Sample records for constrained optimization formulation

  1. Constrained optimization via simulation models for new product innovation

    NASA Astrophysics Data System (ADS)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  2. A formulation and analysis of combat games

    NASA Technical Reports Server (NTRS)

    Heymann, M.; Ardema, M. D.; Rajan, N.

    1984-01-01

    Combat which is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives is outlined. A target set is associated with each opponent in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously, or in neither, a joint capture or a draw, respectively, occurs. Resolution of the encounter is formulated as a combat game; as a pair of competing event constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero sum differential game. Otherwise the optimal strategies are computed from a resulting nonzero sum game. Since optimal combat strategies may frequently not exist, approximate or delta combat games are also formulated leading to approximate or delta optimal strategies. The turret game is used to illustrate combat games. This game is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit evasion games.

  3. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Wiersma, R

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also used significantly less computer memory.« less

  4. A chance constraint estimation approach to optimizing resource management under uncertainty

    Treesearch

    Michael Bevers

    2007-01-01

    Chance-constrained optimization is an important method for managing risk arising from random variations in natural resource systems, but the probabilistic formulations often pose mathematical programming problems that cannot be solved with exact methods. A heuristic estimation method for these problems is presented that combines a formulation for order statistic...

  5. A formulation and analysis of combat games

    NASA Technical Reports Server (NTRS)

    Heymann, M.; Ardema, M. D.; Rajan, N.

    1985-01-01

    Combat is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives. With each opponent is associated a target in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously or in neither, a joint capture or a draw, respectively, is said to occur. Resolution of the encounter is formulated as a combat game; namely, as a pair of competing event-constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero-sum differential game. Otherwise the optimal strategies are computed from a resulting non-zero-sum game. Since optimal combat strategies frequencies may not exist, approximate of delta-combat games are also formulated leading to approximate or delta-optimal strategies. To illustrate combat games, an example, called the turret game, is considered. This game may be thought of as a highly simplified model of air combat, yet it is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit-evasion games.

  6. COPS: Large-scale nonlinearly constrained optimization problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, A.S.; Bortz, D.M.; More, J.J.

    2000-02-10

    The authors have started the development of COPS, a collection of large-scale nonlinearly Constrained Optimization Problems. The primary purpose of this collection is to provide difficult test cases for optimization software. Problems in the current version of the collection come from fluid dynamics, population dynamics, optimal design, and optimal control. For each problem they provide a short description of the problem, notes on the formulation of the problem, and results of computational experiments with general optimization solvers. They currently have results for DONLP2, LANCELOT, MINOS, SNOPT, and LOQO.

  7. Distance Metric Learning via Iterated Support Vector Machines.

    PubMed

    Zuo, Wangmeng; Wang, Faqiang; Zhang, David; Lin, Liang; Huang, Yuchi; Meng, Deyu; Zhang, Lei

    2017-07-11

    Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing methods are based on customized optimizers and become inefficient for large scale problems. In this paper, we formulate metric learning as a kernel classification problem with the positive semi-definite constraint, and solve it by iterated training of support vector machines (SVMs). The new formulation is easy to implement and efficient in training with the off-the-shelf SVM solvers. Two novel metric learning models, namely Positive-semidefinite Constrained Metric Learning (PCML) and Nonnegative-coefficient Constrained Metric Learning (NCML), are developed. Both PCML and NCML can guarantee the global optimality of their solutions. Experiments are conducted on general classification, face verification and person re-identification to evaluate our methods. Compared with the state-of-the-art approaches, our methods can achieve comparable classification accuracy and are efficient in training.

  8. Two tradeoffs between economy and reliability in loss of load probability constrained unit commitment

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Wang, Mingqiang; Ning, Xingyao

    2018-02-01

    Spinning reserve (SR) should be scheduled considering the balance between economy and reliability. To address the computational intractability cursed by the computation of loss of load probability (LOLP), many probabilistic methods use simplified formulations of LOLP to improve the computational efficiency. Two tradeoffs embedded in the SR optimization model are not explicitly analyzed in these methods. In this paper, two tradeoffs including primary tradeoff and secondary tradeoff between economy and reliability in the maximum LOLP constrained unit commitment (UC) model are explored and analyzed in a small system and in IEEE-RTS System. The analysis on the two tradeoffs can help in establishing new efficient simplified LOLP formulations and new SR optimization models.

  9. A robust approach to chance constrained optimal power flow with renewable generation

    DOE PAGES

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2016-09-01

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less

  10. Spacecraft inertia estimation via constrained least squares

    NASA Technical Reports Server (NTRS)

    Keim, Jason A.; Acikmese, Behcet A.; Shields, Joel F.

    2006-01-01

    This paper presents a new formulation for spacecraft inertia estimation from test data. Specifically, the inertia estimation problem is formulated as a constrained least squares minimization problem with explicit bounds on the inertia matrix incorporated as LMIs [linear matrix inequalities). The resulting minimization problem is a semidefinite optimization that can be solved efficiently with guaranteed convergence to the global optimum by readily available algorithms. This method is applied to data collected from a robotic testbed consisting of a freely rotating body. The results show that the constrained least squares approach produces more accurate estimates of the inertia matrix than standard unconstrained least squares estimation methods.

  11. Energy efficient LED layout optimization for near-uniform illumination

    NASA Astrophysics Data System (ADS)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  12. On optimal strategies in event-constrained differential games

    NASA Technical Reports Server (NTRS)

    Heymann, M.; Rajan, N.; Ardema, M.

    1985-01-01

    Combat games are formulated as zero-sum differential games with unilateral event constraints. An interior penalty function approach is employed to approximate optimal strategies for the players. The method is very attractive computationally and possesses suitable approximation and convergence properties.

  13. Energetic Materials Optimization via Constrained Search

    DTIC Science & Technology

    2015-06-01

    steps. 3. Optimization Methodology Our optimization problem is formulated as a constrained maximization: max x∈CCS P (x) s.t. : TED ( x )− 9.75 ≥ 0 SV (x)− 9...0 5− SA(x) ≥ 0, (1) where TED ( x ) is the total energy of detonation (TED) of compound x from the chosen chemical subspace (CCS) of chemical compound...max problem, max x∈CCS min λ∈R3+ P (x)− λTC(x), (2) where C(x) is the vector of constraint violations, i.e., η(9.75 − TED ( x )), η(9 − SV (x)), η(SA(x

  14. Minimal complexity control law synthesis

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.

    1989-01-01

    A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  16. Microgrid Optimal Scheduling With Chance-Constrained Islanding Capability

    DOE PAGES

    Liu, Guodong; Starke, Michael R.; Xiao, B.; ...

    2017-01-13

    To facilitate the integration of variable renewable generation and improve the resilience of electricity sup-ply in a microgrid, this paper proposes an optimal scheduling strategy for microgrid operation considering constraints of islanding capability. A new concept, probability of successful islanding (PSI), indicating the probability that a microgrid maintains enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation after instantaneously islanding from the main grid, is developed. The PSI is formulated as mixed-integer linear program using multi-interval approximation taking into account the probability distributions of forecast errors of wind, PV and load. With themore » goal of minimizing the total operating cost while preserving user specified PSI, a chance-constrained optimization problem is formulated for the optimal scheduling of mirogrids and solved by mixed integer linear programming (MILP). Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling strategy. Lastly, we verify the relationship between PSI and various factors.« less

  17. State-constrained booster trajectory solutions via finite elements and shooting

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.; Seywald, Hans

    1993-01-01

    This paper presents an extension of a FEM formulation based on variational principles. A general formulation for handling internal boundary conditions and discontinuities in the state equations is presented, and the general formulation is modified for optimal control problems subject to state-variable inequality constraints. Solutions which only touch the state constraint and solutions which have a boundary arc of finite length are considered. Suitable shape and test functions are chosen for a FEM discretization. All element quadrature (equivalent to one-point Gaussian quadrature over each element) may be done in closed form. The final form of the algebraic equations is then derived. A simple state-constrained problem is solved. Then, for a practical application of the use of the FEM formulation, a launch vehicle subject to a dynamic pressure constraint (a first-order state inequality constraint) is solved. The results presented for the launch-vehicle trajectory have some interesting features, including a touch-point solution.

  18. Formulation of image fusion as a constrained least squares optimization problem

    PubMed Central

    Dwork, Nicholas; Lasry, Eric M.; Pauly, John M.; Balbás, Jorge

    2017-01-01

    Abstract. Fusing a lower resolution color image with a higher resolution monochrome image is a common practice in medical imaging. By incorporating spatial context and/or improving the signal-to-noise ratio, it provides clinicians with a single frame of the most complete information for diagnosis. In this paper, image fusion is formulated as a convex optimization problem that avoids image decomposition and permits operations at the pixel level. This results in a highly efficient and embarrassingly parallelizable algorithm based on widely available robust and simple numerical methods that realizes the fused image as the global minimizer of the convex optimization problem. PMID:28331885

  19. Isotretinoin Oil-Based Capsule Formulation Optimization

    PubMed Central

    Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886

  20. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    PubMed

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  1. Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239

  2. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    PubMed

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  3. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  4. Advanced Computational Methods for Security Constrained Financial Transmission Rights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria

    Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulationmore » of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.« less

  5. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  6. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    NASA Astrophysics Data System (ADS)

    Masternak, Tadeusz J.

    This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.

  7. Quadratic Optimization in the Problems of Active Control of Sound

    NASA Technical Reports Server (NTRS)

    Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).

  8. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  9. Parallel-vector computation for structural analysis and nonlinear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.

    1990-01-01

    Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.

  10. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  11. OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.

    2012-01-01

    The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.

  12. Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DallAnese, Emiliano; Baker, Kyri; Summers, Tyler

    This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less

  13. Exact and explicit optimal solutions for trajectory planning and control of single-link flexible-joint manipulators

    NASA Technical Reports Server (NTRS)

    Chen, Guanrong

    1991-01-01

    An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.

  14. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  15. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less

  16. Optimum oil production planning using infeasibility driven evolutionary algorithm.

    PubMed

    Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul

    2013-01-01

    In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.

  17. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  18. The effect of parking orbit constraints on the optimization of ballistic planetary trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1984-01-01

    The optimization of ballistic planetary trajectories is developed which includes constraints on departure parking orbit inclination and node. This problem is formulated to result in a minimum total Delta V where the entire constrained injection Delta V is included in the optimization. An additional Delta V is also defined to allow for possible optimization of parking orbit inclination when the launch vehicle orbit capability varies as a function of parking orbit inclination. The optimization problem is formulated using primer vector theory to derive partial derivatives of total Delta V with respect to possible free parameters. Minimization of total Delta V is accomplished using a quasi-Newton gradient search routine. The analysis is applied to an Eros rendezvous mission whose transfer trajectories are characterized by high values of launch asymptote declination during particular launch opportunities. Comparisons in performance are made between trajectories where parking orbit constraints are included in the optimization and trajectories where the constraints are not included.

  19. Role of slack variables in quasi-Newton methods for constrained optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapia, R.A.

    In constrained optimization the technique of converting an inequality constraint into an equality constraint by the addition of a squared slack variable is well known but rarely used. In choosing an active constraint philosophy over the slack variable approach, researchers quickly justify their choice with the standard criticisms: the slack variable approach increases the dimension of the problem, is numerically unstable, and gives rise to singular systems. It is shown that these criticisms of the slack variable approach need not apply and the two seemingly distinct approaches are actually very closely related. In fact, the squared slack variable formulation canmore » be used to develop a superior and more comprehensive active constraint philosophy.« less

  20. Evaluating the effects of real power losses in optimal power flow based storage integration

    DOE PAGES

    Castillo, Anya; Gayme, Dennice

    2017-03-27

    This study proposes a DC optimal power flow (DCOPF) with losses formulation (the `-DCOPF+S problem) and uses it to investigate the role of real power losses in OPF based grid-scale storage integration. We derive the `- DCOPF+S problem by augmenting a standard DCOPF with storage (DCOPF+S) problem to include quadratic real power loss approximations. This procedure leads to a multi-period nonconvex quadratically constrained quadratic program, which we prove can be solved to optimality using either a semidefinite or second order cone relaxation. Our approach has some important benefits over existing models. It is more computationally tractable than ACOPF with storagemore » (ACOPF+S) formulations and the provably exact convex relaxations guarantee that an optimal solution can be attained for a feasible problem. Adding loss approximations to a DCOPF+S model leads to a more accurate representation of locational marginal prices, which have been shown to be critical to determining optimal storage dispatch and siting in prior ACOPF+S based studies. Case studies demonstrate the improved accuracy of the `-DCOPF+S model over a DCOPF+S model and the computational advantages over an ACOPF+S formulation.« less

  1. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2013-01-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms. PMID:24077658

  2. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks.

    PubMed

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2012-02-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.

  3. A chance-constrained stochastic approach to intermodal container routing problems.

    PubMed

    Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.

  4. A chance-constrained stochastic approach to intermodal container routing problems

    PubMed Central

    Zhao, Yi; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389

  5. An introduction to optimal power flow: Theory, formulation, and examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Rebennack, Steffen

    The set of optimization problems in electric power systems engineering known collectively as Optimal Power Flow (OPF) is one of the most practically important and well-researched subfields of constrained nonlinear optimization. OPF has enjoyed a rich history of research, innovation, and publication since its debut five decades ago. Nevertheless, entry into OPF research is a daunting task for the uninitiated--both due to the sheer volume of literature and because OPF's ubiquity within the electric power systems community has led authors to assume a great deal of prior knowledge that readers unfamiliar with electric power systems may not possess. This articlemore » provides an introduction to OPF from an operations research perspective; it describes a complete and concise basis of knowledge for beginning OPF research. The discussion is tailored for the operations researcher who has experience with nonlinear optimization but little knowledge of electrical engineering. Topics covered include power systems modeling, the power flow equations, typical OPF formulations, and common OPF extensions.« less

  6. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  7. Optimization of beam orientation in radiotherapy using planar geometry

    NASA Astrophysics Data System (ADS)

    Haas, O. C. L.; Burnham, K. J.; Mills, J. A.

    1998-08-01

    This paper proposes a new geometrical formulation of the coplanar beam orientation problem combined with a hybrid multiobjective genetic algorithm. The approach is demonstrated by optimizing the beam orientation in two dimensions, with the objectives being formulated using planar geometry. The traditional formulation of the objectives associated with the organs at risk has been modified to account for the use of complex dose delivery techniques such as beam intensity modulation. The new algorithm attempts to replicate the approach of a treatment planner whilst reducing the amount of computation required. Hybrid genetic search operators have been developed to improve the performance of the genetic algorithm by exploiting problem-specific features. The multiobjective genetic algorithm is formulated around the concept of Pareto optimality which enables the algorithm to search in parallel for different objectives. When the approach is applied without constraining the number of beams, the solution produces an indication of the minimum number of beams required. It is also possible to obtain non-dominated solutions for various numbers of beams, thereby giving the clinicians a choice in terms of the number of beams as well as in the orientation of these beams.

  8. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  9. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  10. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  11. Benchmarking optimization software with COPS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, E.D.; More, J.J.

    2001-01-08

    The COPS test set provides a modest selection of difficult nonlinearly constrained optimization problems from applications in optimal design, fluid dynamics, parameter estimation, and optimal control. In this report we describe version 2.0 of the COPS problems. The formulation and discretization of the original problems have been streamlined and improved. We have also added new problems. The presentation of COPS follows the original report, but the description of the problems has been streamlined. For each problem we discuss the formulation of the problem and the structural data in Table 0.1 on the formulation. The aim of presenting this data ismore » to provide an approximate idea of the size and sparsity of the problem. We also include the results of computational experiments with the LANCELOT, LOQO, MINOS, and SNOPT solvers. These computational experiments differ from the original results in that we have deleted problems that were considered to be too easy. Moreover, in the current version of the computational experiments, each problem is tested with four variations. An important difference between this report and the original report is that the tables that present the computational experiments are generated automatically from the testing script. This is explained in more detail in the report.« less

  12. Constrained Burn Optimization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.; Jones, Brandon A.

    2017-01-01

    In long-term trajectory planning for the International Space Station (ISS), translational burns are currently targeted sequentially to meet the immediate trajectory constraints, rather than simultaneously to meet all constraints, do not employ gradient-based search techniques, and are not optimized for a minimum total deltav (v) solution. An analytic formulation of the constraint gradients is developed and used in an optimization solver to overcome these obstacles. Two trajectory examples are explored, highlighting the advantage of the proposed method over the current approach, as well as the potential v and propellant savings in the event of propellant shortages.

  13. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  14. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratiomore » (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.« less

  15. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  16. Improved design of constrained model predictive tracking control for batch processes against unknown uncertainties.

    PubMed

    Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong

    2017-07-01

    In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    DOE PAGES

    Roald, Line Alnaes; Andersson, Goran

    2017-08-29

    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less

  18. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  19. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  20. Trajectory optimization for the National aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    While continuing the application of the inverse dynamics approach in obtaining the optimal numerical solutions, the research during the past six months has been focused on the formulation and derivation of closed-form solutions for constrained hypersonic flight trajectories. Since it was found in the research of the first year that a dominant portion of the optimal ascent trajectory of the aerospace plane is constrained by dynamic pressure and heating constraints, the application of the analytical solutions significantly enhances the efficiency in trajectory optimization, provides a better insight to understanding of the trajectory and conceivably has great potential in guidance of the vehicle. Work of this period has been reported in four technical papers. Two of the papers were presented in the AIAA Guidance, Navigation, and Control Conference (Hilton Head, SC, August, 1992) and Fourth International Aerospace Planes Conference (Orlando, FL, December, 1992). The other two papers have been accepted for publication by Journal of Guidance, Control, and Dynamics, and will appear in 1993. This report briefly summarizes the work done in the past six months and work currently underway.

  1. Optimal design of reverse osmosis module networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskan, F.; Wiley, D.E.; Johnston, L.P.M.

    2000-05-01

    The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found thatmore » optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.« less

  2. Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi

    2012-03-01

    This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.

  3. PI controller design of a wind turbine: evaluation of the pole-placement method and tuning using constrained optimization

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten H.

    2016-09-01

    PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt ), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles- placement method and a constrained optimization problem is solved to find the best tuning.

  4. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  5. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks.

    PubMed

    Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang

    2014-08-01

    This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.

  6. New nonlinear control algorithms for multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, X.

    1988-01-01

    Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.

  7. Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2002-01-01

    This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.

  8. Multi-objective trajectory optimization for the space exploration vehicle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Xiao, Zhen

    2016-07-01

    The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.

  9. Using a constrained formulation based on probability summation to fit receiver operating characteristic (ROC) curves

    NASA Astrophysics Data System (ADS)

    Swensson, Richard G.; King, Jill L.; Good, Walter F.; Gur, David

    2000-04-01

    A constrained ROC formulation from probability summation is proposed for measuring observer performance in detecting abnormal findings on medical images. This assumes the observer's detection or rating decision on each image is determined by a latent variable that characterizes the specific finding (type and location) considered most likely to be a target abnormality. For positive cases, this 'maximum- suspicion' variable is assumed to be either the value for the actual target or for the most suspicious non-target finding, whichever is the greater (more suspicious). Unlike the usual ROC formulation, this constrained formulation guarantees a 'well-behaved' ROC curve that always equals or exceeds chance- level decisions and cannot exhibit an upward 'hook.' Its estimated parameters specify the accuracy for separating positive from negative cases, and they also predict accuracy in locating or identifying the actual abnormal findings. The present maximum-likelihood procedure (runs on PC with Windows 95 or NT) fits this constrained formulation to rating-ROC data using normal distributions with two free parameters. Fits of the conventional and constrained ROC formulations are compared for continuous and discrete-scale ratings of chest films in a variety of detection problems, both for localized lesions (nodules, rib fractures) and for diffuse abnormalities (interstitial disease, infiltrates or pnumothorax). The two fitted ROC curves are nearly identical unless the conventional ROC has an ill behaved 'hook,' below the constrained ROC.

  10. Ghost artifact cancellation using phased array processing.

    PubMed

    Kellman, P; McVeigh, E R

    2001-08-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples.

  11. Ghost Artifact Cancellation Using Phased Array Processing

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples. PMID:11477638

  12. Using information Theory in Optimal Test Point Selection for Health Management in NASA's Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Tumer, Irem

    2005-01-01

    In this paper, we will present a new methodology that measures the "worth" of deploying an additional testing instrument (sensor) in terms of the amount of information that can be retrieved from such measurement. This quantity is obtained using a probabilistic model of RLV's that has been partially developed in the NASA Ames Research Center. A number of correlated attributes are identified and used to obtain the worth of deploying a sensor in a given test point from an information-theoretic viewpoint. Once the information-theoretic worth of sensors is formulated and incorporated into our general model for IHM performance, the problem can be formulated as a constrained optimization problem where reliability and operational safety of the system as a whole is considered. Although this research is conducted specifically for RLV's, the proposed methodology in its generic form can be easily extended to other domains of systems health monitoring.

  13. Matter coupling in partially constrained vielbein formulation of massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Antonio De; Mukohyama, Shinji; Gümrükçüoğlu, A. Emir

    2016-01-01

    We consider a linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metricmore » formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.« less

  14. Matter coupling in partially constrained vielbein formulation of massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Antonio De; Gümrükçüoğlu, A. Emir; Heisenberg, Lavinia

    2016-01-04

    We consider a linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metricmore » formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.« less

  15. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    PubMed

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Constrained Optimization of Average Arrival Time via a Probabilistic Approach to Transport Reliability

    PubMed Central

    Namazi-Rad, Mohammad-Reza; Dunbar, Michelle; Ghaderi, Hadi; Mokhtarian, Payam

    2015-01-01

    To achieve greater transit-time reduction and improvement in reliability of transport services, there is an increasing need to assist transport planners in understanding the value of punctuality; i.e. the potential improvements, not only to service quality and the consumer but also to the actual profitability of the service. In order for this to be achieved, it is important to understand the network-specific aspects that affect both the ability to decrease transit-time, and the associated cost-benefit of doing so. In this paper, we outline a framework for evaluating the effectiveness of proposed changes to average transit-time, so as to determine the optimal choice of average arrival time subject to desired punctuality levels whilst simultaneously minimizing operational costs. We model the service transit-time variability using a truncated probability density function, and simultaneously compare the trade-off between potential gains and increased service costs, for several commonly employed cost-benefit functions of general form. We formulate this problem as a constrained optimization problem to determine the optimal choice of average transit time, so as to increase the level of service punctuality, whilst simultaneously ensuring a minimum level of cost-benefit to the service operator. PMID:25992902

  17. A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems

    DOE PAGES

    Kouri, Drew Philip

    2017-12-19

    In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less

  18. A Novel Optimal Joint Resource Allocation Method in Cooperative Multicarrier Networks: Theory and Practice

    PubMed Central

    Gao, Yuan; Zhou, Weigui; Ao, Hong; Chu, Jian; Zhou, Quan; Zhou, Bo; Wang, Kang; Li, Yi; Xue, Peng

    2016-01-01

    With the increasing demands for better transmission speed and robust quality of service (QoS), the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT) scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs) equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users). A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives. PMID:27077865

  19. Analytical investigations in aircraft and spacecraft trajectory optimization and optimal guidance

    NASA Technical Reports Server (NTRS)

    Markopoulos, Nikos; Calise, Anthony J.

    1995-01-01

    A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations.

  20. Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1987-01-01

    This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

  1. Optimization of flexible wing structures subject to strength and induced drag constraints

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1977-01-01

    An optimization procedure for designing wing structures subject to stress, strain, and drag constraints is presented. The optimization method utilizes an extended penalty function formulation for converting the constrained problem into a series of unconstrained ones. Newton's method is used to solve the unconstrained problems. An iterative analysis procedure is used to obtain the displacements of the wing structure including the effects of load redistribution due to the flexibility of the structure. The induced drag is calculated from the lift distribution. Approximate expressions for the constraints used during major portions of the optimization process enhance the efficiency of the procedure. A typical fighter wing is used to demonstrate the procedure. Aluminum and composite material designs are obtained. The tradeoff between weight savings and drag reduction is investigated.

  2. Constrained Null Space Component Analysis for Semiblind Source Separation Problem.

    PubMed

    Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn

    2018-02-01

    The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.

  3. An Optimization-based Atomistic-to-Continuum Coupling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less

  4. Maximizing overall liking results in a superior product to minimizing deviations from ideal ratings: an optimization case study with coffee-flavored milk

    PubMed Central

    Li, Bangde; Hayes, John E.; Ziegler, Gregory R.

    2015-01-01

    In just-about-right (JAR) scaling and ideal scaling, attribute delta (i.e., “Too Little” or “Too Much”) reflects a subject’s dissatisfaction level for an attribute relative to their hypothetical ideal. Dissatisfaction (attribute delta) is a different construct from consumer acceptability, operationalized as liking. Therefore, we hypothesized minimizing dissatisfaction and maximizing liking would yield different optimal formulations. The objective of this research was to compare product optimization strategies, i.e. maximizing liking vis-à-vis minimizing dissatisfaction. Coffee-flavored dairy beverages (n = 20) were formulated using a fractional mixture design that constrained the proportions of coffee extract, milk, sucrose, and water. Participants (n = 388) were randomly assigned to one of three research conditions, where they evaluated 4 of the 20 samples using an incomplete block design. Samples were rated for overall liking and for intensity of the attributes sweetness, milk flavor, thickness and coffee flavor. Where appropriate, measures of overall product quality (Ideal_Delta and JAR_Delta) were calculated as the sum of the absolute values of the four attribute deltas. Optimal formulations were estimated by: a) maximizing liking; b) minimizing Ideal_Delta; or c) minimizing JAR_Delta. A validation study was conducted to evaluate product optimization models. Participants indicated a preference for a coffee-flavored dairy beverage with more coffee extract and less milk and sucrose in the dissatisfaction model compared to the formula obtained by maximizing liking. That is, when liking was optimized, participants generally liked a weaker, milkier and sweeter coffee-flavored dairy beverage. Predicted liking scores were validated in a subsequent experiment, and the optimal product formulated to maximize liking was significantly preferred to that formulated to minimize dissatisfaction by a paired preference test. These findings are consistent with the view that JAR and ideal scaling methods both suffer from attitudinal biases that are not present when liking is assessed. That is, consumers sincerely believe they want ‘dark, rich, hearty’ coffee when they do not. This paper also demonstrates the utility and efficiency of a lean experimental approach. PMID:26005291

  5. From diets to foods: using linear programming to formulate a nutritious, minimum-cost porridge mix for children aged 1 to 2 years.

    PubMed

    De Carvalho, Irene Stuart Torrié; Granfeldt, Yvonne; Dejmek, Petr; Håkansson, Andreas

    2015-03-01

    Linear programming has been used extensively as a tool for nutritional recommendations. Extending the methodology to food formulation presents new challenges, since not all combinations of nutritious ingredients will produce an acceptable food. Furthermore, it would help in implementation and in ensuring the feasibility of the suggested recommendations. To extend the previously used linear programming methodology from diet optimization to food formulation using consistency constraints. In addition, to exemplify usability using the case of a porridge mix formulation for emergency situations in rural Mozambique. The linear programming method was extended with a consistency constraint based on previously published empirical studies on swelling of starch in soft porridges. The new method was exemplified using the formulation of a nutritious, minimum-cost porridge mix for children aged 1 to 2 years for use as a complete relief food, based primarily on local ingredients, in rural Mozambique. A nutritious porridge fulfilling the consistency constraints was found; however, the minimum cost was unfeasible with local ingredients only. This illustrates the challenges in formulating nutritious yet economically feasible foods from local ingredients. The high cost was caused by the high cost of mineral-rich foods. A nutritious, low-cost porridge that fulfills the consistency constraints was obtained by including supplements of zinc and calcium salts as ingredients. The optimizations were successful in fulfilling all constraints and provided a feasible porridge, showing that the extended constrained linear programming methodology provides a systematic tool for designing nutritious foods.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  7. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyr, Eric C.; von Winckel, Gregory John; Kouri, Drew Philip

    This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of thismore » exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.« less

  8. How to manage future groundwater resource of China under climate change and urbanization: An optimal stage investment design from modern portfolio theory.

    PubMed

    Hua, Shanshan; Liang, Jie; Zeng, Guangming; Xu, Min; Zhang, Chang; Yuan, Yujie; Li, Xiaodong; Li, Ping; Liu, Jiayu; Huang, Lu

    2015-11-15

    Groundwater management in China has been facing challenges from both climate change and urbanization and is considered as a national priority nowadays. However, unprecedented uncertainty exists in future scenarios making it difficult to formulate management planning paradigms. In this paper, we apply modern portfolio theory (MPT) to formulate an optimal stage investment of groundwater contamination remediation in China. This approach generates optimal weights of investment to each stage of the groundwater management and helps maximize expected return while minimizing overall risk in the future. We find that the efficient frontier of investment displays an upward-sloping shape in risk-return space. The expected value of groundwater vulnerability index increases from 0.6118 to 0.6230 following with the risk of uncertainty increased from 0.0118 to 0.0297. If management investment is constrained not to exceed certain total cost until 2050 year, the efficient frontier could help decision makers make the most appropriate choice on the trade-off between risk and return. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Solving Connected Subgraph Problems in Wildlife Conservation

    NASA Astrophysics Data System (ADS)

    Dilkina, Bistra; Gomes, Carla P.

    We investigate mathematical formulations and solution techniques for a variant of the Connected Subgraph Problem. Given a connected graph with costs and profits associated with the nodes, the goal is to find a connected subgraph that contains a subset of distinguished vertices. In this work we focus on the budget-constrained version, where we maximize the total profit of the nodes in the subgraph subject to a budget constraint on the total cost. We propose several mixed-integer formulations for enforcing the subgraph connectivity requirement, which plays a key role in the combinatorial structure of the problem. We show that a new formulation based on subtour elimination constraints is more effective at capturing the combinatorial structure of the problem, providing significant advantages over the previously considered encoding which was based on a single commodity flow. We test our formulations on synthetic instances as well as on real-world instances of an important problem in environmental conservation concerning the design of wildlife corridors. Our encoding results in a much tighter LP relaxation, and more importantly, it results in finding better integer feasible solutions as well as much better upper bounds on the objective (often proving optimality or within less than 1% of optimality), both when considering the synthetic instances as well as the real-world wildlife corridor instances.

  10. A method to stabilize linear systems using eigenvalue gradient information

    NASA Technical Reports Server (NTRS)

    Wieseman, C. D.

    1985-01-01

    Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.

  11. Optimal apodization design for medical ultrasound using constrained least squares part I: theory.

    PubMed

    Guenther, Drake A; Walker, William F

    2007-02-01

    Aperture weighting functions are critical design parameters in the development of ultrasound systems because beam characteristics affect the contrast and point resolution of the final output image. In previous work by our group, we developed a metric that quantifies a broadband imaging system's contrast resolution performance. We now use this metric to formulate a novel general ultrasound beamformer design method. In our algorithm, we use constrained least squares (CLS) techniques and a linear algebra formulation to describe the system point spread function (PSF) as a function of the aperture weightings. In one approach, we minimize the energy of the PSF outside a certain boundary and impose a linear constraint on the aperture weights. In a second approach, we minimize the energy of the PSF outside a certain boundary while imposing a quadratic constraint on the energy of the PSF inside the boundary. We present detailed analysis for an arbitrary ultrasound imaging system and discuss several possible applications of the CLS techniques, such as designing aperture weightings to maximize contrast resolution and improve the system depth of field.

  12. Power-constrained supercomputing

    NASA Astrophysics Data System (ADS)

    Bailey, Peter E.

    As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound. Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels, from the processor level to the cluster level.

  13. Optimization-based additive decomposition of weakly coercive problems with applications

    DOE PAGES

    Bochev, Pavel B.; Ridzal, Denis

    2016-01-27

    In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less

  14. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  15. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian

    2010-12-01

    In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  16. Global optimization framework for solar building design

    NASA Astrophysics Data System (ADS)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  17. Consideration of plant behaviour in optimal servo-compensator design

    NASA Astrophysics Data System (ADS)

    Moase, W. H.; Manzie, C.

    2016-07-01

    Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.

  18. WE-FG-207B-05: Iterative Reconstruction Via Prior Image Constrained Total Generalized Variation for Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, S; Zhang, Y; Ma, J

    Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less

  19. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  20. Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  1. Modal test/analysis correlation of Space Station structures using nonlinear sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  2. Global Optimization of N-Maneuver, High-Thrust Trajectories Using Direct Multiple Shooting

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob A.; Ellison, Donald H.

    2016-01-01

    The performance of impulsive, gravity-assist trajectories often improves with the inclusion of one or more maneuvers between flybys. However, grid-based scans over the entire design space can become computationally intractable for even one deep-space maneuver, and few global search routines are capable of an arbitrary number of maneuvers. To address this difficulty a trajectory transcription allowing for any number of maneuvers is developed within a multi-objective, global optimization framework for constrained, multiple gravity-assist trajectories. The formulation exploits a robust shooting scheme and analytic derivatives for computational efficiency. The approach is applied to several complex, interplanetary problems, achieving notable performance without a user-supplied initial guess.

  3. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  4. Optimal shutdown management

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.

    2014-06-01

    The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.

  5. Real-Time Optimization for use in a Control Allocation System to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Leonard, Michael W.

    2013-01-01

    Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.

  6. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  7. Advanced Computational Methods for Security Constrained Financial Transmission Rights: Structure and Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, Stephen T.; Kalsi, Karanjit; Vlachopoulou, Maria

    Financial Transmission Rights (FTRs) help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, a novel non-linear dynamical system (NDS) approach is proposed tomore » solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on large-scale systems using data from the Western Electricity Coordinating Council (WECC). The NDS is demonstrated to outperform the widely used CPLEX algorithms while exhibiting superior scalability. Furthermore, the NDS based solver can be easily parallelized which results in significant computational improvement.« less

  8. Control of linear uncertain systems utilizing mismatched state observers

    NASA Technical Reports Server (NTRS)

    Goldstein, B.

    1972-01-01

    The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.

  9. Bayesian Optimization Under Mixed Constraints with A Slack-Variable Augmented Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picheny, Victor; Gramacy, Robert B.; Wild, Stefan M.

    An augmented Lagrangian (AL) can convert a constrained optimization problem into a sequence of simpler (e.g., unconstrained) problems, which are then usually solved with local solvers. Recently, surrogate-based Bayesian optimization (BO) sub-solvers have been successfully deployed in the AL framework for a more global search in the presence of inequality constraints; however, a drawback was that expected improvement (EI) evaluations relied on Monte Carlo. Here we introduce an alternative slack variable AL, and show that in this formulation the EI may be evaluated with library routines. The slack variables furthermore facilitate equality as well as inequality constraints, and mixtures thereof.more » We show our new slack “ALBO” compares favorably to the original. Its superiority over conventional alternatives is reinforced on several mixed constraint examples.« less

  10. Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes

    NASA Astrophysics Data System (ADS)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.

    2017-12-01

    Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.

  11. An Investigation of Generalized Differential Evolution Metaheuristic for Multiobjective Optimal Crop-Mix Planning Decision

    PubMed Central

    Olugbara, Oludayo

    2014-01-01

    This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem. PMID:24883369

  12. An investigation of generalized differential evolution metaheuristic for multiobjective optimal crop-mix planning decision.

    PubMed

    Adekanmbi, Oluwole; Olugbara, Oludayo; Adeyemo, Josiah

    2014-01-01

    This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms-being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem.

  13. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    NASA Astrophysics Data System (ADS)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  14. Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Kara, Imdat; Derya, Tusan

    2011-09-01

    The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.

  15. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  16. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.

  17. On the Miller-Tucker-Zemlin Based Formulations for the Distance Constrained Vehicle Routing Problems

    NASA Astrophysics Data System (ADS)

    Kara, Imdat

    2010-11-01

    Vehicle Routing Problem (VRP), is an extension of the well known Traveling Salesman Problem (TSP) and has many practical applications in the fields of distribution and logistics. When the VRP consists of distance based constraints it is called Distance Constrained Vehicle Routing Problem (DVRP). However, the literature addressing on the DVRP is scarce. In this paper, existing two-indexed integer programming formulations, having Miller-Tucker-Zemlin based subtour elimination constraints, are reviewed. Existing formulations are simplified and obtained formulation is presented as formulation F1. It is shown that, the distance bounding constraints of the formulation F1, may not generate the distance traveled up to the related node. To do this, we redefine the auxiliary variables of the formulation and propose second formulation F2 with new and easy to use distance bounding constraints. Adaptation of the second formulation to the cases where new restrictions such as minimal distance traveled by each vehicle or other objectives such as minimizing the longest distance traveled is discussed.

  18. Constrained evolution in numerical relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  19. Optimization of power systems with voltage security constraints

    NASA Astrophysics Data System (ADS)

    Rosehart, William Daniel

    As open access market principles are applied to power systems, significant changes in their operation and control are occurring. In the new marketplace, power systems are operating under higher loading conditions as market influences demand greater attention to operating cost versus stability margins. Since stability continues to be a basic requirement in the operation of any power system, new tools are being considered to analyze the effect of stability on the operating cost of the system, so that system stability can be incorporated into the costs of operating the system. In this thesis, new optimal power flow (OPF) formulations are proposed based on multi-objective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The effects of minimizing operating costs, minimizing reactive power generation and/or maximizing voltage stability margins are analyzed. Results obtained using the proposed Voltage Stability Constrained OPF formulations are compared and analyzed to suggest possible ways of costing voltage security in power systems. When considering voltage stability margins the importance of system modeling becomes critical, since it has been demonstrated, based on bifurcation analysis, that modeling can have a significant effect of the behavior of power systems, especially at high loading levels. Therefore, this thesis also examines the effects of detailed generator models and several exponential load models. Furthermore, because of its influence on voltage stability, a Static Var Compensator model is also incorporated into the optimization problems.

  20. Fitting aerodynamic forces in the Laplace domain: An application of a nonlinear nongradient technique to multilevel constrained optimization

    NASA Technical Reports Server (NTRS)

    Tiffany, S. H.; Adams, W. M., Jr.

    1984-01-01

    A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented.

  1. Market penetration of energy supply technologies

    NASA Astrophysics Data System (ADS)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  2. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  3. Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.

    2016-12-01

    The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.

  4. Material Distribution Optimization for the Shell Aircraft Composite Structure

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  5. Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2011-01-01

    The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These insights could help engineers to achieve a better "balance" between the conflicting needs of achieving a safe touchdown velocity, a low-weight landing mechanism, low engine fuel cost, and other design goals. In comparing the computed optimal control results with the preflight landing trajectory design of the Apollo-11 mission, we noted interesting similarities between the two missions.

  6. The reduced space Sequential Quadratic Programming (SQP) method for calculating the worst resonance response of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao; Wu, Wenwang; Fang, Daining

    2018-07-01

    A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.

  7. Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions: Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R. (Editor)

    2004-01-01

    A workshop entitled, "Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions," was convened on April 21-22, 2004 in San Diego, California to review the status of methods for objective resource allocation, to discuss the research barriers remaining, and to formulate recommendations for future development and application. The workshop explored the state-of-the-art in decision analysis in the context of being able to objectively allocate constrained technical resources to enable future space missions and optimize science return. This article summarizes the highlights of the meeting results.

  8. Target detection in GPR data using joint low-rank and sparsity constraints

    NASA Astrophysics Data System (ADS)

    Bouzerdoum, Abdesselam; Tivive, Fok Hing Chi; Abeynayake, Canicious

    2016-05-01

    In ground penetrating radars, background clutter, which comprises the signals backscattered from the rough, uneven ground surface and the background noise, impairs the visualization of buried objects and subsurface inspections. In this paper, a clutter mitigation method is proposed for target detection. The removal of background clutter is formulated as a constrained optimization problem to obtain a low-rank matrix and a sparse matrix. The low-rank matrix captures the ground surface reflections and the background noise, whereas the sparse matrix contains the target reflections. An optimization method based on split-Bregman algorithm is developed to estimate these two matrices from the input GPR data. Evaluated on real radar data, the proposed method achieves promising results in removing the background clutter and enhancing the target signature.

  9. A constrained robust least squares approach for contaminant release history identification

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Painter, Scott L.; Wittmeyer, Gordon W.

    2006-04-01

    Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving uncertain linear equations, where the response matrix is constructed using a superposition technique. The formulation presented here is general and is applicable to any porous media flow and transport solvers. The robust least squares (RLS) estimator, which originated in the field of robust identification, directly accounts for errors arising from model uncertainty and has been shown to significantly reduce the sensitivity of the optimal solution to perturbations in model and data. In this work, a new variant of RLS, the constrained robust least squares (CRLS), is formulated for solving uncertain linear equations. CRLS allows for additional constraints, such as nonnegativity, to be imposed. The performance of CRLS is demonstrated through one- and two-dimensional test problems. When the system is ill-conditioned and uncertain, it is found that CRLS gave much better performance than its classical counterpart, the nonnegative least squares. The source identification framework developed in this work thus constitutes a reliable tool for recovering source release histories in real applications.

  10. Emulsion of Chloramphenicol: an Overwhelming Approach for Ocular Delivery.

    PubMed

    Ashara, Kalpesh C; Shah, Ketan V

    2017-03-01

    Ophthalmic formulations of chloramphenicol have poor bioavailability of chloramphenicol in the ocular cavity. The present study aimed at exploring the impact of different oil mixtures in the form of emulsion on the permeability of chloramphenicol after ocular application. Selection of oil mixture and ratio of the components was made by an equilibrium solubility method. An emulsifier was chosen according to its emulsification properties. A constrained simplex centroid design was used for the assessment of the emulsion development. Emulsions were evaluated for physicochemical properties; zone of inhibition, in-vitro diffusion and ex-vivo local accumulation of chloramphenicol. Validation of the design using check-point batch and reduced polynomial equations were also developed. Optimization of the emulsion was developed by software Design® expert 6.0.8. Assessment of the osmolarity, ocular irritation, sterility testing and isotonicity of optimized batch were also made. Parker Neem®, olive and peppermint oils were selected as an oil phase in the ratio 63.64:20.2:16.16. PEG-400 was selected as an emulsifier according to a pseudo-ternary phase diagram. Constrained simplex-centroid design was applied in the range of 25-39% water, 55-69% PEG-400, 5-19% optimized oil mixture, and 1% chloramphenicol. Unpaired Student's t-test showed for in-vitro and ex-vivo studies that there was a significant difference between the optimized batch of emulsion and Chloramphenicol eye caps (a commercial product) according to both were equally safe. The optimized batch of an emulsion of chloramphenicol was found to be as safe as and more effective than Chloramphenicol eye caps.

  11. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.

    PubMed

    Ribeiro, C H; Hemerly, E M

    2000-02-01

    Autonomous learning techniques are based on experience acquisition. In most realistic applications, experience is time-consuming: it implies sensor reading, actuator control and algorithmic update, constrained by the learning system dynamics. The information crudeness upon which classical learning algorithms operate make such problems too difficult and unrealistic. Nonetheless, additional information for facilitating the learning process ideally should be embedded in such a way that the structural, well-studied characteristics of these fundamental algorithms are maintained. We investigate in this article a more general formulation of the Q-learning method that allows for a spreading of information derived from single updates towards a neighbourhood of the instantly visited state and converges to optimality. We show how this new formulation can be used as a mechanism to safely embed prior knowledge about the structure of the state space, and demonstrate it in a modified implementation of a reinforcement learning algorithm in a real robot navigation task.

  12. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  13. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  14. Implicit Formulation of Muscle Dynamics in OpenSim

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Dembia, Chris; Lewandowski, Beth; Van Den Bogert, Antonie

    2017-01-01

    Astronauts lose bone and muscle mass during spaceflight. Exercise countermeasure is the primary method for counteracting bone and muscle mass loss in space. New spacecraft exercise device concepts are currently being developed for the NASAs new crew exploration vehicle. The NASA Digital Astronaut Project (DAP) uses computational modeling to help determine if the new exercise devices will be effective as countermeasures. The NASA Digital Astronaut Project is developing the ability to utilize predictive simulation to provide insight into the change in kinematics and kinetics with a change in device and gravitational environment (1-g versus 0-g). For example, in space exercise the subject's body weight is applied in addition to the loads prescribed for musculoskeletal maintenance. How and where these loads are applied obviously directly impacts bone and tissue loads. Additionally, due to space vehicle structural requirements, exercise devices are often placed on vibration isolation systems. This changes the apparent impedance or stiffness of the device as seen by the user. Data collection under these conditions is often impractical and limited. Predictive modeling provides a means to have a virtual subject to test hypotheses. Predictive simulation provides a virtual subject for which we are able to perform studies such as sensitivity to device loading and vibration isolation without the need for laboratory kinematic or kinetic test data.Direct Collocation optimization provides an efficient means to perform task based optimization and predictive modeling. It is relatively straight forward to structure a physical exercise task in a Direct Collocation mathematical formulation: perform a motion such that you start at an initial pose, achieve a given amount of deflection i.e a squat, return to the initial pose, and minimize muscle activation cost. Direct Collocation is advantageous in that it does not require numerical integration to evaluate the objective function. Instead, the system dynamics are transformed to discrete time and the optimizer is constrained such that the solution is not considered to be a valid unless the dynamic equations are satisfied at all time points. The simulation and optimization are effectively done simultaneously. Due to the implicit integration, time steps can be more coarse than in a differential equation solver. In a gait scenario this means that that the model constraints and cost function are evaluated at 100 nodes in the gait cycle versus 10,000 integration steps in a variable-step forward dynamic simulation. Furthermore, no time is wasted on accurate simulations of movements that are far from the optimum. Constrained optimization algorithms require a Jacobian matrix that contains the partial derivatives of each of the dynamic constraints with respect to of each of the state and control variables at all time points. This is a large but sparse matrix. An implicit dynamics formulation requires computation of the dynamic residuals f as a function of the states x and their derivatives, and controls u:f(x, dxdt, u) 0If the dynamics of musculoskeletal system are formulated implicitly, the Jacobian elements are often available analytically, eliminating the need for numerical differentiation; this is obviously computationally advantageous. Additionally, implicit formulation of musculoskeletal dynamics do not suffer from singularities from low mass bodies, zero muscle activation, or other stiff system or

  15. Smooth Constrained Heuristic Optimization of a Combinatorial Chemical Space

    DTIC Science & Technology

    2015-05-01

    ARL-TR-7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...

  16. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  17. Improved Sensitivity Relations in State Constrained Optimal Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettiol, Piernicola, E-mail: piernicola.bettiol@univ-brest.fr; Frankowska, Hélène, E-mail: frankowska@math.jussieu.fr; Vinter, Richard B., E-mail: r.vinter@imperial.ac.uk

    2015-04-15

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjointmore » state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because it is validated for a stronger set of necessary conditions.« less

  18. An inexact chance-constrained programming model for water quality management in Binhai New Area of Tianjin, China.

    PubMed

    Xie, Y L; Li, Y P; Huang, G H; Li, Y F; Chen, L R

    2011-04-15

    In this study, an inexact-chance-constrained water quality management (ICC-WQM) model is developed for planning regional environmental management under uncertainty. This method is based on an integration of interval linear programming (ILP) and chance-constrained programming (CCP) techniques. ICC-WQM allows uncertainties presented as both probability distributions and interval values to be incorporated within a general optimization framework. Complexities in environmental management systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The developed method is applied to planning chemical-industry development in Binhai New Area of Tianjin, China. Interval solutions associated with different risk levels of constraint violation have been obtained. They can be used for generating decision alternatives and thus help decision makers identify desired policies under various system-reliability constraints of water environmental capacity of pollutant. Tradeoffs between system benefits and constraint-violation risks can also be tackled. They are helpful for supporting (a) decision of wastewater discharge and government investment, (b) formulation of local policies regarding water consumption, economic development and industry structure, and (c) analysis of interactions among economic benefits, system reliability and pollutant discharges. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Constrained motion model of mobile robots and its applications.

    PubMed

    Zhang, Fei; Xi, Yugeng; Lin, Zongli; Chen, Weidong

    2009-06-01

    Target detecting and dynamic coverage are fundamental tasks in mobile robotics and represent two important features of mobile robots: mobility and perceptivity. This paper establishes the constrained motion model and sensor model of a mobile robot to represent these two features and defines the k -step reachable region to describe the states that the robot may reach. We show that the calculation of the k-step reachable region can be reduced from that of 2(k) reachable regions with the fixed motion styles to k + 1 such regions and provide an algorithm for its calculation. Based on the constrained motion model and the k -step reachable region, the problems associated with target detecting and dynamic coverage are formulated and solved. For target detecting, the k-step detectable region is used to describe the area that the robot may detect, and an algorithm for detecting a target and planning the optimal path is proposed. For dynamic coverage, the k-step detected region is used to represent the area that the robot has detected during its motion, and the dynamic-coverage strategy and algorithm are proposed. Simulation results demonstrate the efficiency of the coverage algorithm in both convex and concave environments.

  20. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  1. Optimal design of isotope labeling experiments.

    PubMed

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  2. Design and optimization of color lookup tables on a simplex topology.

    PubMed

    Monga, Vishal; Bala, Raja; Mo, Xuan

    2012-04-01

    An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.

  3. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; hide

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are investigated. Overall, despite these limitations and uncertainties, using OMI AAOD to constrain BC sources improves model representation of BC distributions, particularly over China.

  4. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  5. A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton–Jacobi Integrodifferential Systems on Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr

    2016-10-15

    We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product,more » the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.« less

  6. Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach

    PubMed Central

    Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.

    2011-01-01

    The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862

  7. Chance-Constrained Day-Ahead Hourly Scheduling in Distribution System Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize themore » system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.« less

  8. Constraint programming based biomarker optimization.

    PubMed

    Zhou, Manli; Luo, Youxi; Sun, Guoquan; Mai, Guoqin; Zhou, Fengfeng

    2015-01-01

    Efficient and intuitive characterization of biological big data is becoming a major challenge for modern bio-OMIC based scientists. Interactive visualization and exploration of big data is proven to be one of the successful solutions. Most of the existing feature selection algorithms do not allow the interactive inputs from users in the optimizing process of feature selection. This study investigates this question as fixing a few user-input features in the finally selected feature subset and formulates these user-input features as constraints for a programming model. The proposed algorithm, fsCoP (feature selection based on constrained programming), performs well similar to or much better than the existing feature selection algorithms, even with the constraints from both literature and the existing algorithms. An fsCoP biomarker may be intriguing for further wet lab validation, since it satisfies both the classification optimization function and the biomedical knowledge. fsCoP may also be used for the interactive exploration of bio-OMIC big data by interactively adding user-defined constraints for modeling.

  9. Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.

    PubMed

    Zhao, Liang; Wu, Wei; Corso, Jason J

    2013-01-01

    Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.

  10. Chance-Constrained System of Systems Based Operation of Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargarian, Amin; Fu, Yong; Wu, Hongyu

    In this paper, a chance-constrained system of systems (SoS) based decision-making approach is presented for stochastic scheduling of power systems encompassing active distribution grids. Based on the concept of SoS, the independent system operator (ISO) and distribution companies (DISCOs) are modeled as self-governing systems. These systems collaborate with each other to run the entire power system in a secure and economic manner. Each self-governing system accounts for its local reserve requirements and line flow constraints with respect to the uncertainties of load and renewable energy resources. A set of chance constraints are formulated to model the interactions between the ISOmore » and DISCOs. The proposed model is solved by using analytical target cascading (ATC) method, a distributed optimization algorithm in which only a limited amount of information is exchanged between collaborative ISO and DISCOs. In this paper, a 6-bus and a modified IEEE 118-bus power systems are studied to show the effectiveness of the proposed algorithm.« less

  11. Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils

    NASA Technical Reports Server (NTRS)

    Lee, Byung Joon; Liou, Meng-Sing

    2012-01-01

    This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.

  12. Optimal Attack Strategies Subject to Detection Constraints Against Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    This paper studies an attacker against a cyberphysical system (CPS) whose goal is to move the state of a CPS to a target state while ensuring that his or her probability of being detected does not exceed a given bound. The attacker’s probability of being detected is related to the nonnegative bias induced by his or her attack on the CPS’s detection statistic. We formulate a linear quadratic cost function that captures the attacker’s control goal and establish constraints on the induced bias that reflect the attacker’s detection-avoidance objectives. When the attacker is constrained to be detected at the false-alarmmore » rate of the detector, we show that the optimal attack strategy reduces to a linear feedback of the attacker’s state estimate. In the case that the attacker’s bias is upper bounded by a positive constant, we provide two algorithms – an optimal algorithm and a sub-optimal, less computationally intensive algorithm – to find suitable attack sequences. Lastly, we illustrate our attack strategies in numerical examples based on a remotely-controlled helicopter under attack.« less

  13. Optimal Attack Strategies Subject to Detection Constraints Against Cyber-Physical Systems

    DOE PAGES

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    2017-03-31

    This paper studies an attacker against a cyberphysical system (CPS) whose goal is to move the state of a CPS to a target state while ensuring that his or her probability of being detected does not exceed a given bound. The attacker’s probability of being detected is related to the nonnegative bias induced by his or her attack on the CPS’s detection statistic. We formulate a linear quadratic cost function that captures the attacker’s control goal and establish constraints on the induced bias that reflect the attacker’s detection-avoidance objectives. When the attacker is constrained to be detected at the false-alarmmore » rate of the detector, we show that the optimal attack strategy reduces to a linear feedback of the attacker’s state estimate. In the case that the attacker’s bias is upper bounded by a positive constant, we provide two algorithms – an optimal algorithm and a sub-optimal, less computationally intensive algorithm – to find suitable attack sequences. Lastly, we illustrate our attack strategies in numerical examples based on a remotely-controlled helicopter under attack.« less

  14. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  15. Problem formulation for risk assessment of combined exposures to chemicals and other stressors in humans.

    PubMed

    Solomon, Keith R; Wilks, Martin F; Bachman, Ammie; Boobis, Alan; Moretto, Angelo; Pastoor, Timothy P; Phillips, Richard; Embry, Michelle R

    2016-11-01

    When the human health risk assessment/risk management paradigm was developed, it did not explicitly include a "problem formulation" phase. The concept of problem formulation was first introduced in the context of ecological risk assessment (ERA) for the pragmatic reason to constrain and focus ERAs on the key questions. However, this need also exists for human health risk assessment, particularly for cumulative risk assessment (CRA), because of its complexity. CRA encompasses the combined threats to health from exposure via all relevant routes to multiple stressors, including biological, chemical, physical and psychosocial stressors. As part of the HESI Risk Assessment in the 21st Century (RISK21) Project, a framework for CRA was developed in which problem formulation plays a critical role. The focus of this effort is primarily on a chemical CRA (i.e., two or more chemicals) with subsequent consideration of non-chemical stressors, defined as "modulating factors" (ModFs). Problem formulation is a systematic approach that identifies all factors critical to a specific risk assessment and considers the purpose of the assessment, scope and depth of the necessary analysis, analytical approach, available resources and outcomes, and overall risk management goal. There are numerous considerations that are specific to multiple stressors, and proper problem formulation can help to focus a CRA to the key factors in order to optimize resources. As part of the problem formulation, conceptual models for exposures and responses can be developed that address these factors, such as temporal relationships between stressors and consideration of the appropriate ModFs.

  16. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-11-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.

  17. The design of multirate digital control systems

    NASA Technical Reports Server (NTRS)

    Berg, M. C.

    1986-01-01

    The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.

  18. Maximum margin multiple instance clustering with applications to image and text clustering.

    PubMed

    Zhang, Dan; Wang, Fei; Si, Luo; Li, Tao

    2011-05-01

    In multiple instance learning problems, patterns are often given as bags and each bag consists of some instances. Most of existing research in the area focuses on multiple instance classification and multiple instance regression, while very limited work has been conducted for multiple instance clustering (MIC). This paper formulates a novel framework, maximum margin multiple instance clustering (M(3)IC), for MIC. However, it is impractical to directly solve the optimization problem of M(3)IC. Therefore, M(3)IC is relaxed in this paper to enable an efficient optimization solution with a combination of the constrained concave-convex procedure and the cutting plane method. Furthermore, this paper presents some important properties of the proposed method and discusses the relationship between the proposed method and some other related ones. An extensive set of empirical results are shown to demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.

  19. A Proposal of a Fast Computation Method for Thermal Capacity and Voltage ATC by Means of Homotopy Functions

    NASA Astrophysics Data System (ADS)

    Zoka, Yoshifumi; Yorino, Naoto; Kawano, Koki; Suenari, Hiroyasu

    This paper proposes a fast computation method for Available Transfer Capability (ATC) with respect to thermal and voltage magnitude limits. In the paper, ATC is formulated as an optimization problem. In order to obtain the efficiency for the N-1 outage contingency calculations, linear sensitivity methods are applied for screening and ranking all contingency selections with respect to the thermal and voltage magnitude limits margin to identify the severest case. In addition, homotopy functions are used for the generator QV constrains to reduce the maximum error of the linear estimation. Then, the Primal-Dual Interior Point Method (PDIPM) is used to solve the optimization problem for the severest case only, in which the solutions of ATC can be obtained efficiently. The effectiveness of the proposed method is demonstrated through IEEE 30, 57, 118-bus systems.

  20. Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2016-08-31

    In this paper, an event-triggered near optimal control structure is developed for nonlinear continuous-time systems with control constraints. Due to the saturating actuators, a nonquadratic cost function is introduced and the Hamilton-Jacobi-Bellman (HJB) equation for constrained nonlinear continuous-time systems is formulated. In order to solve the HJB equation, an actor-critic framework is presented. The critic network is used to approximate the cost function and the action network is used to estimate the optimal control law. In addition, in the proposed method, the control signal is transmitted in an aperiodic manner to reduce the computational and the transmission cost. Both the networks are only updated at the trigger instants decided by the event-triggered condition. Detailed Lyapunov analysis is provided to guarantee that the closed-loop event-triggered system is ultimately bounded. Three case studies are used to demonstrate the effectiveness of the proposed method.

  1. Optimal design for robust control of uncertain flexible joint manipulators: a fuzzy dynamical system approach

    NASA Astrophysics Data System (ADS)

    Han, Jiang; Chen, Ye-Hwa; Zhao, Xiaomin; Dong, Fangfang

    2018-04-01

    A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.

  2. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Astrophysics Data System (ADS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-03-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  3. Designing optimal cell factories: integer programming couples elementary mode analysis with regulation

    PubMed Central

    2012-01-01

    Background Elementary mode (EM) analysis is ideally suited for metabolic engineering as it allows for an unbiased decomposition of metabolic networks in biologically meaningful pathways. Recently, constrained minimal cut sets (cMCS) have been introduced to derive optimal design strategies for strain improvement by using the full potential of EM analysis. However, this approach does not allow for the inclusion of regulatory information. Results Here we present an alternative, novel and simple method for the prediction of cMCS, which allows to account for boolean transcriptional regulation. We use binary linear programming and show that the design of a regulated, optimal metabolic network of minimal functionality can be formulated as a standard optimization problem, where EM and regulation show up as constraints. We validated our tool by optimizing ethanol production in E. coli. Our study showed that up to 70% of the predicted cMCS contained non-enzymatic, non-annotated reactions, which are difficult to engineer. These cMCS are automatically excluded by our approach utilizing simple weight functions. Finally, due to efficient preprocessing, the binary program remains computationally feasible. Conclusions We used integer programming to predict efficient deletion strategies to metabolically engineer a production organism. Our formulation utilizes the full potential of cMCS but adds additional flexibility to the design process. In particular our method allows to integrate regulatory information into the metabolic design process and explicitly favors experimentally feasible deletions. Our method remains manageable even if millions or potentially billions of EM enter the analysis. We demonstrated that our approach is able to correctly predict the most efficient designs for ethanol production in E. coli. PMID:22898474

  4. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Technical Reports Server (NTRS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-01-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  5. A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.

    PubMed

    Zhang, Yu; Zhang, Bing; Zhang, Shi

    2017-06-02

    Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.

  6. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    PubMed

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  7. Rate-independent dissipation in phase-field modelling of displacive transformations

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2018-05-01

    In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu; Phanish, Deepa

    We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-ordermore » finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.« less

  9. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.

    PubMed

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-21

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  10. Groundwater management under uncertainty using a stochastic multi-cell model

    NASA Astrophysics Data System (ADS)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  11. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    NASA Astrophysics Data System (ADS)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  12. Constrained H1-regularization schemes for diffeomorphic image registration

    PubMed Central

    Mang, Andreas; Biros, George

    2017-01-01

    We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361

  13. Dynamical computation of constrained flexible systems using a modal Udwadia-Kalaba formulation: Application to musical instruments.

    PubMed

    Antunes, J; Debut, V

    2017-02-01

    Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instruments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3-18 (2016)] on guitar modeling using penalty methods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency.

  14. Determination of optimum values for maximizing the profit in bread production: Daily bakery Sdn Bhd

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Sim, Raymond

    2015-02-01

    An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. An ILP has many applications in industrial production, including job-shop modelling. A possible objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but variables must be constrained to be integer. It concerned with the optimization of a linear function while satisfying a set of linear equality and inequality constraints and restrictions. It has been used to solve optimization problem in many industries area such as banking, nutrition, agriculture, and bakery and so on. The main purpose of this study is to formulate the best combination of all ingredients in producing different type of bread in Daily Bakery in order to gain maximum profit. This study also focuses on the sensitivity analysis due to changing of the profit and the cost of each ingredient. The optimum result obtained from QM software is RM 65,377.29 per day. This study will be benefited for Daily Bakery and also other similar industries. By formulating a combination of all ingredients make up, they can easily know their total profit in producing bread everyday.

  15. The effect of agency budgets on minimizing greenhouse gas emissions from road rehabilitation policies

    NASA Astrophysics Data System (ADS)

    Reger, Darren; Madanat, Samer; Horvath, Arpad

    2015-11-01

    Transportation agencies are being urged to reduce their greenhouse gas (GHG) emissions. One possible solution within their scope is to alter their pavement management system to include environmental impacts. Managing pavement assets is important because poor road conditions lead to increased fuel consumption of vehicles. Rehabilitation activities improve pavement condition, but require materials and construction equipment, which produce GHG emissions as well. The agency’s role is to decide when to rehabilitate the road segments in the network. In previous work, we sought to minimize total societal costs (user and agency costs combined) subject to an emissions constraint for a road network, and demonstrated that there exists a range of potentially optimal solutions (a Pareto frontier) with tradeoffs between costs and GHG emissions. However, we did not account for the case where the available financial budget to the agency is binding. This letter considers an agency whose main goal is to reduce its carbon footprint while operating under a constrained financial budget. A Lagrangian dual solution methodology is applied, which selects the optimal timing and optimal action from a set of alternatives for each segment. This formulation quantifies GHG emission savings per additional dollar of agency budget spent, which can be used in a cap-and-trade system or to make budget decisions. We discuss the importance of communication between agencies and their legislature that sets the financial budgets to implement sustainable policies. We show that for a case study of Californian roads, it is optimal to apply frequent, thin overlays as opposed to the less frequent, thick overlays recommended in the literature if the objective is to minimize GHG emissions. A promising new technology, warm-mix asphalt, will have a negligible effect on reducing GHG emissions for road resurfacing under constrained budgets.

  16. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.

    PubMed

    Plessow, Philipp N

    2018-02-13

    This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.

  17. Cognitive radio adaptation for power consumption minimization using biogeography-based optimization

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Zheng, Shi-Lian; Yang, Xiao-Niu; Zhao, Zhi-Jin

    2016-12-01

    Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501356), the Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101), and the Postdoctoral Fund of Shaanxi Province, China.

  18. Multimaterial topology optimization of contact problems using phase field regularization

    NASA Astrophysics Data System (ADS)

    Myśliński, Andrzej

    2018-01-01

    The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.

  19. Optimal time points sampling in pathway modelling.

    PubMed

    Hu, Shiyan

    2004-01-01

    Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.

  20. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.

  1. Optimization of Regional Geodynamic Models for Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Knepley, M.; Isaac, T.; Jadamec, M. A.

    2016-12-01

    The SubductionGenerator program is used to construct high resolution, 3D regional thermal structures for mantle convection simulations using a variety of data sources, including sea floor ages and geographically referenced 3D slab locations based on seismic observations. The initial bulk temperature field is constructed using a half-space cooling model or plate cooling model, and related smoothing functions based on a diffusion length-scale analysis. In this work, we seek to improve the 3D thermal model and test different model geometries and dynamically driven flow fields using constraints from observed seismic velocities and plate motions. Through a formal adjoint analysis, we construct the primal-dual version of the multi-objective PDE-constrained optimization problem for the plate motions and seismic misfit. We have efficient, scalable preconditioners for both the forward and adjoint problems based upon a block preconditioning strategy, and a simple gradient update is used to improve the control residual. The full optimal control problem is formulated on a nested hierarchy of grids, allowing a nonlinear multigrid method to accelerate the solution.

  2. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  3. Experiences at Langley Research Center in the application of optimization techniques to helicopter airframes for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta; Kvaternik, Raymond G.

    1991-01-01

    A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.

  4. Grid generation and adaptation via Monge-Kantorovich optimization in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Delzanno, Gian Luca; Chacon, Luis; Finn, John M.

    2008-11-01

    In a recent paper [1], Monge-Kantorovich (MK) optimization was proposed as a method of grid generation/adaptation in two dimensions (2D). The method is based on the minimization of the L2 norm of grid point displacement, constrained to producing a given positive-definite cell volume distribution (equidistribution constraint). The procedure gives rise to the Monge-Amp'ere (MA) equation: a single, non-linear scalar equation with no free-parameters. The MA equation was solved in Ref. [1] with the Jacobian Free Newton-Krylov technique and several challenging test cases were presented in squared domains in 2D. Here, we extend the work of Ref. [1]. We first formulate the MK approach in physical domains with curved boundary elements and in 3D. We then show the results of applying it to these more general cases. We show that MK optimization produces optimal grids in which the constraint is satisfied numerically to truncation error. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, submitted to Journal of Computational Physics (2008).

  5. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints

    PubMed Central

    2013-01-01

    Background Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. Methods In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Results Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies. PMID:23368729

  6. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.

    PubMed

    Ren, Shaogang; Zeng, Bo; Qian, Xiaoning

    2013-01-01

    Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies.

  7. Publications | Grid Modernization | NREL

    Science.gov Websites

    Photovoltaics: Trajectories and Challenges Cover of Efficient Relaxations for Joint Chance Constrained AC Optimal Power Flow publication Efficient Relaxations for Joint Chance Constrained AC Optimal Power Flow

  8. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION

    PubMed Central

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    2016-01-01

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method—named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results. PMID:26778864

  9. Prepositioning emergency supplies under uncertainty: a parametric optimization method

    NASA Astrophysics Data System (ADS)

    Bai, Xuejie; Gao, Jinwu; Liu, Yankui

    2018-07-01

    Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.

  10. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    NASA Astrophysics Data System (ADS)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  11. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  12. Cournot games with network effects for electric power markets

    NASA Astrophysics Data System (ADS)

    Spezia, Carl John

    The electric utility industry is moving from regulated monopolies with protected service areas to an open market with many wholesale suppliers competing for consumer load. This market is typically modeled by a Cournot game oligopoly where suppliers compete by selecting profit maximizing quantities. The classical Cournot model can produce multiple solutions when the problem includes typical power system constraints. This work presents a mathematical programming formulation of oligopoly that produces unique solutions when constraints limit the supplier outputs. The formulation casts the game as a supply maximization problem with power system physical limits and supplier incremental profit functions as constraints. The formulation gives Cournot solutions identical to other commonly used algorithms when suppliers operate within the constraints. Numerical examples demonstrate the feasibility of the theory. The results show that the maximization formulation will give system operators more transmission capacity when compared to the actions of suppliers in a classical constrained Cournot game. The results also show that the profitability of suppliers in constrained networks depends on their location relative to the consumers' load concentration.

  13. A comparative study on stress and compliance based structural topology optimization

    NASA Astrophysics Data System (ADS)

    Hailu Shimels, G.; Dereje Engida, W.; Fakhruldin Mohd, H.

    2017-10-01

    Most of structural topology optimization problems have been formulated and solved to either minimize compliance or weight of a structure under volume or stress constraints, respectively. Even if, a lot of researches are conducted on these two formulation techniques separately, there is no clear comparative study between the two approaches. This paper intends to compare these formulation techniques, so that an end user or designer can choose the best one based on the problems they have. Benchmark problems under the same boundary and loading conditions are defined, solved and results are compared based on these formulations. Simulation results shows that the two formulation techniques are dependent on the type of loading and boundary conditions defined. Maximum stress induced in the design domain is higher when the design domains are formulated using compliance based formulations. Optimal layouts from compliance minimization formulation has complex layout than stress based ones which may lead the manufacturing of the optimal layouts to be challenging. Optimal layouts from compliance based formulations are dependent on the material to be distributed. On the other hand, optimal layouts from stress based formulation are dependent on the type of material used to define the design domain. High computational time for stress based topology optimization is still a challenge because of the definition of stress constraints at element level. Results also shows that adjustment of convergence criterions can be an alternative solution to minimize the maximum stress developed in optimal layouts. Therefore, a designer or end user should choose a method of formulation based on the design domain defined and boundary conditions considered.

  14. Edge remap for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Love, Edward; Robinson, Allen C.

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approachmore » is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.« less

  15. Computation and analysis for a constrained entropy optimization problem in finance

    NASA Astrophysics Data System (ADS)

    He, Changhong; Coleman, Thomas F.; Li, Yuying

    2008-12-01

    In [T. Coleman, C. He, Y. Li, Calibrating volatility function bounds for an uncertain volatility model, Journal of Computational Finance (2006) (submitted for publication)], an entropy minimization formulation has been proposed to calibrate an uncertain volatility option pricing model (UVM) from market bid and ask prices. To avoid potential infeasibility due to numerical error, a quadratic penalty function approach is applied. In this paper, we show that the solution to the quadratic penalty problem can be obtained by minimizing an objective function which can be evaluated via solving a Hamilton-Jacobian-Bellman (HJB) equation. We prove that the implicit finite difference solution of this HJB equation converges to its viscosity solution. In addition, we provide computational examples illustrating accuracy of calibration.

  16. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  17. Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio

    2011-12-01

    This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).

  18. A simple strategy for jumping straight up.

    PubMed

    Hemami, Hooshang; Wyman, Bostwick F

    2012-05-01

    Jumping from a stationary standing position into the air is a transition from a constrained motion in contact with the ground to an unconstrained system not in contact with the ground. A simple case of the jump, as it applies to humans, robots and humanoids, is studied in this paper. The dynamics of the constrained rigid body are expanded to define a larger system that accommodates the jump. The formulation is applied to a four-link, three-dimensional system in order to articulate the ballistic motion involved. The activity of the muscular system and the role of the major sagittal muscle groups are demonstrated. The control strategy, involving state feedback and central feed forward signals, is formulated and computer simulations are presented to assess the feasibility of the formulations, the strategy and the jump. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Use of multi-node wells in the Groundwater-Management Process of MODFLOW-2005 (GWM-2005)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.

    2013-01-01

    Many groundwater wells are open to multiple aquifers or to multiple intervals within a single aquifer. These types of wells can be represented in numerical simulations of groundwater flow by use of the Multi-Node Well (MNW) Packages developed for the U.S. Geological Survey’s MODFLOW model. However, previous versions of the Groundwater-Management (GWM) Process for MODFLOW did not allow the use of multi-node wells in groundwater-management formulations. This report describes modifications to the MODFLOW–2005 version of the GWM Process (GWM–2005) to provide for such use with the MNW2 Package. Multi-node wells can be incorporated into a management formulation as flow-rate decision variables for which optimal withdrawal or injection rates will be determined as part of the GWM–2005 solution process. In addition, the heads within multi-node wells can be used as head-type state variables, and, in that capacity, be included in the objective function or constraint set of a management formulation. Simple head bounds also can be defined to constrain water levels at multi-node wells. The report provides instructions for including multi-node wells in the GWM–2005 data-input files and a sample problem that demonstrates use of multi-node wells in a typical groundwater-management problem.

  20. Effective Teaching of Economics: A Constrained Optimization Problem?

    ERIC Educational Resources Information Center

    Hultberg, Patrik T.; Calonge, David Santandreu

    2017-01-01

    One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…

  1. Variable-Metric Algorithm For Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Frick, James D.

    1989-01-01

    Variable Metric Algorithm for Constrained Optimization (VMACO) is nonlinear computer program developed to calculate least value of function of n variables subject to general constraints, both equality and inequality. First set of constraints equality and remaining constraints inequalities. Program utilizes iterative method in seeking optimal solution. Written in ANSI Standard FORTRAN 77.

  2. Stochastic Control Synthesis of Systems with Structured Uncertainty

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L. (Technical Monitor); Crespo, Luis G.

    2003-01-01

    This paper presents a study on the design of robust controllers by using random variables to model structured uncertainty for both SISO and MIMO feedback systems. Once the parameter uncertainty is prescribed with probability density functions, its effects are propagated through the analysis leading to stochastic metrics for the system's output. Control designs that aim for satisfactory performances while guaranteeing robust closed loop stability are attained by solving constrained non-linear optimization problems in the frequency domain. This approach permits not only to quantify the probability of having unstable and unfavorable responses for a particular control design but also to search for controls while favoring the values of the parameters with higher chance of occurrence. In this manner, robust optimality is achieved while the characteristic conservatism of conventional robust control methods is eliminated. Examples that admit closed form expressions for the probabilistic metrics of the output are used to elucidate the nature of the problem at hand and validate the proposed formulations.

  3. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    PubMed

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  4. A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Sliwa, Steven M.; Lallman, Frederick J.

    1989-01-01

    Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming each airplane. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady-state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. Comparisons of the trim drags obtained using LOTS, a direct constrained optimization method, and several ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and two-surface airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained from the nonlinear optimization and that the optimum methods result in trim drag reductions of up to 80 percent compared to the ad hoc methods.

  5. Advanced Imaging Methods for Long-Baseline Optical Interferometry

    NASA Astrophysics Data System (ADS)

    Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.

    2008-11-01

    We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.

  6. Analytical Dynamics and Nonrigid Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.

  7. Wavefield reconstruction inversion with a multiplicative cost function

    NASA Astrophysics Data System (ADS)

    da Silva, Nuno V.; Yao, Gang

    2018-01-01

    We present a method for the automatic estimation of the trade-off parameter in the context of wavefield reconstruction inversion (WRI). WRI formulates the inverse problem as an optimisation problem, minimising the data misfit while penalising with a wave equation constraining term. The trade-off between the two terms is balanced by a scaling factor that balances the contributions of the data-misfit term and the constraining term to the value of the objective function. If this parameter is too large then it implies penalizing for the wave equation imposing a hard constraint in the inversion. If it is too small, then this leads to a poorly constrained solution as it is essentially penalizing for the data misfit and not taking into account the physics that explains the data. This paper introduces a new approach for the formulation of WRI recasting its formulation into a multiplicative cost function. We demonstrate that the proposed method outperforms the additive cost function when the trade-off parameter is appropriately scaled in the latter, when adapting it throughout the iterations, and when the data is contaminated with Gaussian random noise. Thus this work contributes with a framework for a more automated application of WRI.

  8. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    PubMed

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  9. Nonrecursive formulations of multibody dynamics and concurrent multiprocessing

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Menon, Ramesh

    1993-01-01

    Since the late 1980's, research in recursive formulations of multibody dynamics has flourished. Historically, much of this research can be traced to applications of low dimensionality in mechanism and vehicle dynamics. Indeed, there is little doubt that recursive order N methods are the method of choice for this class of systems. This approach has the advantage that a minimal number of coordinates are utilized, parallelism can be induced for certain system topologies, and the method is of order N computational cost for systems of N rigid bodies. Despite the fact that many authors have dismissed redundant coordinate formulations as being of order N(exp 3), and hence less attractive than recursive formulations, we present recent research that demonstrates that at least three distinct classes of redundant, nonrecursive multibody formulations consistently achieve order N computational cost for systems of rigid and/or flexible bodies. These formulations are as follows: (1) the preconditioned range space formulation; (2) penalty methods; and (3) augmented Lagrangian methods for nonlinear multibody dynamics. The first method can be traced to its foundation in equality constrained quadratic optimization, while the last two methods have been studied extensively in the context of coercive variational boundary value problems in computational mechanics. Until recently, however, they have not been investigated in the context of multibody simulation, and present theoretical questions unique to nonlinear dynamics. All of these nonrecursive methods have additional advantages with respect to recursive order N methods: (1) the formalisms retain the highly desirable order N computational cost; (2) the techniques are amenable to concurrent simulation strategies; (3) the approaches do not depend upon system topology to induce concurrency; and (4) the methods can be derived to balance the computational load automatically on concurrent multiprocessors. In addition to the presentation of the fundamental formulations, this paper presents new theoretical results regarding the rate of convergence of order N constraint stabilization schemes associated with the newly introduced class of methods.

  10. Constrained Multiobjective Biogeography Optimization Algorithm

    PubMed Central

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  11. Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal

    ERIC Educational Resources Information Center

    Steinley, Douglas; Hubert, Lawrence

    2008-01-01

    This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…

  12. Physicochemical and Functional Properties of Insoluble Dietary Fiber Isolated from Bambara Groundnut (Vigna subterranea [L.] Verdc.).

    PubMed

    Diedericks, Claudine F; Jideani, Victoria A

    2015-09-01

    Bambara groundnut (BGN) is a widely cultivated legume with a rich nutritional profile, yet despite its many benefits it still remains underutilized. To highlight its potential value, 4 BGN varieties-brown, red, black eye, and brown eye were subjected to sequential enzymatic treatments followed by centrifugation to obtain the insoluble dietary fiber (IDF) fraction. The IDFs were vacuum-dried and evaluated for color, hydration properties, fat absorption, polyphenolic compounds, neutral sugars, and uronic acids. An optimized white bread formulation was also determined using brown BGN-IDF in an optimal (IV) mixture design. Three mixture components constrained at lower and upper limits (water: 57% to 60%, yeast: 2.3% to 5.3%, and BGN-IDF: 7% to 10%) were evaluated for their effects on responses of specific loaf volume, gumminess, chewiness, and resilience of the loaves. All BGN-IDFs differed significantly (P ≤ 0.05) across all color parameters. Polyphenols were significantly (P ≤ 0.05) highest in red and brown BGN-IDFs. Arabinose/galactose (31.04% to 37.12%), xylose (16.53% to 27.30%), and mannose (14.48% to 22.24%) were the major sugars identified. Swelling capacity was significantly (P ≤ 0.05) highest for brown eye BGN-IDF (7.72 ± 0.49 mL/g). Water retention capacity ranged from 1.63 to 2.01 g water/g dry weight. Fat absorption for red BGN-IDF differed significantly (P ≤ 0.05). Furthermore, the best optimal white bread formulation enriched with brown BGN-IDF was established with numerical optimization at 59.5% water, 4.3% yeast, and 8.5% BGN-IDF. Overall positive physicochemical and functional properties were observed for BGN-IDFs, and it was shown that an optimal white bread enriched with BGN-IDF could be produced. © 2015 Institute of Food Technologists®

  13. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies.

    PubMed

    Moolakkadath, Thasleem; Aqil, Mohd; Ahad, Abdul; Imam, Syed Sarim; Iqbal, Babar; Sultana, Yasmin; Mujeeb, Mohd; Iqbal, Zeenat

    2018-05-07

    The present study was conducted for the optimization of transethosomes formulation for dermal fisetin delivery. The optimization of the formulation was carried out using "Box-Behnken design". The independent variables were Lipoid S 100, ethanol and sodium cholate. The prepared formulations were characterized for vesicle size, entrapment efficiency and in vitro skin penetration study. The vesicles-skin interaction, confocal laser scanning microscopy and dermatokinetic studies were performed with optimized formulation. Results of the present study demonstrated that the optimized formulation presented vesicle size of 74.21 ± 2.65 nm, zeta potential of -11.0 mV, entrapment efficiency of 68.31 ± 1.48% and flux of 4.13 ± 0.17 µg/cm 2 /h. The TEM image of optimized formulation exhibited sealed and spherical shape vesicles. Results of thermoanalytical techniques demonstrated that the prepared transethosomes vesicles formulation had fluidized the rigid membrane of rat's skin for smoother penetration of fisetin transethosomes. The confocal study results presented well distribution and penetration of Rhodamine B loaded transethosomes vesicles formulation up to deeper layers of the rat's skin as compared to the Rhodamine B-hydro alcoholic solution. Present study data revealed that the developed transethosomes vesicles formulation was found to be a potentially useful drug carrier for fisetin dermal delivery.

  14. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roald, Line; Misra, Sidhant; Krause, Thilo

    Higher shares of electricity generation from renewable energy sources and market liberalization is increasing uncertainty in power systems operation. At the same time, operation is becoming more flexible with improved control systems and new technology such as phase shifting transformers (PSTs) and high voltage direct current connections (HVDC). Previous studies have shown that the use of corrective control in response to outages contributes to a reduction in operating cost, while maintaining N-1 security. In this work, we propose a method to extend the use of corrective control of PSTs and HVDCs to react to uncertainty. We characterize the uncertainty asmore » continuous random variables, and define the corrective control actions through affine control policies. This allows us to efficiently model control reactions to a large number of uncertainty sources. The control policies are then included in a chance constrained optimal power flow formulation, which guarantees that the system constraints are enforced with a desired probability. Lastly, by applying an analytical reformulation of the chance constraints, we obtain a second-order cone problem for which we develop an efficient solution algorithm. In a case study for the IEEE 118 bus system, we show that corrective control for uncertainty leads to a decrease in operational cost, while maintaining system security. Further, we demonstrate the scalability of the method by solving the problem for the IEEE 300 bus and the Polish system test cases.« less

  16. Constrained spacecraft reorientation using mixed integer convex programming

    NASA Astrophysics Data System (ADS)

    Tam, Margaret; Glenn Lightsey, E.

    2016-10-01

    A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.

  17. Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

    DOE PAGES

    Roald, Line; Misra, Sidhant; Krause, Thilo; ...

    2016-08-25

    Higher shares of electricity generation from renewable energy sources and market liberalization is increasing uncertainty in power systems operation. At the same time, operation is becoming more flexible with improved control systems and new technology such as phase shifting transformers (PSTs) and high voltage direct current connections (HVDC). Previous studies have shown that the use of corrective control in response to outages contributes to a reduction in operating cost, while maintaining N-1 security. In this work, we propose a method to extend the use of corrective control of PSTs and HVDCs to react to uncertainty. We characterize the uncertainty asmore » continuous random variables, and define the corrective control actions through affine control policies. This allows us to efficiently model control reactions to a large number of uncertainty sources. The control policies are then included in a chance constrained optimal power flow formulation, which guarantees that the system constraints are enforced with a desired probability. Lastly, by applying an analytical reformulation of the chance constraints, we obtain a second-order cone problem for which we develop an efficient solution algorithm. In a case study for the IEEE 118 bus system, we show that corrective control for uncertainty leads to a decrease in operational cost, while maintaining system security. Further, we demonstrate the scalability of the method by solving the problem for the IEEE 300 bus and the Polish system test cases.« less

  18. Constrained and Unconstrained Variational Finite Element Formulation of Solutions to a Stress Wave Problem - a Numerical Comparison.

    DTIC Science & Technology

    1982-10-01

    Element Unconstrained Variational Formulations," Innovativ’e Numerical Analysis For the Applied Engineering Science, R. P. Shaw, et at, Fitor...Initial Boundary Value of Gun Dynamics Solved by Finite Element Unconstrained Variational Formulations," Innovative Numerical Analysis For the Applied ... Engineering Science, R. P. Shaw, et al, Editors, University Press of Virginia, Charlottesville, pp. 733-741, 1980. 2 J. J. Wu, "Solutions to Initial

  19. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    PubMed

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Optimization of Angular-Momentum Biases of Reaction Wheels

    NASA Technical Reports Server (NTRS)

    Lee, Clifford; Lee, Allan

    2008-01-01

    RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.

  1. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE PAGES

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    2018-04-02

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  2. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  3. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  4. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  5. Optimal intravenous infusion to decrease the haematocrit level in patient of DHF infection

    NASA Astrophysics Data System (ADS)

    Handayani, D.; Nuraini, N.; Saragih, R.; Wijaya, K. P.; Naiborhu, J.

    2014-02-01

    The optimal control of infusion model for Dengue Hemorrhagic Fever (DHF) infection is formulated here. The infusion model will be presented in form of haematocrit level. The input control aim to normalize the haematocrit level and is expressed as infusion volume on mL/day. The stability near the equilibrium points will be analyzed. Numerical simulation shows the dynamic of each infection compartments which gives a description of within-host dynamic of dengue virus. These results show particularly that infected compartments tend to be vanished in ±15days after the onset of the virus. In fact, without any control added, the haematocrit level will decrease but not up to the normal level. Therefore the effective haematocrit normalization should be done with the treatment control. Control treatment for a fixed time using a control input can bring haematocrit level to normal range 42-47%. The optimal control in this paper is divided into three cases, i.e. fixed end point, constrained input, and tracking haematocrit state. Each case shows different infection condition in human body. However, all cases require that the haematocrit level to be in normal range in fixed final time.

  6. CONSOLE: A CAD tandem for optimization-based design interacting with user-supplied simulators

    NASA Technical Reports Server (NTRS)

    Fan, Michael K. H.; Wang, Li-Sheng; Koninckx, Jan; Tits, Andre L.

    1989-01-01

    CONSOLE employs a recently developed design methodology (International Journal of Control 43:1693-1721) which provides the designer with a congenial environment to express his problem as a multiple ojective constrained optimization problem and allows him to refine his characterization of optimality when a suboptimal design is approached. To this end, in CONSOLE, the designed formulates the design problem using a high-level language and performs design task and explores tradeoff through a few short and clearly defined commands. The range of problems that can be solved efficiently using a CAD tools depends very much on the ability of this tool to be interfaced with user-supplied simulators. For instance, when designing a control system one makes use of the characteristics of the plant, and therefore, a model of the plant under study has to be made available to the CAD tool. CONSOLE allows for an easy interfacing of almost any simulator the user has available. To date CONSOLE has already been used successfully in many applications, including the design of controllers for a flexible arm and for a robotic manipulator and the solution of a parameter selection problem for a neural network.

  7. Optimization-based mesh correction with volume and convexity constraints

    DOE PAGES

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...

    2016-02-24

    In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less

  8. Enhanced Ungual Permeation of Terbinafine HCl Delivered Through Liposome-Loaded Nail Lacquer Formulation Optimized by QbD Approach.

    PubMed

    Shah, Viral H; Jobanputra, Amee

    2018-01-01

    The present investigation focused on developing, optimizing, and evaluating a novel liposome-loaded nail lacquer formulation for increasing the transungual permeation flux of terbinafine HCl for efficient treatment of onychomycosis. A three-factor, three-level, Box-Behnken design was employed for optimizing process and formulation parameters of liposomal formulation. Liposomes were formulated by thin film hydration technique followed by sonication. Drug to lipid ratio, sonication amplitude, and sonication time were screened as independent variables while particle size, PDI, entrapment efficiency, and zeta potential were selected as quality attributes for liposomal formulation. Multiple regression analysis was employed to construct a second-order quadratic polynomial equation and contour plots. Design space (overlay plot) was generated to optimize a liposomal system, with software-suggested levels of independent variables that could be transformed to desired responses. The optimized liposome formulation was characterized and dispersed in nail lacquer which was further evaluated for different parameters. Results depicted that the optimized terbinafine HCl-loaded liposome formulation exhibited particle size of 182 nm, PDI of 0.175, zeta potential of -26.8 mV, and entrapment efficiency of 80%. Transungual permeability flux of terbinafine HCl through liposome-dispersed nail lacquer formulation was observed to be significantly higher in comparison to nail lacquer with a permeation enhancer. The developed formulation was also observed to be as efficient as pure drug dispersion in its antifungal activity. Thus, it was concluded that the developed formulation can serve as an efficient tool for enhancing the permeability of terbinafine HCl across human nail plate thereby improving its therapeutic efficiency.

  9. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  10. Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askan, A.; /Carnegie Mellon U.; Akcelik, V.

    2009-04-30

    We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less

  11. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  12. Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao

    Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.

  13. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin

    2015-11-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  14. Ensemble of Surrogates-based Optimization for Identifying an Optimal Surfactant-enhanced Aquifer Remediation Strategy at Heterogeneous DNAPL-contaminated Sites

    NASA Astrophysics Data System (ADS)

    Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.

    2015-12-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  15. A BRST formulation for the conic constrained particle

    NASA Astrophysics Data System (ADS)

    Barbosa, Gabriel D.; Thibes, Ronaldo

    2018-04-01

    We describe the gauge invariant BRST formulation of a particle constrained to move in a general conic. The model considered constitutes an explicit example of an originally second-class system which can be quantized within the BRST framework. We initially impose the conic constraint by means of a Lagrange multiplier leading to a consistent second-class system which generalizes previous models studied in the literature. After calculating the constraint structure and the corresponding Dirac brackets, we introduce a suitable first-order Lagrangian, the resulting modified system is then shown to be gauge invariant. We proceed to the extended phase space introducing fermionic ghost variables, exhibiting the BRST symmetry transformations and writing the Green’s function generating functional for the BRST quantized model.

  16. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  17. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  18. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    PubMed

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  19. Prolonged release matrix tablet of pyridostigmine bromide: formulation and optimization using statistical methods.

    PubMed

    Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen

    2012-07-01

    The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.

  20. Optimization of wall thickness and lay-up for the shell-like composite structure loaded by non-uniform pressure field

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2017-01-01

    The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2.5 times at the weight growth up to 15%, whereas the eigenfrequencies at the 6 first natural vibration modes have been increased by 5-15%. The present approach and developed programming tools that demonstrated a good efficiency and stability at the acceptable computational costs can be used to optimize a wide range of shell-like structures made of quasi-isotropic laminates.

  1. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  2. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  3. Hamiltonian formulation of the KdV equation

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1984-06-01

    We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.

  4. Optimization of formulation variables of benzocaine liposomes using experimental design.

    PubMed

    Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra

    2008-01-01

    This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.

  5. Development and Optimization of Silver Nanoparticle Formulation for Fabrication

    DTIC Science & Technology

    2015-08-14

    Development and Optimization of Silver Nanoparticle Formulation for Fabrication Publication Type: DJournal/ Paper D Book Chapter ~ Tech Report D...leofPublicationorPresentation: Deve l opment and Optimization of Silver Nanoparticle Formulation for Fabrication 3. Author(s): (List authors starting...fabrication process of silver nanoparticl es could improve future silver containing products , which is i mpor tant to l owering toxicity and improving

  6. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  7. Bilayer tablets of Paliperidone for Extended release osmotic drug delivery

    NASA Astrophysics Data System (ADS)

    Chowdary, K. Sunil; Napoleon, A. A.

    2017-11-01

    The purpose of this study is to develop and optimize the formulation of paliperidone bilayer tablet core and coating which should meet in vitro performance of trilayered Innovator sample Invega. Optimization of core formulations prepared by different ratio of polyox grades and optimization of coating of (i) sub-coating build-up with hydroxy ethyl cellulose (HEC) and (ii).enteric coating build-up with cellulose acetate (CA). Some important influence factors such as different core tablet compositions and different coating solution ingredients involved in the formulation procedure were investigated. The optimization of formulation and process was conducted by comparing different in vitro release behaviours of Paliperidone. In vitro dissolution studies of Innovator sample (Invega) with formulations of different release rate which ever close release pattern during the whole 24 h test is finalized.

  8. Recovery of sparse translation-invariant signals with continuous basis pursuit

    PubMed Central

    Ekanadham, Chaitanya; Tranchina, Daniel; Simoncelli, Eero

    2013-01-01

    We consider the problem of decomposing a signal into a linear combination of features, each a continuously translated version of one of a small set of elementary features. Although these constituents are drawn from a continuous family, most current signal decomposition methods rely on a finite dictionary of discrete examples selected from this family (e.g., shifted copies of a set of basic waveforms), and apply sparse optimization methods to select and solve for the relevant coefficients. Here, we generate a dictionary that includes auxiliary interpolation functions that approximate translates of features via adjustment of their coefficients. We formulate a constrained convex optimization problem, in which the full set of dictionary coefficients represents a linear approximation of the signal, the auxiliary coefficients are constrained so as to only represent translated features, and sparsity is imposed on the primary coefficients using an L1 penalty. The basis pursuit denoising (BP) method may be seen as a special case, in which the auxiliary interpolation functions are omitted, and we thus refer to our methodology as continuous basis pursuit (CBP). We develop two implementations of CBP for a one-dimensional translation-invariant source, one using a first-order Taylor approximation, and another using a form of trigonometric spline. We examine the tradeoff between sparsity and signal reconstruction accuracy in these methods, demonstrating empirically that trigonometric CBP substantially outperforms Taylor CBP, which in turn offers substantial gains over ordinary BP. In addition, the CBP bases can generally achieve equally good or better approximations with much coarser sampling than BP, leading to a reduction in dictionary dimensionality. PMID:24352562

  9. Wind Farm Turbine Type and Placement Optimization

    NASA Astrophysics Data System (ADS)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-09-01

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  10. Wind farm turbine type and placement optimization

    DOE PAGES

    Graf, Peter; Dykes, Katherine; Scott, George; ...

    2016-10-03

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  11. Use of constrained optimization in the conceptual design of a medium-range subsonic transport

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

  12. Application of level set method to optimal vibration control of plate structures

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Khajepour, A.; Esmailzadeh, E.

    2013-02-01

    Vibration control plays a crucial role in many structures, especially in the lightweight ones. One of the most commonly practiced method to suppress the undesirable vibration of structures is to attach patches of the constrained layer damping (CLD) onto the surface of the structure. In order to consider the weight efficiency of a structure, the best shapes and locations of the CLD patches should be determined to achieve the optimum vibration suppression with minimum usage of the CLD patches. This paper proposes a novel topology optimization technique that can determine the best shape and location of the applied CLD patches, simultaneously. Passive vibration control is formulated in the context of the level set method, which is a numerical technique to track shapes and locations concurrently. The optimal damping set could be found in a structure, in its fundamental vibration mode, such that the maximum modal loss factor of the system is achieved. Two different plate structures will be considered and the damping patches will be optimally located on them. At the same time, the best shapes of the damping patches will be determined too. In one example, the numerical results will be compared with those obtained from the experimental tests to validate the accuracy of the proposed method. This comparison reveals the effectiveness of the level set approach in finding the optimum shape and location of the CLD patches.

  13. Robust on-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter; Dykes, Katherine; Scott, George

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  15. Pseudo-updated constrained solution algorithm for nonlinear heat conduction

    NASA Technical Reports Server (NTRS)

    Tovichakchaikul, S.; Padovan, J.

    1983-01-01

    This paper develops efficiency and stability improvements in the incremental successive substitution (ISS) procedure commonly used to generate the solution to nonlinear heat conduction problems. This is achieved by employing the pseudo-update scheme of Broyden, Fletcher, Goldfarb and Shanno in conjunction with the constrained version of the ISS. The resulting algorithm retains the formulational simplicity associated with ISS schemes while incorporating the enhanced convergence properties of slope driven procedures as well as the stability of constrained approaches. To illustrate the enhanced operating characteristics of the new scheme, the results of several benchmark comparisons are presented.

  16. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  17. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  18. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  19. Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L.

    PubMed

    Tripathi, Swati; Das, Aparajita; Chandra, Anil; Varma, Ajit

    2015-02-01

    Endophytic fungi are plant beneficial rhizospheric microorganisms often applied as bioinoculants for enhanced and disease-free crop production. The objectives of the present work were to develop a carrier-based formulation of root endophyte Piriformospora indica as a bioinoculant. Powder formulation of four different carrier materials viz., talcum powder, clay, sawdust and bioboost (organic supplement) were evaluated and a talc-based formulation was optimized for a longer shelf life with respect to microbial concentration, storage temperature and biological activity. Finally the effect of optimized talc formulation on plant productivity was determined. The application dosages were optimized by studies on plant growth parameters of Phaseolus vulgaris L. plants under green house conditions. Five percent formulation (w/w) of talcum powder was observed to be the most stable at 30 °C with 10(8) CFU g(-1) and effective for a storage period of 6 months. The application of this optimized formulation resulted in increase of growth parameters of P. vulgaris L. and better adaptation of plants under green house conditions.

  20. Uniform magnetic fields in density-functional theory

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  1. Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1

    NASA Astrophysics Data System (ADS)

    Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia

    2014-08-01

    We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.

  2. SMA Hybrid Composites for Dynamic Response Abatement Applications

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2000-01-01

    A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.

  3. Uniform magnetic fields in density-functional theory.

    PubMed

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M

    2018-01-14

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  4. Development and experimental design of a novel controlled-release matrix tablet formulation for indapamide hemihydrate.

    PubMed

    Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre

    2017-11-01

    Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.

  5. Formulation and optimization of zinc-pectinate beads for the controlled delivery of resveratrol.

    PubMed

    Das, Surajit; Ng, Ka-Yun; Ho, Paul C

    2010-06-01

    Preventive and therapeutic efficacies of resveratrol on several lower gastrointestinal (GI) diseases (e.g., colorectal cancer, colitis) are well documented. To overcome the problems due to its rapid absorption and metabolism at the upper GI tract, a delayed release formulation of resveratrol was designed to treat these lower GI diseases. The current study aimed to develop a delayed release formulation of resveratrol as multiparticulate pectinate beads by varying different formulation parameters. Zinc-pectinate (Zn-pectinate) beads exhibited better delayed drug release pattern than calcium-pectinate (Ca-pectinate) beads. The effects of the formulation parameters were investigated on shape, size, Zn content, moisture content, drug encapsulation efficiency, swelling-erosion, and resveratrol retention pattern of the formulated beads. Upon optimization of the formulation parameters in relative to the drug release profiles, the optimized beads were further subjected to morphological, chemical interaction, enzymatic degradation, and stability studies. Almost all prepared beads were spherical with approximately 1 mm diameter and efficiently encapsulated resveratrol. The formulation parameters revealed great influence on resveratrol retention and swelling-erosion behavior. In most of the cases, the drug release data more appropriately fitted with zero-order equation. This study demonstrates that the optimized Zn-pectinate beads can encapsulate very high amount of resveratrol and can be used as delayed release formulation of resveratrol.

  6. Applications of fuzzy theories to multi-objective system optimization

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Dhingra, A. K.

    1991-01-01

    Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.

  7. Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2018-05-08

    The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.

  8. Testing the sensitivity of pumpage to increases in surficial aquifer system heads in the Cypress Creek well-field area, West-Central Florida : an optimization technique

    USGS Publications Warehouse

    Yobbi, Dann K.

    2002-01-01

    Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads are maximized in cells located at or near the production wells. Additionally, the ratio of head recovery per unit decrease in pumpage was about three times more for the area where confining-unit leakance is the highest than for other leakance zone areas of the well field. For many head control sites, optimal heads corresponding to optimal pumpage deviated from the desired target recovery heads. Overall, pumping solutions were constrained by the limiting recovery values, initial head conditions, and by upper boundary conditions of the ground-water flow model.

  9. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.

    PubMed

    Sakai, Kenichi; Obata, Kouki; Yoshikawa, Mayumi; Takano, Ryusuke; Shibata, Masaki; Maeda, Hiroyuki; Mizutani, Akihiko; Terada, Katsuhide

    2012-10-01

    To design a high drug loading formulation of self-microemulsifying/micelle system. A poorly-soluble model drug (CH5137291), 8 hydrophilic surfactants (HS), 10 lipophilic surfactants (LS), 5 oils, and PEG400 were used. A high loading formulation was designed by a following stepwise approach using a high-throughput formulation screening (HTFS) system: (1) an oil/solvent was selected by solubility of the drug; (2) a suitable HS for highly loading was selected by the screenings of emulsion/micelle size and phase stability in binary systems (HS, oil/solvent) with increasing loading levels; (3) a LS that formed a broad SMEDDS/micelle area on a phase diagram containing the HS and oil/solvent was selected by the same screenings; (4) an optimized formulation was selected by evaluating the loading capacity of the crystalline drug. Aqueous solubility behavior and oral absorption (Beagle dog) of the optimized formulation were compared with conventional formulations (jet-milled, PEG400). As an optimized formulation, d-α-tocopheryl polyoxyethylene 1000 succinic ester: PEG400 = 8:2 was selected, and achieved the target loading level (200 mg/mL). The formulation formed fine emulsion/micelle (49.1 nm), and generated and maintained a supersaturated state at a higher level compared with the conventional formulations. In the oral absorption test, the area under the plasma concentration-time curve of the optimized formulation was 16.5-fold higher than that of the jet-milled formulation. The high loading formulation designed by the stepwise approach using the HTFS system improved the oral absorption of the poorly-soluble model drug.

  10. Stress-Constrained Structural Topology Optimization with Design-Dependent Loads

    NASA Astrophysics Data System (ADS)

    Lee, Edmund

    Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.

  11. CONORBIT: constrained optimization by radial basis function interpolation in trust regions

    DOE PAGES

    Regis, Rommel G.; Wild, Stefan M.

    2016-09-26

    Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less

  12. Formulation and evaluation of flurbiprofen microemulsion.

    PubMed

    Ambade, K W; Jadhav, S L; Gambhire, M N; Kurmi, S D; Kadam, V J; Jadhav, K R

    2008-01-01

    The purpose of the present study was to investigate the microemulsion formulations for topical delivery of Flurbiprofen (FP) in order to by pass its gastrointestinal adverse effects. The pseudoternary phase diagrams were developed and various microemulsion formulations were prepared using Isopropyl Myristate (IPM), Ethyl Oleate (EO) as oils, Aerosol OT as surfactant and Sorbitan Monooleate as cosurfactant. The transdermal permeability of flurbiprofen from microemulsions containing IPM and EO as two different oil phases was analyzed using Keshary-Chien diffusion cell through excised rat skin. Flurbiprofen showed higher in vitro permeation from IPM as compared to that of from EO microemulsion. Thus microemulsion containing IPM as oil phase were selected for optimization. The optimization was carried out using 2(3) factorial design. The optimized formula was then subjected to in vivo anti-inflammatory study and the performance of flurbiprofen from optimized formulation was compared with that of gel cream. Flurbiprofen from optimized microemulsion formulation was found to be more effective as compared to gel cream in inhibiting the carrageenan induced rat paw edema at all time intervals. Histopathological investigation of rat skin revealed the safety of microemulsion formulation for topical use. Thus the present study indicates that, microemulsion can be a promising vehicle for the topical delivery of flurbiprofen.

  13. Preparation and characterization of sustained-release rotigotine film-forming gel.

    PubMed

    Li, Xiang; Zhang, Renyu; Liang, Rongcai; Liu, Wei; Wang, Chenhui; Su, Zhengxing; Sun, Fengying; Li, Youxin

    2014-01-02

    The aim of this study was to develop a film-forming gel formulation of rotigotine with hydroxypropyl cellulose (HPC) and Carbomer 934. To optimize this formulation, we applied the Response Surface Analysis technique and evaluated the gel's pharmacokinetic properties. The factors chosen for factorial design were the concentration of rotigotine, the proportion of HPC and Carbomer 934, and the concentration of ST-Elastomer 10. Each factor was varied over three levels: low, medium and high. The gel formulation was evaluated and optimized according to its accumulated permeation rate (Flux) through Franz-type diffusion. A pharmacokinetic study of rotigotine gel was performed with rabbits. The Flux of the optimized formulation reached the maximum (199.17 μg/cm(2)), which was 3% rotigotine and 7% ST-Elastomer 10 with optimal composition of HPC: Carbomer 934 (5:1). The bioavailability of the optimized formulation compared with intravenous administration was approximately 20%. A film-forming gel of rotigotine was successfully developed using the response surface analysis technique. The results of this study may be helpful in finding an optimum formulation for transdermal delivery of a drug. The product may improve patients' compliance and provide better efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Incorporating a Constrained Optimization Algorithm into Remote- Sensing/Precision Agriculture Methodology

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George; Khatib, Nader; Kim, Byoungsoo

    with information to improve their crop's vigor has been a major topic of interest. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, the efficiency of farming must increase to meet future food requirements and to make farming a sustainable occupation for the farmer. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The goal is to increase farm revenue by increasing crop yield and decreasing applications of costly chemical and water treatments. In addition, this methodology will decrease the environmental costs of farming, i.e., reduce air, soil, and water pollution. Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now available. Commercial satellite systems can image (multi-spectral) the Earth with a resolution of approximately 2.5 m. Variable precision dispensing systems using GPS are available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been formulated. Personal computers and internet access are in place in most farm homes and can provide a mechanism to periodically disseminate, e.g. bi-weekly, advice on what quantities of water and chemicals are needed in individual regions of the field. What is missing is a model that fuses the disparate sources of information on the current states of the crop and soil, and the remaining resource levels available with the decisions farmers are required to make. This must be a product that is easy for the farmer to understand and to implement. A "Constrained Optimization Feed-back Control Model" to fill this void will be presented. The objective function of the model will be used to maximize the farmer's profit by increasing yields while decreasing environmental costs and decreasing application of costly treatments. This model will incorporate information from remote sensing, in-situ weather sources, soil measurements, crop models, and tacit farmer knowledge of the relative productivity of the selected control regions of the farm to provide incremental advice throughout the growing season on water and chemical treatments. Genetic and meta-heuristic algorithms will be used to solve the constrained optimization problem that possesses complex constraints and a non-linear objective function. *

  15. Algorithmic Perspectives on Problem Formulations in MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    This work is concerned with an approach to formulating the multidisciplinary optimization (MDO) problem that reflects an algorithmic perspective on MDO problem solution. The algorithmic perspective focuses on formulating the problem in light of the abilities and inabilities of optimization algorithms, so that the resulting nonlinear programming problem can be solved reliably and efficiently by conventional optimization techniques. We propose a modular approach to formulating MDO problems that takes advantage of the problem structure, maximizes the autonomy of implementation, and allows for multiple easily interchangeable problem statements to be used depending on the available resources and the characteristics of the application problem.

  16. Structural optimization: Status and promise

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.

    Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)

  17. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in RF cavities that restore the lost energy. To the contrary, until now, the large proton to electron mass ratio has caused synchrotron radiation to be negligible in proton accelerators. The LHC beam energy has still been low enough that synchrotron radiation has little effect on beam dynamics; but the thermodynamic penalty in cooling the superconducting magnets has still made it essential for the radiated power not to be dissipated at liquid helium temperatures. Achieving this has been a significant challenge. For the next generation p, p collider this will be even more true. Furthermore, the radiation will effect beam distributions on time scales measured in minutes, for example causing the beams to be flattened, wider than they are high. In this regime scaling relations previously valid only for electrons will be applicable also to protons.

  18. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment.

    PubMed

    Kamran, Mohd; Ahad, Abdul; Aqil, Mohd; Imam, Syed Sarim; Sultana, Yasmin; Ali, Asgar

    2016-05-30

    Olmesartan is a hydrophobic antihypertensive drug with a short biological half-life, and low bioavailability, presents a challenge with respect to its oral administration. The objective of the work was to formulate, optimize and evaluate the transdermal potential of novel vesicular nano-invasomes, containing above anti-hypertensive agent. To achieve the above purpose, soft carriers (viz. nano-invasomes) of olmesartan with β-citronellene as potential permeation enhancer were developed and optimized using Box-Behnken design. The physicochemical characteristics e.g., vesicle size, shape, entrapment efficiency and skin permeability of the nano-invasomes formulations were evaluated. The optimized formulation was further evaluated for in vitro drug release, confocal microscopy and in vivo pharmacokinetic study. The optimum nano-invasomes formulation showed vesicles size of 83.35±3.25nm, entrapment efficiency of 65.21±2.25% and transdermal flux of 32.78±0.703 (μg/cm(2)/h) which were found in agreement with the predicted value generated by Box-Behnken design. Confocal laser microscopy of rat skin showed that optimized formulation was eventually distributed and permeated deep into the skin. The pharmacokinetic study presented that transdermal nano-invasomes formulation showed 1.15 times improvement in bioavailability of olmesartan with respect to the control formulation in Wistar rats. It was concluded that the response surfaces estimated by Design Expert(®) illustrated obvious relationship between formulation factors and response variables and nano-invasomes were found to be a proficient carrier system for transdermal delivery of olmesartan. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential.

    PubMed

    Singh, Bhupinder; Khurana, Lalit; Bandyopadhyay, Shantanu; Kapil, Rishi; Katare, O O P

    2011-11-01

    Carvedilol, a widely prescribed cardiovascular drug for hypertension and congestive heart failure, exhibits low and variable bioavailability owing to poor absorption and extensive hepatic first-pass metabolism. The current research work, therefore, entails formulation development of liquid self-nano-emulsifying drug delivery systems (SNEDDS) to enhance the bioavailability of carvedilol by facilitating its transport via lymphatic circulation. The formulation constituents, i.e. lipids, surfactants, and co-surfactants, were selected on the basis of solubility studies. Pseudo-ternary phase diagrams were constructed to embark upon the selection of blend of lipidic (i.e. Capmul PG8) and hydrophilic components (i.e. Cremophor EL as surfactant and Transcutol HP as co-surfactant) for efficient and robust formulation of SNEDDS. The SNEDDS, systematically optimized employing a central composite design (CCD), were evaluated for various response variables viz drug release parameters, emulsification time, emulsion droplet size, and mean dissolution time. In vitro drug release studies depicted that the release from SNEDDS systems followed a non-Fickian kinetic behavior. The TEM imaging of the optimized formulation affirmed the uniform shape and nano size of the system. Accelerated studies of the optimized formulation indicated high stability of the formulation for 6 months. The in situ perfusion studies carried out in wistar rats construed several fold augmentation in the permeability and absorption potential of the optimized formulation vis-à-vis marketed formulation. Thus, the present studies ratified the potential of SNEDDS in augmenting the oral bioavailability of BCS class II drugs.

  20. Can re-regulation reservoirs and batteries cost-effectively mitigate sub-daily hydropeaking?

    NASA Astrophysics Data System (ADS)

    Haas, J.; Nowak, W.; Anindito, Y.; Olivares, M. A.

    2017-12-01

    To compensate for mismatches between generation and load, hydropower plants frequently operate in strong hydropeaking schemes, which is harmful to the downstream ecosystem. Furthermore, new power market structures and variable renewable systems may exacerbate this behavior. Ecological constraints (minimum flows, maximum ramps) are frequently used to mitigate hydropeaking, but these stand in direct tradeoff with the operational flexibility required for integrating renewable technologies. Fortunately, there are also physical methods (i.e. re-regulation reservoirs and batteries) but to date, there are no studies about their cost-effectiveness for hydropeaking mitigation. This study aims to fill that gap. For this, we formulate an hourly mixed-integer linear optimization model to plan the weekly operation of a hydro-thermal-renewable power system from southern Chile. The opportunity cost of water (needed for this weekly scheduling) is obtained from a mid-term programming solved with dynamic programming. We compare the current (unconstrained) hydropower operation with an ecologically constrained operation. The resulting cost increase is then contrasted with the annual payments necessary for the physical hydropeaking mitigation options. For highly constrained operations, both re-regulation reservoirs and batteries show to be economically attractive for hydropeaking mitigation. For intermediate constrained scenarios, re-regulation reservoirs are still economic, whereas batteries can be a viable solution only if they become cheaper in future. Given current cost projections, their break-even point (for hydropeaking mitigation) is expected within the next ten years. Finally, less stringent hydropeaking constraints do not justify physical mitigation measures, as the necessary flexibility can be provided by other power plants of the system.

  1. Thermodynamically Constrained Averaging Theory (TCAT) Two-Phase Flow Model: Derivation, Closure, and Simulation Results

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.

    2015-12-01

    The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.

  2. Utilization of a modified special-cubic design and an electronic tongue for bitterness masking formulation optimization.

    PubMed

    Li, Lianli; Naini, Venkatesh; Ahmed, Salah U

    2007-10-01

    A unique modification of simplex design was applied to an electronic tongue (E-Tongue) analysis in bitterness masking formulation optimization. Three formulation variables were evaluated in the simplex design, i.e. concentrations of two taste masking polymers, Amberlite and Carbopol, and pH of the granulating fluid. Response of the design was a bitterness distance measured using an E-Tongue by applying a principle component analysis, which represents taste masking efficiency of the formulation. The smaller the distance, the better the bitterness masking effect. Contour plots and polynomial equations of the bitterness distance response were generated as a function of formulation composition and pH. It was found that interactions between polymer and pH reduced the bitterness of the formulation, attributed to pH-dependent ionization and complexation properties of the ionic polymers, thus keeping the drug out of solution and unavailable to bitterness perception. At pH 4.9 and an Amberlite/Carbopol ratio of 1.4:1 (w/w), the optimal taste masking formulation was achieved and in agreement with human gustatory sensation study results. Therefore, adopting a modified simplex experimental design on response measured using an E-Tongue provided an efficient approach to taste masking formulation optimization using ionic binding polymers. (c) 2007 Wiley-Liss, Inc.

  3. High resolution near on-axis digital holography using constrained optimization approach with faster convergence

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2017-09-01

    A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.

  4. Longitudinal train dynamics model for a rail transit simulation system

    DOE PAGES

    Wang, Jinghui; Rakha, Hesham A.

    2018-01-01

    The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less

  5. A Distributed Dynamic Programming-Based Solution for Load Management in Smart Grids

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xu, Yinliang; Li, Sisi; Zhou, MengChu; Liu, Wenxin; Xu, Ying

    2018-03-01

    Load management is being recognized as an important option for active user participation in the energy market. Traditional load management methods usually require a centralized powerful control center and a two-way communication network between the system operators and energy end-users. The increasing user participation in smart grids may limit their applications. In this paper, a distributed solution for load management in emerging smart grids is proposed. The load management problem is formulated as a constrained optimization problem aiming at maximizing the overall utility of users while meeting the requirement for load reduction requested by the system operator, and is solved by using a distributed dynamic programming algorithm. The algorithm is implemented via a distributed framework and thus can deliver a highly desired distributed solution. It avoids the required use of a centralized coordinator or control center, and can achieve satisfactory outcomes for load management. Simulation results with various test systems demonstrate its effectiveness.

  6. Resource-aware taxon selection for maximizing phylogenetic diversity.

    PubMed

    Pardi, Fabio; Goldman, Nick

    2007-06-01

    Phylogenetic diversity (PD) is a useful metric for selecting taxa in a range of biological applications, for example, bioconservation and genomics, where the selection is usually constrained by the limited availability of resources. We formalize taxon selection as a conceptually simple optimization problem, aiming to maximize PD subject to resource constraints. This allows us to take into account the different amounts of resources required by the different taxa. Although this is a computationally difficult problem, we present a dynamic programming algorithm that solves it in pseudo-polynomial time. Our algorithm can also solve many instances of the Noah's Ark Problem, a more realistic formulation of taxon selection for biodiversity conservation that allows for taxon-specific extinction risks. These instances extend the set of problems for which solutions are available beyond previously known greedy-tractable cases. Finally, we discuss the relevance of our results to real-life scenarios.

  7. Longitudinal train dynamics model for a rail transit simulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jinghui; Rakha, Hesham A.

    The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less

  8. Dense motion estimation using regularization constraints on local parametric models.

    PubMed

    Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein

    2004-11-01

    This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.

  9. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.

    PubMed

    Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu

    2015-08-01

    This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  11. Optimal synchronization in space

    NASA Astrophysics Data System (ADS)

    Brede, Markus

    2010-02-01

    In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of “wire” available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l)∝l-α , with exponents α increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.

  12. A feasible DY conjugate gradient method for linear equality constraints

    NASA Astrophysics Data System (ADS)

    LI, Can

    2017-09-01

    In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.

  13. Trajectory optimization and guidance law development for national aerospace plane applications

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1988-01-01

    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.

  14. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  15. On meeting capital requirements with a chance-constrained optimization model.

    PubMed

    Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan

    2016-01-01

    This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.

  16. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    NASA Technical Reports Server (NTRS)

    Postma, Barry Dirk

    2005-01-01

    This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.

  17. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design.

    PubMed

    Yeom, Dong Woo; Song, Ye Seul; Kim, Sung Rae; Lee, Sang Gon; Kang, Min Hyung; Lee, Sangkil; Choi, Young Wook

    2015-01-01

    In this study, we developed and optimized a self-microemulsifying drug delivery system (SMEDDS) formulation for improving the dissolution and oral absorption of atorvastatin calcium (ATV), a poorly water-soluble drug. Solubility and emulsification tests were performed to select a suitable combination of oil, surfactant, and cosurfactant. A D-optimal mixture design was used to optimize the concentration of components used in the SMEDDS formulation for achieving excellent physicochemical characteristics, such as small droplet size and high dissolution. The optimized ATV-loaded SMEDDS formulation containing 7.16% Capmul MCM (oil), 48.25% Tween 20 (surfactant), and 44.59% Tetraglycol (cosurfactant) significantly enhanced the dissolution rate of ATV in different types of medium, including simulated intestinal fluid, simulated gastric fluid, and distilled water, compared with ATV suspension. Good agreement was observed between predicted and experimental values for mean droplet size and percentage of the drug released in 15 minutes. Further, pharmacokinetic studies in rats showed that the optimized SMEDDS formulation considerably enhanced the oral absorption of ATV, with 3.4-fold and 4.3-fold increases in the area under the concentration-time curve and time taken to reach peak plasma concentration, respectively, when compared with the ATV suspension. Thus, we successfully developed an optimized ATV-loaded SMEDDS formulation by using the D-optimal mixture design, that could potentially be used for improving the oral absorption of poorly water-soluble drugs.

  18. Development and optimization of a self-microemulsifying drug delivery system for ator vastatin calcium by using d-optimal mixture design

    PubMed Central

    Yeom, Dong Woo; Song, Ye Seul; Kim, Sung Rae; Lee, Sang Gon; Kang, Min Hyung; Lee, Sangkil; Choi, Young Wook

    2015-01-01

    In this study, we developed and optimized a self-microemulsifying drug delivery system (SMEDDS) formulation for improving the dissolution and oral absorption of atorvastatin calcium (ATV), a poorly water-soluble drug. Solubility and emulsification tests were performed to select a suitable combination of oil, surfactant, and cosurfactant. A d-optimal mixture design was used to optimize the concentration of components used in the SMEDDS formulation for achieving excellent physicochemical characteristics, such as small droplet size and high dissolution. The optimized ATV-loaded SMEDDS formulation containing 7.16% Capmul MCM (oil), 48.25% Tween 20 (surfactant), and 44.59% Tetraglycol (cosurfactant) significantly enhanced the dissolution rate of ATV in different types of medium, including simulated intestinal fluid, simulated gastric fluid, and distilled water, compared with ATV suspension. Good agreement was observed between predicted and experimental values for mean droplet size and percentage of the drug released in 15 minutes. Further, pharmacokinetic studies in rats showed that the optimized SMEDDS formulation considerably enhanced the oral absorption of ATV, with 3.4-fold and 4.3-fold increases in the area under the concentration-time curve and time taken to reach peak plasma concentration, respectively, when compared with the ATV suspension. Thus, we successfully developed an optimized ATV-loaded SMEDDS formulation by using the d-optimal mixture design, that could potentially be used for improving the oral absorption of poorly water-soluble drugs. PMID:26089663

  19. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  20. Minimizing Uncertainties Impact in Decision Making with an Applicability Study for Economic Power Dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Wang, Shaobu; Fan, Rui

    This report summaries the work performed under the LDRD project on the preliminary study on knowledge automation, where specific focus has been made on the investigation of the impact of uncertainties of human decision making onto the optimization of the process operation. At first the statistics on signals from the Brain-Computing Interface (BCI) is analyzed so as to obtain the uncertainties characterization of human operators during the decision making phase using the electroencephalogram (EEG) signals. This is then followed by the discussions of an architecture that reveals the equivalence between optimization and closed loop feedback control design, where it hasmore » been shown that all the optimization problems can be transferred into the control design problem for closed loop systems. This has led to a “closed loop” framework, where the structure of the decision making is shown to be subjected to both process disturbances and controller’s uncertainties. The latter can well represent the uncertainties or randomness occurred during human decision making phase. As a result, a stochastic optimization problem has been formulated and a novel solution has been proposed using probability density function (PDF) shaping for both the cost function and the constraints using stochastic distribution control concept. A sufficient condition has been derived that guarantees the convergence of the optimal solution and discussions have been made for both the total probabilistic solution and chanced constrained optimization which have been well-studied in optimal power flows (OPF) area. A simple case study has been carried out for the economic dispatch of powers for a grid system when there are distributed energy resources (DERs) in the system, and encouraging results have been obtained showing that a significant savings on the generation cost can be expected.« less

  1. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design.

    PubMed

    Emami, J; Mohiti, H; Hamishehkar, H; Varshosaz, J

    2015-01-01

    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7(®) software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the application of SLNs in pulmonary delivery system of budesonide.

  2. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design

    PubMed Central

    Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J.

    2015-01-01

    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7® software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the application of SLNs in pulmonary delivery system of budesonide. PMID:26430454

  3. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  4. Multiple response optimization of processing and formulation parameters of Eudragit RL/RS-based matrix tablets for sustained delivery of diclofenac.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2017-11-01

    Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren ® SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.

  5. Critical transition in the constrained traveling salesman problem.

    PubMed

    Andrecut, M; Ali, M K

    2001-04-01

    We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.

  6. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

  7. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  8. Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit

    NASA Astrophysics Data System (ADS)

    Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid

    2018-01-01

    Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest achievable mean liver BED. The results indicate that spatiotemporal treatments can achieve substantial reductions in normal tissue dose and BED, and that local optimization techniques provide high-quality plans that are close to realizing the maximum potential normal tissue dose reduction.

  9. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties.

    PubMed

    Yu, Meng; Ma, Huixian; Lei, Mingzhu; Li, Nan; Tan, Fengping

    2014-09-01

    Topical skin treatment was limited due to the lack of suitable delivery system with significant cutaneous localization and systemic safety. The aim of this study was to develop and optimize a nanoemulsion (NE) to enhance targeting localization of metronidazole (MTZ) in skin layers. In vitro studies were used to optimize NE formulations, and a series of experiments were carried in vitro and in vivo to validate the therapeutic efficacy of MTZ-loaded optimal NE. NE type selection and D-optimal design study were applied to optimize NE formulation with maximum skin retention and minimum skin penetration. Three formulation variables: Oil X1 (Labrafil), Smix X2 (a mixture of Cremophor EL/Tetraethylene glycol, 2:1 w/w) and water X3 were included in D-design. The system was assessed for skin retention Y1, cumulative MTZ amount after 24 h Y2 and droplet size Y3. Following optimization, the values of formulation components (X1, X2 and X3) were 4.13%, 16.42% and 79.45%, respectively. The optimized NE was assessed for viscosity, droplet size, morphological study and in vitro permeation in pig skin. Distributions of MTZ were validated by confocal laser scanning microscopy (CLSM). Active agent of NE transferred into deeper skin and localized in epidermal/dermal layers after 24 h, which showed significant advantages of the optimal NE over Gel. The skin targeting localization and minimal systemic escape of optimal NE was further proved by in vivo study on rat skin. Current in vitro-in vivo correlation (IVIVC) enabled the prediction of pharmacokinetic profile of MTZ from in vitro permeation results. Further, the in vivo anti-rosacea efficacy of optimal formulation was investigated by pharmacodynamics study on mice ear. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. CLFs-based optimization control for a class of constrained visual servoing systems.

    PubMed

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. An historical survey of computational methods in optimal control.

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  12. Constrained optimization of sequentially generated entangled multiqubit states

    NASA Astrophysics Data System (ADS)

    Saberi, Hamed; Weichselbaum, Andreas; Lamata, Lucas; Pérez-García, David; von Delft, Jan; Solano, Enrique

    2009-08-01

    We demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give paradigmatic examples that may be of interest for theoretical and experimental developments.

  13. Solution of nonlinear multivariable constrained systems using a gradient projection digital algorithm that is insensitive to the initial state

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1982-01-01

    Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.

  14. Effect of crospovidone and hydroxypropyl cellulose on carbamazepine in high-dose tablet formulation.

    PubMed

    Flicker, Felicia; Betz, Gabriele

    2012-06-01

    The aim of this study was to develop a high-dose tablet formulation of the poorly soluble carbamazepine (CBZ) with sufficient tablet hardness and immediate drug release. A further aim was to investigate the influence of various commercial CBZ raw materials on the optimized tablet formulation. Hydroxypropyl cellulose (HPC-SL) was selected as a dry binder and crospovidone (CrosPVP) as a superdisintegrant. A direct compacted tablet formulation of 70% CBZ was optimized by a 3² full factorial design with two input variables, HPC (0--10%) and CrosPVP (0--5%). Response variables included disintegration time, amount of drug released at 15 and 60 min, and tablet hardness, all analyzed according to USP 31. Increasing HPC-SL together with CrosPVP not only increased tablet hardness but also reduced disintegration time. Optimal condition was achieved in the range of 5--9% HPC and 3--5% CrosPVP, where tablet properties were at least 70 N tablet hardness, less than 1 min disintegration, and within the USP requirements for drug release. Testing the optimized formulation with four different commercial CBZ samples, their variability was still observed. Nonetheless, all formulations conformed to the USP specifications. With the excipients CrosPVP and HPC-SL an immediate release tablet formulation was successfully formulated for high-dose CBZ of various commercial sources.

  15. Short-term load and wind power forecasting using neural network-based prediction intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  16. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.

    PubMed

    Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun

    2015-12-22

    Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.

  17. Preparation, optimization, and evaluation of Zaltoprofen-loaded microemulsion and microemulsion-based gel for transdermal delivery.

    PubMed

    Mishra, Ratnesh; Prabhavalkar, Kedar S; Bhatt, Lokesh Kumar

    2016-12-01

    Zaltoprofen, a non-steroidal anti-inflammatory drug, has potent inhibitory action against nociceptive responses. However, gastrointestinal ulcer accompanied with anemia due to the bleeding are most cited side effects associated with it. Due to this, administration of Zaltoprofen is not suitable for individuals with gastric ulcer. Thus, there is unmet need to develop an alternative delivery system that will be easy to administer and can avoid ulcerogenic side effects associated with it. Present study was aimed to prepare and evaluate microemulsion (ME) and microemulsion-based gel formulation of Zaltoprofen for transdermal delivery. Pseudo-ternary phase diagrams were utilized to prepare ME formulations. Effect of surfactant and co-surfactant mass ratio on the ME formation and permeation of ME were evaluated and formulation was optimized. Permeation studies were performed using excised pigskin was studied. Efficacy of optimized formulations was evaluated in rat model of inflammation and pain. Composition of optimized formulation was 1% (w/w) Zaltoprofen, 20% (w/w) Capryol 90, 50% (w/w) Smix (2:1, Cremophor RH 40 and Transcutol P). Optimized formulation showed globule size of 22.11 nm, polydispersity index of 0.251 and zeta potential of -11.4 mV. ME gel was found safe in skin irritation study. Significant analgesic activity and anti-inflammatory activity of ME gel was observed in hot plate test and rat paw edema test, respectively. In conclusion, results of present study suggest that ME could be a promising formulation for transdermal administration of Zaltoprofen.

  18. Real-time optimal guidance for orbital maneuvering.

    NASA Technical Reports Server (NTRS)

    Cohen, A. O.; Brown, K. R.

    1973-01-01

    A new formulation for soft-constraint trajectory optimization is presented as a real-time optimal feedback guidance method for multiburn orbital maneuvers. Control is always chosen to minimize burn time plus a quadratic penalty for end condition errors, weighted so that early in the mission (when controllability is greatest) terminal errors are held negligible. Eventually, as controllability diminishes, the method partially relaxes but effectively still compensates perturbations in whatever subspace remains controllable. Although the soft-constraint concept is well-known in optimal control, the present formulation is novel in addressing the loss of controllability inherent in multiple burn orbital maneuvers. Moreover the necessary conditions usually obtained from a Bolza formulation are modified in this case so that the fully hard constraint formulation is a numerically well behaved subcase. As a result convergence properties have been greatly improved.

  19. Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate and iron cycles.

    NASA Astrophysics Data System (ADS)

    Pasquier, B.; Holzer, M.; Frants, M.

    2016-02-01

    We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.

  20. MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.

    PubMed

    He, Tiantian; Chan, Keith C C

    2018-05-01

    An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.

  1. High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations.

    PubMed

    Alekseychyk, Larysa; Su, Cheng; Becker, Gerald W; Treuheit, Michael J; Razinkov, Vladimir I

    2014-10-01

    Selection of a suitable formulation that provides adequate product stability is an important aspect of the development of biopharmaceutical products. Stability of proteins includes not only resistance to chemical modifications but also conformational and colloidal stabilities. While chemical degradation of antibodies is relatively easy to detect and control, propensity for conformational changes and/or aggregation during manufacturing or long-term storage is difficult to predict. In many cases, the formulation factors that increase one type of stability may significantly decrease another type under the same or different conditions. Often compromise is necessary to minimize the adverse effects of an antibody formulation by careful optimization of multiple factors responsible for overall stability. In this study, high-throughput stress and characterization techniques were applied to 96 formulations of anti-streptavidin antibodies (an IgG1 and an IgG2) to choose optimal formulations. Stress and analytical methods applied in this study were 96-well plate based using an automated liquid handling system to prepare the different formulations and sample plates. Aggregation and clipping propensity were evaluated by temperature and mechanical stresses. Multivariate regression analysis of high-throughput data was performed to find statistically significant formulation factors that alter measured parameters such as monomer percentage or unfolding temperature. The results of the regression models were used to maximize the stabilities of antibodies under different formulations and to find the optimal formulation space for each molecule. Comparison of the IgG1 and IgG2 data indicated an overall greater stability of the IgG1 molecule under the conditions studied. The described method can easily be applied to both initial preformulation screening and late-stage formulation development of biopharmaceutical products. © 2014 Society for Laboratory Automation and Screening.

  2. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    PubMed Central

    Wang, Hailong; Sun, Yuqiu; Su, Qinghua; Xia, Xuewen

    2018-01-01

    The backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA) to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F) is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed. PMID:29666635

  3. Management of Occupational Exposure to Engineered Nanoparticles Through a Chance-Constrained Nonlinear Programming Approach

    PubMed Central

    Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin

    2013-01-01

    Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties. PMID:23531490

  4. A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.

    PubMed

    Quan, Quan; Cai, Kai-Yuan

    2016-02-01

    In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.

  5. Management of occupational exposure to engineered nanoparticles through a chance-constrained nonlinear programming approach.

    PubMed

    Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin

    2013-03-26

    Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties.

  6. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.

  7. Robust Maneuvering Envelope Estimation Based on Reachability Analysis in an Optimal Control Formulation

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan R.; Wheeler, Kevin; Acosta, Diana; Kaneshige, John

    2013-01-01

    This paper discusses an algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. Starting with an optimal control formulation, the optimization problem can be rewritten as a Hamilton- Jacobi-Bellman equation. This equation can be solved by level set methods. This approach has been applied on an aircraft example involving structural airframe damage. Monte Carlo validation tests have confirmed that this approach is successful in estimating the safe maneuvering envelope for damaged aircraft.

  8. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    PubMed

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  9. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.

    PubMed

    Ahmed, Tarek A; El-Say, Khalid M; Aljaeid, Bader M; Fahmy, Usama A; Abd-Allah, Fathy I

    2016-03-16

    This work aimed to develop an optimized ethosomal formulation of glimepiride then loading into transdermal films to offer lower drug side effect, extended release behavior and avoid first pass effect. Four formulation factors were optimized for their effects on vesicle size (Y1), entrapment efficiency (Y2) and vesicle flexibility (Y3). Optimum desirability was identified and, an optimized formulation was prepared, characterized and loaded into transdermal films. Ex-vivo permeation study for the prepared films was conducted and, the permeation parameters and drug permeation mechanism were identified. Penetration through rat skin was studied using confocal laser microscope. In-vivo study was performed following transdermal application on human volunteers. The percent of alcohol was significantly affecting all the studied responses while the other factors and their interaction effects were varied on their effects on each response. The optimized ethosomal formulation showed observed values for Y1, Y2 and Y3 of 61 nm, 97.12% and 54.03, respectively. Ex-vivo permeation of films loaded with optimized ethosomal formulation was superior to that of the corresponding pure drug transdermal films and this finding was also confirmed after confocal laser microscope study. Permeation of glimepiride from the prepared films was in favor of Higushi-diffusion model and exhibited non-Fickian or anomalous release mechanism. In-vivo study revealed extended drug release behavior and lower maximum drug plasma level from transdermal films loaded with drug ethosomal formulation. So, the ethosomal formulation could be considered a suitable drug delivery system especially when loaded into transdermal vehicle with possible reduction in side effects and controlling the drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Constrained multi-objective optimization of storage ring lattices

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  11. Improved ant colony optimization for optimal crop and irrigation water allocation by incorporating domain knowledge

    USDA-ARS?s Scientific Manuscript database

    An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...

  12. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  13. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    PubMed

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  14. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.

    PubMed

    Kim, Hyunsoo; Park, Haesun

    2007-06-15

    Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.

  15. Optimal design of a piezoelectric transducer for exciting guided wave ultrasound in rails

    NASA Astrophysics Data System (ADS)

    Ramatlo, Dineo A.; Wilke, Daniel N.; Loveday, Philip W.

    2017-02-01

    An existing Ultrasonic Broken Rail Detection System installed in South Africa on a heavy duty railway line is currently being upgraded to include defect detection and location. To accomplish this, an ultrasonic piezoelectric transducer to strongly excite a guided wave mode with energy concentrated in the web (web mode) of a rail is required. A previous study demonstrated that the recently developed SAFE-3D (Semi-Analytical Finite Element - 3 Dimensional) method can effectively predict the guided waves excited by a resonant piezoelectric transducer. In this study, the SAFE-3D model is used in the design optimization of a rail web transducer. A bound-constrained optimization problem was formulated to maximize the energy transmitted by the transducer in the web mode when driven by a pre-defined excitation signal. Dimensions of the transducer components were selected as the three design variables. A Latin hypercube sampled design of experiments that required a total of 500 SAFE-3D analyses in the design space was employed in a response surface-based optimization approach. The Nelder-Mead optimization algorithm was then used to find an optimal transducer design on the constructed response surface. The radial basis function response surface was first verified by comparing a number of predicted responses against the computed SAFE-3D responses. The performance of the optimal transducer predicted by the optimization algorithm on the response surface was also verified to be sufficiently accurate using SAFE-3D. The computational advantages of SAFE-3D in optimal transducer design are noteworthy as more than 500 analyses were performed. The optimal design was then manufactured and experimental measurements were used to validate the predicted performance. The adopted design method has demonstrated the capability to automate the design of transducers for a particular rail cross-section and frequency range.

  16. Tailored nanostructured platforms for boosting transcorneal permeation: Box–Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization

    PubMed Central

    Elsayed, Ibrahim; Sayed, Sinar

    2017-01-01

    Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box–Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness. PMID:29133980

  17. Stability-Constrained Aerodynamic Shape Optimization with Applications to Flying Wings

    NASA Astrophysics Data System (ADS)

    Mader, Charles Alexander

    A set of techniques is developed that allows the incorporation of flight dynamics metrics as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability derivatives. Based on the characteristics of the two methods, the time-spectral technique is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.

  18. Optimal slew path planning for the Sino-French Space-based multiband astronomical Variable Objects Monitor mission

    NASA Astrophysics Data System (ADS)

    She, Yuchen; Li, Shuang

    2018-01-01

    The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.

  19. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  20. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  1. An Efficient Method Coupling Kernel Principal Component Analysis with Adjoint-Based Optimal Control and Its Goal-Oriented Extensions

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.

    2016-12-01

    The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.

  2. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil.

    PubMed

    Villar, Ana Maria Sierra; Naveros, Beatriz Clares; Campmany, Ana Cristina Calpena; Trenchs, Monserrat Aróztegui; Rocabert, Coloma Barbé; Bellowa, Lyda Halbaut

    2012-07-15

    Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. Box-Behnken experimental design was employed as statistical tool to optimize the formulation variables, X(1) (Cremophor(®) EL), X(2) (Capmul(®) MCM-C8), and X(3) (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X(1), X(2), and X(3)) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in t(d) parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    Timely estimation of deviations from optimal performance in complex systems and the ability to identify corrective measures in response to the estimated parameter deviations has been the subject of extensive research over the past four decades. The implications in terms of lost revenue from costly industrial processes, operation of large-scale public works projects and the volume of the published literature on this topic clearly indicates the significance of the problem. Applications range from manufacturing industries (integrated circuits, automotive, etc.), to large-scale chemical plants, pharmaceutical production, power distribution grids, and avionics. In this project we investigated a new framework for buildingmore » parsimonious models that are suited for diagnosis and fault estimation of complex technical systems. We used Support Vector Machines (SVMs) to model potentially time-varying parameters of a First-Principles (FP) description of the process. The combined SVM & FP model was built (i.e. model parameters were trained) using constrained optimization techniques. We used the trained models to estimate faults affecting simulated beam lifetime. In the case where a large number of process inputs are required for model-based fault estimation, the proposed framework performs an optimal nonlinear principal component analysis of the large-scale input space, and creates a lower dimension feature space in which fault estimation results can be effectively presented to the operation personnel. To fulfill the main technical objectives of the Phase I research, our Phase I efforts have focused on: (1) SVM Training in a Combined Model Structure - We developed the software for the constrained training of the SVMs in a combined model structure, and successfully modeled the parameters of a first-principles model for beam lifetime with support vectors. (2) Higher-order Fidelity of the Combined Model - We used constrained training to ensure that the output of the SVM (i.e. the parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable model-based fault estimation and correction for particle accelerators and industrial plants feasible.« less

  4. Microgrid optimal scheduling considering impact of high penetration wind generation

    NASA Astrophysics Data System (ADS)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  5. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tupek, Michael R.

    2016-06-30

    In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- putmore » parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.« less

  6. Formulation optimization of transdermal meloxicam potassium-loaded mesomorphic phases containing ethanol, oleic acid and mixture surfactant using the statistical experimental design methodology.

    PubMed

    Huang, Chi-Te; Tsai, Chia-Hsun; Tsou, Hsin-Yeh; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2011-01-01

    Response surface methodology (RSM) was used to develop and optimize the mesomorphic phase formulation for a meloxicam transdermal dosage form. A mixture design was applied to prepare formulations which consisted of three independent variables including oleic acid (X(1)), distilled water (X(2)) and ethanol (X(3)). The flux and lag time (LT) were selected as dependent variables. The result showed that using mesomorphic phases as vehicles can significantly increase flux and shorten LT of drug. The analysis of variance showed that the permeation parameters of meloxicam from formulations were significantly influenced by the independent variables and their interactions. The X(3) (ethanol) had the greatest potential influence on the flux and LT, followed by X(1) and X(2). A new formulation was prepared according to the independent levels provided by RSM. The observed responses were in close agreement with the predicted values, demonstrating that RSM could be successfully used to optimize mesomorphic phase formulations.

  7. Application of mixture experimental design in the formulation and optimization of matrix tablets containing carbomer and hydroxy-propylmethylcellulose.

    PubMed

    Petrovic, Aleksandra; Cvetkovic, Nebojsa; Ibric, Svetlana; Trajkovic, Svetlana; Djuric, Zorica; Popadic, Dragica; Popovic, Radmila

    2009-12-01

    Using mixture experimental design, the effect of carbomer (Carbopol((R)) 971P NF) and hydroxypropylmethylcellulose (Methocel((R)) K100M or Methocel((R)) K4M) combination on the release profile and on the mechanism of drug liberation from matrix tablet was investigated. The numerical optimization procedure was also applied to establish and obtain formulation with desired drug release. The amount of TP released, release rate and mechanism varied with carbomer ratio in total matrix and HPMC viscosity. Increasing carbomer fractions led to a decrease in drug release. Anomalous diffusion was found in all matrices containing carbomer, while Case - II transport was predominant for tablet based on HPMC only. The predicted and obtained profiles for optimized formulations showed similarity. Those results indicate that Simplex Lattice Mixture experimental design and numerical optimization procedure can be applied during development to obtain sustained release matrix formulation with desired release profile.

  8. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  9. Simulation of Two-Phase Flow Based on a Thermodynamically Constrained Averaging Theory Flow Model

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Dye, A. L.; McClure, J. E.; Farthing, M. W.; Gray, W. G.; Miller, C. T.

    2014-12-01

    The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for two-fluid-phase flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as interfacial areas, contact angles, interfacial tension, and curvatures; and dynamics of interface movement and relaxation to an equilibrium state. In order to render the TCAT model solvable, certain closure relations are needed to relate fluid pressure, interfacial areas, curvatures, and relaxation rates. In this work, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instance from a hierarchy of two-fluid-phase flow models that emerge from the theory. We show the closure problem that must be solved. Using recent results from high-resolution microscale simulations, we advance a set of closure relations that produce a closed model. Lastly, we use locally conservative spatial discretization and higher order temporal discretization methods to approximate the solution to this new model and compare the solution to the traditional model.

  10. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.

  13. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    PubMed Central

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  14. A quasi-Newton approach to optimization problems with probability density constraints. [problem solving in mathematical programming

    NASA Technical Reports Server (NTRS)

    Tapia, R. A.; Vanrooy, D. L.

    1976-01-01

    A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.

  15. Optimization of poorly compactable drug tablets manufactured by direct compression using the mixture experimental design.

    PubMed

    Martinello, Tiago; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Taqueda, Maria Elena Santos; Consiglieri, Vladi O

    2006-09-28

    The poor flowability and bad compressibility characteristics of paracetamol are well known. As a result, the production of paracetamol tablets is almost exclusively by wet granulation, a disadvantageous method when compared to direct compression. The development of a new tablet formulation is still based on a large number of experiments and often relies merely on the experience of the analyst. The purpose of this study was to apply experimental design methodology (DOE) to the development and optimization of tablet formulations containing high amounts of paracetamol (more than 70%) and manufactured by direct compression. Nineteen formulations, screened by DOE methodology, were produced with different proportions of Microcel 102, Kollydon VA 64, Flowlac, Kollydon CL 30, PEG 4000, Aerosil, and magnesium stearate. Tablet properties, except friability, were in accordance with the USP 28th ed. requirements. These results were used to generate plots for optimization, mainly for friability. The physical-chemical data found from the optimized formulation were very close to those from the regression analysis, demonstrating that the mixture project is a great tool for the research and development of new formulations.

  16. [Application of an artificial neural network in the design of sustained-release dosage forms].

    PubMed

    Wei, X H; Wu, J J; Liang, W Q

    2001-09-01

    To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.

  17. Eulerian Formulation of Spatially Constrained Elastic Rods

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre

    Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration by means of either its relative position with respect to the constraint axis (contact-free segments) or its angular position on the constraint surface (continuous contacts.) This formulation circumvents both drawbacks that afflict the conventional Lagrangian approach associated with the segmentation strategy. As the a priori unknown domain, viz. the rod length, is substituted for the known constraint axis, the free boundary problem and the associated isoperimetric constraints are converted into a classical two-point boundary value problem. Additionally, the description of the rod deflection by means of its eccentricity with respect to the constraint axis trivializes the assessment of the unilateral contact condition. Along continuous contacts, this formulation expresses the strain variables, measuring the rod change of shape, in terms of the geometric invariants of the constraint surface, and emphasizes the influence of the constraint local geometry on the reaction pressure. Formalizing the segmentation strategy, a computational model that exploits the Eulerian formulation of the rod governing equations is devised. To solve the quasi-static deflection of elastic rods constrained inside or around a tube-like surface, this computational model identifies the number of contacts, their nature (either discrete or continuous), and the rod configuration at the connections that satisfies the unilateral contact condition and preserves the rod integrity along the sequence of elementary problems.

  18. Formulation development of gastroretentive tablets of lamivudine using the floating-bioadhesive potential of optimized polymer blends.

    PubMed

    Singh, Bhupinder; Garg, Babita; Chaturvedi, Subhash Chand; Arora, Sharry; Mandsaurwale, Rachana; Kapil, Rishi; Singh, Baljinder

    2012-05-01

    The current studies entail successful formulation of optimized gastroretentive tablets of lamivudine using the floating-bioadhesive potential of carbomers and cellulosic polymers, and their subsequent in-vitro and in-vivo evaluation in animals and humans. Effervescent floating-bioadhesive hydrophilic matrices were prepared and evaluated for in-vitro drug release, floatation and ex-vivo bioadhesive strength. The optimal composition of polymer blends was systematically chosen using central composite design and overlay plots. Pharmacokinetic studies were carried out in rabbits, and various levels of in-vitro/in-vivo correlation (IVIVC) were established. In-vivo gamma scintigraphic studies were performed in human volunteers using (99m) Tc to evaluate formulation retention in the gastric milieu. The optimized formulation exhibited excellent bioadhesive and floatational characteristics besides possessing adequate drug-release control and pharmacokinetic extension of plasma levels. The successful establishment of various levels of IVIVC substantiated the judicious choice of in-vitro dissolution media for simulating the in-vivo conditions. In-vivo gamma scintigraphic studies ratified the gastroretentive characteristics of the optimized formulation with a retention time of 5 h or more. Besides unravelling the polymer synergism, the study helped in developing an optimal once-a-day gastroretentive drug delivery system with improved bioavailability potential exhibiting excellent swelling, floating and bioadhesive characteristics. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  19. Cascaded Optimization for a Persistent Data Ferrying Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Carfang, Anthony

    This dissertation develops and assesses a cascaded method for designing optimal periodic trajectories and link schedules for an unmanned aircraft to ferry data between stationary ground nodes. This results in a fast solution method without the need to artificially constrain system dynamics. Focusing on a fundamental ferrying problem that involves one source and one destination, but includes complex vehicle and Radio-Frequency (RF) dynamics, a cascaded structure to the system dynamics is uncovered. This structure is exploited by reformulating the nonlinear optimization problem into one that reduces the independent control to the vehicle's motion, while the link scheduling control is folded into the objective function and implemented as an optimal policy that depends on candidate motion control. This formulation is proven to maintain optimality while reducing computation time in comparison to traditional ferry optimization methods. The discrete link scheduling problem takes the form of a combinatorial optimization problem that is known to be NP-Hard. A derived necessary condition for optimality guides the development of several heuristic algorithms, specifically the Most-Data-First Algorithm and the Knapsack Adaptation. These heuristics are extended to larger ferrying scenarios, and assessed analytically and through Monte Carlo simulation, showing better throughput performance in the same order of magnitude of computation time in comparison to other common link scheduling policies. The cascaded optimization method is implemented with a novel embedded software system on a small, unmanned aircraft to validate the simulation results with field experiments. To address the sensitivity of results on trajectory tracking performance, a system that combines motion and link control with waypoint-based navigation is developed and assessed through field experiments. The data ferrying algorithms are further extended by incorporating a Gaussian process to opportunistically learn the RF environment. By continuously improving RF models, the cascaded planner can continually improve the ferrying system's overall performance.

  20. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.

  1. On the constrained classical capacity of infinite-dimensional covariant quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holevo, A. S.

    The additivity of the minimal output entropy and that of the χ-capacity are known to be equivalent for finite-dimensional irreducibly covariant quantum channels. In this paper, we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper [Giovannetti et al., Commun. Math. Phys. 334(3), 1553-1571 (2015)] to the case where the complex structures associated with the channel and with the constraint operator need not commute. In particular, this implies a multimodemore » generalization of the “threshold condition,” obtained for single mode in Schäfer et al. [Phys. Rev. Lett. 111, 030503 (2013)], and the proof of the fact that under this condition the classical “Gaussian capacity” resulting from optimization over only Gaussian inputs is equal to the full classical capacity. Complex structures correspond to different squeezings, each with its own normal modes, vacuum and coherent states, and the gauge. Thus our results apply, e.g., to multimode channels with a squeezed Gaussian noise under the standard input energy constraint, provided the squeezing is not too large as to violate the generalized threshold condition. We also investigate the restrictiveness of the gauge-covariance condition for single- and multimode bosonic Gaussian channels.« less

  2. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  3. An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions

    NASA Astrophysics Data System (ADS)

    Zahr, M. J.; Persson, P.-O.

    2018-07-01

    This work introduces a novel discontinuity-tracking framework for resolving discontinuous solutions of conservation laws with high-order numerical discretizations that support inter-element solution discontinuities, such as discontinuous Galerkin or finite volume methods. The proposed method aims to align inter-element boundaries with discontinuities in the solution by deforming the computational mesh. A discontinuity-aligned mesh ensures the discontinuity is represented through inter-element jumps while smooth basis functions interior to elements are only used to approximate smooth regions of the solution, thereby avoiding Gibbs' phenomena that create well-known stability issues. Therefore, very coarse high-order discretizations accurately resolve the piecewise smooth solution throughout the domain, provided the discontinuity is tracked. Central to the proposed discontinuity-tracking framework is a discrete PDE-constrained optimization formulation that simultaneously aligns the computational mesh with discontinuities in the solution and solves the discretized conservation law on this mesh. The optimization objective is taken as a combination of the deviation of the finite-dimensional solution from its element-wise average and a mesh distortion metric to simultaneously penalize Gibbs' phenomena and distorted meshes. It will be shown that our objective function satisfies two critical properties that are required for this discontinuity-tracking framework to be practical: (1) possesses a local minima at a discontinuity-aligned mesh and (2) decreases monotonically to this minimum in a neighborhood of radius approximately h / 2, whereas other popular discontinuity indicators fail to satisfy the latter. Another important contribution of this work is the observation that traditional reduced space PDE-constrained optimization solvers that repeatedly solve the conservation law at various mesh configurations are not viable in this context since severe overshoot and undershoot in the solution, i.e., Gibbs' phenomena, may make it impossible to solve the discrete conservation law on non-aligned meshes. Therefore, we advocate a gradient-based, full space solver where the mesh and conservation law solution converge to their optimal values simultaneously and therefore never require the solution of the discrete conservation law on a non-aligned mesh. The merit of the proposed method is demonstrated on a number of one- and two-dimensional model problems including the L2 projection of discontinuous functions, Burgers' equation with a discontinuous source term, transonic flow through a nozzle, and supersonic flow around a bluff body. We demonstrate optimal O (h p + 1) convergence rates in the L1 norm for up to polynomial order p = 6 and show that accurate solutions can be obtained on extremely coarse meshes.

  4. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

    PubMed

    Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D

    2017-01-25

    Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.

  5. Formulation and Optimization of Candesartan Cilexetil Nano Lipid Carrier: In Vitro and In Vivo Evaluation.

    PubMed

    Paudel, Anjan; Ameeduzzafar; Imam, Syed Sarim; Fazil, Mohd; Khan, Shahroz; Hafeez, Abdul; Ahmad, Farhan Jalees; Ali, Asgar

    2017-01-01

    The objective of this study was to formulate and optimize Candesartan Cilexetil (CC) loaded nanostructured lipid carriers (NLCs) for enhanced oral bioavailability. Glycerol monostearate (GMS), Oleic acid, Tween 80 and Span 40 were selected as a solid lipid, liquid lipid, surfactant and co- surfactant, respectively. The CC-NLCs were prepared by hot emulsion probe sonication technique and optimized using experimental design approach. The formulated CC-NLCs were evaluated for various physicochemical parameters and further optimized formulation (CC-NLC-Opt) was assessed for in vivo pharmacokinetic and pharmacodynamic activity. The optimized formulation (CC-NLC-Opt) showed particle size (183.5±5.89nm), PDI (0.228±0.13), zeta potential (-28.2±0.99mV), and entrapment efficiency (88.9±3.69%). The comparative in vitro release study revealed that CC-NLC-Opt showed significantly better (p<0.05) release and enhanced permeation as compared to CC-suspension. The in vivo pharmacokinetic study gave many folds increase in oral bioavailability than CC suspension, which was further confirmed by antihypertensive activity in a murine model. Thus, the results of ex vivo permeation, pharmacokinetic study and pharmacodynamics study suggest the potential of CC-NLCs for improved oral delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Optimization of physicochemical and textural properties of pizza cheese fortified with soybean oil and carrot extract.

    PubMed

    Motevalizadeh, Ehsan; Mortazavi, Seyed Ali; Milani, Elnaz; Hooshmand-Dalir, Moosa Al-Reza

    2018-03-01

    Response surface methodology (RSM) was used to optimize pizza cheese containing carrot extract. The effects of two important independent variables including soybean oil (5%-20%) and carrot extract (5%-20%) were studied on physicochemical and textural properties of pizza cheese containing carrot extract. According to the results, RSM was successfully used for optimizing formulation of pizza cheese containing carrot juice. Results of this study revealed that oil (A), carrot (B), AB, square term of carrot (B 2 ), B, AB, square term of oil (A 2 ), B 2 , AB, AB, A 2 B, A 2 , A 2 , A, A 2 , A 2 , AB, and AB 2 had the most effect on moisture, acidity, stretch, L*, a*, b*, hardness, meltability, springiness, peroxide value (PV), cohesiveness, chewiness, gumminess, fracture force, adhesiveness force, stiffness, flavor, and overall acceptability, respectively. A formulation upon 20% oil and 10.88% carrot extract was found as the optimal formulation for pizza cheese containing carrot extract. At the optimal formulation, PV, L*, a*, b*, meltability, stretch, cohesiveness, springiness, gumminess, chewiness, adhesive force, flavor, texture, and overall acceptability at the optimum formulation were measured 2.23, 82.51, -3.69, 18.05, 17.86, 85.61, 0.41, 7.874, 23.7, 0.27, 0.61, 3.50, 3.95, and 3.65, respectively.

  7. A Technique for Analysing Constrained Rigid-Body Systems, and Its Application to the Constraint Force Algorithm

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Featherstone, R.

    1999-01-01

    This paper presents a new formulation of the Constraint Force Algorithm that corrects a major limitation in the original, and sheds new light on the relationship between it and other dynamics algoritms.

  8. Dirac structures in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-01-01

    Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

  9. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  10. Proportional Topology Optimization: A New Non-Sensitivity Method for Solving Stress Constrained and Minimum Compliance Problems and Its Implementation in MATLAB

    PubMed Central

    Biyikli, Emre; To, Albert C.

    2015-01-01

    A new topology optimization method called the Proportional Topology Optimization (PTO) is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement, and is also efficient and accurate at the same time. It is implemented into two MATLAB programs to solve the stress constrained and minimum compliance problems. Descriptions of the algorithm and computer programs are provided in detail. The method is applied to solve three numerical examples for both types of problems. The method shows comparable efficiency and accuracy with an existing optimality criteria method which computes sensitivities. Also, the PTO stress constrained algorithm and minimum compliance algorithm are compared by feeding output from one algorithm to the other in an alternative manner, where the former yields lower maximum stress and volume fraction but higher compliance compared to the latter. Advantages and disadvantages of the proposed method and future works are discussed. The computer programs are self-contained and publicly shared in the website www.ptomethod.org. PMID:26678849

  11. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    PubMed

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  12. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    PubMed Central

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  13. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  14. Optimized formulation of solid self-microemulsifying sirolimus delivery systems

    PubMed Central

    Cho, Wonkyung; Kim, Min-Soo; Kim, Jeong-Soo; Park, Junsung; Park, Hee Jun; Cha, Kwang-Ho; Park, Jeong-Sook; Hwang, Sung-Joo

    2013-01-01

    Background The aim of this study was to develop an optimized solid self-microemulsifying drug delivery system (SMEDDS) formulation for sirolimus to enhance its solubility, stability, and bioavailability. Methods Excipients used for enhancing the solubility and stability of sirolimus were screened. A phase-separation test, visual observation for emulsifying efficiency, and droplet size analysis were performed. Ternary phase diagrams were constructed to optimize the liquid SMEDDS formulation. The selected liquid SMEDDS formulations were prepared into solid form. The dissolution profiles and pharmacokinetic profiles in rats were analyzed. Results In the results of the oil and cosolvent screening studies, Capryol™ Propylene glycol monocapry late (PGMC) and glycofurol exhibited the highest solubility of all oils and cosolvents, respectively. In the surfactant screening test, D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) was determined to be the most effective stabilizer of sirolimus in pH 1.2 simulated gastric fluids. The optimal formulation determined by the construction of ternary phase diagrams was the T32 (Capryol™ PGMC:glycofurol:vitamin E TPGS = 30:30:40 weight ratio) formulation with a mean droplet size of 108.2 ± 11.4 nm. The solid SMEDDS formulations were prepared with Sucroester 15 and mannitol. The droplet size of the reconstituted solid SMEDDS showed no significant difference compared with the liquid SMEDDS. In the dissolution study, the release amounts of sirolimus from the SMEDDS formulation were significantly higher than the raw sirolimus powder. In addition, the solid SMEDDS formulation was in a more stable state than liquid SMEDDS in pH 1.2 simulated gastric fluids. The results of the pharmacokinetic study indicate that the SMEDDS formulation shows significantly greater bioavailability than the raw sirolimus powder or commercial product (Rapamune® oral solution). Conclusion The results of this study suggest the potential use of a solid SMEDDS formulation for the delivery of poorly water-soluble drugs, such as sirolimus, through oral administration. PMID:23641156

  15. Optimally Stopped Optimization

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  16. Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Watkins, Edward Francis

    1995-01-01

    A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.

  17. Novel microemulsion-based gel formulation of tazarotene for therapy of acne.

    PubMed

    Patel, Mrunali Rashmin; Patel, Rashmin Bharatbhai; Parikh, Jolly R; Patel, Bharat G

    2016-12-01

    The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol-Cremophor-RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.

  18. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential.

    PubMed

    Telange, Darshan R; Patil, Arun T; Pethe, Anil M; Fegade, Harshal; Anand, Sridhar; Dave, Vivek S

    2017-10-15

    The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances.

    PubMed

    Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang

    2018-06-01

    Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.

  20. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides.

    PubMed

    Bandyopadhyay, Shantanu; Katare, O P; Singh, Bhupinder

    2012-12-01

    The objective of the current work is to develop systematically optimized self-nanoemulsifying drug delivery systems (SNEDDS) using long chain triglycerides (LCT's) and medium chain triglycerides (MCT's) of ezetimibe employing Formulation by Design (FbD), and evaluate their in vitro and in vivo performance. Equilibrium solubility studies indicated the choice of Maisine 35-1 and Capryol 90 as lipids, and of Labrasol and Tween 80 as emulgents for formulating the LCT and MCT systems, respectively. Ternary phase diagrams were constructed to select the areas of nanoemulsion, and the amounts of lipid (X(1)) and emulgent (X(2)) as the critical factor variables. The SNEDDS were systematically optimized using 3(2) central composite design and the optimized formulations located using overlay plot. TEM studies on reconstituted SNEDDS demonstrated uniform shape and size of globules. The nanometer size range and high negative values of zeta potential depicted non-coalescent nature of the optimized SNEDDS. Thermodynamic studies, cloud point determination and accelerated stability studies ascertained the stability of optimized formulations. In situ perfusion (SPIP) studies in Sprague Dawley (SD) rats construed remarkable enhancement in the absorptivity and permeability parameters of SNEDDS vis-à-vis the conventional marketed product. In vivo pharmacodynamic studies in SD rats indicated significantly superior modification in plasma lipid levels of optimized SNEDDS vis-à-vis marketed product, inclusion complex and pure drug. The studies, therefore, indicate the successful formulation development of self-nanoemulsifying systems with distinctly improved bioavailability potential of ezetimibe. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery.

    PubMed

    Abd-Elsalam, Wessam H; El-Zahaby, Sally A; Al-Mahallawi, Abdulaziz M

    2018-11-01

    The aim of the current study was to formulate terconazole (TCZ) loaded polymeric mixed micelles (PMMs) incorporating Cremophor EL as a stabilizer and a penetration enhancer. A 2 3 full factorial design was performed using Design-Expert® software for the optimization of the PMMs which were formulated using Pluronic P123 and Pluronic F127 together with Cremophor EL. To confirm the role of Cremophor EL, PMMs formulation lacking Cremophor EL was prepared for the purpose of comparison. Results showed that the optimal PMMs formulation (F7, where the ratio of total Pluronics to drug was 40:1, the weight ratio of Pluronic P123 to Pluronic F127 was 4:1, and the percentage of Cremophor EL in aqueous phase was 5%) had a high micellar incorporation efficiency (92.98 ± 0.40%) and a very small micellar size (33.23 ± 8.00 nm). Transmission electron microscopy revealed that PMMs possess spherical shape and good dispersibility. The optimal PMMs exhibited superior physical stability when compared with the PMMs formulation of the same composition but lacking Cremophor EL. Ex vivo studies demonstrated that the optimal PMMs formula markedly improved the dermal TCZ delivery compared to PMMs lacking Cremophor EL and TCZ suspension. In addition, it was found that the optimal PMMs exhibited a greater extent of TCZ deposition in the rat dorsal skin relative to TCZ suspension. Moreover, histopathological studies revealed the safety of the optimal PMMs upon topical application to rats. Consequently, PMMs enriched with Cremophor EL, as a stable nano-system, could be promising for the skin delivery of TCZ.

  2. Formulation Optimization of Hot Melt Extruded Abuse Deterrent Pellet Dosage Form Utilizing Design of Experiments (DOE)

    PubMed Central

    Maddineni, Sindhuri; Battu, Sunil Kumar; Morott, Joe; Majumdar, Soumyajit; Repka, Michael A.

    2014-01-01

    The objective of the present study was to develop techniques for an abuse-deterrent (AD) platform utilizing hot melt extrusion (HME) process. Formulation optimization was accomplished by utilizing Box-Behnken design of experiments to determine the effect of the three formulation factors: PolyOx™ WSR301, Benecel™ K15M, and Carbopol 71G; each of which was studied at three levels on TR attributes of the produced melt extruded pellets. A response surface methodology was utilized to identify the optimized formulation. Lidocaine Hydrochloride was used as a model drug, and suitable formulation ingredients were employed as carrier matrices and processing aids. All of the formulations were evaluated for the TR attributes such as particle size post-milling, gelling, percentage of drug extraction in water and alcohol. All of the DOE formulations demonstrated sufficient hardness and elasticity, and could not be reduced into fine particles (<150µm), which is a desirable feature to prevent snorting. In addition, all of the formulations exhibited good gelling tendency in water with minimal extraction of drug in the aqueous medium. Moreover, Benecel™ K15M in combination with PolyOx™ WSR301 could be utilized to produce pellets with TR potential. HME has been demonstrated to be a viable technique with a potential to develop novel abuse-deterrent formulations. PMID:24433429

  3. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  4. Development and gamma scintigraphy evaluation of gastro retentive calcium ion-based oral formulation: an innovative approach for the management of gastro-esophageal reflux disease (GERD).

    PubMed

    Sharma, Braj Gaurav; Khanna, Kushagra; Kumar, Neeraj; Nishad, Dhruv K; Basu, Mitra; Bhatnagar, Aseem

    2017-11-01

    Calcium chloride is an essential calcium channel agonist which plays an important role in the contraction of muscles by triggering calcium channel. First time hypothesized about its role in the treatment of GER (gastro-esophageal reflux) and vomiting disorder due to its local action. There are two objectives covered in this study as first, the development and optimization of floating formulation of calcium chloride and another objective was to evaluate optimized formulation through gamma scintigraphy in human subjects. Gastro retentive formulation of calcium chloride was prepared by direct compression method. Thirteen tablet formulations were designed with the help of sodium chloride, HPMC-K4M, and carbopol-934 along with effervescing agent sodium bicarbonate and citric acid. Formulation (F8) fitted best for Korsmeyer-Peppas equation with an R 2 value of 0.993. The optimized formulation was radiolabelled with 99m Tc-99 m pertechnetate for its evaluation by gamma scintigraphy. Gastric retention (6 h) was evaluated by gamma scintigraphy in healthy human subjects and efficacy of present formulation confirmed in GER positive human subjects. Gamma scintigraphy results indicated its usefulness in order to manage GERD. Stability studies of the developed formulation were carried out as per ICH guidelines for region IV and found out to be stable for 24 months.

  5. TH-E-BRF-06: Kinetic Modeling of Tumor Response to Fractionated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Gordon, J; Chetty, I

    2014-06-15

    Purpose: Accurate calibration of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on calibrated parameters. In this study, we have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for calibrating radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time Td, half-life of dying cells Tr and cellmore » survival fraction SFD under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models, Chvetsov model (C-model) and Lim model (L-model). The C-model and L-model were optimized with the parameter Td fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43±0.08, and the half-life of dying cells averaged over the six patients is 17.5±3.2 days. The parameters Tr and SFD optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the Td-fixed C-model, and by 32.1% and 112.3% from those optimized with the Td-fixed L-model, respectively. Conclusion: The Z-model was analytically constructed from the cellpopulation differential equations to describe changes in the number of different tumor cells during the course of fractionated radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The developed modeling and optimization methods may help develop high-quality treatment regimens for individual patients.« less

  6. A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Cioaca, Alexandru

    A deep scientific understanding of complex physical systems, such as the atmosphere, can be achieved neither by direct measurements nor by numerical simulations alone. Data assimila- tion is a rigorous procedure to fuse information from a priori knowledge of the system state, the physical laws governing the evolution of the system, and real measurements, all with associated error statistics. Data assimilation produces best (a posteriori) estimates of model states and parameter values, and results in considerably improved computer simulations. The acquisition and use of observations in data assimilation raises several important scientific questions related to optimal sensor network design, quantification of data impact, pruning redundant data, and identifying the most beneficial additional observations. These questions originate in operational data assimilation practice, and have started to attract considerable interest in the recent past. This dissertation advances the state of knowledge in four dimensional variational (4D-Var) data assimilation by developing, implementing, and validating a novel computational framework for estimating observation impact and for optimizing sensor networks. The framework builds on the powerful methodologies of second-order adjoint modeling and the 4D-Var sensitivity equations. Efficient computational approaches for quantifying the observation impact include matrix free linear algebra algorithms and low-rank approximations of the sensitivities to observations. The sensor network configuration problem is formulated as a meta-optimization problem. Best values for parameters such as sensor location are obtained by optimizing a performance criterion, subject to the constraint posed by the 4D-Var optimization. Tractable computational solutions to this "optimization-constrained" optimization problem are provided. The results of this work can be directly applied to the deployment of intelligent sensors and adaptive observations, as well as to reducing the operating costs of measuring networks, while preserving their ability to capture the essential features of the system under consideration.

  7. Optimal formulations of local foods to achieve nutritional adequacy for 6–23-month-old rural Tanzanian children

    PubMed Central

    Raymond, Jofrey; Kassim, Neema; Rose, Jerman W.; Agaba, Morris

    2017-01-01

    ABSTRACT Background: Achieving nutritional goals of infants and young children while maintaining the intake of local and culture-specific foods can be a daunting task. Diet optimisation using linear goal programming (LP) can effectively generate optimal formulations incorporating local and culturally acceptable foods. Objective: The primary objective of this study was to determine whether a realistic and affordable diet that achieves dietary recommended intakes (DRIs) for 22 selected nutrients can be formulated for rural 6–23-month-old children in Tanzania. Design: Dietary intakes of 400 children aged 6–23 months were assessed using a weighed dietary record (WDR), 24-hour dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are commonly consumed in the study area. Dietary and market survey data were then used to define LP model parameters for diet optimisation. All LP analyses were done using linear program solver (LiPS) version 1.9.4 to generate optimal food formulations. Results: Optimal formulations that achieved DRIs for 20 nutrients for children aged 6–11 months and all selected nutrients for children aged 12–23 months were successfully developed at a twofold cost of the observed food purchase across age groups. Optimal formulations contained a mixture of ingredients such as wholegrain cereals, Irish potatoes, pulses and seeds, fish and poultry meat as well as fruits and vegetables that can be sourced locally. Conclusions: Our findings revealed that given the available food choices, it is possible to develop optimal formulations that can improve dietary adequacy for rural 6–23-month-old children if food budget for the child’s diets is doubled. These findings suggest the need for setting alternative interventions which can help households increase access to nutrient-dense foods that can fill the identified nutrient gaps. PMID:28814951

  8. D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats.

    PubMed

    Kumar, Neeraj; Shishu

    2015-01-25

    The study aims to statistically develop a microemulsion system of an antifungal agent, itraconazole for overcoming the shortcomings and adverse effects of currently used therapies. Following preformulation studies like solubility determination, component selection and pseudoternary phase diagram construction, a 3-factor D-optimal mixture design was used for optimizing a microemulsion having desirable formulation characteristics. The factors studied for sixteen experimental trials were percent contents (w/w) of water, oil and surfactant, whereas the responses investigated were globule size, transmittance, drug skin retention and drug skin permeation in 6h. Optimized microemulsion (OPT-ME) was incorporated in Carbopol based hydrogel to improve topical applicability. Physical characterization of the formulations was performed using particle size analysis, transmission electron microscopy, texture analysis and rheology behavior. Ex vivo studies carried out in Wistar rat skin depicted that the optimized formulation enhanced drug skin retention and permeation in 6h in comparison to conventional cream and Capmul 908P oil solution of itraconazole. The in vivo evaluation of optimized formulation was performed using a standardized Tinea pedis model in Wistar rats and the results of the pharmacodynamic study, obtained in terms of physical manifestations, fungal-burden score, histopathological profiles and oxidative stress. Rapid remission of Tinea pedis from rats treated with OPT-ME formulation was observed in comparison to commercially available therapies (ketoconazole cream and oral itraconazole solution), thereby indicating the superiority of microemulsion hydrogel formulation over conventional approaches for treating superficial fungal infections. The formulation was stable for a period of twelve months under refrigeration and ambient temperature conditions. All results, therefore, suggest that the OPT-ME can prove to be a promising and rapid alternative to conventional antifungal therapies against superficial fungal infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Factors influencing alcohol safety action project police officers' DWI arrests

    DOT National Transportation Integrated Search

    1974-04-29

    This report summarizes the results of a study to determine the factors influencing ASAP police officers' DWI arrests and the formulation of approaches to minimize the influence of those factors which might tend to constrain the arrest of persons who ...

  10. How to formulate and solve "optimal stand density over time" problems for even-aged stands using dynamic programming.

    Treesearch

    Chung M. Chen; Dietmar W. Rose; Rolfe A. Leary

    1980-01-01

    Describes how dynamic programming can be used to solve optimal stand density problems when yields are given by prior simulation or by a new stand growth equation that is a function of the decision variable. Formulations of the latter type allow use of a calculus-based search procedure; they determine exact optimal residual density at each stage.

  11. Design and In-vitro Evaluation of Sustained Release Floating Tablets of Metformin HCl Based on Effervescence and Swelling

    PubMed Central

    Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar

    2016-01-01

    An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147

  12. Toward Overcoming the Local Minimum Trap in MFBD

    DTIC Science & Technology

    2015-07-14

    the first two years of this grant: • A. Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind Deconvolution...Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Numerical Optimization Meth- ods for Blind Deconvolution, Numerical Algorithms, volume 65, issue 1...Publications (published) during reporting period: A. Cornelio, E. Loli Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind

  13. A greedy algorithm for species selection in dimension reduction of combustion chemistry

    NASA Astrophysics Data System (ADS)

    Hiremath, Varun; Ren, Zhuyin; Pope, Stephen B.

    2010-09-01

    Computational calculations of combustion problems involving large numbers of species and reactions with a detailed description of the chemistry can be very expensive. Numerous dimension reduction techniques have been developed in the past to reduce the computational cost. In this paper, we consider the rate controlled constrained-equilibrium (RCCE) dimension reduction method, in which a set of constrained species is specified. For a given number of constrained species, the 'optimal' set of constrained species is that which minimizes the dimension reduction error. The direct determination of the optimal set is computationally infeasible, and instead we present a greedy algorithm which aims at determining a 'good' set of constrained species; that is, one leading to near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving methane premixed combustion with chemistry described by the GRI-Mech 1.2 mechanism containing 31 species is used to test the algorithm. Results on dimension reduction errors for different sets of constrained species are presented to assess the effectiveness of the greedy algorithm. It is shown that the first four constrained species selected using the proposed greedy algorithm produce lower dimension reduction error than constraints on the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species selected using the proposed greedy algorithm produce a non-increasing dimension reduction error with every additional constrained species; and produce the lowest dimension reduction error in many cases tested over a wide range of equivalence ratios, pressures and initial temperatures.

  14. Structural design using equilibrium programming formulations

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1995-01-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  15. Estimating contrast transfer function and associated parameters by constrained non-linear optimization.

    PubMed

    Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W

    2009-03-01

    The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.

  16. Domain decomposition in time for PDE-constrained optimization

    DOE PAGES

    Barker, Andrew T.; Stoll, Martin

    2015-08-28

    Here, PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.

  17. Comments on "The multisynapse neural network and its application to fuzzy clustering".

    PubMed

    Yu, Jian; Hao, Pengwei

    2005-05-01

    In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.

  18. Two alternative ways for solving the coordination problem in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1991-01-01

    Two techniques for formulating the coupling between levels in multilevel optimization by linear decomposition, proposed as improvements over the original formulation, now several years old, that relied on explicit equality constraints which were shown by application experience as occasionally causing numerical difficulties. The two new techniques represent the coupling without using explicit equality constraints, thus avoiding the above diffuculties and also reducing computational cost of the procedure. The old and new formulations are presented in detail and illustrated by an example of a structural optimization. A generic version of the improved algorithm is also developed for applications to multidisciplinary systems not limited to structures.

  19. Horsetail matching: a flexible approach to optimization under uncertainty

    NASA Astrophysics Data System (ADS)

    Cook, L. W.; Jarrett, J. P.

    2018-04-01

    It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.

  20. Graph Learning in Knowledge Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Sean; Wang, Daisy Zhe

    The amount of text data has been growing exponentially in recent years, giving rise to automatic information extraction methods that store text annotations in a database. The current state-of-theart structured prediction methods, however, are likely to contain errors and it’s important to be able to manage the overall uncertainty of the database. On the other hand, the advent of crowdsourcing has enabled humans to aid machine algorithms at scale. As part of this project we introduced pi-CASTLE , a system that optimizes and integrates human and machine computing as applied to a complex structured prediction problem involving conditional random fieldsmore » (CRFs). We proposed strategies grounded in information theory to select a token subset, formulate questions for the crowd to label, and integrate these labelings back into the database using a method of constrained inference. On both a text segmentation task over academic citations and a named entity recognition task over tweets we showed an order of magnitude improvement in accuracy gain over baseline methods.« less

  1. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  2. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.

    2015-07-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  3. A Novel Approach for Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Chen, Ya-Chin; Juang, Jer-Nan

    1998-01-01

    Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In the main, their theoretical development is based upon the assumption of stationarity of the signals involved, particularly with respect to the second order statistics. On this basis, the well-known normal equations can be formulated. If high- order statistical stationarity is assumed, then the equivalent normal equations involve high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed and considerable implementation has been made in our contributions in the past year. The approach is based upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and offers significant deviations from the standard prediction methods. These blind adaptive algorithms are derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report, other new update algorithms are derived from the fundamental concepts of advanced system identification to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number of control-related problems, such as disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. The applications implemented are speech processing, such as coding and synthesis. Simulations are included to verify the novel modelling method.

  4. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  5. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology.

    PubMed

    Shivakumar, Hagalavadi Nanjappa; Patel, Pragnesh Bharat; Desai, Bapusaheb Gangadhar; Ashok, Purnima; Arulmozhi, Sinnathambi

    2007-09-01

    A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p < 0.05) on the response parameters. Numerical optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.

  6. Construction and cellular uptake behavior of redox-sensitive docetaxel prodrug-loaded liposomes.

    PubMed

    Ren, Guolian; Jiang, Mengjuan; Guo, Weiling; Sun, Bingjun; Lian, He; Wang, Yongjun; He, Zhonggui

    2018-01-01

    A redox-responsive docetaxel (DTX) prodrug consisting of a disulfide linkage between DTX and vitamin E (DTX-SS-VE) was synthesized in our laboratory and was successfully formulated into liposomes. The aim of this study was to optimize the formulation and investigate the cellular uptake of DTX prodrug-loaded liposomes (DPLs). The content of DTX-SS-VE was determined by ultrahigh-performance liquid chromatography (UPLC). The formulation and process were optimized using entrapment efficiency (EE), drug-loading (DL), particle size and polydispersity index (PDI) as the evaluation indices. The optimal formulation was as follows: drug/lipid ratio of 1:12, cholesterol/lipid ratio of 1:10, hydration temperature of 40 °C, sonication power and time of 400 W and 5 min. The EE, DL and particle size of the optimized DPLs were 97.60 ± 0.03%, 7.09 ± 0.22% and 93.06 ± 0.72 nm, respectively. DPLs had good dilution stability under the physiological conditions over 24 h. In addition, DPLs were found to enter tumor cells via different pathways and released DTX from the prodrug to induce apoptosis. Taken together, the optimized formulation and process were found to be a simple, stable and applicable method for the preparation of DPLs that could successfully escape from lysosomes.

  7. Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: formulation, design and in vivo evaluation.

    PubMed

    Khan, Saba; Baboota, Sanjula; Ali, Javed; Narang, R S; Narang, Jasjeet K

    2016-01-01

    The present work was aimed at developing an optimized oral nanostructured lipid carrier (NLC) formulation of poorly soluble atorvastatin Ca (AT Ca) and assessing its in vitro release, oral bioavailability and pharmacodynamic activity. In this study, chlorogenic acid, a novel excipient having synergistic cholesterol lowering activity was utilized and explored in NLC formulation development. The drug-loaded NLC formulations were prepared using a high pressure homogenization technique and optimized by the Box-Behnken statistical design using the Design-Expert software. The optimized NLC formulation was composed of oleic acid and stearic acid as lipid phase (0.9% w/v), poloxamer 188 as surfactant (1% w/v) and chlorogenic acid (0.05% w/v). The mean particle size, polydispersity index (PDI) and % drug entrapment efficiency of optimized NLC were 203.56 ± 8.57 nm, 0.27 ± 0.028 and 83.66 ± 5.69, respectively. In vitro release studies showed that the release of drug from optimized NLC formulations were markedly enhanced as compared to solid lipid nanoparticles (SLN) and drug suspension. The plasma concentration time profile of AT Ca in rats showed 3.08- and 4.89-fold increase in relative bioavailability of developed NLC with respect to marketed preparation (ATORVA® tablet) and drug suspension, respectively. Pharmacodynamic study suggested highly significant (**p < 0.01) reduction in the cholesterol and triglyceride values by NLC in comparison with ATORVA® tablet. Therefore, the results of in vivo studies demonstrated promising prospects for successful oral delivery of AT Ca by means of its chlorogenic acid integrated NLC.

  8. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    PubMed

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  9. Gastroretentive behavior of orally administered radiolabeled tamarind seed formulations in rabbits validated by gamma scintigraphy.

    PubMed

    Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Fadaeinasab, Mehran; Khaing, Si Lay; Chung, Lip Yong; Mohamad Haron, Didi Erwandi B; Noordin, Mohamed Ibrahim

    2017-01-01

    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153 Sm 2 O 3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time ( T max ) at which the maximum concentration of metformin HCl in the blood ( C max ) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. C max and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region.

  10. Gastroretentive behavior of orally administered radiolabeled tamarind seed formulations in rabbits validated by gamma scintigraphy

    PubMed Central

    Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Fadaeinasab, Mehran; Khaing, Si Lay; Chung, Lip Yong; Mohamad Haron, Didi Erwandi B; Noordin, Mohamed Ibrahim

    2017-01-01

    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153Sm2O3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time (Tmax) at which the maximum concentration of metformin HCl in the blood (Cmax) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. Cmax and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region. PMID:28031701

  11. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    PubMed

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  12. Canonical gravity, diffeomorphisms and objective histories

    NASA Astrophysics Data System (ADS)

    Samuel, Joseph

    2000-11-01

    This paper discusses the implementation of diffeomorphism invariance in purely Hamiltonian formulations of general relativity. We observe that, if a constrained Hamiltonian formulation derives from a manifestly covariant Lagrangian, the diffeomorphism invariance of the Lagrangian results in the following properties of the constrained Hamiltonian theory: the diffeomorphisms are generated by constraints on the phase space so that: (a) the algebra of the generators reflects the algebra of the diffeomorphism group; (b) the Poisson brackets of the basic fields with the generators reflects the spacetime transformation properties of these basic fields. This suggests that in a purely Hamiltonian approach the requirement of diffeomorphism invariance should be interpreted to include (b) and not just (a) as one might naively suppose. Giving up (b) amounts to giving up objective histories, even at the classical level. This observation has implications for loop quantum gravity which are spelled out in a companion paper. We also describe an analogy between canonical gravity and relativistic particle dynamics to illustrate our main point.

  13. A constrained maximization formulation to analyze deformation of fiber reinforced elastomeric actuators

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav; Krishnan, Girish

    2017-06-01

    Fiber reinforced elastomeric enclosures (FREEs) are soft and smart pneumatic actuators that deform in a predetermined fashion upon inflation. This paper analyzes the deformation behavior of FREEs by formulating a simple calculus of variations problem that involves constrained maximization of the enclosed volume. The model accurately captures the deformed shape for FREEs with any general fiber angle orientation, and its relation with actuation pressure, material properties and applied load. First, the accuracy of the model is verified with existing literature and experiments for the popular McKibben pneumatic artificial muscle actuator with two equal and opposite families of helically wrapped fibers. Then, the model is used to predict and experimentally validate the deformation behavior of novel rotating-contracting FREEs, for which no prior literature exist. The generality of the model enables conceptualization of novel FREEs whose fiber orientations vary arbitrarily along the geometry. Furthermore, the model is deemed to be useful in the design synthesis of fiber reinforced elastomeric actuators for general axisymmetric desired motion and output force requirement.

  14. Optimization-Based Selection of Influential Agents in a Rural Afghan Social Network

    DTIC Science & Technology

    2010-06-01

    nonlethal targeting model, a nonlinear programming ( NLP ) optimization formulation that identifies the k US agent assignment strategy producing the greatest...leader social network, and 3) the nonlethal targeting model, a nonlinear programming ( NLP ) optimization formulation that identifies the k US agent...NATO Coalition in Afghanistan. 55 for Afghanistan ( [54], [31], [48], [55], [30]). While Arab tribes tend to be more hierarchical, Pashtun tribes are

  15. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design.

    PubMed

    Kassem, Mohamed A A; ElMeshad, Aliaa N; Fares, Ahmed R

    2017-05-01

    Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box-Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of -32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.

  16. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity.

    PubMed

    Baig, Mirza Salman; Ahad, Abdul; Aslam, Mohammed; Imam, Syed Sarim; Aqil, Mohd; Ali, Asgar

    2016-04-01

    The aim of the present study was to develop and optimize levofloxacin loaded solid lipid nanoparticles for the treatment of conjunctivitis. Box-Behnken experimental design was applied for optimization of solid lipid nanoparticles. The independent variables were stearic acid as lipid (X1), Tween 80 as surfactant (X2) and sodium deoxycholate as co-surfactant (X3) while particle size (Y1) and entrapment efficiency (Y2) were the dependent variables. Further in vitro release and antibacterial activity in vitro were also performed. The optimized formulation of levofloxacin provides particle size of 237.82 nm and showed 78.71% entrapment efficiency and achieved flux 0.2,493 μg/cm(2)/h across excised goat cornea. In vitro release study showed prolonged drug release from the optimized formulation following Korsmeyer-Peppas model. Antimicrobial study revealed that the developed formulation possesses antibacterial activity against Staphylococcus aureus, and Escherichia coli equivalent to marketed eye drops. HET-CAM test demonstrated that optimized formulation was found to be non-irritant and safe for topical ophthalmic use. Our results concluded that solid lipid nanoparticles are an efficient carrier for ocular delivery of levofloxacin and other drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  18. Algorithms for bilevel optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.

  19. Integrated aerodynamic/dynamic optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.; Riley, Michael F.

    1989-01-01

    An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor.

  20. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  1. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-05-01

    Application of the multi-arm space robot will be more effective than single arm especially when the target is tumbling. This paper investigates the application of particle swarm optimization (PSO) strategy to coordinated trajectory planning of the dual-arm space robot in free-floating mode. In order to overcome the dynamics singularities issue, the direct kinematics equations in conjunction with constrained PSO are employed for coordinated trajectory planning of dual-arm space robot. The joint trajectories are parametrized with Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for coordinated trajectory planning of two kinematically redundant manipulators mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  2. Deterministic Reconfigurable Control Design for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.

    1998-01-01

    In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.

  3. Vehicle routing problem with time windows using natural inspired algorithms

    NASA Astrophysics Data System (ADS)

    Pratiwi, A. B.; Pratama, A.; Sa’diyah, I.; Suprajitno, H.

    2018-03-01

    Process of distribution of goods needs a strategy to make the total cost spent for operational activities minimized. But there are several constrains have to be satisfied which are the capacity of the vehicles and the service time of the customers. This Vehicle Routing Problem with Time Windows (VRPTW) gives complex constrains problem. This paper proposes natural inspired algorithms for dealing with constrains of VRPTW which involves Bat Algorithm and Cat Swarm Optimization. Bat Algorithm is being hybrid with Simulated Annealing, the worst solution of Bat Algorithm is replaced by the solution from Simulated Annealing. Algorithm which is based on behavior of cats, Cat Swarm Optimization, is improved using Crow Search Algorithm to make simplier and faster convergence. From the computational result, these algorithms give good performances in finding the minimized total distance. Higher number of population causes better computational performance. The improved Cat Swarm Optimization with Crow Search gives better performance than the hybridization of Bat Algorithm and Simulated Annealing in dealing with big data.

  4. Prediction-Correction Algorithms for Time-Varying Constrained Optimization

    DOE PAGES

    Simonetto, Andrea; Dall'Anese, Emiliano

    2017-07-26

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  5. Constrained optimization of image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1973-01-01

    A linear shift-invariant preprocessing technique is described which requires no specific knowledge of the image parameters and which is sufficiently general to allow the effective radius of the composite imaging system to be minimized while constraining other system parameters to remain within specified limits.

  6. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization.

    PubMed

    Habib, Basant A; AbouGhaly, Mohamed H H

    2016-06-01

    This study aims to illustrate the applicability of combined mixture-process variable (MPV) design and modeling for optimization of nanovesicular systems. The D-optimal experimental plan studied the influence of three mixture components (MCs) and two process variables (PVs) on lercanidipine transfersomes. The MCs were phosphatidylcholine (A), sodium glycocholate (B) and lercanidipine hydrochloride (C), while the PVs were glycerol amount in the hydration mixture (D) and sonication time (E). The studied responses were Y1: particle size, Y2: zeta potential and Y3: entrapment efficiency percent (EE%). Polynomial equations were used to study the influence of MCs and PVs on each response. Response surface methodology and multiple response optimization were applied to optimize the formulation with the goals of minimizing Y1 and maximizing Y2 and Y3. The obtained polynomial models had prediction R(2) values of 0.645, 0.947 and 0.795 for Y1, Y2 and Y3, respectively. Contour, Piepel's response trace, perturbation, and interaction plots were drawn for responses representation. The optimized formulation, A: 265 mg, B: 10 mg, C: 40 mg, D: zero g and E: 120 s, had desirability of 0.9526. The actual response values for the optimized formulation were within the two-sided 95% prediction intervals and were close to the predicted values with maximum percent deviation of 6.2%. This indicates the validity of combined MPV design and modeling for optimization of transfersomal formulations as an example of nanovesicular systems.

  8. Constrained minimization of smooth functions using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  9. Optimal test selection for prediction uncertainty reduction

    DOE PAGES

    Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel

    2016-12-02

    Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less

  10. An integrated bi-level optimization model for air quality management of Beijing's energy system under uncertainty.

    PubMed

    Jin, S W; Li, Y P; Nie, S

    2018-05-15

    In this study, an interval chance-constrained bi-level programming (ICBP) method is developed for air quality management of municipal energy system under uncertainty. ICBP can deal with uncertainties presented as interval values and probability distributions as well as examine the risk of violating constraints. Besides, a leader-follower decision strategy is incorporated into the optimization process where two decision makers with different goals and preferences are involved. To solve the proposed model, a bi-level interactive algorithm based on satisfactory degree is introduced into the decision-making processes. Then, an ICBP based energy and environmental systems (ICBP-EES) model is formulated for Beijing, in which air quality index (AQI) is used for evaluating the integrated air quality of multiple pollutants. Result analysis can help different stakeholders adjust their tolerances to achieve the overall satisfaction of EES planning for the study city. Results reveal that natural gas is the main source for electricity-generation and heating that could lead to a potentially increment of imported energy for Beijing in future. Results also disclose that PM 10 is the major contributor to AQI. These findings can help decision makers to identify desired alternatives for EES planning and provide useful information for regional air quality management under uncertainty. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Zehe, Erwin; Archambeau, Pierre; Dewals, Benjamin

    2016-04-01

    Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in an inverse manner such that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporations, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the - with the maximum power principle optimized - model with the asymptotes of the Budyko curve we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.

  12. Does the Budyko curve reflect a maximum-power state of hydrological systems? A backward analysis

    NASA Astrophysics Data System (ADS)

    Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.

    2016-01-01

    Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving run-off and evaporation for a simple one-box model. We did this in an inverse manner such that, when the conductances are optimized with the maximum-power principle, the steady-state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporation, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the model that has been optimized with the maximum-power principle with the asymptotes of the Budyko curve, we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.

  13. A Gauss-Newton full-waveform inversion in PML-truncated domains using scalar probing waves

    NASA Astrophysics Data System (ADS)

    Pakravan, Alireza; Kang, Jun Won; Newtson, Craig M.

    2017-12-01

    This study considers the characterization of subsurface shear wave velocity profiles in semi-infinite media using scalar waves. Using surficial responses caused by probing waves, a reconstruction of the material profile is sought using a Gauss-Newton full-waveform inversion method in a two-dimensional domain truncated by perfectly matched layer (PML) wave-absorbing boundaries. The PML is introduced to limit the semi-infinite extent of the half-space and to prevent reflections from the truncated boundaries. A hybrid unsplit-field PML is formulated in the inversion framework to enable more efficient wave simulations than with a fully mixed PML. The full-waveform inversion method is based on a constrained optimization framework that is implemented using Karush-Kuhn-Tucker (KKT) optimality conditions to minimize the objective functional augmented by PML-endowed wave equations via Lagrange multipliers. The KKT conditions consist of state, adjoint, and control problems, and are solved iteratively to update the shear wave velocity profile of the PML-truncated domain. Numerical examples show that the developed Gauss-Newton inversion method is accurate enough and more efficient than another inversion method. The algorithm's performance is demonstrated by the numerical examples including the case of noisy measurement responses and the case of reduced number of sources and receivers.

  14. Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouri, Drew Philip; Surowiec, Thomas M.

    Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less

  15. Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

    DOE PAGES

    Kouri, Drew Philip; Surowiec, Thomas M.

    2018-06-05

    Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less

  16. Transungual Gel of Terbinafine Hydrochloride for the Management of Onychomycosis: Formulation, Optimization, and Evaluation.

    PubMed

    Thatai, Purva; Sapra, Bharti

    2017-08-01

    The present study was aimed to optimize, develop, and evaluate microemulsion and microemulsion-based gel as a vehicle for transungual drug delivery of terbinafine hydrochloride for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the composition of microemulsion having amount of oil (X 1 ), Smix (mixture of surfactant and cosurfactant; X 2 ), and water (X 3 ) as the independent variables. The formulations were assessed for permeation (micrograms per square centimeter per hour; Y 1 ), particle size (nanometer; Y 2 ), and solubility of the drug in the formulation (milligrams per milliliter; Y 3 ). The microemulsion containing 3.05% oil, 24.98% Smix, and 71.96% water was selected as the optimized formulation. The microemulsion-based gel showed better penetration (∼5 folds) as well as more retention (∼9 fold) in the animal hoof as compared to the commercial cream. The techniques used to screen penetration enhancers (hydration enhancement factor, ATR-FTIR, SEM, and DSC) revealed the synergistic effect of combination of urea and n-acetyl cysteine in disruption of the structure of hoof and hence, leading to enhanced penetration of drug.

  17. Evaluation of Beeswax Influence on Physical Properties of Lipstick Using Instrumental and Sensory Methods.

    PubMed

    Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta; Bernatoniene, Jurga

    2016-01-01

    The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations.

  18. Evaluation of Beeswax Influence on Physical Properties of Lipstick Using Instrumental and Sensory Methods

    PubMed Central

    Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta

    2016-01-01

    The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations. PMID:27994631

  19. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng

    2015-01-01

    Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264

  20. Tracking trade transactions in water resource systems: A node-arc optimization formulation

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Huskova, Ivana; Harou, Julien J.

    2013-05-01

    We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).

  1. Pasteurization as a tool to control the bio-burden in solid herbal dosage forms: A pilot study of formulating Ashoka tablets with an industrial perspective.

    PubMed

    Pushpalatha, Hulikal Basavarajaiah; Pramod, Kumar; Sundaram, Ramachandran; Shyam, Ramakrishnan

    2014-10-01

    Irradiation and use of preservatives are routine procedures to control bio-burden in solid herbal dosage forms. Use of steam or pasteurization is even though reported in the literature, not many studies are available with respect to its application in reducing the bio-burden in herbal drug formulations. Hence, we undertook a series of studies to explore the suitability of pasteurization as a method to reduce bio-burden during formulation and development of herbal dosage forms, which will pave the way for preparing preservative-free formulations. Optimized Ashoka (Saraca indica) tablets were formulated and developed. The optimized formula was then subjected to pasteurization during formulation, with an aim to keep the microbial count well within the limits of pharmacopoeial standards. Then, three variants of the optimized Ashoka formulation - with preservative, without preservative and formulation without preservative and subjected to pasteurization, were compared by routine in-process parameters and stability studies. The results obtained indicate that Ashoka tablets manufactured by inclusion of the pasteurization technique not only showed the bio-burden to be within the limits of pharmacopoeial standards, but also exhibited the compliance with other parameters, such as stability and quality. The outcome of this pilot study shows that pasteurization can be employed as a distinctive method for reducing bio-burden during the formulation and development of herbal dosage forms, such as tablets.

  2. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Liu, C.; Botterud, A.

    Renewable energy resources have been rapidly integrated into power systems in many parts of the world, contributing to a cleaner and more sustainable supply of electricity. Wind and solar resources also introduce new challenges for system operations and planning in terms of economics and reliability because of their variability and uncertainty. Operational strategies based on stochastic optimization have been developed recently to address these challenges. In general terms, these stochastic strategies either embed uncertainties into the scheduling formulations (e.g., the unit commitment [UC] problem) in probabilistic forms or develop more appropriate operating reserve strategies to take advantage of advanced forecastingmore » techniques. Other approaches to address uncertainty are also proposed, where operational feasibility is ensured within an uncertainty set of forecasting intervals. In this report, a comprehensive review is conducted to present the state of the art through Spring 2015 in the area of stochastic methods applied to power system operations with high penetration of renewable energy. Chapters 1 and 2 give a brief introduction and overview of power system and electricity market operations, as well as the impact of renewable energy and how this impact is typically considered in modeling tools. Chapter 3 reviews relevant literature on operating reserves and specifically probabilistic methods to estimate the need for system reserve requirements. Chapter 4 looks at stochastic programming formulations of the UC and economic dispatch (ED) problems, highlighting benefits reported in the literature as well as recent industry developments. Chapter 5 briefly introduces alternative formulations of UC under uncertainty, such as robust, chance-constrained, and interval programming. Finally, in Chapter 6, we conclude with the main observations from our review and important directions for future work.« less

  4. Mixed-Strategy Chance Constrained Optimal Control

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.

    2013-01-01

    This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.

  5. New scale-down methodology from commercial to lab scale to optimize plant-derived soft gel capsule formulations on a commercial scale.

    PubMed

    Oishi, Sana; Kimura, Shin-Ichiro; Noguchi, Shuji; Kondo, Mio; Kondo, Yosuke; Shimokawa, Yoshiyuki; Iwao, Yasunori; Itai, Shigeru

    2018-01-15

    A new scale-down methodology from commercial rotary die scale to laboratory scale was developed to optimize a plant-derived soft gel capsule formulation and eventually manufacture superior soft gel capsules on a commercial scale, in order to reduce the time and cost for formulation development. Animal-derived and plant-derived soft gel film sheets were prepared using an applicator on a laboratory scale and their physicochemical properties, such as tensile strength, Young's modulus, and adhesive strength, were evaluated. The tensile strength of the animal-derived and plant-derived soft gel film sheets was 11.7 MPa and 4.41 MPa, respectively. The Young's modulus of the animal-derived and plant-derived soft gel film sheets was 169 MPa and 17.8 MPa, respectively, and both sheets showed a similar adhesion strength of approximately 4.5-10 MPa. Using a D-optimal mixture design, plant-derived soft gel film sheets were prepared and optimized by varying their composition, including variations in the mass of κ-carrageenan, ι-carrageenan, oxidized starch and heat-treated starch. The physicochemical properties of the sheets were evaluated to determine the optimal formulation. Finally, plant-derived soft gel capsules were manufactured using the rotary die method and the prepared soft gel capsules showed equivalent or superior physical properties compared with pre-existing soft gel capsules. Therefore, we successfully developed a new scale-down methodology to optimize the formulation of plant-derived soft gel capsules on a commercial scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Production and storage stability of formulated chicken nuggets using konjac flour and shiitake mushrooms.

    PubMed

    Akesowan, Adisak

    2016-10-01

    Formulated chicken nuggets which are low in fat and, high in dietary fiber and free from phosphate were developed by adding various levels of a konjac flour/xanthan gum (KF/XG) (3:1) mixture (0.2-1.5 %, w/w) and shiitake powder (SP) (1-4 %, w/w). A central composite rotatable design was used to investigate the influence of variables on the physical and sensory properties of nuggets and to optimize the formulated nugget formulation. The addition of the KF/XG mixture and SP was effective in improving nugget firmness and increasing hedonic scores for color, taste, flavor and overall acceptability. The nugget became darker with more SP was added. Optimal nuggets with 0.39 % KF/XG mixture and 1.84 % SP had reduced fat, higher dietary fiber and amino acids. After frozen (-18 ± 2 °C) storage, optimal formulated nuggets showed slower decreased in moisture, hardness and chewiness compared to standard nuggets. Konjac flour and SP also lowered lipid oxidation in frozen formulated nuggets. A slight change in sensory score was observed in both nuggets were microbiologically safe after frozen storage for 75 days.

  7. Dynamically Reconfigurable Approach to Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalie M.; Lewis, Robert Michael

    2003-01-01

    The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.

  8. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation.

    PubMed

    Jangdey, Manmohan Singh; Gupta, Anshita; Saraf, Shailendra; Saraf, Swarnlata

    2017-11-01

    The aim of this work is to apply Box-Behnken design to optimize the transfersomes were formulated by modified rotary evaporation sonication technique using surfactant Tween 80. The response surface methodology was used having three-factored with three levels. The prepared formulations were characterized for vesicle shape, size, entrapment efficiency (%), stability, and in vitro permeation. The result showed that drug entrapment of 84.24% with average vesicle size of 35.41 nm and drug loading of 8.042%. Thus, optimized formulation was found good stability and is a promising approach to improve the permeability of apigenin in sustained release for prolonged period of time.

  9. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  10. Optimality approaches to describe characteristic fluvial patterns on landscapes

    PubMed Central

    Paik, Kyungrock; Kumar, Praveen

    2010-01-01

    Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257

  11. Optimizing habitat location for black-tailed prairie dogs in southwestern South Dakota

    Treesearch

    John Hof; Michael Bevers; Daniel W. Uresk; Gregory L. Schenbeck

    2002-01-01

    A spatial optimization model was formulated and used to maximize black-tailed prairie dog populations in the Badlands National Park and the Buffalo Gap National Grassland in South Dakota. The choice variables involved the strategic placement of limited additional protected habitat. Population dynamics were captured in formulations that reflected exponential population...

  12. The Auburn Engineering Technical Assistance Program investigation of polyvinyl alcohol film developments pertaining to radioactive particle decontamination and industrial waste minimization

    NASA Astrophysics Data System (ADS)

    Mole, Tracey Lawrence

    In this work, an effective and systematic model is devised to synthesize the optimal formulation for an explicit engineering application in the nuclear industry, i.e. radioactive decontamination and waste reduction. Identification of an optimal formulation that is suitable for the desired system requires integration of all the interlacing behaviors of the product constituents. This work is unique not only in product design, but also in these design techniques. The common practice of new product development is to design the optimized product for a particular industrial niche and then subsequent research for the production process is conducted, developed and optimized separately from the product formulation. In this proposed optimization design technique, the development process, disposal technique and product formulation is optimized simultaneously to improve production profit, product behavior and disposal emissions. This "cradle to grave" optimization approach allowed a complex product formulation development process to be drastically simplified. The utilization of these modeling techniques took an industrial idea to full scale testing and production in under 18 months by reducing the number of subsequent laboratory trials required to optimize the formula, production and waste treatment aspects of the product simultaneously. This particular development material involves the use of a polymer matrix that is applied to surfaces as part of a decontamination system. The polymer coating serves to initially "fix" the contaminants in place for detection and ultimate elimination. Upon mechanical entrapment and removal, the polymer coating containing the radioactive isotopes can be dissolved in a solvent processor, where separation of the radioactive metallic particles can take place. Ultimately, only the collection of divided solids should be disposed of as nuclear waste. This creates an attractive alternative to direct land filling or incineration. This philosophy also provides waste generators a way to significantly reduce waste and associated costs, and help meet regulatory, safety and environmental requirements. In order for the polymeric film exhibit the desired performance, a combination of discrete constraints must be fulfilled. These interacting characteristics include the choice of polymer used for construction, drying time, storage constraints, decontamination ability, removal behavior, application process, coating strength and dissolvability processes. Identification of an optimized formulation that is suitable for this entire decontamination system requires integration of all the interlacing characteristics of the coating composition that affect the film behavior. A novel systematic method for developing quantitative values for theses qualitative characteristics is being developed in order to simultaneously optimize the design formulation subject to the discrete product specifications. This synthesis procedure encompasses intrinsic characteristics vital to successful product development, which allows for implementation of the derived model optimizations to operate independent of the polymer film application. This contribution illustrates the optimized synthesis example by which a large range of polymeric compounds and mixtures can be completed. (Abstract shortened by UMI.)

  13. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    PubMed

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  14. Evaluation of polyvinyl alcohols as mucoadhesive polymers for mucoadhesive buccal tablets prepared by direct compression.

    PubMed

    Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku

    2017-09-01

    The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.

  15. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    PubMed Central

    Ahmed, Osama AA; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance. PMID:25670883

  16. Solution techniques for transient stability-constrained optimal power flow – Part II

    DOE PAGES

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...

    2017-06-28

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  17. Solution techniques for transient stability-constrained optimal power flow – Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  18. Necessary optimality conditions for infinite dimensional state constrained control problems

    NASA Astrophysics Data System (ADS)

    Frankowska, H.; Marchini, E. M.; Mazzola, M.

    2018-06-01

    This paper is concerned with first order necessary optimality conditions for state constrained control problems in separable Banach spaces. Assuming inward pointing conditions on the constraint, we give a simple proof of Pontryagin maximum principle, relying on infinite dimensional neighboring feasible trajectories theorems proved in [20]. Further, we provide sufficient conditions guaranteeing normality of the maximum principle. We work in the abstract semigroup setting, but nevertheless we apply our results to several concrete models involving controlled PDEs. Pointwise state constraints (as positivity of the solutions) are allowed.

  19. Optimization of helicopter airframe structures for vibration reduction considerations, formulations and applications

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1988-01-01

    Several key issues involved in the application of formal optimization technique to helicopter airframe structures for vibration reduction are addressed. Considerations which are important in the optimization of real airframe structures are discussed. Considerations necessary to establish relevant set of design variables, constraints and objectives which are appropriate to conceptual, preliminary, detailed design, ground and flight test phases of airframe design are discussed. A methodology is suggested for optimization of airframes in various phases of design. Optimization formulations that are unique to helicopter airframes are described and expressions for vibration related functions are derived. Using a recently developed computer code, the optimization of a Bell AH-1G helicopter airframe is demonstrated.

  20. The optimal location of piezoelectric actuators and sensors for vibration control of plates

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ramesh; Narayanan, S.

    2007-12-01

    This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.

  1. Systematic Development of Transethosomal Gel System of Piroxicam: Formulation Optimization, In Vitro Evaluation, and Ex Vivo Assessment.

    PubMed

    Garg, Varun; Singh, Harmanpreet; Bhatia, Amit; Raza, Kaisar; Singh, Sachin Kumar; Singh, Bhupinder; Beg, Sarwar

    2017-01-01

    Piroxicam is used in the treatment of rheumatoid arthritis, osteoarthritis, and other inflammatory diseases. Upon oral administration, it is reported to cause ulcerative colitis, gastrointestinal irritation, edema and peptic ulcer. Hence, an alternative delivery system has been designed in the form of transethosome. The present study describes the preparation, optimization, characterization, and ex vivo study of piroxicam-loaded transethosomal gel using the central composite design. On the basis of the prescreening study, the concentration of lipids and ethanol was kept in the range of 2-4% w/v and 0-40% v/v, respectively. Formulation was optimized by measuring drug retention in the skin, drug permeation, entrapment efficiency, and vesicle size. Optimized formulation was incorporated in hydrogel and compared with other analogous vesicular (liposomes, ethosomes, and transfersomes) gels for the aforementioned responses. Among the various lipids used, soya phosphatidylcholine (SPL 70) and ethanol in various percentages were found to affect drug retention in the skin, drug permeation, vesicle size, and entrapment efficiency. The optimized batch of transethosome has shown 392.730 μg cm -2 drug retention in the skin, 44.312 μg cm -2  h -1 drug permeation, 68.434% entrapment efficiency, and 655.369 nm vesicle size, respectively. It was observed that the developed transethosomes were found superior in all the responses as compared to other vesicular formulations with improved stability and highest elasticity. Similar observations were noted with its gel formulation.

  2. An augmented Lagrangian trust region method for inclusion boundary reconstruction using ultrasound/electrical dual-modality tomography

    NASA Astrophysics Data System (ADS)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2018-07-01

    The ultrasound/electrical dual-modality tomography utilizes the complementarity of ultrasound reflection tomography (URT) and electrical impedance tomography (EIT) to improve the speed and accuracy of image reconstruction. Due to its advantages of no-invasive, no-radiation and low-cost, ultrasound/electrical dual-modality tomography has attracted much attention in the field of dual-modality imaging and has many potential applications in industrial and biomedical imaging. However, the data fusion of URT and EIT is difficult due to their different theoretical foundations and measurement principles. The most commonly used data fusion strategy in ultrasound/electrical dual-modality tomography is incorporating the structured information extracted from the URT into the EIT image reconstruction process through a pixel-based constraint. Due to the inherent non-linearity and ill-posedness of EIT, the reconstructed images from the strategy suffer from the low resolution, especially at the boundary of the observed inclusions. To improve this condition, an augmented Lagrangian trust region method is proposed to directly reconstruct the shapes of the inclusions from the ultrasound/electrical dual-modality measurements. In the proposed method, the shape of the target inclusion is parameterized by a radial shape model whose coefficients are used as the shape parameters. Then, the dual-modality shape inversion problem is formulated by an energy minimization problem in which the energy function derived from EIT is constrained by an ultrasound measurements model through an equality constraint equation. Finally, the optimal shape parameters associated with the optimal inclusion shape guesses are determined by minimizing the constrained cost function using the augmented Lagrangian trust region method. To evaluate the proposed method, numerical tests are carried out. Compared with single modality EIT, the proposed dual-modality inclusion boundary reconstruction method has a higher accuracy and is more robust to the measurement noise.

  3. Evidence-Based Design of Fixed-Dose Combinations: Principles and Application to Pediatric Anti-Tuberculosis Therapy.

    PubMed

    Svensson, Elin M; Yngman, Gunnar; Denti, Paolo; McIlleron, Helen; Kjellsson, Maria C; Karlsson, Mats O

    2018-05-01

    Fixed-dose combination formulations where several drugs are included in one tablet are important for the implementation of many long-term multidrug therapies. The selection of optimal dose ratios and tablet content of a fixed-dose combination and the design of individualized dosing regimens is a complex task, requiring multiple simultaneous considerations. In this work, a methodology for the rational design of a fixed-dose combination was developed and applied to the case of a three-drug pediatric anti-tuberculosis formulation individualized on body weight. The optimization methodology synthesizes information about the intended use population, the pharmacokinetic properties of the drugs, therapeutic targets, and practical constraints. A utility function is included to penalize deviations from the targets; a sequential estimation procedure was developed for stable estimation of break-points for individualized dosing. The suggested optimized pediatric anti-tuberculosis fixed-dose combination was compared with the recently launched World Health Organization-endorsed formulation. The optimized fixed-dose combination included 15, 36, and 16% higher amounts of rifampicin, isoniazid, and pyrazinamide, respectively. The optimized fixed-dose combination is expected to result in overall less deviation from the therapeutic targets based on adult exposure and substantially fewer children with underexposure (below half the target). The development of this design tool can aid the implementation of evidence-based formulations, integrating available knowledge and practical considerations, to optimize drug exposures and thereby treatment outcomes.

  4. Evaluating tretinoin formulations in the treatment of acne.

    PubMed

    Kircik, Leon H

    2014-04-01

    Topical tretinoin has been a standard treatment for acne vulgaris for more than 4 decades. While tretinoin has demonstrated proven efficacy in the treatment of acne lesions, it also is associated with the potential for skin irritation. Newer formulations have been designed to optimize both the drug concentration and the delivery vehicle with the aim to enable clinicians to provide increasingly effective acne treatment that minimizes irritation. These therapies include formulations with varying concentrations of tretinoin and vehicles that utilize a microsponge delivery system, hydrogels and micronized tretinoin, or propolymers. The purpose of this review is to evaluate different formulations and combinations of tretinoin in the treatment of acne vulgaris. While these advanced formulations were designed for controlled release of active ingredient, and have the potential to reduce cutaneous irritation relative to standard tretinoin cream and gel formulations, there is a need for comparative studies to evaluate the relative benefits of each of these advanced tretinoin formulations in optimizing acne treatment.

  5. Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions

    NASA Astrophysics Data System (ADS)

    Güler, Marifi

    2017-10-01

    Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.

  6. Continuous spin fields of mixed-symmetry type

    NASA Astrophysics Data System (ADS)

    Alkalaev, Konstantin; Grigoriev, Maxim

    2018-03-01

    We propose a description of continuous spin massless fields of mixed-symmetry type in Minkowski space at the level of equations of motion. It is based on the appropriately modified version of the constrained system originally used to describe massless bosonic fields of mixed-symmetry type. The description is shown to produce generalized versions of triplet, metric-like, and light-cone formulations. In particular, for scalar continuous spin fields we reproduce the Bekaert-Mourad formulation and the Schuster-Toro formulation. Because a continuous spin system inevitably involves infinite number of fields, specification of the allowed class of field configurations becomes a part of its definition. We show that the naive choice leads to an empty system and propose a suitable class resulting in the correct degrees of freedom. We also demonstrate that the gauge symmetries present in the formulation are all Stueckelberg-like so that the continuous spin system is not a genuine gauge theory.

  7. Formulating viscous hydrodynamics for large velocity gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Scott

    2008-02-15

    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor {tau}{sub ij} as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements {tau}{sub ij}. By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of {tau}{sub ij}. Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves.more » Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time.« less

  8. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity, which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.

  9. Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design.

    PubMed

    O'Reilly Beringhs, André; Rosa, Julia Macedo; Stulzer, Hellen Karine; Budal, Rosane Maria; Sonaglio, Diva

    2013-03-01

    This article describes the optimization of a peel-off facial mask formulation. An investigation was carried out on the parameters of the formulation that most affect the desirable characteristics of peel-off facial masks. Cereal alcohol had a significant effect on the drying time at concentrations of 1-12% (w/w). The applicability of the evaluated formulations was influenced by both carbomer (0-2.4%; w/w) and polyvinyl alcohol (PVA; 2.5-17.5%; w/w) content due to their ability to alter the formulation viscosity. Inverse concentrations of carbomer and PVA led to formulations with optimum viscosity for facial application. Film-forming performance was influenced only by the PVA concentration, achieving maximum levels at concentrations of around 11% (w/w). The optimized formulation, determined mathematically, contained 13% (w/w) PVA and 10% (w/w) cereal alcohol with no addition of carbomer. This formulation provided high levels of applicability and film-forming performance, the lowest drying time possible and excellent homogeneity of the green clay particles and aloe vera before and after drying. The preliminary stability study indicated that the optimized formulation is stable under normal storage conditions. The microbiological stability evaluation indicated that the preservative was efficient in terms of avoiding microbial growth. RSM was shown to be a useful statistical tool for the determination of the behavior of different compounds and their concentrations for the responses studied, allowing the investigation of the optimum conditions for the production of green clay and aloe vera peel-off facial masks.

  10. Ensuring the Reliable Operation of the Power Grid: State-Based and Distributed Approaches to Scheduling Energy and Contingency Reserves

    NASA Astrophysics Data System (ADS)

    Prada, Jose Fernando

    Keeping a contingency reserve in power systems is necessary to preserve the security of real-time operations. This work studies two different approaches to the optimal allocation of energy and reserves in the day-ahead generation scheduling process. Part I presents a stochastic security-constrained unit commitment model to co-optimize energy and the locational reserves required to respond to a set of uncertain generation contingencies, using a novel state-based formulation. The model is applied in an offer-based electricity market to allocate contingency reserves throughout the power grid, in order to comply with the N-1 security criterion under transmission congestion. The objective is to minimize expected dispatch and reserve costs, together with post contingency corrective redispatch costs, modeling the probability of generation failure and associated post contingency states. The characteristics of the scheduling problem are exploited to formulate a computationally efficient method, consistent with established operational practices. We simulated the distribution of locational contingency reserves on the IEEE RTS96 system and compared the results with the conventional deterministic method. We found that assigning locational spinning reserves can guarantee an N-1 secure dispatch accounting for transmission congestion at a reasonable extra cost. The simulations also showed little value of allocating downward reserves but sizable operating savings from co-optimizing locational nonspinning reserves. Overall, the results indicate the computational tractability of the proposed method. Part II presents a distributed generation scheduling model to optimally allocate energy and spinning reserves among competing generators in a day-ahead market. The model is based on the coordination between individual generators and a market entity. The proposed method uses forecasting, augmented pricing and locational signals to induce efficient commitment of generators based on firm posted prices. It is price-based but does not rely on multiple iterations, minimizes information exchange and simplifies the market clearing process. Simulations of the distributed method performed on a six-bus test system showed that, using an appropriate set of prices, it is possible to emulate the results of a conventional centralized solution, without need of providing make-whole payments to generators. Likewise, they showed that the distributed method can accommodate transactions with different products and complex security constraints.

  11. Optimally Stopped Optimization

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2016-11-01

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark simulated annealing on a class of maximum-2-satisfiability (MAX2SAT) problems. We also compare the performance of a D-Wave 2X quantum annealer to the Hamze-Freitas-Selby (HFS) solver, a specialized classical heuristic algorithm designed for low-tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N =1098 variables, the D-Wave device is 2 orders of magnitude faster than the HFS solver, and, modulo known caveats related to suboptimal annealing times, exhibits identical scaling with problem size.

  12. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  13. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  14. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  15. Constrained variational calculus for higher order classical field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David

    2010-11-01

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  16. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  17. Robust Path Planning and Feedback Design Under Stochastic Uncertainty

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars

    2008-01-01

    Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.

  18. Dynamic optimization and its relation to classical and quantum constrained systems

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo

    2017-08-01

    We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.

  19. State transformations and Hamiltonian structures for optimal control in discrete systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  20. Formulation and statistical optimization of self-microemulsifying drug delivery system of eprosartan mesylate for improvement of oral bioavailability.

    PubMed

    Dangre, Pankaj; Gilhotra, Ritu; Dhole, Shashikant

    2016-10-01

    The present investigation is aimed to design a statistically optimized self-microemulsifying drug delivery system (SMEDDS) of eprosartan mesylate (EM). Preliminary screening was carried out to find a suitable combination of various excipients for the formulation. A 3(2) full factorial design was employed to determine the effect of various independent variables on dependent (response) variables. The independent variables studied in the present work were concentration of oil (X 1) and the ratio of S mix (X 2), whereas the dependent variables were emulsification time (s), globule size (nm), polydispersity index (pdi), and zeta potential (mV), and the multiple linear regression analysis (MLRA) was employed to understand the influence of independent variables on dependent variables. Furthermore, a numerical optimization technique using the desirability function was used to develop a new optimized formulation with desired values of dependent variables. The optimized SMEDDS formulation of eprosartan mesylate (EMF-O) by the above method exhibited emulsification time, 118.45 ± 1.64 s; globule size, 196.81 ± 1.29 nm; zeta potential, -9.34 ± 1.2 mV, and polydispersity index, 0.354 ± 0.02. For the in vitro dissolution study, the optimized formulation (EMF-O) and pure drug were separately entrapped in the dialysis bag, and the study indicated higher release of the drug from EMF-O. In vivo pharmacokinetic studies in Wistar rats using PK solver software revealed 2.1-fold increment in oral bioavailability of EM from EMF-O, when compared with plain suspension of pure drug.

  1. Understanding and optimizing the dual excipient functionality of sodium lauryl sulfate in tablet formulation of poorly water soluble drug: wetting and lubrication.

    PubMed

    Aljaberi, Ahmad; Chatterji, Ashish; Dong, Zedong; Shah, Navnit H; Malick, Waseem; Singhal, Dharmendra; Sandhu, Harpreet K

    2013-01-01

    To evaluate and optimize sodium lauryl sulfate (SLS) and magnesium stearate (Mg.St) levels, with respect to dissolution and compaction, in a high dose, poorly soluble drug tablet formulation. A model poorly soluble drug was formulated using high shear aqueous granulation. A D-optimal design was used to evaluate and model the effect of granulation conditions, size of milling screen, SLS and Mg.St levels on tablet compaction and ejection. The compaction profiles were generated using a Presster(©) compaction simulator. Dissolution of the kernels was performed using a USP dissolution apparatus II and intrinsic dissolution was determined using a stationary disk system. Unlike kernels dissolution which failed to discriminate between tablets prepared with various SLS contents, the intrinsic dissolution rate showed that a SLS level of 0.57% was sufficient to achieve the required release profile while having minimal effect on compaction. The formulation factors that affect tablet compaction and ejection were identified and satisfactorily modeled. The design space of best factor setting to achieve optimal compaction and ejection properties was successfully constructed by RSM analysis. A systematic study design helped identify the critical factors and provided means to optimize the functionality of key excipient to design robust drug product.

  2. Solid dispersions of the penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA): Formulation design and optimization studies

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael

    2015-01-01

    The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion.. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone. PMID:24047113

  3. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers.

    PubMed

    Rizwanullah, Md; Amin, Saima; Ahmad, Javed

    2017-01-01

    In the present study, rosuvastatin calcium-loaded nanostructured lipid carriers were developed and optimized for improved efficacy. The ROS-Ca-loaded NLC was prepared using melt emulsification ultrasonication technique and optimized by Box-Behnken statistical design. The optimized NLC composed of glyceryl monostearate (solid lipid) and capmul MCM EP (liquid lipid) as lipid phase (3% w/v), poloxamer 188 (1%) and tween 80 (1%) as surfactant. The mean particle size, polydispersity index (PDI), zeta potential (ζ) and entrapment efficiency (%) of optimized NLC formulation was observed to be 150.3 ± 4.67 nm, 0.175 ± 0.022, -32.9 ± 1.36 mV and 84.95 ± 5.63%, respectively. NLC formulation showed better in vitro release in simulated intestinal fluid (pH 6.8) than API suspension. Confocal laser scanning showed deeper permeation of formulation across rat intestine compared to rhodamine B dye solution. Pharmacokinetic study on female albino Wistar rats showed 5.4-fold increase in relative bioavailability with NLC compared to API suspension. Optimized NLC formulation also showed significant (p < 0.01) lipid lowering effect in hyperlipidemic rats. Therefore, NLC represents a great potential for improved efficacy of ROS-Ca after oral administration.

  4. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study.

    PubMed

    Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A

    2018-11-01

    This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.

  5. Adaptive Multi-Agent Systems for Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Macready, William; Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.

  6. A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel Wireless Sensor Networks

    PubMed Central

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen

    2013-01-01

    One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.

  7. A second-generation constrained reaction volume shock tube

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Tulgestke, A. M.; Davidson, D. F.; Hanson, R. K.

    2014-05-01

    We have developed a shock tube that features a sliding gate valve in order to mechanically constrain the reactive test gas mixture to an area close to the shock tube endwall, separating it from a specially formulated non-reactive buffer gas mixture. This second-generation Constrained Reaction Volume (CRV) strategy enables near-constant-pressure shock tube test conditions for reactive experiments behind reflected shocks, thereby enabling improved modeling of the reactive flow field. Here we provide details of the design and operation of the new shock tube. In addition, we detail special buffer gas tailoring procedures, analyze the buffer/test gas interactions that occur on gate valve opening, and outline the size range of fuels that can be studied using the CRV technique in this facility. Finally, we present example low-temperature ignition delay time data to illustrate the CRV shock tube's performance.

  8. Shortening the decade-long gap between adult and paediatric drug formulations: a new framework based on the HIV experience in low- and middle-income countries.

    PubMed

    Penazzato, Martina; Lewis, Linda; Watkins, Melynda; Prabhu, Vineet; Pascual, Fernando; Auton, Martin; Kreft, Wesley; Morin, Sébastien; Vicari, Marissa; Lee, Janice; Jamieson, David; Siberry, George K

    2018-02-01

    Despite the coordinated efforts by several stakeholders to speed up access to HIV treatment for children, development of optimal paediatric formulations still lags 8 to 10 years behind that of adults, due mainly to lack of market incentives and technical complexities in manufacturing. The small and fragmented paediatric market also hinders launch and uptake of new formulations. Moreover, the problems affecting HIV similarly affect other disease areas where development and introduction of optimal paediatric formulations is even slower. Therefore, accelerating processes for developing and commercializing optimal paediatric drug formulations for HIV and other disease areas is urgently needed. The Global Accelerator for Paediatric Formulations (GAP-f) is an innovative collaborative model that will accelerate availability of optimized treatment options for infectious diseases, such as HIV, tuberculosis and viral hepatitis, affecting children in low- and middle-income countries (LMICs). It builds on the HIV experience and existing efforts in paediatric drug development, formalizing collaboration between normative bodies, research networks, regulatory agencies, industry, supply and procurement organizations and funding bodies. Upstream, the GAP-f will coordinate technical support to companies to design and study optimal paediatric formulations, harmonize efforts with regulators and incentivize manufacturers to conduct formulation development. Downstream, the GAP-f will reinforce coordinated procurement and communication with suppliers. The GAP-f will be implemented in a three-stage process: (1) development of a strategic framework and promotion of key regulatory efficiencies; (2) testing of feasibility and results, building on the work of existing platforms such as the Paediatric HIV Treatment Initiative (PHTI) including innovative approaches to incentivize generic development and (3) launch as a fully functioning structure. GAP-f is a key partnership example enhancing North-South and international cooperation on and access to science and technology and capacity building, responding to Sustainable Development Goal (SDG) 17.6 (technology) and 17.9. (capacity-building). By promoting access to the most needed paediatric formulations for HIV and high-burden infectious diseases in low-and middle-income countries, GAP-f will support achievement of SDG 3.2 (infant mortality), 3.3 (end of AIDS and combat other communicable diseases) and 3.8 (access to essential medicines), and be an essential component of meeting the global Start Free, Stay Free, AIDS Free super-fast-track targets. © 2018 World Health Organization; licensee IAS.

  9. Parameterized LMI Based Diagonal Dominance Compensator Study for Polynomial Linear Parameter Varying System

    NASA Astrophysics Data System (ADS)

    Han, Xiaobao; Li, Huacong; Jia, Qiusheng

    2017-12-01

    For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.

  10. Performance Analysis and Design Synthesis (PADS) computer program. Volume 1: Formulation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program formulation for PADS computer program is presented. It can size launch vehicles in conjunction with calculus-of-variations optimal trajectories and can also be used as a general-purpose branched trajectory optimization program. In the former use, it has the Space Shuttle Synthesis Program as well as a simplified stage weight module for optimally sizing manned recoverable launch vehicles. For trajectory optimization alone or with sizing, PADS has two trajectory modules. The first trajectory module uses the method of steepest descent; the second employs the method of quasilinearization, which requires a starting solution from the first trajectory module.

  11. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks

    Treesearch

    Bistra Dilkina; Rachel Houtman; Carla P. Gomes; Claire A. Montgomery; Kevin S. McKelvey; Katherine Kendall; Tabitha A. Graves; Richard Bernstein; Michael K. Schwartz

    2016-01-01

    Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a...

  12. Optical Correlation of Images With Signal-Dependent Noise Using Constrained-Modulation Filter Devices

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.

  13. Glabridin nanosuspension for enhanced skin penetration: formulation optimization, in vitro and in vivo evaluation.

    PubMed

    Wang, W P; Hul, J; Sui, H; Zhao, Y S; Feng, J; Liu, C

    2016-05-01

    Glabridin, a polyphenolic flavonoid from licorice, has inspired great interest for its antioxidant, anti-inflammatory and skin-lightening activities. However, low water solubility and poor stability of glabridin impedes its topical application in cosmetic products and therapies of dermal diseases. The purpose of this study was to develop a nanosuspension formulation of glabridin to improve its skin permeation. Glabridin nanosuspensions were prepared using anti-solvent precipitation-homogenization method, and Box-Behnken design was adopted to investigate the effects of crucial formulation variables on particle size and to optimize the nanosuspension formulation. The optimal formulation consisted of 0.25% glabridin, 0.47% Poloxamer 188 and 0.11% Polyvinylpyrrolidone K30, and the obtained nanosuspension showed an average particle size of 149.2 nm with a polydispersity index of 0.254. Furthermore, the nanosuspension exhibited significantly enhanced drug permeation flux of glabridin through rat skin with no lag phase both in vitro and in vivo, compared to the coarse suspension and physical mixture. The glabridin nanosuspension showed no significant particle aggregates and a drug loss of 5.46% after storage for 3 months at room temperature. With its enhanced skin penetration, the nanosuspension might be a more preferable formulation for topical administration of poorly soluble glabridin.

  14. Optimization of Primary Drying in Lyophilization during Early Phase Drug Development using a Definitive Screening Design with Formulation and Process Factors.

    PubMed

    Goldman, Johnathan M; More, Haresh T; Yee, Olga; Borgeson, Elizabeth; Remy, Brenda; Rowe, Jasmine; Sadineni, Vikram

    2018-06-08

    Development of optimal drug product lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the drug product formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. In order to overcome these development difficulties, an eight factor definitive screening design (DSD), including both formulation and process parameters, was executed on a fully human monoclonal antibody (mAb) drug product. The DSD enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different drug product formulations. This concept is demonstrated on a mAb drug product where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments (DoE) approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions. Copyright © 2018. Published by Elsevier Inc.

  15. Dynamics of Compressible Convection and Thermochemical Mantle Convection

    NASA Astrophysics Data System (ADS)

    Liu, Xi

    The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.

  16. A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets.

    PubMed

    Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon

    2012-09-01

    A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.

  17. A TV-constrained decomposition method for spectral CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang

    2017-03-01

    Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.

  18. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  19. An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function

    NASA Technical Reports Server (NTRS)

    Wrenn, Gregory A.

    1989-01-01

    A technique is described for converting a constrained optimization problem into an unconstrained problem. The technique transforms one of more objective functions into reduced objective functions, which are analogous to goal constraints used in the goal programming method. These reduced objective functions are appended to the set of constraints and an envelope of the entire function set is computed using the Kreisselmeir-Steinhauser function. This envelope function is then searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods to find a constrained minimum without the draw down factor typical of penalty function methods, and that the technique may be started from the feasible or infeasible design space. In multiobjective applications, the approach has the advantage of locating a compromise minimum design without the need to optimize for each individual objective function separately.

  20. Optimal lifting ascent trajectories for the space shuttle

    NASA Technical Reports Server (NTRS)

    Rau, T. R.; Elliott, J. R.

    1972-01-01

    The performance gains which are possible through the use of optimal trajectories for a particular space shuttle configuration are discussed. The spacecraft configurations and aerodynamic characteristics are described. Shuttle mission payload capability is examined with respect to the optimal orbit inclination for unconstrained, constrained, and nonlifting conditions. The effects of velocity loss and heating rate on the optimal ascent trajectory are investigated.

Top