleys, Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Mason, Kelsey Anne

    Fretted terrain describes regions on Mars with low-lying, flat valleys separated by steep cliffs that often form polygonal-shaped mesas. The fretted terrain valleys have a morphology distinct from other valleys found on Mars, and their unknown origin may hold insights into critical questions about Mars' tectonic, magmatic, and hydrologic history. Current hypothesis for the formation of the fretted terrain include fracturing as well as hydrological flow processes such as fluvial or glacial erosion. The region for this study is located in eastern Arabia Terra and is the type-location for fretted terrain. By qualitatively and quantitatively documenting the planform, or map-view, valley geometries and orientations throughout the fretted terrain, this study better constrains the origin of the valleys. Valleys were mapped using automated routines in ArcGIS including the D8 flow direction algorithm. Valleys were then grouped geographically into basins and also by Strahler order. The valleys were then segmented every 50 km and the azimuth of each segment was calculated. The resulting valley azimuths were analyzed using rose diagrams to quantitatively describe the planform geometries of the valleys. Qualitatively, the majority of basins were found to have rectangular valley geometries. The downslope direction was calculated for each basin, and it was compared to the corresponding valley azimuths. The basins with rectangular valley geometries had valleys with an azimuth mode nearly parallel to the downslope direction and another azimuth mode perpendicular to the downslope direction. The valley azimuth mode parallel to the downslope direction is attributed to hydrological flow processes while the mode perpendicular to the downslope direction is attributed to fracturing related to the formation or existence of the Mars global dichotomy boundary.

  12. Hexahedral mesh generation via the dual arrangement of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.A.; Tautges, T.J.

    1997-12-31

    Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatiblemore » hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.« less

  13. Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine.

    PubMed

    Farsad, Mehdi; Zeinali-Davarani, Shahrokh; Choi, Jongeun; Baek, Seungik

    2015-09-01

    Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA-spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA-spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients.

  14. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.

    PubMed

    Zachariah, S G; Sanders, J E; Turkiyyah, G M

    1996-06-01

    A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.

  15. Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine

    PubMed Central

    Farsad, Mehdi; Zeinali-Davarani, Shahrokh; Choi, Jongeun; Baek, Seungik

    2015-01-01

    Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA–spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA–spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients. PMID:26158885

  16. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    PubMed

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  17. Extrapolating subsurface geometry by surface expressions in transpressional strike slip fault, deduced from analogue experiments with settings of rheology and convergence angle

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz

    2015-04-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  18. Microwave assisted green synthesis and characterizations of noble metal nanoparticles and their roles as catalysts in organic reduction reactions and anticancer agent

    NASA Astrophysics Data System (ADS)

    Francis, Sijo; Koshy, Ebey P.; Mathew, Beena

    2018-04-01

    Nanomaterials are interesting chemicals that uncover the explorations and expectations of decades. The report suggests environmentally benevolent and easy route for the synthesis of noble metal nanoparticles. Personnel, laboratory and ecological benefits of the synthesized nanoparticles are demonstrated herein. The aqueous extract from the leaves of Litchi chinensis Sonn is performed as the alternative reducing agent. The microwave activated silver and gold nanoparticles have spherical geometries with crystalline essence. X-ray diffraction technique witnessed the face centered cubic lattice for the nano silver and gold particles that preferentially oriented towards the (111) plane. The reduction of nitro anilines is performed to elucidate the heterogeneous catalytic power of the nanoparticles. The nano catalyst is a potential candidate to meet the challenges raised from organic pollutant dye that cause environmental contamination. The chemical stability, low-cost factor and plant based origin of the new nanoparticles are admired. The multitudes of health hazards especially human carcinoma can be effectively inhibited by the silver and gold nanoparticles. The leaf extract, silver and gold nanoparticles showed IC50 values 66.56 ± 0.80, 23.55 ± 0.43 and 20.38 ± 0.41 μg ml‑1 respectively against the human lung adenocarcinoma cell lines A549 determined using the MTT dye conversion assay.

  19. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  20. Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts.

    PubMed

    Lobaccaro, Peter; Singh, Meenesh R; Clark, Ezra Lee; Kwon, Youngkook; Bell, Alexis T; Ager, Joel W

    2016-09-29

    In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. We show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena taking place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of <10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. We show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2 .

  1. Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO 2 reduction electrocatalysts

    DOE PAGES

    Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee; ...

    2016-09-06

    In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. Here we show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena takingmore » place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of < 10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. Finally, we show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2.« less

  2. Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO 2 reduction electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee

    In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. Here we show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena takingmore » place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of < 10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. Finally, we show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2.« less

  3. Optimum sensor placement for microphone arrays

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.

    Microphone arrays can be used for high-quality sound pickup in reverberant and noisy environments. Sound capture using conventional single microphone methods suffers severe degradation under these conditions. The beamforming capabilities of microphone array systems allow highly directional sound capture, providing enhanced signal-to-noise ratio (SNR) when compared to single microphone performance. The overall performance of an array system is governed by its ability to locate and track sound sources and its ability to capture sound from desired spatial volumes. These abilities are strongly affected by the spatial placement of microphone sensors. A method is needed to optimize placement for a specified number of sensors in a given acoustical environment. The objective of the optimization is to obtain the greatest average system SNR for sound capture in the region of interest. A two-step sound source location method is presented. In the first step, time delay of arrival (TDOA) estimates for select microphone pairs are determined using a modified version of the Omologo-Svaizer cross-power spectrum phase expression. In the second step, the TDOA estimates are used in a least-mean-squares gradient descent search algorithm to obtain a location estimate. Statistics for TDOA estimate error as a function of microphone pair/sound source geometry and acoustic environment are gathered from a set of experiments. These statistics are used to model position estimation accuracy for a given array geometry. The effectiveness of sound source capture is also dependent on array geometry and the acoustical environment. Simple beamforming and time delay compensation (TDC) methods provide spatial selectivity but suffer performance degradation in reverberant environments. Matched filter array (MFA) processing can mitigate the effects of reverberation. The shape and gain advantage of the capture region for these techniques is described and shown to be highly influenced by the placement of array sensors. A procedure is developed to evaluate a given array configuration based on the above-mentioned metrics. Constrained placement optimizations are performed that maximize SNR for both TDC and MFA capture methods. Results are compared for various acoustic environments and various enclosure sizes. General guidelines are presented for placement strategy and bandwidth dependence, as they relate to reverberation levels, ambient noise, and enclosure geometry. An overall performance function is described based on these metrics. Performance of the microphone array system is also constrained by the design limitations of the supporting hardware. Two newly developed hardware architectures are presented that support the described algorithms. A low- cost 8-channel system with off-the-shelf componentry was designed and its performance evaluated. A massively parallel 512-channel custom-built system is in development-its capabilities and the rationale for its design are described.

  4. Active arc-continent collision: Earthquakes, gravity anomalies, and fault kinematics in the Huon-Finisterre collision zone, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.; McCaffrey, Robert

    1994-04-01

    The Huon-Finisterre island arc terrane is actively colliding with the north edge of the Australian continent. The collision provides a rare opportunity to study continental accretion while it occurs. We examine the geometry and kinematics of the collision by comparing earthquake source parameters to surface fault geometries and plate motions, and we constrain the forces active in the collision by comparing topographic loads to gravity anomalies. Waveform inversion is used to constrain focal mechanisms for 21 shallow earthquakes that occurred between 1966 and 1992 (seismic moment 1017 to 3 × 1020 N m). Twelve earthquakes show thrust faulting at 22-37 km depth. The largest thrust events are on the north side of the Huon Peninsula and are consistent with slip on the Ramu-Markham thrust fault zone, the northeast dipping thrust fault system that bounds the Huon-Finisterre terrane. Thus much of the terrane's crust but little of its mantle is presently being added to the Australian continent. The large thrust earthquakes also reveal a plausible mechanism for the uplift of Pleistocene coral terraces on the north side of the Huon Peninsula. Bouguer gravity anomalies are too negative to allow simple regional compensation of topography and require large additional downward forces to depress the lower plate beneath the Huon Peninsula. With such forces, plate configurations are found that are consistent with observed gravity and basin geometry. Other earthquakes give evidence of deformation above and below the Ramu-Markham thrust system. Four thrust events, 22-27 km depth directly below the Ramu-Markham fault outcrop, are too deep to be part of a planar Ramu-Markham thrust system and may connect to the north dipping Highlands thrust system farther south. Two large strike-slip faulting earthquakes and their aftershocks, in 1970 and 1987, show faulting within the upper plate of the thrust system. The inferred fault planes show slip vectors parallel to those on nearby thrust faults, and may represent small offsets in the overriding plate. These faults, along with small normal-faulting earthquakes beneath the Huon-Finisterre ranges and a 25° along-strike rotation of slip vectors, demonstrate the presence of along-strike extension of the accreting terrane and along-strike compression of the lower plate.

  5. Finite Element Modeling of In-Situ Stresses near Salt Bodies

    NASA Astrophysics Data System (ADS)

    Sanz, P.; Gray, G.; Albertz, M.

    2011-12-01

    The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data. This modeling technique does not predict the evolution of structural elements or stresses with time; therefore it does not provide any insight into the formation of fractures that were previously developed under a different stress condition or the development of overpressure generated by a high sedimentation rate. This work provides a validation for predicting in-situ stresses near salt using "static" models. We compare synthetic examples using both modeling techniques and show that stresses near salt predicted with "static" models are comparable to the ones generated by "dynamic" models.

  6. Geomorphology of intraplate postglacial faults in Sweden

    NASA Astrophysics Data System (ADS)

    Ask, M. V. S.; Abdujabbar, M.; Lund, B.; Smith, C.; Mikko, H.; Munier, R.

    2015-12-01

    Melting of the Weichselian ice sheet at ≈10 000 BP is inferred to have induced large to great intraplate earthquakes in northern Fennoscandia. Over a dozen large so-called postglacial faults (PGF) have been found, mainly using aerial photogrammetry, trenching, and recognition of numerous paleolandslides in the vicinity of the faults (e.g. Lagerbäck & Sundh 2008). Recent LiDAR-based mapping led to the extension of known PGFs, the discovery of new segments of existing PGFs, and a number of new suspected PGFs (Smith et al. 2014; Mikko et al. 2015). The PGFs in Fennoscandia occur within 14-25°E and 61-69°N; the majority are within Swedish territory. PGFs generally are prominent features, up to 155 km in length and 30 m maximum surface offset. The most intense microseismic activity in Sweden occurs near PGFs. The seismogenic zone of the longest known PGF (Pärvie fault zone, PFZ) extends to ≈40 km depth. From fault geometry and earthquake scaling relations, the paleomagnitude of PFZ is estimated to 8.0±0.3 (Lindblom et al. 2015). The new high-resolution LiDAR-derived elevation model of Sweden offers an unprecedented opportunity to constrain the surface geometry of the PGFs. The objective is to reach more detailed knowledge of the surface offset across their scarps. This distribution provides a one-dimensional view of the slip distribution during the inferred paleorupture. The second objective is to analyze the pattern of vertical displacement of the hanging wall, to obtain a two-dimensional view of the displaced area that is linked to the fault geometry at depth. The anticipated results will further constrain the paleomagnitude of PGFs and will be incorporated into future modeling efforts to investigate the nature of PGFs. ReferencesLagerbäck & Sundh 2008. Early Holocene faulting and paleoseismicity in northern Sweden. http://resource.sgu.se/produkter/c/c836-rapport.pdf Smith et al. 2014. Surficial geology indicates early Holocene faulting and seismicity, central Sweden. doi: 10.1007/s00531-014-1025-6 Mikko et al. 2015. LiDAR-derived inventory of post-glacial fault scarps in Sweden. doi:10.1080/11035897.2015.1036360 Lindblom et al. 2015. Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden. doi: 10.1093/gji/ggv112

  7. Photo-oxidation catalysts

    DOEpatents

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  8. Orbit determination of the Next-Generation Beidou satellites with Intersatellite link measurements and a priori orbit constraints

    NASA Astrophysics Data System (ADS)

    Ren, Xia; Yang, Yuanxi; Zhu, Jun; Xu, Tianhe

    2017-11-01

    Intersatellite Link (ISL) technology helps to realize the auto update of broadcast ephemeris and clock error parameters for Global Navigation Satellite System (GNSS). ISL constitutes an important approach with which to both improve the observation geometry and extend the tracking coverage of China's Beidou Navigation Satellite System (BDS). However, ISL-only orbit determination might lead to the constellation drift, rotation, and even lead to the divergence in orbit determination. Fortunately, predicted orbits with good precision can be used as a priori information with which to constrain the estimated satellite orbit parameters. Therefore, the precision of satellite autonomous orbit determination can be improved by consideration of a priori orbit information, and vice versa. However, the errors of rotation and translation in a priori orbit will remain in the ultimate result. This paper proposes a constrained precise orbit determination (POD) method for a sub-constellation of the new Beidou satellite constellation with only a few ISLs. The observation model of dual one-way measurements eliminating satellite clock errors is presented, and the orbit determination precision is analyzed with different data processing backgrounds. The conclusions are as follows. (1) With ISLs, the estimated parameters are strongly correlated, especially the positions and velocities of satellites. (2) The performance of determined BDS orbits will be improved by the constraints with more precise priori orbits. The POD precision is better than 45 m with a priori orbit constrain of 100 m precision (e.g., predicted orbits by telemetry tracking and control system), and is better than 6 m with precise priori orbit constraints of 10 m precision (e.g., predicted orbits by international GNSS monitoring & Assessment System (iGMAS)). (3) The POD precision is improved by additional ISLs. Constrained by a priori iGMAS orbits, the POD precision with two, three, and four ISLs is better than 6, 3, and 2 m, respectively. (4) The in-plane link and out-of-plane link have different contributions to observation configuration and system observability. The POD with weak observation configuration (e.g., one in-plane link and one out-of-plane link) should be tightly constrained with a priori orbits.

  9. Present-day kinematics of the Danakil block (southern Red Sea-Afar) constrained by GPS

    NASA Astrophysics Data System (ADS)

    Ladron de Guevara, R.; Jonsson, S.; Ruch, J.; Doubre, C.; Reilinger, R. E.; Ogubazghi, G.; Floyd, M.; Vasyura-Bathke, H.

    2017-12-01

    The rifting of the Arabian plate from the Nubian and Somalian plates is primarily accommodated by seismic and magmatic activity along two rift arms of the Afar triple junction (the Red Sea and Gulf of Aden rifts). The spatial distribution of active deformation in the Afar region have been constrained with geodetic observations. However, the plate boundary configuration in which this deformation occurs is still not fully understood. South of 17°N, the Red Sea rift is composed of two parallel and overlapping rift branches separated by the Danakil block. The distribution of the extension across these two overlapping rifts, their potential connection through a transform fault zone and the counterclockwise rotation of the Danakil block have not yet been fully resolved. Here we analyze new GPS observations from the Danakil block, the Gulf of Zula area (Eritrea) and Afar (Ethiopia) together with previous geodetic survey data to better constrain the plate kinematics and active deformation of the region. The new data has been collected in 2016 and add up to 5 years to the existing geodetic observations (going back to 2000). Our improved GPS velocity field shows differences with previously modeled GPS velocities, suggesting that the rate and rotation of the Danakil block need to be updated. The new velocity field also shows that the plate-boundary strain is accommodated by broad deformation zones rather than across sharp boundaries between tectonic blocks. To better determine the spatial distribution of the strain, we first implement a rigid block model to constrain the overall regional plate kinematics and to isolate the plate-boundary deformation at the western boundary of the Danakil block. We then study whether the recent southern Red Sea rifting events have caused detectable changes in observed GPS velocities and if the observations can be used to constrain the scale of this offshore rift activity. Finally, we investigate different geometries of transform faults that might connect the two overlapping branches of the southern Red Sea rift in the Gulf of Zula region.

  10. Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.

    2014-12-01

    Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on the Wasatch fault suggests that maximum tectonic stress may also be able to be constrained, and that some of the shallow rupture segmentation may be due in part to localized topographic loading. Future directions of this work include regions where high relief influences fault kinematics (such as Tibet).

  11. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    NASA Technical Reports Server (NTRS)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  12. Hierarchical Heterogeneity at the CeO x –TiO 2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures

    DOE PAGES

    Luo, Si; Nguyen-Phan, Thuy-Duong; Johnston-Peck, Aaron C.; ...

    2015-01-13

    Mixed oxide interfaces are critical for delivering active components of demanding catalytic processes such as the photo-catalytic splitting of water. We have studied CeO xTiO₂ catalysts with low ceria loadings of 1 wt%, 3 wt% and 6 wt% that were prepared with wet impregnation methods to favor a strong interaction between CeO x and TiO₂. In these materials the interfaces between CeO x-TiO₂ have been sequentially loaded (1%, 3% and 6%), with and without Pt (0.5 wt%). The structure and properties of the catalysts were characterized using several X-ray and electron based techniques including XRD, XPS, UPS, NEXAFS, UV-Vis andmore » HR-STEM/STEM-EELS, to unravel the local morphology, bulk structure, surface states and electronic structure. The combination of all these techniques allow us to analyze in a systematic way the complete structural and electronic properties that prevail at the CeO x-TiO₂ interface. Fluorite structured nano crystallites of ceria on anatase-structured titania were identified by both XRD and NEXAFS. A sequential increasing of the CeO x loading led to the formation of clusters, then plates and finally nano particles in a hierarchical manner on the TiO₂ support. The electronic structures of these catalysts indicate that the interaction between TiO₂ and CeO₂ is closely related to the local morphology of nanostructured CeO₂. Ce³⁺ cations were detected at the surface of CeO₂ and at the interface of the two oxides. In addition, the titania is perturbed by the interaction with ceria and also with Pt. The photocatalytic activity for the splitting of H₂O using UV light was measured for these materials and correlated with our understanding of the electronic and structural properties. Optimal catalytic performance and photo response results were found for the 1 wt% CeO x-TiO₂ catalyst where low dimensional geometry of the ceria provided ideal electronic and geometrical properties. The structural and electronic properties of the interface were critical for the photocatalytic performance of this mixed-oxide nanocatalyst system.« less

  13. Face recognition based on two-dimensional discriminant sparse preserving projection

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhu, Shanan

    2018-04-01

    In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.

  14. General quadrupolar statistical anisotropy: Planck limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramazanov, S.; Rubtsov, G.; Thorsrud, M.

    2017-03-01

    Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g {sub *}. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g {sub *}. This is the subject of the present work. In particular, we limit the amplitude g {sub *} for different shapes of the quadrupole by making use of Planck 2015 maps. We alsomore » constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.« less

  15. Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag 3 Pd(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, Sean T.; Scott, Joseph K.; Getman, Rachel B.

    2016-01-01

    Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation ofn-butane to 1-butanol with O 2over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag 3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed atmore » 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C–H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O 2pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O 2was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and that highly selectivity oxidation can sometimes be achieved by using a mixture of O 2and H 2O as the oxidant. This was further demonstrated by DRC analysis of a second microkinetic model based on a related but hypothetical catalyst, where the activation energies for two of the steps were modified.« less

  16. Generalization of the van der Pauw Method: Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.

  17. Rahman Prize Lecture: Lattice Boltzmann simulation of complex states of flowing matter

    NASA Astrophysics Data System (ADS)

    Succi, Sauro

    Over the last three decades, the Lattice Boltzmann (LB) method has gained a prominent role in the numerical simulation of complex flows across an impressively broad range of scales, from fully-developed turbulence in real-life geometries, to multiphase flows in micro-fluidic devices, all the way down to biopolymer translocation in nanopores and lately, even quark-gluon plasmas. After a brief introduction to the main ideas behind the LB method and its historical developments, we shall present a few selected applications to complex flow problems at various scales of motion. Finally, we shall discuss prospects for extreme-scale LB simulations of outstanding problems in the physics of fluids and its interfaces with material sciences and biology, such as the modelling of fluid turbulence, the optimal design of nanoporous gold catalysts and protein folding/aggregation in crowded environments.

  18. The History of Current State of the Art of Propylene Polymerization Catalysts.

    ERIC Educational Resources Information Center

    Goodall, Brian L.

    1986-01-01

    Outlines the development of the modern catalysts for propylene polymerization, considering the historical background; structure of titanium chloride catalysts; first-generation catalysts; cocatalysts; second-generation catalysts; catalysts morphology; and third-generation (supported catalysts). (JN)

  19. Magnetic field geometry and chemical abundance distribution of the He-strong star CPD -57°3509

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Przybilla, N.; Korhonen, H.; Ilyin, I.; Schöller, M.; Järvinen, S. P.; Nieva, M.-F.; Scholz, R.-D.; Kimeswenger, S.; Ramolla, M.; Kholtygin, A. F.; Briquet, M.

    2017-10-01

    The magnetic field of CPD -57°3509 was recently detected in the framework of the BOB (B fields in OB stars) collaboration. We acquired low-resolution spectropolarimetric observations of CPD -57°3509 with the FOcal Reducer low-dispersion Spectrograph 2 and high-resolution UV-Visual Echelle Spectrograph observations randomly distributed over a few months to search for periodicity, to study the magnetic field geometry and to determine the surface distribution of silicon and helium. We also obtained supplementary photometric observations at a timeline similar to the spectroscopic and spectropolarimetric observations. A period of 6.36 d was detected in the measurements of the mean longitudinal magnetic field. A sinusoidal fit to our measurements allowed us to constrain the magnetic field geometry and estimate the dipole strength in the range of 3.9-4.5 kG. Our application of the Doppler imaging technique revealed the presence of He I spots located around the magnetic poles, with a strong concentration at the positive pole and a weaker one around the negative pole. In contrast, high-concentration Si III spots are located close to the magnetic equator. Furthermore, our analysis of the spectral variability of CPD -57°3509 on short time-scales indicates distinct changes in shape and position of line profiles possibly caused by the presence of β Cep like pulsations. A small periodic variability in line with the changes of the magnetic field strength is clearly seen in the photometric data.

  20. Fixed-topology Lorentzian triangulations: Quantum Regge Calculus in the Lorentzian domain

    NASA Astrophysics Data System (ADS)

    Tate, Kyle; Visser, Matt

    2011-11-01

    A key insight used in developing the theory of Causal Dynamical Triangu-lations (CDTs) is to use the causal (or light-cone) structure of Lorentzian manifolds to restrict the class of geometries appearing in the Quantum Gravity (QG) path integral. By exploiting this structure the models developed in CDTs differ from the analogous models developed in the Euclidean domain, models of (Euclidean) Dynamical Triangulations (DT), and the corresponding Lorentzian results are in many ways more "physical". In this paper we use this insight to formulate a Lorentzian signature model that is anal-ogous to the Quantum Regge Calculus (QRC) approach to Euclidean Quantum Gravity. We exploit another crucial fact about the structure of Lorentzian manifolds, namely that certain simplices are not constrained by the triangle inequalities present in Euclidean signa-ture. We show that this model is not related to QRC by a naive Wick rotation; this serves as another demonstration that the sum over Lorentzian geometries is not simply related to the sum over Euclidean geometries. By removing the triangle inequality constraints, there is more freedom to perform analytical calculations, and in addition numerical simulations are more computationally efficient. We first formulate the model in 1 + 1 dimensions, and derive scaling relations for the pure gravity path integral on the torus using two different measures. It appears relatively easy to generate "large" universes, both in spatial and temporal extent. In addition, loopto-loop amplitudes are discussed, and a transfer matrix is derived. We then also discuss the model in higher dimensions.

  1. Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.

    2018-02-01

    Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.

  2. An enhanced beam model for constrained layer damping and a parameter study of damping contribution

    NASA Astrophysics Data System (ADS)

    Xie, Zhengchao; Shepard, W. Steve, Jr.

    2009-01-01

    An enhanced analytical model is presented based on an extension of previous models for constrained layer damping (CLD) in beam-like structures. Most existing CLD models are based on the assumption that shear deformation in the core layer is the only source of damping in the structure. However, previous research has shown that other types of deformation in the core layer, such as deformations from longitudinal extension and transverse compression, can also be important. In the enhanced analytical model developed here, shear, extension, and compression deformations are all included. This model can be used to predict the natural frequencies and modal loss factors. The numerical study shows that compared to other models, this enhanced model is accurate in predicting the dynamic characteristics. As a result, the model can be accepted as a general computation model. With all three types of damping included and the formulation used here, it is possible to study the impact of the structure's geometry and boundary conditions on the relative contribution of each type of damping. To that end, the relative contributions in the frequency domain for a few sample cases are presented.

  3. Tissue resistivity estimation in the presence of positional and geometrical uncertainties.

    PubMed

    Baysal, U; Eyüboğlu, B M

    2000-08-01

    Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.

  4. Self-referential forces are sufficient to explain different dendritic morphologies

    PubMed Central

    Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James

    2013-01-01

    Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828

  5. 3D-PTV around Operational Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Dabiri, John

    2016-11-01

    Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.

  6. Constraining smoothness parameter and the DD relation of Dyer-Roeder equation with supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Yu, Hao-Ran; Zhang, Tong-Jie, E-mail: yangwds@mail.bnu.edu.cn, E-mail: yu@bnu.edu.cn, E-mail: tjzhang@bnu.edu.cn

    2013-06-01

    Our real universe is locally inhomogeneous. Dyer and Roeder introduced the smoothness parameter α to describe the influence of local inhomogeneity on angular diameter distance, and they obtained the angular diameter distance-redshift approximate relation (Dyer-Roeder equation) for locally inhomogeneous universe. Furthermore, the Distance-Duality (DD) relation, D{sub L}(z)(1+z){sup −2}/D{sub A}(z) = 1, should be valid for all cosmological models that are described by Riemannian geometry, where D{sub L} and D{sub A} are, respectively, the luminosity and angular distance distances. Therefore, it is necessary to test whether if the Dyer-Roeder approximate equation can satisfy the Distance-Duality relation. In this paper, we usemore » Union2.1 SNe Ia data to constrain the smoothness parameter α and test whether the Dyer-Roeder equation meet the DD relation. By using χ{sup 2} minimization, we get α = 0.92{sub −0.32}{sup +0.08} at 1σ and 0.92{sub −0.65}{sup +0.08} at 2σ, and our results show that the Dyer-Roeder equation is in good consistency with the DD relation at 1σ.« less

  7. Numerical modeling of Drangajökull Ice Cap, NW Iceland

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug

    2016-04-01

    Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier extents. We apply our model to the Drangajökull ice cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-ice-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) ice surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical ice velocities. The modeled vertical ice velocities and ice surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier extent. Our results are placed in context with local lacustrine and marine climate proxies as well as with glacier extent and volume changes across the North Atlantic.

  8. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  9. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    PubMed

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  10. X-ray Constrained Extremely Localized Molecular Orbitals: Theory and Critical Assessment of the New Technique.

    PubMed

    Genoni, Alessandro

    2013-07-09

    Following the X-ray constrained wave function approach proposed by Jayatilaka, we have devised a new technique that allows to extract molecular orbitals strictly localized on small molecular fragments from sets of experimental X-ray structure factors amplitudes. Since the novel strategy enables to obtain electron distributions that have quantum mechanical features and that can be easily interpreted in terms of traditional chemical concepts, the method can be also considered as a new useful tool for the determination and the analysis of charge densities from high-resolution X-ray experiments. In this paper, we describe in detail the theory of the new technique, which, in comparison to our preliminary work, has been improved both treating the effects of isotropic secondary extinctions and introducing a new protocol to halt the fitting procedure against the experimental X-ray scattering data. The performances of the novel strategy have been studied both in function of the basis-sets flexibility and in function of the quality of the considered crystallographic data. The tests performed on four different systems (α-glycine, l-cysteine, (aminomethyl)phosphonic acid and N-(trifluoromethyl)formamide) have shown that the achievement of good statistical agreements with the experimental measures mainly depends on the quality of the crystal structures (i.e., geometry positions and thermal parameters) used in the X-ray constrained calculations. Finally, given the reliable transferability of the obtained Extremely Localized Molecular Orbitals (ELMOs), we envisage to exploit the novel approach to construct new ELMOs databases suited to the development of linear-scaling methods for the refinement of macromolecular crystal structures.

  11. An improved cosmic crystallography method to detect holonomies in flat spaces

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Yoshii, Y.

    2011-05-01

    A new, improved version of a cosmic crystallography method for constraining cosmic topology is introduced. Like the circles-in-the-sky method using CMB data, we work in a thin, shell-like region containing plenty of objects. Two pairs of objects (quadruplet) linked by a holonomy show a specific distribution pattern, and three filters of separation, vectorial condition, and lifetime of objects extract these quadruplets. Each object Pi is assigned an integer si, which is the number of candidate quadruplets including Pi as their members. Then an additional device of si-histogram is used to extract topological ghosts, which tend to have high values of si. In this paper we consider flat spaces with Euclidean geometry, and the filters are designed to constrain their holonomies. As the second filter, we prepared five types that are specialized for constraining specific holonomies: one for translation, one for half-turn corkscrew motion and glide reflection, and three for nth turn corkscrew motion for n = 4,3, and 6. Every multiconnected space has holonomies that are detected by at least one of these five filters.Our method is applied to the catalogs of toy quasars in flat Λ-CDM universes whose typical sizes correspond to z ~ 5. With these simulations our method is found to work quite well. These are the situations in which type-II pair crystallography methods are insensitive because of the tiny number of ghosts. Moreover, in the flat cases, our method should be more sensitive than the type-I pair (or, in general, n-tuplet) methods because of its multifilter construction and its independence from n.

  12. M(sub W) = 7.2-7.4 Estimated for A.D. 900 Seattle Fault Earthquake by Modeling the Uplift of a Lidar-Mapped Marine Terrace

    NASA Technical Reports Server (NTRS)

    Muller, Jordan R.; Harding, David J.

    2006-01-01

    Inverse modeling of slip on the Seattle fault system, constrained by elevations of uplifted marine terraces, provides a well-constrained estimate of the magnitude of the largest known upper-crust earthquake in the Puget Sound region within the past 2500 years. The terrace elevations that constrain the slip inversion are extracted from elevation and slope images generated from LIDAR surveys of the Puget Sound collected in 1996-2002. The images reveal a single uplifted terrace, dated to 1000 cal yr B.P. near Restoration Point, which is morphologically continuous along the southern shoreline of Bainbridge Island and is visible at comparable elevations within a 25 km by 12 km region encompassing coastlines of West Seattle, Bremerton, East Bremerton, Port Orchard, and Waterman Point. Considering sea level changes since A.D. 900, the maximum uplift magnitudes of shoreline inner edges approach 9 m and are located at the southernmost coastline of Bainbridge Island and the northern tip of Waterman Point, while tilt magnitudes are modest - approaching 0.1 degrees. For each of several different Seattle fault geometry interpretations, we use a linear inversion code to solve for distributed slip on the fault surfaces. Moment magnitudes of 7.2 to 7.4 are calculated directly from the different slip solutions. In general, the greatest slip of the A.D. 900 event was confined to the frontal thrust of the Seattle fault system and was centered beneath Puget Sound between Restoration Point and Alki Point.

  13. Paleoproterozoic Collisional Structures in the Hudson Bay Lithosphere Constrained by Multi-Observable Probabilistic Inversion

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.

    2015-12-01

    The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay, likely associated with the trace of the THO collision and the entrapment of juvenile material between the highly-depleted Archean cores.

  14. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    NASA Astrophysics Data System (ADS)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  15. Load Sharing Among Collateral Ligaments, Articular Surfaces, and the Tibial Post in Constrained Condylar Knee Arthroplasty.

    PubMed

    Wang, Xiaonan; Malik, Aamer; Bartel, Donald L; Wright, Timothy M; Padgett, Douglas E

    2016-08-01

    The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus-valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus-valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus-valgus moment and, thus, reduced the exposure of the tibial post to the external varus-valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry between the tibial post and femoral box.

  16. On the use of faults and background seismicity in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Lorito, Stefano; Basili, Roberto; Tonini, Roberto; Tiberti, Mara Monica; Romano, Fabrizio; Perfetti, Paolo; Volpe, Manuela

    2017-04-01

    Most of the SPTHA studies and applications rely on several working assumptions: i) the - mostly offshore - tsunamigenic faults are sufficiently well known; ii) the subduction zone earthquakes dominate the hazard; iii) and their location and geometry is sufficiently well constrained. Hence, a probabilistic model is constructed as regards the magnitude-frequency distribution and sometimes the slip distribution of earthquakes occurring on assumed known faults. Then, tsunami scenarios are usually constructed for all earthquakes location, sizes, and slip distributions included in the probabilistic model, through deterministic numerical modelling of tsunami generation, propagation and impact on realistic bathymetries. Here, we adopt a different approach (Selva et al., GJI, 2016) that releases some of the above assumptions, considering that i) also non-subduction earthquakes may contribute significantly to SPTHA, depending on the local tectonic context; ii) that not all the offshore faults are known or sufficiently well constrained; iii) and that the faulting mechanism of future earthquakes cannot be considered strictly predictable. This approach uses as much as possible information from known faults which, depending on the amount of available information and on the local tectonic complexity, among other things, are either modelled as Predominant Seismicity (PS) or as Background Seismicity (BS). PS is used when it is possible to assume sufficiently known geometry and mechanism (e.g. for the main subduction zones). Conversely, within the BS approach information on faults is merged with that on past seismicity, dominant stress regime, and tectonic characterisation, to determine a probability density function for the faulting mechanism. To illustrate the methodology and its impact on the hazard estimates, we present an application in the NEAM region (Northeast Atlantic, Mediterranean and connected seas), initially designed during the ASTARTE project and now applied for the regional-scale SPTHA in the TSUMAPS-NEAM project funded by DG-ECHO.

  17. Brane-world extra dimensions in light of GW170817

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Bolis, Nadia; Vagnozzi, Sunny

    2018-03-01

    The search for extra dimensions is a challenging endeavor to probe physics beyond the Standard Model. The joint detection of gravitational waves (GW) and electromagnetic (EM) signals from the merging of a binary system of compact objects like neutron stars can help constrain the geometry of extra dimensions beyond our 3 +1 spacetime ones. A theoretically well-motivated possibility is that our observable Universe is a 3 +1 -dimensional hypersurface, or brane, embedded in a higher 4 +1 -dimensional anti-de Sitter (AdS5 ) spacetime, in which gravity is the only force which propagates through the infinite bulk space, while other forces are confined to the brane. In these types of brane-world models, GW and EM signals between two points on the brane would, in general, travel different paths. This would result in a time lag between the detection of GW and EM signals emitted simultaneously from the same source. We consider the recent near-simultaneous detection of the GW event GW170817 from the LIGO/Virgo collaboration, and its EM counterpart, the short gamma-ray burst GRB170817A detected by the Fermi Gamma-ray Burst Monitor and the International Gamma-Ray Astrophysics Laboratory Anti-Coincidence Shield spectrometer. Assuming the standard Λ -cold dark matter scenario and performing a likelihood analysis which takes into account astrophysical uncertainties associated to the measured time lag, we set an upper limit of ℓ≲0.535 Mpc at 68% confidence level on the AdS5 radius of curvature ℓ. Although the bound is not competitive with current Solar System constraints, it is the first time that data from a multimessenger GW-EM measurement is used to constrain extra-dimensional models. Thus, our work provides a proof of principle for the possibility of using multimessenger astronomy for probing the geometry of our space-time.

  18. A plastic flow model for the Acquara - Vadoncello landslide in Senerchia, Southern Italy

    USGS Publications Warehouse

    Savage, W.; Wasowski, J.

    2006-01-01

    A previously developed model for stress and velocity fields in two-dimensional Coulomb plastic materials under self-weight and pore pressure predicts that long, shallow landslides develop slip surfaces that manifest themselves as normal faults and normal fault scarps at the surface in areas of extending flow and as thrust faults and thrust fault scarps at the surface in areas of compressive flow. We have applied this model to describe the geometry of slip surfaces and ground stresses developed during the 1995 reactivation of the Acquara - Vadoncello landslide in Senerchia, southern Italy. This landslide is a long and shallow slide in which regions of compressive and extending flow are clearly identified. Slip surfaces in the main scarp region of the landslide have been reconstructed using surface surveys and subsurface borehole logging and inclinometer observations made during retrogression of the main scarp. Two of the four inferred main scarp slip surfaces are best constrained by field data. Slip surfaces in the toe region are reconstructed in the same way and three of the five inferred slip surfaces are similarly constrained. The location of the basal shear surface of the landslide is inferred from borehole logging and borehole inclinometry. Extensive data on material properties, landslide geometries, and pore pressures collected for the Acquara - Vadoncello landslide give values for cohesion, friction angle, and unit weight, plus average basal shear-surface slopes, and pore-pressures required for modelling slip surfaces and stress fields. Results obtained from the landslide-flow model and the field data show that predicted slip surface shapes are consistent with inferred slip surface shapes in both the extending flow main scarp region and in the compressive flow toe region of the Acquara - Vadoncello landslide. Also predicted stress distributions are found to explain deformation features seen in the toe and main scarp regions of the landslide. ?? 2005 Elsevier B.V. All rights reserved.

  19. Inferring lateral density variations in Great Geneva Basin, western Switzerland from wells and gravity data.

    NASA Astrophysics Data System (ADS)

    Carrier, Aurore; Lupi, Matteo; Clerc, Nicolas; Rusillon, Elme; Do Couto, Damien

    2017-04-01

    In the framework of sustainable energy development Switzerland supports the growth of renewable energies. SIG (Services Industriels de Genève) and the Canton of Geneva intend to develop the use of hydrothermal energy in western Switzerland. As a Mesozoïc-formed sedimentary basin, the Great Geneva Basin (GGB) shares geological and petrophysical similarities with the Munich area (Baviera, Germany) and Paris Basin (France). The latter already provide significant amounts of geothermal energy for district heating. The prospection phase has been launched in 2014 by SIG and aims at identifying relevant geological units and defining their geometries. Lower Cretaceous and Tertiary geological units have first been targeted as potential layers. At the depth we find these units (and according to the normal geothermal gradient), low enthalpy geothermal resources are rather expected. In this framework, our study aims at constraining and refining lateral and vertical heterogeneities of Quaternary to Cretaceous sedimentary layers in GGB. Linear velocity law is inverted at wells and then interpolated to the whole basin for each geological layer. Using time pickings from available data and Quaternary information from previous studies time to depth conversion is performed. Thickness map of every geological unit is then produced. Tertiary thickness ranges from 0 m at the NW border of the GGB at the foothill of the Jura Mountains to 3000 m in the SE of the GGB at the border with the French Alps. These observations are consistent with field and well observations. The produced thickness map will be used as a geometry support for gravity data inversion and then density lateral variations estimation. Unconstrained, and a priori constrained inversion has been performed in GGB using Gauss-Newton algorithms. Velocity versus density relationships will then enable to refine velocity law interpolation. Our procedure allowed us to reduce the uncertainty of key target formation and represents an important step towards the development of geothermal energy in the Great Geneva Basin.

  20. The circumbinary dusty disk around the hydrogen-deficient binary star υ Sagittarii

    NASA Astrophysics Data System (ADS)

    Netolický, M.; Bonneau, D.; Chesneau, O.; Harmanec, P.; Koubský, P.; Mourard, D.; Stee, P.

    2009-06-01

    Aims: The aim of this paper is to determine the properties of the dusty environment of the hydrogen-deficient binary system υ Sgr, whose binary properties and other characteristics are poorly known. Methods: We obtained the first mid-IR interferometric observations of υ Sgr using the instrument MIDI of the VLTI used with different pairs of 1.8 m and 8 m telescopes. The calibrated visibilities, the N band spectrum, and the SED were compared with disk models computed with the MC3D code to determine the geometry and chemical composition of the envelope. Results: υ Sgr is unresolved with an 8 m telescope at 8.7 μm. We propose a disk model that agrees with the measured visibilities and the SED, consisting of a geometrically thin disk with an inner radius R_in = 6.0+0.5-1.5 AU and a scale height h100 = 3.5+2.0-1.5 AU. The chemical composition of the dust is approximately 60% of carbon dust and 40% of silicate dust, as a consequence of several episodes of mass transfers, whose chemistry was imprinted in the dust composition. We also constrain the inclination of the disk i = 50°+10°-20° and its orientation position angle PA = 80°+10°-5°. Conclusions: The mid-infrared interferometric observations of the binary star υ Sgr allowed us to constrain the geometry of the circumbinary dusty envelope. By defining the inclination and PA of the system with better accuracy than before, these observations restrict the parameter space for the orbital parameters and thus the nature of the stars orbiting in this system. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under program 079.D-0115. Visibility data are only available in electronic form at the CDS website.

  1. How important is exact knowledge of preferential flowpath locations and orientations for understanding spatiotemporally integrated spring hydrologic and transport response?

    NASA Astrophysics Data System (ADS)

    Henson, W.; De Rooij, R.; Graham, W. D.

    2016-12-01

    The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer-vulnerability estimates, despite lacking information about actual conduit locations.

  2. Radio Occultation Investigation of the Rings of Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Marouf, Essam A.

    1997-01-01

    The proposed work addresses two main objectives: (1) to pursue the development of the random diffraction screen model for analytical/computational characterization of the extinction and near-forward scattering by ring models that include particle crowding, uniform clustering, and clustering along preferred orientations (anisotropy). The characterization is crucial for proper interpretation of past (Voyager) and future (Cassini) ring, occultation observations in terms of physical ring properties, and is needed to address outstanding puzzles in the interpretation of the Voyager radio occultation data sets; (2) to continue the development of spectral analysis techniques to identify and characterize the power scattered by all features of Saturn's rings that can be resolved in the Voyager radio occultation observations, and to use the results to constrain the maximum particle size and its abundance. Characterization of the variability of surface mass density among the main ring, features and within individual features is important for constraining the ring mass and is relevant to investigations of ring dynamics and origin. We completed the developed of the stochastic geometry (random screen) model for the interaction of electromagnetic waves with of planetary ring models; used the model to relate the oblique optical depth and the angular spectrum of the near forward scattered signal to statistical averages of the stochastic geometry of the randomly blocked area. WE developed analytical results based on the assumption of Poisson statistics for particle positions, and investigated the dependence of the oblique optical depth and angular spectrum on the fractional area blocked, vertical ring profile, and incidence angle when the volume fraction is small. Demonstrated agreement with the classical radiative transfer predictions for oblique incidence. Also developed simulation procedures to generate statistical realizations of random screens corresponding to uniformly packed ring models, and used the results to characterize dependence of the extinction and near-forward scattering on ring thickness, packing fraction, and the ring opening angle.

  3. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, S; Rao, A; Wendt, R

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the cameramore » by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination.« less

  4. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  5. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  6. Integrating Reflection Seismic, Gravity and Magnetic Data to Reveal the Structure of Crystalline Basement: Implications for Understanding Rift Development

    NASA Astrophysics Data System (ADS)

    Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.

    2016-04-01

    Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.

  7. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  8. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos Mavrikakis; James A. Dumesic; Rahul P. Nabar

    2006-09-29

    Work continued on the development of a microkinetic model of Fischer-Tropsch synthesis (FTS) on supported and unsupported Fe catalysts. The following aspects of the FT mechanism on unsupported iron catalysts were investigated on during this third year: (1) the collection of rate data in a Berty CSTR reactor based on sequential design of experiments; (2) CO adsorption and CO-TPD for obtaining the heat of adsorption of CO on polycrystalline iron; and (3) isothermal hydrogenation (IH) after Fischer Tropsch reaction to identify and quantify surface carbonaceous species. Rates of C{sub 2+} formation on unsupported iron catalysts at 220 C and 20more » atm correlated well to a Langmuir-Hinshelwood type expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. From desorption of molecularly adsorbed CO at different temperatures the heat of adsorption of CO on polycrystalline iron was determined to be 100 kJ/mol. Amounts and types of carbonaceous species formed after FT reaction for 5-10 minutes at 150, 175, 200 and 285 C vary significantly with temperature. Mr. Brian Critchfield completed his M.S. thesis work on a statistically designed study of the kinetics of FTS on 20% Fe/alumina. Preparation of a paper describing this work is in progress. Results of these studies were reported at the Annual Meeting of the Western States Catalysis and at the San Francisco AIChE meeting. In the coming period, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on unsupported Fe catalysts with/without K and Pt promoters by SSITKA method. This study will help us to (1) understand effects of promoter and support on elementary kinetic parameters and (2) build a microkinetics model for FTS on iron. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on models of defected Fe surfaces, most significantly the stepped Fe(211) surface. Binding Energies (BE's), preferred adsorption sites and geometries of all the FTS relevant stable species and intermediates were evaluated. Each elementary step of our reaction model was fully characterized with respect to its thermochemistry and comparisons between the stepped Fe(211) facet and the most-stable Fe(110) facet were established. In most cases the BE's on Fe(211) reflected the trends observed earlier on Fe(110), yet there were significant variations imposed on the underlying trends. Vibrational frequencies were evaluated for the preferred adsorption configurations of each species with the aim of evaluating the entropy-changes and preexponential factors for each elementary step. Kinetic studies were performed for the early steps of FTS (up to CH{sub 4} formation) and CO dissociation. This involved evaluation of the Minimum Energy Pathway (MEP) and activation energy barrier for the steps involved. We concluded that Fe(211) would allow for far more facile CO dissociation in comparison to other Fe catalysts studied so far, but the other FTS steps studied remained mostly unchanged.« less

  9. Structure and Dynamics of Individual Diastereomeric Complexes on Platinum: Surface Studies Related to Heterogeneous Enantioselective Catalysis.

    PubMed

    Dong, Yi; Goubert, Guillaume; Groves, Michael N; Lemay, Jean-Christian; Hammer, Bjørk; McBreen, Peter H

    2017-05-16

    The modification of heterogeneous catalysts through the chemisorption of chiral molecules is a method to create catalytic sites for enantioselective surface reactions. The chiral molecule is called a chiral modifier by analogy to the terms chiral auxiliary or chiral ligand used in homogeneous asymmetric catalysis. While there has been progress in understanding how chirality transfer occurs, the intrinsic difficulties in determining enantioselective reaction mechanisms are compounded by the multisite nature of heterogeneous catalysts and by the challenges facing stereospecific surface analysis. However, molecular descriptions have now emerged that are sufficiently detailed to herald rapid advances in the area. The driving force for the development of heterogeneous enantioselective catalysts stems, at the minimum, from the practical advantages they might offer over their homogeneous counterparts in terms of process scalability and catalyst reusability. The broader rewards from their study lie in the insights gained on factors controlling selectivity in heterogeneous catalysis. Reactions on surfaces to produce a desired enantiomer in high excess are particularly challenging since at room temperature, barrier differences as low as ∼2 kcal/mol between pathways to R and S products are sufficient to yield an enantiomeric ratio (er) of 90:10. Such small energy differences are comparable to weak interadsorbate interaction energies and are much smaller than chemisorption or even most physisorption energies. In this Account, we describe combined experimental and theoretical surface studies of individual diastereomeric complexes formed between chiral modifiers and prochiral reactants on the Pt(111) surface. Our work is inspired by the catalysis literature on the enantioselective hydrogenation of activated ketones on cinchona-modified Pt catalysts. Using scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations, we probe the structures and relative abundances of non-covalently bonded complexes formed between three representative prochiral molecules and (R)-(+)-1-(1-naphthyl)ethylamine ((R)-NEA). All three prochiral molecules, 2,2,2-trifluoroacetophenone (TFAP), ketopantolactone (KPL), and methyl 3,3,3-trifluoropyruvate (MTFP), are found to form multiple complexation configurations around the ethylamine group of chemisorbed (R)-NEA. The principal intermolecular interaction is NH···O H-bonding. In each case, submolecularly resolved STM images permit the determination of the prochiral ratio (pr), pro-R to pro-S, proper to specific locations around the ethylamine group. The overall pr observed in experiments on large ensembles of KPL-(R)-NEA complexes is close to the er reported in the literature for the hydrogenation of KPL to pantolactone on (R)-NEA-modified Pt catalysts at 1 bar H 2 . The results of independent DFT and STM studies are merged to determine the geometries of the most abundant complexation configurations. The structures reveal the hierarchy of chemisorption and sometimes multiple H-bonding interactions operating in complexes. In particular, privileged complexes formed by KPL and MTFP reveal the participation of secondary CH···O interactions in stereocontrol. State-specific STM measurements on individual TFAP-(R)-NEA complexes show that complexation states interconvert through processes including prochiral inversion. The state-specific information on structure, prochirality, dynamics, and energy barriers delivered by the combination of DFT and STM provides insight on how to design better chiral modifiers.

  10. Technology development for cobalt F-T catalysts. Quarterly technical progress report number 10, January 1--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, A.H.

    1995-06-28

    The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less

  11. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber

    NASA Astrophysics Data System (ADS)

    Agostinetti, N. Piana; Chiarabba, C.

    2008-12-01

    The recognition and localization of magmatic fluids are pre-requisites for evaluating the volcano hazard of the highly urbanized area of Mt Vesuvius. Here we show evidence and constraints for the volumetric estimation of magmatic fluids underneath this sleeping volcano. We use Receiver Functions for teleseismic data recorded at a temporary broad-band station installed on the volcano to constrain the S-wave velocity structure in the crust. Receiver Functions are analysed and inverted using the Neighbourhood Algorithm approach. The 1-D S-velocity profile is jointly interpreted and discussed with a new Vp and Vp/Vs image obtained by applying double difference tomographic techniques to local earthquakes. Seismologic data define the geometry of an axial, cylindrical high Vp, high Vs body consisting of a shallow solidified materials, probably the remnants of the caldera, and ultramafic rocks paving the crustal magma chamber. Between these two anomalies, we find a small region where the shear wave velocity drops, revealing the presence of magma at relatively shallow depths. The volume of fluids (30 km3) is sufficient to contribute future explosive eruptions.

  12. High temperature EXAFS experiments in molten actinide fluorides: The challenge of a triple containment cell for radioactive and aggressive liquids

    NASA Astrophysics Data System (ADS)

    Bessada, Catherine; Zanghi, Didier; Pauvert, Olivier; Maksoud, Louis; Gil-Martin, Ana; Sarou-Kanian, Vincent; Melin, Philippe; Brassamin, Séverine; Nezu, Atsushi; Matsuura, Haruaki

    2017-10-01

    An airtight double barrier cell with simple geometry has been developed for X-rays absorption measurements at high temperature in solid and molten actinide fluorides. The aim was both to improve the air tightness, to avoid any possible leakage and to maintain the high quality of the signal. The dimensions of the heating chamber were also constrained and minimized to be compatible with the limited space available usually on synchrotron beam lines and with a geometry suitable for absorption/diffraction measurements at high temperature. The design of the double barrier cell was also driven by the safety requirements in every experiment involving radioactive materials. The furnace itself was designed to ensure easy operating modes and disassembly, the aim being to consider the furnace as the ultimate containment. The cell has been tested with different molten fluorides up to more than 1000 °C, starting from non-radioactive LiF-ZrF4 mixtures in order to prove that the cell is absolutely airtight and that not any contamination of the environment occurs. Then it has been successfully applied to thorium fluoride- and uranium fluoride-alkali fluorides mixtures.

  13. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  14. Optimization of beam orientation in radiotherapy using planar geometry

    NASA Astrophysics Data System (ADS)

    Haas, O. C. L.; Burnham, K. J.; Mills, J. A.

    1998-08-01

    This paper proposes a new geometrical formulation of the coplanar beam orientation problem combined with a hybrid multiobjective genetic algorithm. The approach is demonstrated by optimizing the beam orientation in two dimensions, with the objectives being formulated using planar geometry. The traditional formulation of the objectives associated with the organs at risk has been modified to account for the use of complex dose delivery techniques such as beam intensity modulation. The new algorithm attempts to replicate the approach of a treatment planner whilst reducing the amount of computation required. Hybrid genetic search operators have been developed to improve the performance of the genetic algorithm by exploiting problem-specific features. The multiobjective genetic algorithm is formulated around the concept of Pareto optimality which enables the algorithm to search in parallel for different objectives. When the approach is applied without constraining the number of beams, the solution produces an indication of the minimum number of beams required. It is also possible to obtain non-dominated solutions for various numbers of beams, thereby giving the clinicians a choice in terms of the number of beams as well as in the orientation of these beams.

  15. Taming active turbulence with patterned soft interfaces.

    PubMed

    Guillamat, P; Ignés-Mullol, J; Sagués, F

    2017-09-15

    Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.

  16. The MAFI Project: Mapping Active Faults in Italy by Using Microseismicity Data.

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Amato, A.; Augliera, P.; Bagh, S.; Cattaneo, M.; Chiaraluce, L.; de Gori, P.; di Bartolomeo, P.; Govoni, A.; Michelini, A.; Moretti, M.; Piccinini, D.; Romanelli, M.

    2004-12-01

    In past years, earthquake forecasting and seismic hazard in Italy have been approached by using geological and geophysical data yielding only a partial definition of seismic release for the main active structures. In this project, we collect seismological and geodetic data to yield deterministic constraints for seismic hazard studies in areas where large earthquakes are expected to occur in a near future, called lacunae. The basic idea is to massively deploy arrays of instruments in the lacunae areas to acquire seismic and geodetic data with the goals of defining location, geometry and kinematics of the active faults and possibly constraining their strain rate. We selected three target regions: two along the Apennines (Northern Umbria and Abruzzo) and one in the Southern Alps (Alpago-Cansiglio). These areas are characterized by different tectonics and different historical seismic release. We present results for the areas located along the Apennines: the Umbria 2000-2001 and the Abruzzo 2003-2004 experiments while for the Alpago-Cansiglio we are still collecting and processing data. Preliminary results for the Umbria lacuna shows that the collected microearthquakes allow us to clearly recognize the fault system geometry and the deep structure (P- and S-wave velocity and attenuation).

  17. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    USGS Publications Warehouse

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  18. Maximizing photovoltaic power generation of a space-dart configured satellite

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  19. Deep water tsunami simulation at global scale using an elastoacoustic approach

    NASA Astrophysics Data System (ADS)

    Salazar Monroy, E. F.; Ramirez-Guzman, L.; Bielak, J.; Sanchez-Sesma, F. J.

    2017-12-01

    In this work, we present the results for the first stage of a tsunami global simulation project using an elastoacoustic approach. The solid-fluid interaction, which is only valid on a global scale and far distances from the coast, is modelled using a finite element scheme for a 2D geometry. Comparing analytic and numerical solutions, we observe a good fit for a homogeneous domain - with an extension of 20 km - using 15 points per wavelength. Subsequently, we performed 2D realizations taking a section from a global 3D model and projecting the Tohoku-Oki source obtained by the USGS. The 3D Global model uses the ETOPO1 and the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981). We analysed 3 cross sections, defined using DART buoys as a reference for each section (i.e., initial and final profile point). Surface water elevation obtained with this coupling strategy is constrained at low frequencies (0.2 Hz). We expect that this coupling strategy could approximate the model to high frequencies and realistic scenarios considering other geometries (i.e., 3D) and a complete domain (i.e., surface and deep).

  20. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Twelve catalyst test runs were made; ten of these runs used catalysts that contained cobalt as the metal component, while the remaining two runs used catalysts that contained iron as the metal component. Five of the ten cobalt catalyst test runs were made with the catalysts containing one of two different shape selective components (UCC-101 and UCC-108) at two different metal component: shape selective component ratios (1:1 and 3:14). The remaining five cobalt catalyst test runs were made with the catalysts containing different additives incorporated into the cobalt. The five cobalt catalyst test runs using catalysts with different additives showedmore » that these additives had pronounced effects on the catalysts' activity, selectivity, and stability. The most outstanding effect was realized with the additive used in the Run 9 catalyst. This additive greatly improved the stability of the catalyst. While having the same initial activity of an additive-free catalyst, its deactivation rate was only one fourth of that of the additive-free catalyst. Futhermore, this additive improved the quality of the hydrocarbon product, which had a high, stable yield of olefins, and, unlike the product of any other cobalt/UCC-101 catalyst, was free of suspended wax. This lack of suspended wax resulted in jet fuel and diesel oil fractions that had substantially lower pour points than did the fractions produced from an additive-free catalyst.« less

  2. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  3. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  4. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  5. Rutile-Deposited Pt–Pd clusters: A Hypothesis Regarding the Stability at 50/50 Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Mai-Anh; Dadras, Mostafa J.; Alexandrova, Anastassia N.

    2014-10-03

    Mixed Pt–Pd clusters deposited on oxides have been of great interest to catalysis. Clusters containing Pt and Pd in roughly equal proportions were found to be unusually stable against sintering, one of the major mechanisms of catalyst deactivation. After aging of such catalysts, the 50/50 Pt–Pd and Pd–O clusters appeared to be the two most prevalent phases. The reason for the enhanced stability of these equally proportioned clusters has remained unclear. In the following, sintering of mixed Pt–Pd clusters on TiO2(110) for various initial atomic concentrations of Pt and Pd and at a range of catalytically relevant temperatures was simulated.more » It is confirmed that equally mixed clusters have the relatively highest survival rate. Surprisingly, subnanoclusters containing Pt and Pd in all proportions have very similar geometries and chemical bonding, revealing no apparent explanation for favoring the 1:1 Pt/Pd ratio. However, it was discovered that at high temperatures, the 50/50 clusters have considerably more thermally accessible isomers than clusters containing Pt and Pd in other proportions. Hence, one of the reasons for stability is entropic stabilization. Electrostatics also plays a key role as a subtle charge redistribution, and a shift of electron density to the slightly more electronegative Pt results in the partially charged atoms being further stabilized by intracluster Coulomb attraction; this effect is greatest for 1:1 mixtures.« less

  6. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOEpatents

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  7. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    PubMed Central

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  8. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    NASA Astrophysics Data System (ADS)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the wind (τ = 0.3). Conclusions: Together with other AGN observables, the polarization time lag places new, independent "seismological" constraints on the inner geometry of AGN. If we conduct time-dependent spectropolarimetric observing campaigns of AGN, this method has a high potential for a census of supermassive black holes.

  9. Crustal shortening and structural architecture of the Interandean and Subandean zones of southern Bolivia (21°S): Constraints from a new balanced cross section

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Long, S. P.; Horton, B. K.; Calle, A.; Ramirez, V.

    2015-12-01

    Structural insights obtained from balanced cross sections, including thrust belt geometry, location of footwall ramps, and crustal shortening estimates, provide key information for testing model predictions of orogen dynamics (e.g., Cordilleran cyclicity, critical taper theory). New results from geologic mapping along an east-west transect in the central Andes are integrated with existing geophysical data to construct a balanced cross section across the Interandean (IAZ) and Subandean (SAZ) zones of southern Bolivia at 21°S, in order to define thrust belt geometry and estimate crustal shortening. The IAZ consists of a doubly vergent zone of 2-4 km-thick thrust sheets of mainly Silurian-Devonian rocks, which are structurally elevated ~10 km relative to equivalent SAZ levels to the east. Notably, our proposed IAZ geometry differs from published geometries that lack significant west-directed backthrusts. The SAZ is defined by regional-scale, fault-bend folds (10-20 km wavelength, 4-6 km amplitude) that exhume rocks as deep as Carboniferous above a 10-12 km-deep regional décollement in Silurian rocks. Previous studies have interpreted IAZ and SAZ shortening to be balanced by slip on two separate basement megathrust sheets at depth. We estimate 151 km (44%) of total east-west shortening in the IAZ (71 km) and SAZ (80 km), which is similar to a previous estimate (144 km, 42%). Importantly, our estimate of SAZ shortening restores the leading edge of the basement thrust sheet feeding displacement into the SAZ back to a corresponding footwall ramp that is constrained by a seismic reflection profile 90 km along strike to the south. Our shortening magnitudes are similar to nearby estimates to the north and south, which range between 60-86 km for the SAZ and 43-96 km for the IAZ. Future work will continue the cross section westward into the Eastern Cordillera hinterland, and explore potential variations in the geometry and style of basement deformation.

  10. Development of olivine crystallographic preferred orientation in response to strain-induced fabric geometry

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon, Jr.; Withers, Anthony C.; Bagley, Brian

    2016-04-01

    The effect of finite strain ellipsoid geometry on crystallographic preferred orientation (CPO) is well known for crustal minerals (e.g., quartz, calcite, biotite, and hornblende). In the upper mantle, however, it remains poorly constrained how strain and fabric may affect olivine CPO. We present data from a suite of 40 spinel peridotite xenoliths from Marie Byrd Land (west Antarctica), which support an interpretation that fabric geometry rather than deformation conditions control the development of olivine CPO. We use X-ray computed tomography (XRCT) to quantitatively determine spinel fabric (orientation and geometry). Olivine CPOs, determined by Electron Backscattered Diffraction (EBSD), are plotted with respect to the XRCT-derived spinel foliation and lineation; this approach allows for the accurate, and unbiased, identification of CPO symmetries and types in mantle xenoliths. The combined XRCT and EBSD data show that the xenoliths are characterized by a range of fabric geometries (from oblate to prolate) and olivine CPO patterns; we recognize the A-type, axial-[010], axial-[100], and B-type patterns. The mantle xenoliths equilibrated at temperatures 779-1198 oC, as determined by 2-Px geothermometry. Using a geotherm consistent with the stability of spinel in all xenoliths, the range of equilibration temperatures occurs at depths between 39 and 72 km. Olivine recrystallized grain size piezometry reveals differential stresses ranging 2-60 MPa. Analysis of low-angle misorientation axes show a wide range in the distribution of rotation axes, with dominant {0kl}[100] slip. We use Fourier Transform Infrared (FTIR) spectroscopy to estimate the water content in the xenolith with the B-type CPO pattern. FTIR analysis shows that the equilibrium H concentration in olivine is low (4-13 ppm H2O). Combining these data, we observe that olivine CPO symmetry is controlled neither by the deformation conditions (stress, temperature, pressure, water content) for the range of conditions estimated in the Marie Byrd Land xenoliths, nor by the activation of the slip systems predicted by deformation experiments. Rather, our data show that olivine CPO is controlled by transitions in strain-induced fabric geometry. Microstructures and deformation mechanism maps suggest that deformation is dominated by dislocation-accommodated grain boundary sliding. We propose that slip of olivine glide planes and rotation of olivine grains occur so as to accommodate the imposed material flow, which is guided by the 3D strain-induced fabric geometry. As a result of this process, the axial-[010] and B-type patterns form in relation to oblate fabric ellipsoids, the A-type pattern forms in a range of fabric ellipsoids, and the axial-[100] pattern is associated with prolate fabric ellipsoids. We therefore suggest that the well-known process of strain geometry-induced development of CPO is also applicable to upper mantle rocks.

  11. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain activity on the west-vergent Sweitzer fault and the east-vergent blind reverse fault. All of the sampled catchments are underlain exclusively by Tehama Sandstone. Moreover, there are no mapped surface traces of faults in the sampled catchments. This minimizes the possibility of changes in lithogic resistance to impact the erosion rates and channel analyses. These analyses, combined with fault geometries derived from published seismic reflection data and structural cross sections, allows us to constrain the throw rates on these faults and thus better evaluate the associated seismic hazard.

  12. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres

    A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal likemore » Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp 2 to sp 3 with an elongation (0.16–0.31 Å) of the C=C bond. As a result, on the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.« less

  14. Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution.

    PubMed

    Molina, Angela; González, Joaquín; Laborda, Eduardo; Wang, Yijun; Compton, Richard G

    2011-08-28

    The theory of cyclic voltammetry at disc electrodes and microelectrodes is developed for a system where the electroactive reactant is regenerated in solution using a catalyst. This catalytic process is of wide importance, not least in chemical sensing, and it can be characterized by the resulting peak current which is always larger than that of a simple electrochemical reaction; in contrast the reverse peak is always relatively diminished in size. From the theoretical point of view, the problem involves a complex physical situation with two-dimensional mass transport and non-uniform surface gradients. Because of this complexity, hitherto the treatment of this problem has been tackled mainly by means of numerical methods and so no analytical expression was available for the transient response of the catalytic mechanism in cyclic voltammetry when disc electrodes, the most popular practical geometry, are used. In this work, this gap is filled by presenting an analytical solution for the application of any sequence of potential pulses and, in particular, for cyclic voltammetry. The induction principle is applied to demonstrate mathematically that the superposition principle applies whatever the geometry of the electrode, which enabled us to obtain an analytical equation valid whatever the electrode size and the kinetics of the catalytic reaction. The theoretical results obtained are applied to the experimental study of the electrocatalytic Fenton reaction, determining the rate constant of the reduction of hydrogen peroxide by iron(II).

  15. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  16. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  17. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  18. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  19. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide.

    PubMed

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-11-16

    The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  20. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    PubMed Central

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-01-01

    The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674

  1. Pilot scale intensification of rubber seed (Hevea brasiliensis) oil via chemical interesterification using hydrodynamic cavitation technology.

    PubMed

    Bokhari, Awais; Yusup, Suzana; Chuah, Lai Fatt; Klemeš, Jiří Jaromír; Asif, Saira; Ali, Basit; Akbar, Majid Majeed; Kamil, Ruzaimah Nik M

    2017-10-01

    Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cell module and fuel conditioner development

    NASA Astrophysics Data System (ADS)

    Hoover, D. Q., Jr.

    1980-01-01

    Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.

  3. Printable enzyme-embedded materials for methane to methanol conversion

    DOE PAGES

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...

    2016-06-15

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  4. Printable enzyme-embedded materials for methane to methanol conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  5. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  6. Printable enzyme-embedded materials for methane to methanol conversion

    PubMed Central

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.

    2016-01-01

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270

  7. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties.

    PubMed

    Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri

    2010-04-27

    We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.

  8. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. Copyright © 2014, American Association for the Advancement of Science.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; DeCroix, David; Sun, Xin

    The attrition of particles is a major industrial concern in many fluidization systems as it can have undesired effects on the product quality and on the reliable operation of process equipment. Therefore, to accomodate the screening and selection of catalysts for a specific process in fluidized beds, risers, or cyclone applications, their attrition propensity is usually estimated through jet cup attrition testing, where the test material is subjected to high gas velocities in a jet cup. However, this method is far from perfect despite its popularity, largely due to its inconsistency in different testing set-ups. In order to better understandmore » the jet cup testing results as well as their sensitivity to different operating conditions, a coupled computational fluid dynamic (CFD) - discrete element method (DEM) model has been developed in the current study to investigate the particle attrition in a jet cup and its dependence on various factors, e.g. jet velocity, initial particle size, particle density, and apparatus geometry.« less

  10. Phenomenology of TeV little string theory from holography.

    PubMed

    Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit

    2012-02-24

    We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV.

  11. Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bosko, Jaroslaw T.; Todd, B. D.; Sadus, Richard J.

    2004-12-01

    The viscoelastic properties of dendrimers of generation 1-4 are studied using nonequilibrium molecular dynamics. Flow properties of dendrimer melts under shear are compared to systems composed of linear chain polymers of the same molecular weight, and the influence of molecular architecture is discussed. Rheological material properties, such as the shear viscosity and normal stress coefficients, are calculated and compared for both systems. We also calculate and compare the microscopic properties of both linear chain and dendrimer molecules, such as their molecular alignment, order parameters and rotational velocities. We find that the highly symmetric shape of dendrimers and their highly constrained geometry allows for substantial differences in their material properties compared to traditional linear polymers of equivalent molecular weight.

  12. Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System

    NASA Technical Reports Server (NTRS)

    Gershenfeld, Neil (Inventor); Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor)

    2017-01-01

    A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.

  13. Investigation of copper(II) binding to the protein precursor of Non-Amyloid-Beta Component of Alzheimer Disease Amyloid Plaque

    NASA Astrophysics Data System (ADS)

    Rose, Francis; Hodak, Miroslav; Bernholc, Jerry

    2007-03-01

    The Non-Amyloid-Beta Component Precursor (NACP) is a natively unfolded synaptic protein that is implicated in Alzheimers and Parkinsons diseases. Its aggregation into fibrillar structures is accelerated by the binding of copper(II). Experimental studies suggest that the dominant copper binding site is located at the histidine residue in NACP. Based on this evidence we assembled a model fragment of the binding site and used DFT to analyze the conformational details of the most probable binding motifs. We investigated the overall conformational effects with classical MD by constraining the copper binding site to the most energetically favorable geometry obtained from the DFT calculations. These results are compared and contrasted with those of the unbound NACP.

  14. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    PubMed

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  15. Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster

    PubMed Central

    Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Saenger, Wolfram; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2014-01-01

    The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn4Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn4Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom–resolution x-ray structures or other previously proposed models. PMID:17082458

  16. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  17. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    EPA Science Inventory

    The expected results from this project include:

    • a new formula and preparation procedures for Ru-Ni-S catalyst;
    • demonstration of CO and S tolerance of the new catalyst;
    • a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

    • Dispersion enhanced metal/zeolite catalysts

      DOEpatents

      Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

      1987-03-31

      Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

    • Dispersion enhanced metal/zeolite catalysts

      DOEpatents

      Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

      1987-01-01

      Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

    • Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

      DOEpatents

      Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.

      1998-01-01

      The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  1. Emergent Geometry from Entropy and Causality

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum generalizations are discussed, both at the classical and perturbatively quantum limits. In particular, several No Go Theorems are proven, indicative of a conclusion that supplementary approaches or information may be necessary to recover the full spacetime geometry. Part II of this thesis involves the relation between geometry and causality, the property that information cannot travel faster than light. Requiring this of any quantum field theory results in constraints on string theory setups that are dual to quantum field theories via the AdS/CFT correspondence. At the level of perturbative quantum gravity, it is shown that causality in the field theory constraints the causal structure in the bulk. At the level of nonperturbative quantum string theory, we find that constraints on causal signals restrict the possible ways in which curvature singularities can be resolved in string theory. Finally, a new program of research is proposed for the construction of bulk geometry from the divergences of correlation functions in the dual field theory. This divergence structure is linked to the causal structure of the bulk and of the field theory.

  2. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  3. Alkene metathesis: the search for better catalysts.

    PubMed

    Deshmukh, Prashant H; Blechert, Siegfried

    2007-06-28

    Alkene metathesis catalyst development has made significant progress over recent years. Research in metathesis catalyst design has endeavoured to tackle three key issues: those of (i) catalyst efficiency and activity, (ii) substrate scope and selectivity--particularly stereoselective metathesis reactions--and (iii) the minimization of metal impurities and catalyst recycling. This article describes a brief history of metathesis catalyst development, followed by a survey of more recent research, with a particular emphasis on ruthenium catalysts.

  4. Heterogeneous Catalytic Chemistry by Example of Industrial Applications

    ERIC Educational Resources Information Center

    Heveling, Josef

    2012-01-01

    Worldwide, more than 85% of all chemical products are manufactured with the help of catalysts. Virtually all transition metals of the periodic table are active as catalysts or catalyst promoters. Catalysts are divided into homogeneous catalysts, which are soluble in the reaction medium, and heterogeneous catalysts, which remain in the solid state.…

  5. Synthetic catalysts that separate CO.sub.2 from the atmosphere and gas mixtures

    DOEpatents

    Lightstone, Felice C; Wong, Sergio E; Lau, Edmond Y; Satcher, Jr., Joe H; Aines, Roger D

    2015-02-24

    The creation of a catalyst that can be used for a wide variety of applications including the steps of developing preliminary information regarding the catalyst, using the preliminary information to produce a template of the catalyst, and using the template of the catalyst to produce the catalyst.

  6. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    PubMed

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  7. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

  8. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with overlying rift-related faults: (i) Faults exploit planes of weakness internally within the shear zones; (ii) faults initiate within the hangingwall and subsequently merge along the intrabasement structure at depth; and (iii) faults initiate independently from and cross-cut intrabasement structure. We find that reactivation preferentially occurs along the thicker, steeper intrabasement structures, the Devonian Shear Zones, with individual faults exploiting internal mylonite layers. Using a detailed 3D interpretation of intrabasement structures, correlated with the onshore geology, we show that large-scale Devonian shear zones act as a long-lived structural template for fault initiation throughout multiple rift phases. Rift-related faults inherit the orientation and location of underlying intrabasement structures.

  9. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary series (up to 3500 m) as a mixed combination of debris flows, internal preserved blocks, and/or compressively-deformed distal allochthonous masses. Transported material have proceeded from the dismantling of the Mesozoic mixed carbonate-siliciclastic platform. They can spread down slope over areas as large as 70000 of km2. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered by the gravitational collapse of the carbonate-siliciclastic platform under its own weight after successive subaerial exposures which were able to generate karstification processes. Seismic interpretation is constrained by a detailed assessment of the Egyptian margin paleogeography supported by wells. This margin segment is briefly compared to the outcropping Apulian margin in Italy.

  10. Slip Inversion Along Inner Fore-Arc Faults, Eastern Tohoku, Japan

    NASA Astrophysics Data System (ADS)

    Regalla, Christine; Fisher, Donald M.; Kirby, Eric; Oakley, David; Taylor, Stephanie

    2017-11-01

    The kinematics of deformation in the overriding plate of convergent margins may vary across timescales ranging from a single seismic cycle to many millions of years. In Northeast Japan, a network of active faults has accommodated contraction across the arc since the Pliocene, but several faults located along the inner fore arc experienced extensional aftershocks following the 2011 Tohoku-oki earthquake, opposite that predicted from the geologic record. This observation suggests that fore-arc faults may be favorable for stress triggering and slip inversion, but the geometry and deformation history of these fault systems are poorly constrained. Here we document the Neogene kinematics and subsurface geometry of three prominent fore-arc faults in Tohoku, Japan. Geologic mapping and dating of growth strata provide evidence for a 5.6-2.2 Ma initiation of Plio-Quaternary contraction along the Oritsume, Noheji, and Futaba Faults and an earlier phase of Miocene extension from 25 to 15 Ma along the Oritsume and Futaba Faults associated with the opening of the Sea of Japan. Kinematic modeling indicates that these faults have listric geometries, with ramps that dip 40-65°W and sole into subhorizontal detachments at 6-10 km depth. These fault systems can experience both normal and thrust sense slip if they are mechanically weak relative to the surrounding crust. We suggest that the inversion history of Northeast Japan primed the fore arc with a network of weak faults mechanically and geometrically favorable for slip inversion over geologic timescales and in response to secular variations in stress state associated with the megathrust seismic cycle.

  11. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less

  12. A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P.; Sherburn, S.

    2012-02-01

    Since early 2005, Ngauruhoe volcano has produced repeating low-frequency earthquakes with evolving waveforms and spectral features which become progressively enriched in higher frequency energy during the period 2005 to 2009, with the trend reversing after that time. The earthquakes also show a seasonal cycle since January 2006, with peak numbers of events occurring in the spring and summer period and lower numbers of events at other times. We explain these patterns by the excitation of a shallow two-phase water/gas or water/steam cavity having temporal variations in volume fraction of bubbles. Such variations in two-phase systems are known to produce a large range of acoustic velocities (2-300 m/s) and corresponding changes in impedance contrast. We suggest that an increasing bubble volume fraction is caused by progressive heating of melt water in the resonant cavity system which, in turn, promotes the scattering excitation of higher frequencies, explaining both spectral shift and seasonal dependence. We have conducted a constrained waveform inversion and grid search for moment, position and source geometry for the onset of two example earthquakes occurring 17 and 19 January 2008, a time when events showed a frequency enrichment episode occurring over a period of a few days. The inversion and associated error analysis, in conjunction with an earthquake phase analysis show that the two earthquakes represent an excitation of a single source position and geometry. The observed spectral changes from a stationary earthquake source and geometry suggest that an evolution in both near source resonance and scattering is occurring over periods from days to months.

  13. Modeling the evolution of a ramp-flat-ramp thrust system: A geological application of DynEarthSol2D

    NASA Astrophysics Data System (ADS)

    Feng, L.; Choi, E.; Bartholomew, M. J.

    2013-12-01

    DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2) is a robust, adaptive, two-dimensional finite element code that solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. Verified in a number of benchmark problems, this solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We apply this cutting-edge geodynamic modeling tool to the evolution of a thrust fault with a ramp-flat-ramp geometry. The overall geometry of the fault is constrained by observations in the northern part of the southern Appalachian fold and thrust belt. Brittle crust is treated as a Mohr-Coulomb plastic material. The thrust fault is a zone of a finite thickness but has a lower cohesion and friction angle than its surrounding rocks. When an intervening flat separates two distinct sequential ramps crossing different stratigraphic intervals, the thrust system will experience more complex deformations than those from a single thrust fault ramp. The resultant deformations associated with sequential ramps would exhibit a spectrum of styles, of which two end members correspond to ';overprinting' and ';interference'. Reproducing these end-member styles as well as intermediate ones, our models show that the relative importance of overprinting versus interference is a sensitive function of initial fault geometry and hanging wall displacement. We further present stress and strain histories extracted from the models. If clearly distinguishable, they will guide the interpretation of field observations on thrust faults.

  14. 3-D Modeling of Irregular Volcanic Sources Using Sparsity-Promoting Inversions of Geodetic Data and Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Zhai, Guang; Shirzaei, Manoochehr

    2017-12-01

    Geodetic observations of surface deformation associated with volcanic activities can be used to constrain volcanic source parameters and their kinematics. Simple analytical models, such as point and spherical sources, are widely used to model deformation data. The inherent nature of oversimplified model geometries makes them unable to explain fine details of surface deformation. Current nonparametric, geometry-free inversion approaches resolve the distributed volume change, assuming it varies smoothly in space, which may detect artificial volume change outside magmatic source regions. To obtain a physically meaningful representation of an irregular volcanic source, we devise a new sparsity-promoting modeling scheme assuming active magma bodies are well-localized melt accumulations, namely, outliers in the background crust. First, surface deformation data are inverted using a hybrid L1- and L2-norm regularization scheme to solve for sparse volume change distributions. Next, a boundary element method is implemented to solve for the displacement discontinuity distribution of the reservoir, which satisfies a uniform pressure boundary condition. The inversion approach is thoroughly validated using benchmark and synthetic tests, of which the results show that source dimension, depth, and shape can be recovered appropriately. We apply this modeling scheme to deformation observed at Kilauea summit for periods of uplift and subsidence leading to and following the 2007 Father's Day event. We find that the magmatic source geometries for these periods are statistically distinct, which may be an indicator that magma is released from isolated compartments due to large differential pressure leading to the rift intrusion.

  15. Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon; Withers, Anthony C.; Bagley, Brian

    2016-07-01

    The effect of finite strain geometry on crystallographic preferred orientation (CPO) is poorly constrained in the upper mantle. Specifically, the relationship between shape preferred orientation (SPO) and CPO in mantle rocks remains unclear. We analyzed a suite of 40 spinel peridotite xenoliths from Marie Byrd Land, West Antarctica. X-ray computed tomography allows for quantification of spinel SPO, which ranges from prolate to oblate shape. Electron backscatter diffraction analysis reveals a range of olivine CPO patterns, including A-type, axial-[010], axial-[100], and B-type patterns. Until now, these CPO types were associated with different deformation conditions, deformation mechanisms, or strain magnitudes. Microstructures and deformation mechanism maps suggest that deformation in all studied xenoliths is dominated by dislocation-accommodated grain boundary sliding. For the range of temperatures (780-1200°C), extraction depths (39-72 km), differential stresses (2-60 MPa), and water content (up to 500 H/106Si) of the xenolith suite, variations in olivine CPO do not correlate with changes in deformation conditions. Here we establish for the first time in naturally deformed mantle rocks that finite strain geometry controls the development of axial-type olivine CPOs; axial-[010] and axial-[100] CPOs form in relation to oblate and prolate fabric ellipsoids, respectively. Girdling of olivine crystal axes results from intracrystalline slip with activation of multiple slip systems and grain boundary sliding. Our results demonstrate that mantle deformation may deviate from simple shear. Olivine texture in field studies and seismic anisotropy in geophysical investigations can provide critical constraints for the 3-D strain in the upper mantle.

  16. Highly Stable and Active Catalyst for Sabatier Reactions

    NASA Technical Reports Server (NTRS)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  17. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  18. Highly dispersed metal catalyst

    DOEpatents

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  19. Scales of columnar jointing in igneous rocks: field measurements and controlling factors

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.

    2012-03-01

    Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.

  20. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    NASA Astrophysics Data System (ADS)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

Top