Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.
Use of constrained optimization in the conceptual design of a medium-range subsonic transport
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1980-01-01
Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.
Constrained optimization of image restoration filters
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1973-01-01
A linear shift-invariant preprocessing technique is described which requires no specific knowledge of the image parameters and which is sufficiently general to allow the effective radius of the composite imaging system to be minimized while constraining other system parameters to remain within specified limits.
CLFs-based optimization control for a class of constrained visual servoing systems.
Song, Xiulan; Miaomiao, Fu
2017-03-01
In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.
2011-02-01
This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.
Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W
2009-03-01
The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
An effective parameter optimization with radiation balance constraints in the CAM5
NASA Astrophysics Data System (ADS)
Wu, L.; Zhang, T.; Qin, Y.; Lin, Y.; Xue, W.; Zhang, M.
2017-12-01
Uncertain parameters in physical parameterizations of General Circulation Models (GCMs) greatly impact model performance. Traditional parameter tuning methods are mostly unconstrained optimization, leading to the simulation results with optimal parameters may not meet the conditions that models have to keep. In this study, the radiation balance constraint is taken as an example, which is involved in the automatic parameter optimization procedure. The Lagrangian multiplier method is used to solve this optimization problem with constrains. In our experiment, we use CAM5 atmosphere model under 5-yr AMIP simulation with prescribed seasonal climatology of SST and sea ice. We consider the synthesized metrics using global means of radiation, precipitation, relative humidity, and temperature as the goal of optimization, and simultaneously consider the conditions that FLUT and FSNTOA should satisfy as constraints. The global average of the output variables FLUT and FSNTOA are set to be approximately equal to 240 Wm-2 in CAM5. Experiment results show that the synthesized metrics is 13.6% better than the control run. At the same time, both FLUT and FSNTOA are close to the constrained conditions. The FLUT condition is well satisfied, which is obviously better than the average annual FLUT obtained with the default parameters. The FSNTOA has a slight deviation from the observed value, but the relative error is less than 7.7‰.
Homotopy approach to optimal, linear quadratic, fixed architecture compensation
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1991-01-01
Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.
Parametric study of a canard-configured transport using conceptual design optimization
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.
1985-01-01
Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Optimal synchronization in space
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-02-01
In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of “wire” available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l)∝l-α , with exponents α increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.
On the optimization of electromagnetic geophysical data: Application of the PSO algorithm
NASA Astrophysics Data System (ADS)
Godio, A.; Santilano, A.
2018-01-01
Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.
NASA Astrophysics Data System (ADS)
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
NASA Astrophysics Data System (ADS)
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratiomore » (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.« less
Global optimization framework for solar building design
NASA Astrophysics Data System (ADS)
Silva, N.; Alves, N.; Pascoal-Faria, P.
2017-07-01
The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.
NASA Astrophysics Data System (ADS)
Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan
2015-06-01
Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Wang, Hailong; Sun, Yuqiu; Su, Qinghua; Xia, Xuewen
2018-01-01
The backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA) to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F) is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed. PMID:29666635
Liu, Qingshan; Guo, Zhishan; Wang, Jun
2012-02-01
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Constrained multi-objective optimization of storage ring lattices
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2018-03-01
The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.
SU-E-T-551: Monitor Unit Optimization in Stereotactic Body Radiation Therapy for Stage I Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B-T; Lu, J-Y
2015-06-15
Purpose: The study aims to reduce the monitor units (MUs) in the stereotactic body radiation therapy (SBRT) treatment for lung cancer by adjusting the optimizing parameters. Methods: Fourteen patients suffered from stage I Non-Small Cell Lung Cancer (NSCLC) were enrolled. Three groups of parameters were adjusted to investigate their effects on MU numbers and organs at risk (OARs) sparing: (1) the upper objective of planning target volume (UOPTV); (2) strength setting in the MU constraining objective; (3) max MU setting in the MU constraining objective. Results: We found that the parameters in the optimizer influenced the MU numbers in amore » priority, strength and max MU dependent manner. MU numbers showed a decreasing trend with the UOPTV increasing. MU numbers with low, medium and high priority for the UOPTV were 428±54, 312±48 and 258±31 MU/Gy, respectively. High priority for UOPTV also spared the heart, cord and lung while maintaining comparable PTV coverage than the low and medium priority group. It was observed that MU numbers tended to decrease with the strength increasing and max MU setting decreasing. With maximum strength, the MU numbers reached its minimum while maintaining comparable or improved dose to the normal tissues. It was also found that the MU numbers continued to decline at 85% and 75% max MU setting but no longer to decrease at 50% and 25%. Combined with high priority for UOPTV and MU constraining objectives, the MU numbers can be decreased as low as 223±26 MU/Gy. Conclusion:: The priority of UOPTV, MU constraining objective in the optimizer impact on the MU numbers in SBRT treatment for lung cancer. Giving high priority to the UOPTV, setting the strength to maximum value and the max MU to 50% in the MU objective achieves the lowest MU numbers while maintaining comparable or improved OAR sparing.« less
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
Chang, Y K; Lim, H C
1989-08-20
A multivariable on-line adaptive optimization algorithm using a bilevel forgetting factor method was developed and applied to a continuous baker's yeast culture in simulation and experimental studies to maximize the cellular productivity by manipulating the dilution rate and the temperature. The algorithm showed a good optimization speed and a good adaptability and reoptimization capability. The algorithm was able to stably maintain the process around the optimum point for an extended period of time. Two cases were investigated: an unconstrained and a constrained optimization. In the constrained optimization the ethanol concentration was used as an index for the baking quality of yeast cells. An equality constraint with a quadratic penalty was imposed on the ethanol concentration to keep its level close to a hypothetical "optimum" value. The developed algorithm was experimentally applied to a baker's yeast culture to demonstrate its validity. Only unconstrained optimization was carried out experimentally. A set of tuning parameter values was suggested after evaluating the results from several experimental runs. With those tuning parameter values the optimization took 50-90 h. At the attained steady state the dilution rate was 0.310 h(-1) the temperature 32.8 degrees C, and the cellular productivity 1.50 g/L/h.
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.
Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach
NASA Astrophysics Data System (ADS)
Chiara D'Autilia, Maria; Sgura, Ivonne; Bozzini, Benedetto
2017-12-01
In this paper we consider a parameter identification problem (PIP) for data oscillating in time, that can be described in terms of the dynamics of some ordinary differential equation (ODE) model, resulting in an optimization problem constrained by the ODEs. In problems with this type of data structure, simple application of the direct method of control theory (discretize-then-optimize) yields a least-squares cost function exhibiting multiple ‘low’ minima. Since in this situation any optimization algorithm is liable to fail in the approximation of a good solution, here we propose a Fourier regularization approach that is able to identify an iso-frequency manifold {{ S}} of codimension-one in the parameter space \
Trajectory Design Strategies for the NGST L2 Libration Point Mission
NASA Technical Reports Server (NTRS)
Folta, David; Cooley, Steven; Howell, Kathleen; Bauer, Frank H.
2001-01-01
The Origins' Next Generation Space Telescope (NGST) trajectory design is addressed in light of improved methods for attaining constrained orbit parameters and their control at the exterior collinear libration point, L2. The use of a dynamical systems approach, state-space equations for initial libration orbit control, and optimization to achieve constrained orbit parameters are emphasized. The NGST trajectory design encompasses a direct transfer and orbit maintenance under a constant acceleration. A dynamical systems approach can be used to provide a biased orbit and stationkeeping maintenance method that incorporates the constraint of a single axis correction scheme.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Fast alternating projection methods for constrained tomographic reconstruction
Liu, Li; Han, Yongxin
2017-01-01
The alternating projection algorithms are easy to implement and effective for large-scale complex optimization problems, such as constrained reconstruction of X-ray computed tomography (CT). A typical method is to use projection onto convex sets (POCS) for data fidelity, nonnegative constraints combined with total variation (TV) minimization (so called TV-POCS) for sparse-view CT reconstruction. However, this type of method relies on empirically selected parameters for satisfactory reconstruction and is generally slow and lack of convergence analysis. In this work, we use a convex feasibility set approach to address the problems associated with TV-POCS and propose a framework using full sequential alternating projections or POCS (FS-POCS) to find the solution in the intersection of convex constraints of bounded TV function, bounded data fidelity error and non-negativity. The rationale behind FS-POCS is that the mathematically optimal solution of the constrained objective function may not be the physically optimal solution. The breakdown of constrained reconstruction into an intersection of several feasible sets can lead to faster convergence and better quantification of reconstruction parameters in a physical meaningful way than that in an empirical way of trial-and-error. In addition, for large-scale optimization problems, first order methods are usually used. Not only is the condition for convergence of gradient-based methods derived, but also a primal-dual hybrid gradient (PDHG) method is used for fast convergence of bounded TV. The newly proposed FS-POCS is evaluated and compared with TV-POCS and another convex feasibility projection method (CPTV) using both digital phantom and pseudo-real CT data to show its superior performance on reconstruction speed, image quality and quantification. PMID:28253298
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
1988-01-01
A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
Hierarchical Bayesian Model Averaging for Chance Constrained Remediation Designs
NASA Astrophysics Data System (ADS)
Chitsazan, N.; Tsai, F. T.
2012-12-01
Groundwater remediation designs are heavily relying on simulation models which are subjected to various sources of uncertainty in their predictions. To develop a robust remediation design, it is crucial to understand the effect of uncertainty sources. In this research, we introduce a hierarchical Bayesian model averaging (HBMA) framework to segregate and prioritize sources of uncertainty in a multi-layer frame, where each layer targets a source of uncertainty. The HBMA framework provides an insight to uncertainty priorities and propagation. In addition, HBMA allows evaluating model weights in different hierarchy levels and assessing the relative importance of models in each level. To account for uncertainty, we employ a chance constrained (CC) programming for stochastic remediation design. Chance constrained programming was implemented traditionally to account for parameter uncertainty. Recently, many studies suggested that model structure uncertainty is not negligible compared to parameter uncertainty. Using chance constrained programming along with HBMA can provide a rigorous tool for groundwater remediation designs under uncertainty. In this research, the HBMA-CC was applied to a remediation design in a synthetic aquifer. The design was to develop a scavenger well approach to mitigate saltwater intrusion toward production wells. HBMA was employed to assess uncertainties from model structure, parameter estimation and kriging interpolation. An improved harmony search optimization method was used to find the optimal location of the scavenger well. We evaluated prediction variances of chloride concentration at the production wells through the HBMA framework. The results showed that choosing the single best model may lead to a significant error in evaluating prediction variances for two reasons. First, considering the single best model, variances that stem from uncertainty in the model structure will be ignored. Second, considering the best model with non-dominant model weight may underestimate or overestimate prediction variances by ignoring other plausible propositions. Chance constraints allow developing a remediation design with a desirable reliability. However, considering the single best model, the calculated reliability will be different from the desirable reliability. We calculated the reliability of the design for the models at different levels of HBMA. The results showed that by moving toward the top layers of HBMA, the calculated reliability converges to the chosen reliability. We employed the chance constrained optimization along with the HBMA framework to find the optimal location and pumpage for the scavenger well. The results showed that using models at different levels in the HBMA framework, the optimal location of the scavenger well remained the same, but the optimal extraction rate was altered. Thus, we concluded that the optimal pumping rate was sensitive to the prediction variance. Also, the prediction variance was changed by using different extraction rate. Using very high extraction rate will cause prediction variances of chloride concentration at the production wells to approach zero regardless of which HBMA models used.
Precision constraints on the top-quark effective field theory at future lepton colliders
NASA Astrophysics Data System (ADS)
Durieux, G.
We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-\\to bW^+\\:\\bar bW^-$ process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Liwei; Qian, Yun; Zhou, Tianjun
2014-10-01
In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less
A Model-Data Fusion Approach for Constraining Modeled GPP at Global Scales Using GOME2 SIF Data
NASA Astrophysics Data System (ADS)
MacBean, N.; Maignan, F.; Lewis, P.; Guanter, L.; Koehler, P.; Bacour, C.; Peylin, P.; Gomez-Dans, J.; Disney, M.; Chevallier, F.
2015-12-01
Predicting the fate of the ecosystem carbon, C, stocks and their sensitivity to climate change relies heavily on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. However, there are large differences in the Gross Primary Productivity (GPP) simulated by different land surface models (LSMs), not only in terms of mean value, but also in terms of phase and amplitude when compared to independent data-based estimates. This strongly limits our ability to provide accurate predictions of carbon-climate feedbacks. One possible source of this uncertainty is from inaccurate parameter values resulting from incomplete model calibration. Solar Induced Fluorescence (SIF) has been shown to have a linear relationship with GPP at the typical spatio-temporal scales used in LSMs (Guanter et al., 2011). New satellite-derived SIF datasets have the potential to constrain LSM parameters related to C uptake at global scales due to their coverage. Here we use SIF data derived from the GOME2 instrument (Köhler et al., 2014) to optimize parameters related to photosynthesis and leaf phenology of the ORCHIDEE LSM, as well as the linear relationship between SIF and GPP. We use a multi-site approach that combines many model grid cells covering a wide spatial distribution within the same optimization (e.g. Kuppel et al., 2014). The parameters are constrained per Plant Functional type as the linear relationship described above varies depending on vegetation structural properties. The relative skill of the optimization is compared to a case where only satellite-derived vegetation index data are used to constrain the model, and to a case where both data streams are used. We evaluate the results using an independent data-driven estimate derived from FLUXNET data (Jung et al., 2011) and with a new atmospheric tracer, Carbonyl sulphide (OCS) following the approach of Launois et al. (ACPD, in review). We show that the optimization reduces the strong positive bias of the ORCHIDEE model and increases the correlation compared to independent estimates. Differences in spatial patterns and gradients between simulated GPP and observed SIF remain largely unchanged however, suggesting that the underlying representation of vegetation type and/or structure and functioning in the model requires further investigation.
Optimization of the Number and Location of Tsunami Stations in a Tsunami Warning System
NASA Astrophysics Data System (ADS)
An, C.; Liu, P. L. F.; Pritchard, M. E.
2014-12-01
Optimizing the number and location of tsunami stations in designing a tsunami warning system is an important and practical problem. It is always desirable to maximize the capability of the data obtained from the stations for constraining the earthquake source parameters, and to minimize the number of stations at the same time. During the 2011 Tohoku tsunami event, 28 coastal gauges and DART buoys in the near-field recorded tsunami waves, providing an opportunity for assessing the effectiveness of those stations in identifying the earthquake source parameters. Assuming a single-plane fault geometry, inversions of tsunami data from combinations of various number (1~28) of stations and locations are conducted and evaluated their effectiveness according to the residues of the inverse method. Results show that the optimized locations of stations depend on the number of stations used. If the stations are optimally located, 2~4 stations are sufficient to constrain the source parameters. Regarding the optimized location, stations must be uniformly spread in all directions, which is not surprising. It is also found that stations within the source region generally give worse constraint of earthquake source than stations farther from source, which is due to the exaggeration of model error in matching large amplitude waves at near-source stations. Quantitative discussions on these findings will be given in the presentation. Applying similar analysis to the Manila Trench based on artificial scenarios of earthquakes and tsunamis, the optimal location of tsunami stations are obtained, which provides guidance of deploying a tsunami warning system in this region.
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
Statistical mechanics of budget-constrained auctions
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.
2009-07-01
Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being in the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). On the basis of the cavity method of statistical mechanics, we introduce a message-passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.
Xu, Jiuping; Feng, Cuiying
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.
Xu, Jiuping
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708
Adaptive Multi-Agent Systems for Constrained Optimization
NASA Technical Reports Server (NTRS)
Macready, William; Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
Automated parameter tuning applied to sea ice in a global climate model
NASA Astrophysics Data System (ADS)
Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.
2018-01-01
This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.
Constraining neutron guide optimizations with phase-space considerations
NASA Astrophysics Data System (ADS)
Bertelsen, Mads; Lefmann, Kim
2016-09-01
We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.
Cosmological parameter estimation using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Prasad, J.; Souradeep, T.
2014-03-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.
Constrained optimization via simulation models for new product innovation
NASA Astrophysics Data System (ADS)
Pujowidianto, Nugroho A.
2017-11-01
We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.
Impact of longitudinal flying qualities upon the design of a transport with active controls
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1980-01-01
Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed with relaxed static stability. Additionally, a number of handling quality related design constants were studied with respect to their impact to the design.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
NASA Astrophysics Data System (ADS)
He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian
2010-12-01
In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2011-12-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.
2012-04-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2012-03-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
Stochastic reduced order models for inverse problems under uncertainty
Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.
2014-01-01
This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115
Genetic algorithm parameters tuning for resource-constrained project scheduling problem
NASA Astrophysics Data System (ADS)
Tian, Xingke; Yuan, Shengrui
2018-04-01
Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.
Correction method for stripe nonuniformity.
Qian, Weixian; Chen, Qian; Gu, Guohua; Guan, Zhiqiang
2010-04-01
Stripe nonuniformity is very typical in line infrared focal plane arrays (IR-FPA) and uncooled staring IR-FPA. In this paper, the mechanism of the stripe nonuniformity is analyzed, and the gray-scale co-occurrence matrix theory and optimization theory are studied. Through these efforts, the stripe nonuniformity correction problem is translated into the optimization problem. The goal of the optimization is to find the minimal energy of the image's line gradient. After solving the constrained nonlinear optimization equation, the parameters of the stripe nonuniformity correction are obtained and the stripe nonuniformity correction is achieved. The experiments indicate that this algorithm is effective and efficient.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 1: User's guide
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
IPOST is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence fo trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the coat function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Helicopter Control Energy Reduction Using Moving Horizontal Tail
Oktay, Tugrul; Sal, Firat
2015-01-01
Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841
Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.
2016-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.
NASA Technical Reports Server (NTRS)
Sauer, Carl G., Jr.
1989-01-01
A patched conic trajectory optimization program MIDAS is described that was developed to investigate a wide variety of complex ballistic heliocentric transfer trajectories. MIDAS includes the capability of optimizing trajectory event times such as departure date, arrival date, and intermediate planetary flyby dates and is able to both add and delete deep space maneuvers when dictated by the optimization process. Both powered and unpowered flyby or gravity assist trajectories of intermediate bodies can be handled and capability is included to optimize trajectories having a rendezvous with an intermediate body such as for a sample return mission. Capability is included in the optimization process to constrain launch energy and launch vehicle parking orbit parameters.
NASA Astrophysics Data System (ADS)
Wong, T. E.; Noone, D. C.; Kleiber, W.
2014-12-01
The single largest uncertainty in climate model energy balance is the surface latent heating over tropical land. Furthermore, the partitioning of the total latent heat flux into contributions from surface evaporation and plant transpiration is of great importance, but notoriously poorly constrained. Resolving these issues will require better exploiting information which lies at the interface between observations and advanced modeling tools, both of which are imperfect. There are remarkably few observations which can constrain these fluxes, placing strict requirements on developing statistical methods to maximize the use of limited information to best improve models. Previous work has demonstrated the power of incorporating stable water isotopes into land surface models for further constraining ecosystem processes. We present results from a stable water isotopically-enabled land surface model (iCLM4), including model experiments partitioning the latent heat flux into contributions from plant transpiration and surface evaporation. It is shown that the partitioning results are sensitive to the parameterization of kinetic fractionation used. We discuss and demonstrate an approach to calibrating select model parameters to observational data in a Bayesian estimation framework, requiring Markov Chain Monte Carlo sampling of the posterior distribution, which is shown to constrain uncertain parameters as well as inform relevant values for operational use. Finally, we discuss the application of the estimation scheme to iCLM4, including entropy as a measure of information content and specific challenges which arise in calibration models with a large number of parameters.
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1980-01-01
Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.
Distributed Constrained Optimization with Semicoordinate Transformations
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2006-01-01
Recent work has shown how information theory extends conventional full-rationality game theory to allow bounded rational agents. The associated mathematical framework can be used to solve constrained optimization problems. This is done by translating the problem into an iterated game, where each agent controls a different variable of the problem, so that the joint probability distribution across the agents moves gives an expected value of the objective function. The dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution. Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of automated annealing, which focuses the joint distribution more and more tightly about the joint moves that optimize the objective function. We then investigate the use of "semicoordinate" variable transformations. These separate the joint state of the agents from the variables of the optimization problem, with the two connected by an onto mapping. We present experiments illustrating the ability of such transformations to facilitate optimization. We focus on the special kind of transformation in which the statistically independent states of the agents induces a mixture distribution over the optimization variables. Computer experiment illustrate this for &sat constraint satisfaction problems and for unconstrained minimization of NK functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; ...
2017-07-26
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.
2017-07-01
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.
Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes
NASA Astrophysics Data System (ADS)
van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.
2017-12-01
Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.
Climatic niche and flowering and fruiting phenology of an epiphytic plant
Barve, Narayani; Martin, Craig E.; Peterson, A. Townsend
2015-01-01
Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5–35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. PMID:26359490
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2005-01-01
We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.
ADS: A FORTRAN program for automated design synthesis: Version 1.10
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1985-01-01
A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis - Version 1.10) is a FORTRAN program for solution of nonlinear constrained optimization problems. The program is segmented into three levels: strategy, optimizer, and one-dimensional search. At each level, several options are available so that a total of over 100 possible combinations can be created. Examples of available strategies are sequential unconstrained minimization, the Augmented Lagrange Multiplier method, and Sequential Linear Programming. Available optimizers include variable metric methods and the Method of Feasible Directions as examples, and one-dimensional search options include polynomial interpolation and the Golden Section method as examples. Emphasis is placed on ease of use of the program. All information is transferred via a single parameter list. Default values are provided for all internal program parameters such as convergence criteria, and the user is given a simple means to over-ride these, if desired.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
Optimal control of first order distributed systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Johnson, T. L.
1972-01-01
The problem of characterizing optimal controls for a class of distributed-parameter systems is considered. The system dynamics are characterized mathematically by a finite number of coupled partial differential equations involving first-order time and space derivatives of the state variables, which are constrained at the boundary by a finite number of algebraic relations. Multiple control inputs, extending over the entire spatial region occupied by the system ("distributed controls') are to be designed so that the response of the system is optimal. A major example involving boundary control of an unstable low-density plasma is developed from physical laws.
Viscoelastic material inversion using Sierra-SD and ROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis
2014-11-01
In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.
Active flutter suppression using optical output feedback digital controllers
NASA Technical Reports Server (NTRS)
1982-01-01
A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.
A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks
Hammad, Karim; El Bakly, Ahmed M.
2018-01-01
A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem—subject to various Quality-of-Service (QoS) constraints—represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms. PMID:29509760
A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks.
Ramadan, Rahab M; Gasser, Safa M; El-Mahallawy, Mohamed S; Hammad, Karim; El Bakly, Ahmed M
2018-01-01
A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem-subject to various Quality-of-Service (QoS) constraints-represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms.
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
A robust approach to chance constrained optimal power flow with renewable generation
Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.
2016-09-01
Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less
NASA Astrophysics Data System (ADS)
Prato, Marco; Bonettini, Silvia; Loris, Ignace; Porta, Federica; Rebegoldi, Simone
2016-10-01
The scaled gradient projection (SGP) method is a first-order optimization method applicable to the constrained minimization of smooth functions and exploiting a scaling matrix multiplying the gradient and a variable steplength parameter to improve the convergence of the scheme. For a general nonconvex function, the limit points of the sequence generated by SGP have been proved to be stationary, while in the convex case and with some restrictions on the choice of the scaling matrix the sequence itself converges to a constrained minimum point. In this paper we extend these convergence results by showing that the SGP sequence converges to a limit point provided that the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain and its gradient is Lipschitz continuous.
Smooth Constrained Heuristic Optimization of a Combinatorial Chemical Space
2015-05-01
ARL-TR-7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...
Tchamna, Rodrigue; Lee, Moonyong
2018-01-01
This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
TH-E-BRF-06: Kinetic Modeling of Tumor Response to Fractionated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Gordon, J; Chetty, I
2014-06-15
Purpose: Accurate calibration of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on calibrated parameters. In this study, we have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for calibrating radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time Td, half-life of dying cells Tr and cellmore » survival fraction SFD under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models, Chvetsov model (C-model) and Lim model (L-model). The C-model and L-model were optimized with the parameter Td fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43±0.08, and the half-life of dying cells averaged over the six patients is 17.5±3.2 days. The parameters Tr and SFD optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the Td-fixed C-model, and by 32.1% and 112.3% from those optimized with the Td-fixed L-model, respectively. Conclusion: The Z-model was analytically constructed from the cellpopulation differential equations to describe changes in the number of different tumor cells during the course of fractionated radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The developed modeling and optimization methods may help develop high-quality treatment regimens for individual patients.« less
NASA Astrophysics Data System (ADS)
Peylin, P. P.; Bacour, C.; MacBean, N.; Maignan, F.; Bastrikov, V.; Chevallier, F.
2017-12-01
Predicting the fate of carbon stocks and their sensitivity to climate change and land use/management strongly relies on our ability to accurately model net and gross carbon fluxes. However, simulated carbon and water fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Over the past ten years, the carbon cycle data assimilation system at the Laboratoire des Sciences du Climat et de l'Environnement has investigated the benefit of assimilating multiple carbon cycle data streams into the ORCHIDEE LSM, the land surface component of the Institut Pierre Simon Laplace Earth System Model. These datasets have included FLUXNET eddy covariance data (net CO2 flux and latent heat flux) to constrain hourly to seasonal time-scale carbon cycle processes, remote sensing of the vegetation activity (MODIS NDVI) to constrain the leaf phenology, biomass data to constrain "slow" (yearly to decadal) processes of carbon allocation, and atmospheric CO2 concentrations to provide overall large scale constraints on the land carbon sink. Furthermore, we have investigated technical issues related to multiple data stream assimilation and choice of optimization algorithm. This has provided a wide-ranging perspective on the challenges we face in constraining model parameters and thus better quantifying, and reducing, model uncertainty in projections of the future global carbon sink. We review our past studies in terms of the impact of the optimization on key characteristics of the carbon cycle, e.g. the partition of the northern latitudes vs tropical land carbon sink, and compare to the classic atmospheric flux inversion approach. Throughout, we discuss our work in context of the abovementioned challenges, and propose solutions for the community going forward, including the potential of new observations such as atmospheric COS concentrations and satellite-derived Solar Induced Fluorescence to constrain the gross carbon fluxes of the ORCHIDEE model.
NASA Astrophysics Data System (ADS)
Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao
2017-02-01
Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.
Case studies on optimization problems in MATLAB and COMSOL multiphysics by means of the livelink
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
LiveLink for COMSOL is a tool that integrates COMSOL Multiphysics with MATLAB to extend one's modeling with scripting programming in the MATLAB environment. It allows user to utilize the full power of MATLAB and its toolboxes in preprocessing, model manipulation, and post processing. At first, the head script launches COMSOL with MATLAB and defines initial value of all parameters, refers to the objective function J described in the objective function and creates and runs the defined optimization task. Once the task is launches, the COMSOL model is being called in the iteration loop (from MATLAB environment by use of API interface), changing defined optimization parameters so that the objective function is minimized, using fmincon function to find a local or global minimum of constrained linear or nonlinear multivariable function. Once the minimum is found, it returns exit flag, terminates optimization and returns the optimized values of the parameters. The cooperation with MATLAB via LiveLink enhances a powerful computational environment with complex multiphysics simulations. The paper will introduce using of the LiveLink for COMSOL for chosen case studies in the field of technical cybernetics and bioengineering.
NASA Astrophysics Data System (ADS)
Bruynooghe, Michel M.
1998-04-01
In this paper, we present a robust method for automatic object detection and delineation in noisy complex images. The proposed procedure is a three stage process that integrates image segmentation by multidimensional pixel clustering and geometrically constrained optimization of deformable contours. The first step is to enhance the original image by nonlinear unsharp masking. The second step is to segment the enhanced image by multidimensional pixel clustering, using our reducible neighborhoods clustering algorithm that has a very interesting theoretical maximal complexity. Then, candidate objects are extracted and initially delineated by an optimized region merging algorithm, that is based on ascendant hierarchical clustering with contiguity constraints and on the maximization of average contour gradients. The third step is to optimize the delineation of previously extracted and initially delineated objects. Deformable object contours have been modeled by cubic splines. An affine invariant has been used to control the undesired formation of cusps and loops. Non linear constrained optimization has been used to maximize the external energy. This avoids the difficult and non reproducible choice of regularization parameters, that are required by classical snake models. The proposed method has been applied successfully to the detection of fine and subtle microcalcifications in X-ray mammographic images, to defect detection by moire image analysis, and to the analysis of microrugosities of thin metallic films. The later implementation of the proposed method on a digital signal processor associated to a vector coprocessor would allow the design of a real-time object detection and delineation system for applications in medical imaging and in industrial computer vision.
NASA Astrophysics Data System (ADS)
Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong
2017-08-01
Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.
Climatic niche and flowering and fruiting phenology of an epiphytic plant.
Barve, Narayani; Martin, Craig E; Peterson, A Townsend
2015-09-10
Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5-35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. Published by Oxford University Press on behalf of the Annals of Botany Company.
Design of optimally normal minimum gain controllers by continuation method
NASA Technical Reports Server (NTRS)
Lim, K. B.; Juang, J.-N.; Kim, Z. C.
1989-01-01
A measure of the departure from normality is investigated for system robustness. An attractive feature of the normality index is its simplicity for pole placement designs. To allow a tradeoff between system robustness and control effort, a cost function consisting of the sum of a norm of weighted gain matrix and a normality index is minimized. First- and second-order necessary conditions for the constrained optimization problem are derived and solved by a Newton-Raphson algorithm imbedded into a one-parameter family of neighboring zero problems. The method presented allows the direct computation of optimal gains in terms of robustness and control effort for pole placement problems.
NASA Astrophysics Data System (ADS)
Leys, Antoine; Hull, Tony; Westerhoff, Thomas
2015-09-01
We address the problem that larger spaceborne mirrors require greater sectional thickness to achieve a sufficient first eigen frequency that is resilient to launch loads, and to be stable during optical telescope assembly integration and test, this added thickness results in unacceptable added mass if we simply scale up solutions for smaller mirrors. Special features, like cathedral ribs, arch, chamfers, and back-side following the contour of the mirror face have been considered for these studies. For computational efficiency, we have conducted detailed analysis on various configurations of a 800 mm hexagonal segment and of a 1.2-m mirror, in a manner that they can be constrained by manufacturing parameters as would be a 4-m mirror. Furthermore each model considered also has been constrained by cost-effective machining practice as defined in the SCHOTT Mainz factory. Analysis on variants of this 1.2-m mirror has shown a favorable configuration. We have then scaled this optimal configuration to 4-m aperture. We discuss resulting parameters of costoptimized 4-m mirrors. We also discuss the advantages and disadvantages this analysis reveals of going to cathedral rib architecture on 1-m class mirror substrates.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
Sorzano, Carlos Oscars S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar
2015-06-01
Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong
2017-11-01
The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Pseudo-time methods for constrained optimization problems governed by PDE
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1995-01-01
In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.
Quadruped Robot Locomotion using a Global Optimization Stochastic Algorithm
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina; Costa, Lino; Ferreira, Manuel
2011-09-01
The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Wiersma, R
Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also used significantly less computer memory.« less
Halford, Keith J.
2006-01-01
MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.
Control of linear uncertain systems utilizing mismatched state observers
NASA Technical Reports Server (NTRS)
Goldstein, B.
1972-01-01
The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.
Azzeroni, R; Maggio, A; Fiorino, C; Mangili, P; Cozzarini, C; De Cobelli, F; Di Muzio, N G; Calandrino, R
2013-11-01
The aim of this investigation was to explore the potential of biological optimization in the case of simultaneous integrated boost on intra-prostatic dominant lesions (DIL) and evaluating the impact of TCP parameters uncertainty. Different combination of TCP parameters (TD50 and γ50 in the Poisson-like model), were considered for DILs and the prostate outside DILs (CTV) for 7 intermediate/high-risk prostate patients. The aim was to maximize TCP while constraining NTCPs below 5% for all organs at risk. TCP values were highly depending on the parameters used and ranged between 38.4% and 99.9%; the optimized median physical doses were in the range 94-116 Gy and 69-77 Gy for DIL and CTV respectively. TCP values were correlated with the overlap PTV-rectum and the minimum distance between rectum and DIL. In conclusion, biological optimization for selective dose escalation is feasible and suggests prescribed dose around 90-120 Gy to the DILs. The obtained result is critically depending on the assumptions concerning the higher radioresistence in the DILs. In case of very resistant clonogens into the DIL, it may be difficult to maximize TCP to acceptable levels without violating NTCP constraints. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
The design of multirate digital control systems
NASA Technical Reports Server (NTRS)
Berg, M. C.
1986-01-01
The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.
Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material
NASA Astrophysics Data System (ADS)
Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena
2011-05-01
This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.; Glover, Fred W.; Woodcock, Gordon R.; Laguna, Manuel
2005-01-01
The 1/14/04 USA Space Exploratiofltilization Initiative invites all Space-faring Nations, all Space User Groups in Science, Space Entrepreneuring, Advocates of Robotic and Human Space Exploration, Space Tourism and Colonization Promoters, etc., to join an International Space Partnership. With more Space-faring Nations and Space User Groups each year, such a Partnership would require Multi-year (35 yr.-45 yr.) Space Mission Planning. With each Nation and Space User Group demanding priority for its missions, one needs a methodology for obiectively selecting the best mission sequences to be added annually to this 45 yr. Moving Space Mission Plan. How can this be done? Planners have suggested building a Reusable, Sustainable, Space Transportation Infrastructure (RSSn) to increase Mission synergism, reduce cost, and increase scientific and societal returns from this Space Initiative. Morgenthaler and Woodcock presented a Paper at the 55th IAC, Vancouver B.C., Canada, entitled Constrained Optimization Models For Optimizing Multi - Year Space Programs. This Paper showed that a Binary Integer Programming (BIP) Constrained Optimization Model combined with the NASA ATLAS Cost and Space System Operational Parameter Estimating Model has the theoretical capability to solve such problems. IAA Commission III, Space Technology and Space System Development, in its ACADEMY DAY meeting at Vancouver, requested that the Authors and NASA experts find several Space Exploration Architectures (SEAS), apply the combined BIP/ATLAS Models, and report the results at the 56th Fukuoka IAC. While the mathematical Model is in Ref.[2] this Paper presents the Application saga of that effort.
NASA Technical Reports Server (NTRS)
Stepner, D. E.; Mehra, R. K.
1973-01-01
A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Morel, M. R.; Chamis, C. C.
1991-01-01
A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.
Sparsely sampling the sky: a Bayesian experimental design approach
NASA Astrophysics Data System (ADS)
Paykari, P.; Jaffe, A. H.
2013-08-01
The next generation of galaxy surveys will observe millions of galaxies over large volumes of the Universe. These surveys are expensive both in time and cost, raising questions regarding the optimal investment of this time and money. In this work, we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian experimental design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.45 per cent. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky, we can in fact constrain the parameters with errors reduced by 28 per cent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, J; Chao, M
2016-06-15
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associatedmore » algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately improving tumor motion management for radiation therapy of cancer patients.« less
A Global Analysis of Light and Charge Yields in Liquid Xenon
Lenardo, Brian; Kazkaz, Kareem; Manalaysay, Aaron; ...
2015-11-04
Here, we present an updated model of light and charge yields from nuclear recoils in liquid xenon with a simultaneously constrained parameter set. A global analysis is performed using measurements of electron and photon yields compiled from all available historical data, as well as measurements of the ratio of the two. These data sweep over energies from keV and external applied electric fields from V/cm. The model is constrained by constructing global cost functions and using a simulated annealing algorithm and a Markov Chain Monte Carlo approach to optimize and find confidence intervals on all free parameters in the model.more » This analysis contrasts with previous work in that we do not unnecessarily exclude datasets nor impose artificially conservative assumptions, do not use spline functions, and reduce the number of parameters used in NEST v 0.98. Here, we report our results and the calculated best-fit charge and light yields. These quantities are crucial to understanding the response of liquid xenon detectors in the energy regime important for rare event searches such as the direct detection of dark matter particles.« less
A Sensitivity Analysis of Tsunami Inversions on the Number of Stations
NASA Astrophysics Data System (ADS)
An, Chao; Liu, Philip L.-F.; Meng, Lingsen
2018-05-01
Current finite-fault inversions of tsunami recordings generally adopt as many tsunami stations as possible to better constrain earthquake source parameters. In this study, inversions are evaluated by the waveform residual that measures the difference between model predictions and recordings, and the dependence of the quality of inversions on the number tsunami stations is derived. Results for the 2011 Tohoku event show that, if the tsunami stations are optimally located, the waveform residual decreases significantly with the number of stations when the number is 1 ˜ 4 and remains almost constant when the number is larger than 4, indicating that 2 ˜ 4 stations are able to recover the main characteristics of the earthquake source. The optimal location of tsunami stations is explained in the text. Similar analysis is applied to the Manila Trench in the South China Sea using artificially generated earthquakes and virtual tsunami stations. Results confirm that 2 ˜ 4 stations are necessary and sufficient to constrain the earthquake source parameters, and the optimal sites of stations are recommended in the text. The conclusion is useful for the design of new tsunami warning systems. Current strategies of tsunameter network design mainly focus on the early detection of tsunami waves from potential sources to coastal regions. We therefore recommend that, in addition to the current strategies, the waveform residual could also be taken into consideration so as to minimize the error of tsunami wave prediction for warning purposes.
Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.
1991-01-01
The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
Plessow, Philipp N
2018-02-13
This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.
Mass-based design and optimization of wave rotors for gas turbine engine enhancement
NASA Astrophysics Data System (ADS)
Chan, S.; Liu, H.
2017-03-01
An analytic method aiming at mass properties was developed for the preliminary design and optimization of wave rotors. In the present method, we introduce the mass balance principle into the design and thus can predict and optimize the mass qualities as well as the performance of wave rotors. A dedicated least-square method with artificial weighting coefficients was developed to solve the over-constrained system in the mass-based design. This method and the adoption of the coefficients were validated by numerical simulation. Moreover, the problem of fresh air exhaustion (FAE) was put forward and analyzed, and exhaust gas recirculation (EGR) was investigated. Parameter analyses and optimization elucidated which designs would not only achieve the best performance, but also operate with minimum EGR and no FAE.
On optimal infinite impulse response edge detection filters
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1991-01-01
The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.
Computational problems in autoregressive moving average (ARMA) models
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.
1981-01-01
The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.
Optimal allocation in annual plants and its implications for drought response
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Smith, Matthew; Purves, Drew
2015-04-01
The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.
Minimal complexity control law synthesis
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.
1989-01-01
A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
Multidimensional density shaping by sigmoids.
Roth, Z; Baram, Y
1996-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.
NASA Technical Reports Server (NTRS)
Nash, Stephen G.; Polyak, R.; Sofer, Ariela
1994-01-01
When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.
Li, Jing; Lu, Hongwei; Fan, Xing; Chen, Yizhong
2017-07-01
In this study, a human health risk constrained groundwater remediation management program based on the improved credibility is developed for naphthalene contamination. The program integrates simulation, multivariate regression analysis, health risk assessment, uncertainty analysis, and nonlinear optimization into a general framework. The improved credibility-based optimization model for groundwater remediation management with consideration of human health risk (ICOM-HHR) is capable of not only effectively addressing parameter uncertainties and risk-exceeding possibility in human health risk but also providing a credibility level that indicates the satisfaction of the optimal groundwater remediation strategies with multiple contributions of possibility and necessity. The capabilities and effectiveness of ICOM-HHR are illustrated through a real-world case study in Anhui Province, China. Results indicate that the ICOM-HHR would generate double remediation cost yet reduce approximately 10 times of the naphthalene concentrations at monitoring wells, i.e., mostly less than 1 μg/L, which implies that the ICOM-HHR usually results in better environmental and health risk benefits. And it is acceptable to obtain a better environmental quality and a lower health risk level with sacrificing a certain economic benefit.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi
2000-06-01
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
Multi-objective trajectory optimization for the space exploration vehicle
NASA Astrophysics Data System (ADS)
Qin, Xiaoli; Xiao, Zhen
2016-07-01
The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.
NASA Astrophysics Data System (ADS)
Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.
2017-12-01
Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2015-04-01
A multi-scale parameter-estimation method, as presented by Samaniego et al. (2010), is implemented and extended for the conceptual hydrological model COSERO. COSERO is a HBV-type model that is specialized for alpine-environments, but has been applied over a wide range of basins all over the world (see: Kling et al., 2014 for an overview). Within the methodology available small-scale information (DEM, soil texture, land cover, etc.) is used to estimate the coarse-scale model parameters by applying a set of transfer-functions (TFs) and subsequent averaging methods, whereby only TF hyper-parameters are optimized against available observations (e.g. runoff data). The parameter regionalisation approach was extended in order to allow for a more meta-heuristical handling of the transfer-functions. The two main novelties are: 1. An explicit introduction of constrains into parameter estimation scheme: The constraint scheme replaces invalid parts of the transfer-function-solution space with valid solutions. It is inspired by applications in evolutionary algorithms and related to the combination of learning and evolution. This allows the consideration of physical and numerical constraints as well as the incorporation of a priori modeller-experience into the parameter estimation. 2. Spline-based transfer-functions: Spline-based functions enable arbitrary forms of transfer-functions: This is of importance since in many cases the general relationship between sub-grid information and parameters are known, but not the form of the transfer-function itself. The contribution presents the results and experiences with the adopted method and the introduced extensions. Simulation are performed for the pre-alpine/alpine Traisen catchment in Lower Austria. References: Samaniego, L., Kumar, R., Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., doi: 10.1029/2008WR007327 Kling, H., Stanzel, P., Fuchs, M., and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi: 10.1080/02626667.2014.959956.
NASA Astrophysics Data System (ADS)
De Martino, Daniele
2017-12-01
In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.
Publications | Grid Modernization | NREL
Photovoltaics: Trajectories and Challenges Cover of Efficient Relaxations for Joint Chance Constrained AC Optimal Power Flow publication Efficient Relaxations for Joint Chance Constrained AC Optimal Power Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pablant, N. A.; Bell, R. E.; Bitter, M.
2014-11-15
Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy andmore » tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less
Pablant, N. A.; Bell, R. E.; Bitter, M.; ...
2014-08-08
Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio
2011-12-01
This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).
Unifying Rules for Aquatic Locomotion
NASA Astrophysics Data System (ADS)
Saadat, Mehdi; Domel, August; di Santo, Valentina; Lauder, George; Haj-Hariri, Hossein
2016-11-01
Strouhal number, St (=fA/U) , a scaling parameter that relates speed, U, to the tail-beat frequency, f, and tail-beat amplitude, A, has been used many times to describe animal locomotion. It has been observed that swimming animals cruise at 0.2 <=St <=0.4. Using simple dimensional and scaling analyses supported by new experimental evidence of a self-propelled fish-like swimmer, we show that when cruising at minimum hydrodynamic input power, St is predetermined, and is only a function of the shape, i.e. drag coefficient and area. The narrow range for St, 0.2-0.4, has been previously associated with optimal propulsive efficiency. However, St alone is insufficient for deciding optimal motion. We show that hydrodynamic input power (energy usage to propel over a unit distance) in fish locomotion is minimized at all cruising speeds when A* (= A/L), a scaling parameter that relates tail-beat amplitude, A, to the length of the swimmer, L, is constrained to a narrow range of 0.15-0.25. Our analysis proposes a constraint on A*, in addition to the previously found constraint on St, to fully describe the optimal swimming gait for fast swimmers. A survey of kinematics for dolphin, as well as new data for trout, show that the range of St and A* for fast swimmers indeed are constrained to 0.2-0.4 and 0.15-0.25, respectively. Our findings provide physical explanation as to why fast aquatic swimmers cruise with relatively constant tail-beat amplitude at approximately 20 percent of body length, while their swimming speed is linearly correlated with their tail-beat frequency.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
Effective Teaching of Economics: A Constrained Optimization Problem?
ERIC Educational Resources Information Center
Hultberg, Patrik T.; Calonge, David Santandreu
2017-01-01
One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…
Variable-Metric Algorithm For Constrained Optimization
NASA Technical Reports Server (NTRS)
Frick, James D.
1989-01-01
Variable Metric Algorithm for Constrained Optimization (VMACO) is nonlinear computer program developed to calculate least value of function of n variables subject to general constraints, both equality and inequality. First set of constraints equality and remaining constraints inequalities. Program utilizes iterative method in seeking optimal solution. Written in ANSI Standard FORTRAN 77.
NASA Astrophysics Data System (ADS)
Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong
2018-05-01
In this study, an inexact log-normal-based stochastic chance-constrained programming model was developed for solving the non-point source pollution issues caused by agricultural activities. Compared to the general stochastic chance-constrained programming model, the main advantage of the proposed model is that it allows random variables to be expressed as a log-normal distribution, rather than a general normal distribution. Possible deviations in solutions caused by irrational parameter assumptions were avoided. The agricultural system management in the Erhai Lake watershed was used as a case study, where critical system factors, including rainfall and runoff amounts, show characteristics of a log-normal distribution. Several interval solutions were obtained under different constraint-satisfaction levels, which were useful in evaluating the trade-off between system economy and reliability. The applied results show that the proposed model could help decision makers to design optimal production patterns under complex uncertainties. The successful application of this model is expected to provide a good example for agricultural management in many other watersheds.
D-Optimal Experimental Design for Contaminant Source Identification
NASA Astrophysics Data System (ADS)
Sai Baba, A. K.; Alexanderian, A.
2016-12-01
Contaminant source identification seeks to estimate the release history of a conservative solute given point concentration measurements at some time after the release. This can be mathematically expressed as an inverse problem, with a linear observation operator or a parameter-to-observation map, which we tackle using a Bayesian approach. Acquisition of experimental data can be laborious and expensive. The goal is to control the experimental parameters - in our case, the sparsity of the sensors, to maximize the information gain subject to some physical or budget constraints. This is known as optimal experimental design (OED). D-optimal experimental design seeks to maximize the expected information gain, and has long been considered the gold standard in the statistics community. Our goal is to develop scalable methods for D-optimal experimental designs involving large-scale PDE constrained problems with high-dimensional parameter fields. A major challenge for the OED, is that a nonlinear optimization algorithm for the D-optimality criterion requires repeated evaluation of objective function and gradient involving the determinant of large and dense matrices - this cost can be prohibitively expensive for applications of interest. We propose novel randomized matrix techniques that bring down the computational costs of the objective function and gradient evaluations by several orders of magnitude compared to the naive approach. The effect of randomized estimators on the accuracy and the convergence of the optimization solver will be discussed. The features and benefits of our new approach will be demonstrated on a challenging model problem from contaminant source identification involving the inference of the initial condition from spatio-temporal observations in a time-dependent advection-diffusion problem.
NASA Astrophysics Data System (ADS)
Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.
2017-10-01
We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.
A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard; Attele, Rohan; Koshak, William
2011-01-01
A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.
Nonlinear system modeling based on bilinear Laguerre orthonormal bases.
Garna, Tarek; Bouzrara, Kais; Ragot, José; Messaoud, Hassani
2013-05-01
This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Constrained Multiobjective Biogeography Optimization Algorithm
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal
ERIC Educational Resources Information Center
Steinley, Douglas; Hubert, Lawrence
2008-01-01
This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…
The effect of parking orbit constraints on the optimization of ballistic planetary trajectories
NASA Technical Reports Server (NTRS)
Sauer, C. G., Jr.
1984-01-01
The optimization of ballistic planetary trajectories is developed which includes constraints on departure parking orbit inclination and node. This problem is formulated to result in a minimum total Delta V where the entire constrained injection Delta V is included in the optimization. An additional Delta V is also defined to allow for possible optimization of parking orbit inclination when the launch vehicle orbit capability varies as a function of parking orbit inclination. The optimization problem is formulated using primer vector theory to derive partial derivatives of total Delta V with respect to possible free parameters. Minimization of total Delta V is accomplished using a quasi-Newton gradient search routine. The analysis is applied to an Eros rendezvous mission whose transfer trajectories are characterized by high values of launch asymptote declination during particular launch opportunities. Comparisons in performance are made between trajectories where parking orbit constraints are included in the optimization and trajectories where the constraints are not included.
Prepositioning emergency supplies under uncertainty: a parametric optimization method
NASA Astrophysics Data System (ADS)
Bai, Xuejie; Gao, Jinwu; Liu, Yankui
2018-07-01
Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.
Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation
NASA Technical Reports Server (NTRS)
Ponte, Rui M.; Frey, H. (Technical Monitor)
2000-01-01
A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.
Optimization of an exchange-correlation density functional for water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800
2016-06-14
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
Constrained growth flips the direction of optimal phenological responses among annual plants.
Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas
2016-03-01
Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Bai, Bing
2012-03-01
There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod
Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less
NASA Astrophysics Data System (ADS)
Masternak, Tadeusz J.
This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.
COPS: Large-scale nonlinearly constrained optimization problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, A.S.; Bortz, D.M.; More, J.J.
2000-02-10
The authors have started the development of COPS, a collection of large-scale nonlinearly Constrained Optimization Problems. The primary purpose of this collection is to provide difficult test cases for optimization software. Problems in the current version of the collection come from fluid dynamics, population dynamics, optimal design, and optimal control. For each problem they provide a short description of the problem, notes on the formulation of the problem, and results of computational experiments with general optimization solvers. They currently have results for DONLP2, LANCELOT, MINOS, SNOPT, and LOQO.
The Efficiency of Split Panel Designs in an Analysis of Variance Model
Wang, Wei-Guo; Liu, Hai-Jun
2016-01-01
We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447
Ntozini, Robert; Marks, Sara J; Mangwadu, Goldberg; Mbuya, Mduduzi N N; Gerema, Grace; Mutasa, Batsirai; Julian, Timothy R; Schwab, Kellogg J; Humphrey, Jean H; Zungu, Lindiwe I
2015-12-15
Access to water and sanitation are important determinants of behavioral responses to hygiene and sanitation interventions. We estimated cluster-specific water access and sanitation coverage to inform a constrained randomization technique in the SHINE trial. Technicians and engineers inspected all public access water sources to ascertain seasonality, function, and geospatial coordinates. Households and water sources were mapped using open-source geospatial software. The distance from each household to the nearest perennial, functional, protected water source was calculated, and for each cluster, the median distance and the proportion of households within <500 m and >1500 m of such a water source. Cluster-specific sanitation coverage was ascertained using a random sample of 13 households per cluster. These parameters were included as covariates in randomization to optimize balance in water and sanitation access across treatment arms at the start of the trial. The observed high variability between clusters in both parameters suggests that constraining on these factors was needed to reduce risk of bias. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
Reducing the Volume of NASA Earth-Science Data
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Braverman, Amy J.; Guillaume, Alexandre
2010-01-01
A computer program reduces data generated by NASA Earth-science missions into representative clusters characterized by centroids and membership information, thereby reducing the large volume of data to a level more amenable to analysis. The program effects an autonomous data-reduction/clustering process to produce a representative distribution and joint relationships of the data, without assuming a specific type of distribution and relationship and without resorting to domain-specific knowledge about the data. The program implements a combination of a data-reduction algorithm known as the entropy-constrained vector quantization (ECVQ) and an optimization algorithm known as the differential evolution (DE). The combination of algorithms generates the Pareto front of clustering solutions that presents the compromise between the quality of the reduced data and the degree of reduction. Similar prior data-reduction computer programs utilize only a clustering algorithm, the parameters of which are tuned manually by users. In the present program, autonomous optimization of the parameters by means of the DE supplants the manual tuning of the parameters. Thus, the program determines the best set of clustering solutions without human intervention.
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
NASA Astrophysics Data System (ADS)
Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel
2016-12-01
On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2003-07-01
Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of MANET packet flows. Regulation of network behavior is modeled by the optimal control of the conditional rates of multivariate point processes (MVPPs); these rates depend on the concatenated control parameters through a change of probability measure. The MVPP models capture behavior of many service applications, e.g., voice, video and the self-similar behavior of Internet data sessions. Performance verification of the cross-layer protocols, derived from the dynamic programming conditions, can be achieved by embedding the conditions in a reactive routing protocol for MANETs, in a simulation environment, such as the wireless extension of ns-2. A canonical MANET scenario consists of a distributed collection of battery-powered laptops or hand-held terminals, capable of hosting multimedia applications. Simulation details and performance tradeoffs, not presented, remain for a sequel to the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudford, B.S.
1996-12-31
The determination of an appropriate thermal history in an exploration area is of fundamental importance when attempting to understand the evolution of the petroleum system. In this talk we present the results of a single-well modelling study in which bottom hole temperature data, vitrinite reflectance data and three different biomarker ratio datasets were available to constrain the modelling. Previous modelling studies using biomarker ratios have been hampered by the wide variety of published kinetic parameters for biomarker evolution. Generally, these parameters have been determined either from measurements in the laboratory and extrapolation to the geological setting, or from downhole measurementsmore » where the heat flow history is assumed to be known. In the first case serious errors can arise because the heating rate is being extrapolated over many orders of magnitude, while in the second case errors can arise if the assumed heat flow history is incorrect. To circumvent these problems we carried out a parameter optimization in which the heat flow history was treated as an unknown in addition to the biomarker ratio kinetic parameters. This method enabled the heat flow history for the area to be determined together with appropriate kinetic parameters for the three measured biomarker ratios. Within the resolution of the data, the heat flow since the early Miocene has been relatively constant at levels required to yield good agreement between predicted and measured subsurface temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudford, B.S.
1996-01-01
The determination of an appropriate thermal history in an exploration area is of fundamental importance when attempting to understand the evolution of the petroleum system. In this talk we present the results of a single-well modelling study in which bottom hole temperature data, vitrinite reflectance data and three different biomarker ratio datasets were available to constrain the modelling. Previous modelling studies using biomarker ratios have been hampered by the wide variety of published kinetic parameters for biomarker evolution. Generally, these parameters have been determined either from measurements in the laboratory and extrapolation to the geological setting, or from downhole measurementsmore » where the heat flow history is assumed to be known. In the first case serious errors can arise because the heating rate is being extrapolated over many orders of magnitude, while in the second case errors can arise if the assumed heat flow history is incorrect. To circumvent these problems we carried out a parameter optimization in which the heat flow history was treated as an unknown in addition to the biomarker ratio kinetic parameters. This method enabled the heat flow history for the area to be determined together with appropriate kinetic parameters for the three measured biomarker ratios. Within the resolution of the data, the heat flow since the early Miocene has been relatively constant at levels required to yield good agreement between predicted and measured subsurface temperatures.« less
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.
1990-01-01
Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-11-25
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.
NASA Astrophysics Data System (ADS)
Hinze, J. F.; Klein, S. A.; Nellis, G. F.
2015-12-01
Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR.
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
A multi-frequency receiver function inversion approach for crustal velocity structure
NASA Astrophysics Data System (ADS)
Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian
2017-05-01
In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.
NASA Astrophysics Data System (ADS)
Abdo Yassin, Fuad; Wheater, Howard; Razavi, Saman; Sapriza, Gonzalo; Davison, Bruce; Pietroniro, Alain
2015-04-01
The credible identification of vertical and horizontal hydrological components and their associated parameters is very challenging (if not impossible) by only constraining the model to streamflow data, especially in regions where the vertical processes significantly dominate the horizontal processes. The prairie areas of the Saskatchewan River basin, a major water system in Canada, demonstrate such behavior, where the hydrologic connectivity and vertical fluxes are mainly controlled by the amount of surface and sub-surface water storages. In this study, we develop a framework for distributed hydrologic model identification and calibration that jointly constrains the model response (i.e., streamflows) as well as a set of model state variables (i.e., water storages) to observations. This framework is set up in the form of multi-objective optimization, where multiple performance criteria are defined and used to simultaneously evaluate the fidelity of the model to streamflow observations and observed (estimated) changes of water storage in the gridded landscape over daily and monthly time scales. The time series of estimated changes in total water storage (including soil, canopy, snow and pond storages) used in this study were derived from an experimental study enhanced by the information obtained from the GRACE satellite. We test this framework on the calibration of a Land Surface Scheme-Hydrology model, called MESH (Modélisation Environmentale Communautaire - Surface and Hydrology), for the Saskatchewan River basin. Pareto Archived Dynamically Dimensioned Search (PA-DDS) is used as the multi-objective optimization engine. The significance of using the developed framework is demonstrated in comparison with the results obtained through a conventional calibration approach to streamflow observations. The approach of incorporating water storage data into the model identification process can more potentially constrain the posterior parameter space, more comprehensively evaluate the model fidelity, and yield more credible predictions.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
OPDOT: A computer program for the optimum preliminary design of a transport airplane
NASA Technical Reports Server (NTRS)
Sliwa, S. M.; Arbuckle, P. D.
1980-01-01
A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.
Stochastic Control Synthesis of Systems with Structured Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon L. (Technical Monitor); Crespo, Luis G.
2003-01-01
This paper presents a study on the design of robust controllers by using random variables to model structured uncertainty for both SISO and MIMO feedback systems. Once the parameter uncertainty is prescribed with probability density functions, its effects are propagated through the analysis leading to stochastic metrics for the system's output. Control designs that aim for satisfactory performances while guaranteeing robust closed loop stability are attained by solving constrained non-linear optimization problems in the frequency domain. This approach permits not only to quantify the probability of having unstable and unfavorable responses for a particular control design but also to search for controls while favoring the values of the parameters with higher chance of occurrence. In this manner, robust optimality is achieved while the characteristic conservatism of conventional robust control methods is eliminated. Examples that admit closed form expressions for the probabilistic metrics of the output are used to elucidate the nature of the problem at hand and validate the proposed formulations.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdinov, O.; Abdallah, J.; Abeloos, B.; Aben, R.; Abolins, M.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Andrade Filho, L. Manhaes de; Ramos, J. Manjarres; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Murrone, A.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.
2016-12-01
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb^{-1} of proton-proton collision data at √{s} = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter tilde{d} is constrained to the interval (-0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of tilde{d}=0.
The climate impacts of bioenergy systems depend on market and regulatory policy contexts.
Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M
2010-10-01
Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.
Pareto-optimal estimates that constrain mean California precipitation change
NASA Astrophysics Data System (ADS)
Langenbrunner, B.; Neelin, J. D.
2017-12-01
Global climate model (GCM) projections of greenhouse gas-induced precipitation change can exhibit notable uncertainty at the regional scale, particularly in regions where the mean change is small compared to internal variability. This is especially true for California, which is located in a transition zone between robust precipitation increases to the north and decreases to the south, and where GCMs from the Climate Model Intercomparison Project phase 5 (CMIP5) archive show no consensus on mean change (in either magnitude or sign) across the central and southern parts of the state. With the goal of constraining this uncertainty, we apply a multiobjective approach to a large set of subensembles (subsets of models from the full CMIP5 ensemble). These constraints are based on subensemble performance in three fields important to California precipitation: tropical Pacific sea surface temperatures, upper-level zonal winds in the midlatitude Pacific, and precipitation over the state. An evolutionary algorithm is used to sort through and identify the set of Pareto-optimal subensembles across these three measures in the historical climatology, and we use this information to constrain end-of-century California wet season precipitation change. This technique narrows the range of projections throughout the state and increases confidence in estimates of positive mean change. Furthermore, these methods complement and generalize emergent constraint approaches that aim to restrict uncertainty in end-of-century projections, and they have applications to even broader aspects of uncertainty quantification, including parameter sensitivity and model calibration.
Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.
Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo
2015-05-01
It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.
2013-12-01
To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.
Ares-I Bending Filter Design using a Constrained Optimization Approach
NASA Technical Reports Server (NTRS)
Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth
2008-01-01
The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX
2010-08-25
Timely estimation of deviations from optimal performance in complex systems and the ability to identify corrective measures in response to the estimated parameter deviations has been the subject of extensive research over the past four decades. The implications in terms of lost revenue from costly industrial processes, operation of large-scale public works projects and the volume of the published literature on this topic clearly indicates the significance of the problem. Applications range from manufacturing industries (integrated circuits, automotive, etc.), to large-scale chemical plants, pharmaceutical production, power distribution grids, and avionics. In this project we investigated a new framework for buildingmore » parsimonious models that are suited for diagnosis and fault estimation of complex technical systems. We used Support Vector Machines (SVMs) to model potentially time-varying parameters of a First-Principles (FP) description of the process. The combined SVM & FP model was built (i.e. model parameters were trained) using constrained optimization techniques. We used the trained models to estimate faults affecting simulated beam lifetime. In the case where a large number of process inputs are required for model-based fault estimation, the proposed framework performs an optimal nonlinear principal component analysis of the large-scale input space, and creates a lower dimension feature space in which fault estimation results can be effectively presented to the operation personnel. To fulfill the main technical objectives of the Phase I research, our Phase I efforts have focused on: (1) SVM Training in a Combined Model Structure - We developed the software for the constrained training of the SVMs in a combined model structure, and successfully modeled the parameters of a first-principles model for beam lifetime with support vectors. (2) Higher-order Fidelity of the Combined Model - We used constrained training to ensure that the output of the SVM (i.e. the parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable model-based fault estimation and correction for particle accelerators and industrial plants feasible.« less
Thermodynamically consistent model calibration in chemical kinetics
2011-01-01
Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can provide dimensionality reduction, better estimation performance, and lower computational complexity, and can help to alleviate the problem of data overfitting. PMID:21548948
NASA Technical Reports Server (NTRS)
Tiffany, S. H.; Adams, W. M., Jr.
1984-01-01
A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented.
Automatic Summarization as a Combinatorial Optimization Problem
NASA Astrophysics Data System (ADS)
Hirao, Tsutomu; Suzuki, Jun; Isozaki, Hideki
We derived the oracle summary with the highest ROUGE score that can be achieved by integrating sentence extraction with sentence compression from the reference abstract. The analysis results of the oracle revealed that summarization systems have to assign an appropriate compression rate for each sentence in the document. In accordance with this observation, this paper proposes a summarization method as a combinatorial optimization: selecting the set of sentences that maximize the sum of the sentence scores from the pool which consists of the sentences with various compression rates, subject to length constrains. The score of the sentence is defined by its compression rate, content words and positional information. The parameters for the compression rates and positional information are optimized by minimizing the loss between score of oracles and that of candidates. The results obtained from TSC-2 corpus showed that our method outperformed the previous systems with statistical significance.
Wind Farm Turbine Type and Placement Optimization
NASA Astrophysics Data System (ADS)
Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan
2016-09-01
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Wind farm turbine type and placement optimization
Graf, Peter; Dykes, Katherine; Scott, George; ...
2016-10-03
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
LCAMP: Location Constrained Approximate Message Passing for Compressed Sensing MRI
Sung, Kyunghyun; Daniel, Bruce L; Hargreaves, Brian A
2016-01-01
Iterative thresholding methods have been extensively studied as faster alternatives to convex optimization methods for solving large-sized problems in compressed sensing. A novel iterative thresholding method called LCAMP (Location Constrained Approximate Message Passing) is presented for reducing computational complexity and improving reconstruction accuracy when a nonzero location (or sparse support) constraint can be obtained from view shared images. LCAMP modifies the existing approximate message passing algorithm by replacing the thresholding stage with a location constraint, which avoids adjusting regularization parameters or thresholding levels. This work is first compared with other conventional reconstruction methods using random 1D signals and then applied to dynamic contrast-enhanced breast MRI to demonstrate the excellent reconstruction accuracy (less than 2% absolute difference) and low computation time (5 - 10 seconds using Matlab) with highly undersampled 3D data (244 × 128 × 48; overall reduction factor = 10). PMID:23042658
NASA Astrophysics Data System (ADS)
Khalilpourazari, Soheyl; Khalilpourazary, Saman
2017-05-01
In this article a multi-objective mathematical model is developed to minimize total time and cost while maximizing the production rate and surface finish quality in the grinding process. The model aims to determine optimal values of the decision variables considering process constraints. A lexicographic weighted Tchebycheff approach is developed to obtain efficient Pareto-optimal solutions of the problem in both rough and finished conditions. Utilizing a polyhedral branch-and-cut algorithm, the lexicographic weighted Tchebycheff model of the proposed multi-objective model is solved using GAMS software. The Pareto-optimal solutions provide a proper trade-off between conflicting objective functions which helps the decision maker to select the best values for the decision variables. Sensitivity analyses are performed to determine the effect of change in the grain size, grinding ratio, feed rate, labour cost per hour, length of workpiece, wheel diameter and downfeed of grinding parameters on each value of the objective function.
Solid state light engines for bioanalytical instruments and biomedical devices
NASA Astrophysics Data System (ADS)
Jaffe, Claudia B.; Jaffe, Steven M.
2010-02-01
Lighting subsystems to drive 21st century bioanalysis and biomedical diagnostics face stringent requirements. Industrywide demands for speed, accuracy and portability mean illumination must be intense as well as spectrally pure, switchable, stable, durable and inexpensive. Ideally a common lighting solution could service these needs for numerous research and clinical applications. While this is a noble objective, the current technology of arc lamps, lasers, LEDs and most recently light pipes have intrinsic spectral and angular traits that make a common solution untenable. Clearly a hybrid solution is required to service the varied needs of the life sciences. Any solution begins with a critical understanding of the instrument architecture and specifications for illumination regarding power, illumination area, illumination and emission wavelengths and numerical aperture. Optimizing signal to noise requires careful optimization of these parameters within the additional constraints of instrument footprint and cost. Often the illumination design process is confined to maximizing signal to noise without the ability to adjust any of the above parameters. A hybrid solution leverages the best of the existing lighting technologies. This paper will review the design process for this highly constrained, but typical optical optimization scenario for numerous bioanalytical instruments and biomedical devices.
Spiking neuron network Helmholtz machine.
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.
Spiking neuron network Helmholtz machine
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191
Exploring JWST's Capability to Constrain Habitability on Simulated Terrestrial TESS Planets
NASA Astrophysics Data System (ADS)
Tremblay, Luke; Britt, Amber; Batalha, Natasha; Schwieterman, Edward; Arney, Giada; Domagal-Goldman, Shawn; Mandell, Avi; Planetary Systems Laboratory; Virtual Planetary Laboratory
2017-01-01
In the following, we have worked to develop a flexible "observability" scale of biologically relevant molecules in the atmospheres of newly discovered exoplanets for the instruments aboard NASA's next flagship mission, the James Webb Space Telescope (JWST). We sought to create such a scale in order to provide the community with a tool with which to optimize target selection for JWST observations based on detections of the upcoming Transiting Exoplanet Satellite Survey (TESS). Current literature has laid the groundwork for defining both biologically relevant molecules as well as what characteristics would make a new world "habitable", but it has so far lacked a cohesive analysis of JWST's capabilities to observe these molecules in exoplanet atmospheres and thereby constrain habitability. In developing our Observability Scale, we utilized a range of hypothetical planets (over planetary radii and stellar insolation) and generated three self-consistent atmospheric models (of dierent molecular compositions) for each of our simulated planets. With these planets and their corresponding atmospheres, we utilized the most accurate JWST instrument simulator, created specically to process transiting exoplanet spectra. Through careful analysis of these simulated outputs, we were able to determine the relevant parameters that effected JWST's ability to constrain each individual molecular bands with statistical accuracy and therefore generate a scale based on those key parameters. As a preliminary test of our Observability Scale, we have also applied it to the list of TESS candidate stars in order to determine JWST's observational capabilities for any soon-to-be-detected planet in those solar systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Dykes, Katherine; Scott, George
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Scaling behavior of circular colliders dominated by synchrotron radiation
NASA Astrophysics Data System (ADS)
Talman, Richard
2015-08-01
The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in RF cavities that restore the lost energy. To the contrary, until now, the large proton to electron mass ratio has caused synchrotron radiation to be negligible in proton accelerators. The LHC beam energy has still been low enough that synchrotron radiation has little effect on beam dynamics; but the thermodynamic penalty in cooling the superconducting magnets has still made it essential for the radiated power not to be dissipated at liquid helium temperatures. Achieving this has been a significant challenge. For the next generation p, p collider this will be even more true. Furthermore, the radiation will effect beam distributions on time scales measured in minutes, for example causing the beams to be flattened, wider than they are high. In this regime scaling relations previously valid only for electrons will be applicable also to protons.
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan
2016-04-01
Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the user can choose at the end due to the specific needs. The sequential single-objective parameter screening was employed prior to the calibrations reducing the number of parameters by at least 50% in the different catchments and for the different single objectives. The single-objective calibrations led to a faster convergence of the objectives and are hence beneficial when using a DDS on single-objectives. The above mentioned parameter screening technique is generalized for multi-objectives and applied before calibration using the PA-DDS algorithm. Two different alternatives of this MO-screening are tested. The comparison of the calibration results using all parameters and using only screened parameters shows for both alternatives that the PA-DDS algorithm does not profit in terms of trade-off size and function evaluations required to achieve converged pareto fronts. This is because the PA-DDS algorithm automatically reduces search space with progress of the calibration run. This automatic reduction should be different for other search algorithms. It is therefore hypothesized that prior screening can but must not be beneficial for parameter estimation dependent on the chosen optimization algorithm.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology.
Optimization Control of the Color-Coating Production Process for Model Uncertainty
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563
Optimization Control of the Color-Coating Production Process for Model Uncertainty.
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.
Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.
1991-01-01
A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.
NASA Astrophysics Data System (ADS)
Sanford, Ward E.; Niel Plummer, L.; Casile, Gerolamo; Busenberg, Ed; Nelms, David L.; Schlosser, Peter
2017-06-01
Dual-domain transport is an alternative conceptual and mathematical paradigm to advection-dispersion for describing the movement of dissolved constituents in groundwater. Here we test the use of a dual-domain algorithm combined with advective pathline tracking to help reconcile environmental tracer concentrations measured in springs within the Shenandoah Valley, USA. The approach also allows for the estimation of the three dual-domain parameters: mobile porosity, immobile porosity, and a domain exchange rate constant. Concentrations of CFC-113, SF6, 3H, and 3He were measured at 28 springs emanating from carbonate rocks. The different tracers give three different mean composite piston-flow ages for all the springs that vary from 5 to 18 years. Here we compare four algorithms that interpret the tracer concentrations in terms of groundwater age: piston flow, old-fraction mixing, advective-flow path modeling, and dual-domain modeling. Whereas the second two algorithms made slight improvements over piston flow at reconciling the disparate piston-flow age estimates, the dual-domain algorithm gave a very marked improvement. Optimal values for the three transport parameters were also obtained, although the immobile porosity value was not well constrained. Parameter correlation and sensitivities were calculated to help quantify the uncertainty. Although some correlation exists between the three parameters being estimated, a watershed simulation of a pollutant breakthrough to a local stream illustrates that the estimated transport parameters can still substantially help to constrain and predict the nature and timing of solute transport. The combined use of multiple environmental tracers with this dual-domain approach could be applicable in a wide variety of fractured-rock settings.
NASA Astrophysics Data System (ADS)
Ricciuto, Daniel M.; King, Anthony W.; Dragoni, D.; Post, Wilfred M.
2011-03-01
Many parameters in terrestrial biogeochemical models are inherently uncertain, leading to uncertainty in predictions of key carbon cycle variables. At observation sites, this uncertainty can be quantified by applying model-data fusion techniques to estimate model parameters using eddy covariance observations and associated biometric data sets as constraints. Uncertainty is reduced as data records become longer and different types of observations are added. We estimate parametric and associated predictive uncertainty at the Morgan Monroe State Forest in Indiana, USA. Parameters in the Local Terrestrial Ecosystem Carbon (LoTEC) are estimated using both synthetic and actual constraints. These model parameters and uncertainties are then used to make predictions of carbon flux for up to 20 years. We find a strong dependence of both parametric and prediction uncertainty on the length of the data record used in the model-data fusion. In this model framework, this dependence is strongly reduced as the data record length increases beyond 5 years. If synthetic initial biomass pool constraints with realistic uncertainties are included in the model-data fusion, prediction uncertainty is reduced by more than 25% when constraining flux records are less than 3 years. If synthetic annual aboveground woody biomass increment constraints are also included, uncertainty is similarly reduced by an additional 25%. When actual observed eddy covariance data are used as constraints, there is still a strong dependence of parameter and prediction uncertainty on data record length, but the results are harder to interpret because of the inability of LoTEC to reproduce observed interannual variations and the confounding effects of model structural error.
New method to design stellarator coils without the winding surface
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-01-01
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.
Stress-Constrained Structural Topology Optimization with Design-Dependent Loads
NASA Astrophysics Data System (ADS)
Lee, Edmund
Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.
CONORBIT: constrained optimization by radial basis function interpolation in trust regions
Regis, Rommel G.; Wild, Stefan M.
2016-09-26
Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less
Structural optimization: Status and promise
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.
Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)
Sign epistasis caused by hierarchy within signalling cascades.
Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J
2018-04-13
Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.
Optimal design of isotope labeling experiments.
Yang, Hong; Mandy, Dominic E; Libourel, Igor G L
2014-01-01
Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.
Monterial, Mateusz; Marleau, Peter; Paff, Marc; ...
2017-01-20
Here, we present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with bothmore » multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.« less
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Paff, Marc; Clarke, Shaun; Pozzi, Sara
2017-04-01
We present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with both multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-01-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-09-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2017-09-01
A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.
A Probabilistic Approach to Fitting Period–luminosity Relations and Validating Gaia Parallaxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesar, Branimir; Fouesneau, Morgan; Bailer-Jones, Coryn A. L.
Pulsating stars, such as Cepheids, Miras, and RR Lyrae stars, are important distance indicators and calibrators of the “cosmic distance ladder,” and yet their period–luminosity–metallicity (PLZ) relations are still constrained using simple statistical methods that cannot take full advantage of available data. To enable optimal usage of data provided by the Gaia mission, we present a probabilistic approach that simultaneously constrains parameters of PLZ relations and uncertainties in Gaia parallax measurements. We demonstrate this approach by constraining PLZ relations of type ab RR Lyrae stars in near-infrared W 1 and W 2 bands, using Tycho- Gaia Astrometric Solution (TGAS) parallaxmore » measurements for a sample of ≈100 type ab RR Lyrae stars located within 2.5 kpc of the Sun. The fitted PLZ relations are consistent with previous studies, and in combination with other data, deliver distances precise to 6% (once various sources of uncertainty are taken into account). To a precision of 0.05 mas (1 σ ), we do not find a statistically significant offset in TGAS parallaxes for this sample of distant RR Lyrae stars (median parallax of 0.8 mas and distance of 1.4 kpc). With only minor modifications, our probabilistic approach can be used to constrain PLZ relations of other pulsating stars, and we intend to apply it to Cepheid and Mira stars in the near future.« less
NASA Astrophysics Data System (ADS)
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.
NASA Astrophysics Data System (ADS)
Chandra, Rishabh
Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.
A feasible DY conjugate gradient method for linear equality constraints
NASA Astrophysics Data System (ADS)
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
On meeting capital requirements with a chance-constrained optimization model.
Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan
2016-01-01
This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.
NASA Technical Reports Server (NTRS)
Postma, Barry Dirk
2005-01-01
This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.
Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..
The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.
Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer
NASA Astrophysics Data System (ADS)
Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre
2014-07-01
We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.
Zhang, Y M; Huang, G; Lu, H W; He, Li
2015-08-15
A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro
2018-06-01
Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.
Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J
2017-06-14
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.
Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.
2017-01-01
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054
Aad, G.; Abbott, B.; Abdinov, O.; ...
2016-11-28
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb –1 of proton–proton collision data at √s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d ~. The mean values andmore » distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d ~ is constrained to the interval (–0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of d ~=0.« less
Optimal design of focused experiments and surveys
NASA Astrophysics Data System (ADS)
Curtis, Andrew
1999-10-01
Experiments and surveys are often performed to obtain data that constrain some previously underconstrained model. Often, constraints are most desired in a particular subspace of model space. Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. This study shows how the quality can be defined such that it depends on the amount of information that is focused in the particular subspace of interest. In addition, algorithms are presented which allow one particular focused quality measure (from the class of focused measures) to be evaluated efficiently. A subclass of focused quality measures is also related to the standard variance and resolution measures from linearized inverse theory. The theory presented here requires that the relationship between model parameters and data can be linearized around a reference model without significant loss of information. Physical and financial constraints define the space of possible experiment designs. Cross-well tomographic examples are presented, plus a strategy for survey design to maximize information about linear combinations of parameters such as bulk modulus, κ =λ+ 2μ/3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abbott, B.; Abdinov, O.
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb –1 of proton–proton collision data at √s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d ~. The mean values andmore » distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d ~ is constrained to the interval (–0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of d ~=0.« less
Aad, G; Abbott, B; Abdinov, O; Abdallah, J; Abeloos, B; Aben, R; Abolins, M; Aben, R; Abolins, M; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Andrade Filho, L Manhaes de; Ramos, J Manjarres; Mann, A; Mansoulie, B; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Murrone, A; Musheghyan, H; Muskinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L
2016-01-01
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of [Formula: see text] leptons and is based on 20.3 [Formula: see text] of proton-proton collision data at [Formula: see text] = 8 [Formula: see text] collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter [Formula: see text]. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter [Formula: see text] is constrained to the interval [Formula: see text] at 68% confidence level, consistent with the Standard Model expectation of [Formula: see text].
Critical transition in the constrained traveling salesman problem.
Andrecut, M; Ali, M K
2001-04-01
We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.
Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.
Bardhan, Jaydeep P.; Altman, Michael D.
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839
An historical survey of computational methods in optimal control.
NASA Technical Reports Server (NTRS)
Polak, E.
1973-01-01
Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.
Energy efficient LED layout optimization for near-uniform illumination
NASA Astrophysics Data System (ADS)
Ali, Ramy E.; Elgala, Hany
2016-09-01
In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.
Constrained optimization of sequentially generated entangled multiqubit states
NASA Astrophysics Data System (ADS)
Saberi, Hamed; Weichselbaum, Andreas; Lamata, Lucas; Pérez-García, David; von Delft, Jan; Solano, Enrique
2009-08-01
We demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give paradigmatic examples that may be of interest for theoretical and experimental developments.
NASA Technical Reports Server (NTRS)
Hargrove, A.
1982-01-01
Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.
Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Josh; Chodas, Paul W.; Englander, Jacob A.
2017-01-01
This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https:cneos.jpl.nasa.govpdcspdc17. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or low-thrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft, asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth-spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection.
NASA Astrophysics Data System (ADS)
Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen
2016-07-01
Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)
NASA Astrophysics Data System (ADS)
Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand
2018-03-01
Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
Assessment of municipal solid waste settlement models based on field-scale data analysis.
Bareither, Christopher A; Kwak, Seungbok
2015-08-01
An evaluation of municipal solid waste (MSW) settlement model performance and applicability was conducted based on analysis of two field-scale datasets: (1) Yolo and (2) Deer Track Bioreactor Experiment (DTBE). Twelve MSW settlement models were considered that included a range of compression behavior (i.e., immediate compression, mechanical creep, and biocompression) and range of total (2-22) and optimized (2-7) model parameters. A multi-layer immediate settlement analysis developed for Yolo provides a framework to estimate initial waste thickness and waste thickness at the end-of-immediate compression. Model application to the Yolo test cells (conventional and bioreactor landfills) via least squares optimization yielded high coefficient of determinations for all settlement models (R(2)>0.83). However, empirical models (i.e., power creep, logarithmic, and hyperbolic models) are not recommended for use in MSW settlement modeling due to potential non-representative long-term MSW behavior, limited physical significance of model parameters, and required settlement data for model parameterization. Settlement models that combine mechanical creep and biocompression into a single mathematical function constrain time-dependent settlement to a single process with finite magnitude, which limits model applicability. Overall, all models evaluated that couple multiple compression processes (immediate, creep, and biocompression) provided accurate representations of both Yolo and DTBE datasets. A model presented in Gourc et al. (2010) included the lowest number of total and optimized model parameters and yielded high statistical performance for all model applications (R(2)⩾0.97). Copyright © 2015 Elsevier Ltd. All rights reserved.
New method to design stellarator coils without the winding surface
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2017-11-06
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
New method to design stellarator coils without the winding surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.
2012-07-15
Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less
Analytical investigations in aircraft and spacecraft trajectory optimization and optimal guidance
NASA Technical Reports Server (NTRS)
Markopoulos, Nikos; Calise, Anthony J.
1995-01-01
A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations.
An adaptive evolutionary multi-objective approach based on simulated annealing.
Li, H; Landa-Silva, D
2011-01-01
A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.
Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin
2013-01-01
Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties. PMID:23531490
A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.
Quan, Quan; Cai, Kai-Yuan
2016-02-01
In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.
Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin
2013-03-26
Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties.
Offshore wind farm layout optimization
NASA Astrophysics Data System (ADS)
Elkinton, Christopher Neil
Offshore wind energy technology is maturing in Europe and is poised to make a significant contribution to the U.S. energy production portfolio. Building on the knowledge the wind industry has gained to date, this dissertation investigates the influences of different site conditions on offshore wind farm micrositing---the layout of individual turbines within the boundaries of a wind farm. For offshore wind farms, these conditions include, among others, the wind and wave climates, water depths, and soil conditions at the site. An analysis tool has been developed that is capable of estimating the cost of energy (COE) from offshore wind farms. For this analysis, the COE has been divided into several modeled components: major costs (e.g. turbines, electrical interconnection, maintenance, etc.), energy production, and energy losses. By treating these component models as functions of site-dependent parameters, the analysis tool can investigate the influence of these parameters on the COE. Some parameters result in simultaneous increases of both energy and cost. In these cases, the analysis tool was used to determine the value of the parameter that yielded the lowest COE and, thus, the best balance of cost and energy. The models have been validated and generally compare favorably with existing offshore wind farm data. The analysis technique was then paired with optimization algorithms to form a tool with which to design offshore wind farm layouts for which the COE was minimized. Greedy heuristic and genetic optimization algorithms have been tuned and implemented. The use of these two algorithms in series has been shown to produce the best, most consistent solutions. The influences of site conditions on the COE have been studied further by applying the analysis and optimization tools to the initial design of a small offshore wind farm near the town of Hull, Massachusetts. The results of an initial full-site analysis and optimization were used to constrain the boundaries of the farm. A more thorough optimization highlighted the features of the area that would result in a minimized COE. The results showed reasonable layout designs and COE estimates that are consistent with existing offshore wind farms.
Das, Swagatam; Mukhopadhyay, Arpan; Roy, Anwit; Abraham, Ajith; Panigrahi, Bijaya K
2011-02-01
The theoretical analysis of evolutionary algorithms is believed to be very important for understanding their internal search mechanism and thus to develop more efficient algorithms. This paper presents a simple mathematical analysis of the explorative search behavior of a recently developed metaheuristic algorithm called harmony search (HS). HS is a derivative-free real parameter optimization algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. This paper analyzes the evolution of the population-variance over successive generations in HS and thereby draws some important conclusions regarding the explorative power of HS. A simple but very useful modification to the classical HS has been proposed in light of the mathematical analysis undertaken here. A comparison with the most recently published variants of HS and four other state-of-the-art optimization algorithms over 15 unconstrained and five constrained benchmark functions reflects the efficiency of the modified HS in terms of final accuracy, convergence speed, and robustness.
NASA Astrophysics Data System (ADS)
Joung, Tae-Hwan; Sammut, Karl; He, Fangpo; Lee, Seung-Keon
2012-03-01
Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys™. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.
Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.
Thermally-Constrained Fuel-Optimal ISS Maneuvers
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol
2015-01-01
Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.
Intelligent Sampling of Hazardous Particle Populations in Resource-Constrained Environments
NASA Astrophysics Data System (ADS)
McCollough, J. P.; Quinn, J. M.; Starks, M. J.; Johnston, W. R.
2017-10-01
Sampling of anomaly-causing space environment drivers is necessary for both real-time operations and satellite design efforts, and optimizing measurement sampling helps minimize resource demands. Relating these measurements to spacecraft anomalies requires the ability to resolve spatial and temporal variability in the energetic charged particle hazard of interest. Here we describe a method for sampling particle fluxes informed by magnetospheric phenomenology so that, along a given trajectory, the variations from both temporal dynamics and spatial structure are adequately captured while minimizing oversampling. We describe the coordinates, sampling method, and specific regions and parameters employed. We compare resulting sampling cadences with data from spacecraft spanning the regions of interest during a geomagnetically active period, showing that the algorithm retains the gross features necessary to characterize environmental impacts on space systems in diverse orbital regimes while greatly reducing the amount of sampling required. This enables sufficient environmental specification within a resource-constrained context, such as limited telemetry bandwidth, processing requirements, and timeliness.
NASA Astrophysics Data System (ADS)
Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong
2017-06-01
Effective application of carbon capture, utilization and storage (CCUS) systems could help to alleviate the influence of climate change by reducing carbon dioxide (CO2) emissions. The research objective of this study is to develop an equilibrium chance-constrained programming model with bi-random variables (ECCP model) for supporting the CCUS management system under random circumstances. The major advantage of the ECCP model is that it tackles random variables as bi-random variables with a normal distribution, where the mean values follow a normal distribution. This could avoid irrational assumptions and oversimplifications in the process of parameter design and enrich the theory of stochastic optimization. The ECCP model is solved by an equilibrium change-constrained programming algorithm, which provides convenience for decision makers to rank the solution set using the natural order of real numbers. The ECCP model is applied to a CCUS management problem, and the solutions could be useful in helping managers to design and generate rational CO2-allocation patterns under complexities and uncertainties.
NASA Astrophysics Data System (ADS)
Badhan, Mahmuda A.; Mandell, Avi M.; Hesman, Brigette; Nixon, Conor; Deming, Drake; Irwin, Patrick; Barstow, Joanna; Garland, Ryan
2015-11-01
Understanding the formation environments and evolution scenarios of planets in nearby planetary systems requires robust measures for constraining their atmospheric physical properties. Here we have utilized a combination of two different parameter retrieval approaches, Optimal Estimation and Markov Chain Monte Carlo, as part of the well-validated NEMESIS atmospheric retrieval code, to infer a range of temperature profiles and molecular abundances of H2O, CO2, CH4 and CO from available dayside thermal emission observations of several hot-Jupiter candidates. In order to keep the number of parameters low and henceforth retrieve more plausible profile shapes, we have used a parametrized form of the temperature profile based upon an analytic radiative equilibrium derivation in Guillot et al. 2010 (Line et al. 2012, 2014). We show retrieval results on published spectroscopic and photometric data from both the Hubble Space Telescope and Spitzer missions, and compare them with simulations from the upcoming JWST mission. In addition, since NEMESIS utilizes correlated distribution of absorption coefficients (k-distribution) amongst atmospheric layers to compute these models, updates to spectroscopic databases can impact retrievals quite significantly for such high-temperature atmospheres. As high-temperature line databases are continually being improved, we also compare retrievals between old and newer databases.
Stability-Constrained Aerodynamic Shape Optimization with Applications to Flying Wings
NASA Astrophysics Data System (ADS)
Mader, Charles Alexander
A set of techniques is developed that allows the incorporation of flight dynamics metrics as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability derivatives. Based on the characteristics of the two methods, the time-spectral technique is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.
Saha, S. K.; Dutta, R.; Choudhury, R.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems. PMID:23844390
Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.
Sasidharan Pillai, Indu M; Gupta, Ashok K
2016-07-01
Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Posselt, Derek J.
The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spycher, Nicolas; Peiffer, Loic; Finsterle, Stefan
GeoT implements the multicomponent geothermometry method developed by Reed and Spycher (1984, Geochim. Cosmichim. Acta 46 513–528) into a stand-alone computer program, to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimationmore » software, such as iTOUGH2, PEST, or UCODE. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.« less
Modified Interior Distance Functions (Theory and Methods)
NASA Technical Reports Server (NTRS)
Polyak, Roman A.
1995-01-01
In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The approximation for the primal minimizer one finds by Newton Method followed by the Lagrange multipliers update. Due to the MCM convergence, when both the center and the barrier parameter are fixed, the condition of the MDF Hessism and the neighborhood of the primal ninimizer where Newton method is 'well' defined remains stable. It contributes to both the complexity and the numerical stability of the NMCM.
NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A. L.; Morsink, S. M.; Fiege, J. D.
The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determinemore » the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.« less
NASA Technical Reports Server (NTRS)
Tapia, R. A.; Vanrooy, D. L.
1976-01-01
A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.
Necessary conditions for the optimality of variable rate residual vector quantizers
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.
1993-01-01
Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.
Energetic Materials Optimization via Constrained Search
2015-06-01
steps. 3. Optimization Methodology Our optimization problem is formulated as a constrained maximization: max x∈CCS P (x) s.t. : TED ( x )− 9.75 ≥ 0 SV (x)− 9...0 5− SA(x) ≥ 0, (1) where TED ( x ) is the total energy of detonation (TED) of compound x from the chosen chemical subspace (CCS) of chemical compound...max problem, max x∈CCS min λ∈R3+ P (x)− λTC(x), (2) where C(x) is the vector of constraint violations, i.e., η(9.75 − TED ( x )), η(9 − SV (x)), η(SA(x
NASA Astrophysics Data System (ADS)
Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi
Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.
2016-12-01
The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.
NASA Astrophysics Data System (ADS)
MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.
2011-04-01
The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.
Astrophysical Model Selection in Gravitational Wave Astronomy
NASA Technical Reports Server (NTRS)
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Cognitive radio adaptation for power consumption minimization using biogeography-based optimization
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Zheng, Shi-Lian; Yang, Xiao-Niu; Zhao, Zhi-Jin
2016-12-01
Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501356), the Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101), and the Postdoctoral Fund of Shaanxi Province, China.
Multimaterial topology optimization of contact problems using phase field regularization
NASA Astrophysics Data System (ADS)
Myśliński, Andrzej
2018-01-01
The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.
Optimal weighting in fNL constraints from large scale structure in an idealised case
NASA Astrophysics Data System (ADS)
Slosar, Anže
2009-03-01
We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter fNL. We work within the Fisher matrix formalism expanded around fiducial model with fNL = 0 and make several simplifying assumptions. By slicing a general sample into infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about fNL in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally suboptimal in the limit where Poisson errors dominate.
NASA Technical Reports Server (NTRS)
Lund, T. S.; Tavella, D. A.; Roberts, L.
1985-01-01
A viscous-inviscid interaction methodology based on a zonal description of the flowfield is developed as a mean of predicting the performance of two-dimensional thrust augmenting ejectors. An inviscid zone comprising the irrotational flow about the device is patched together with a viscous zone containing the turbulent mixing flow. The inviscid region is computed by a higher order panel method, while an integral method is used for the description of the viscous part. A non-linear, constrained optimization study is undertaken for the design of the inlet region. In this study, the viscous-inviscid analysis is complemented with a boundary layer calculation to account for flow separation from the walls of the inlet region. The thrust-based Reynolds number as well as the free stream velocity are shown to be important parameters in the design of a thrust augmentor inlet.
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
Kinematics and constraints associated with swashplate blade pitch control
NASA Technical Reports Server (NTRS)
Leyland, Jane A.
1993-01-01
An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solution of a general optimization problem requiring the determination of a control vector which minimizes a performance index where functions of the control vector are subject to inequality constraints. Six possible constraint functions associated with swashplate blade pitch control were identified and defined. These functions constrain: (1) blade pitch Fourier Coefficients expressed in the Rotating System, (2) blade pitch Fourier Coefficients expressed in the Nonrotating System, (3) stroke of the individual actuators expressed in the Nonrotating System, (4) blade pitch expressed as a function of blade azimuth and actuator stroke, (5) time rate-of-change of the aforementioned parameters, and (6) required actuator power. The aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of the strokes of the individual actuators are documented.
NASA Astrophysics Data System (ADS)
Han, Jiang; Chen, Ye-Hwa; Zhao, Xiaomin; Dong, Fangfang
2018-04-01
A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.
Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R
2016-09-01
Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finding viable models in SUSY parameter spaces with signal specific discovery potential
NASA Astrophysics Data System (ADS)
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
Biyikli, Emre; To, Albert C.
2015-01-01
A new topology optimization method called the Proportional Topology Optimization (PTO) is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement, and is also efficient and accurate at the same time. It is implemented into two MATLAB programs to solve the stress constrained and minimum compliance problems. Descriptions of the algorithm and computer programs are provided in detail. The method is applied to solve three numerical examples for both types of problems. The method shows comparable efficiency and accuracy with an existing optimality criteria method which computes sensitivities. Also, the PTO stress constrained algorithm and minimum compliance algorithm are compared by feeding output from one algorithm to the other in an alternative manner, where the former yields lower maximum stress and volume fraction but higher compliance compared to the latter. Advantages and disadvantages of the proposed method and future works are discussed. The computer programs are self-contained and publicly shared in the website www.ptomethod.org. PMID:26678849
Bacanin, Nebojsa; Tuba, Milan
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645
NASA Astrophysics Data System (ADS)
Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo
2014-05-01
Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.
Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems
NASA Astrophysics Data System (ADS)
Watkins, Edward Francis
1995-01-01
A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.
Bayes factors for testing inequality constrained hypotheses: Issues with prior specification.
Mulder, Joris
2014-02-01
Several issues are discussed when testing inequality constrained hypotheses using a Bayesian approach. First, the complexity (or size) of the inequality constrained parameter spaces can be ignored. This is the case when using the posterior probability that the inequality constraints of a hypothesis hold, Bayes factors based on non-informative improper priors, and partial Bayes factors based on posterior priors. Second, the Bayes factor may not be invariant for linear one-to-one transformations of the data. This can be observed when using balanced priors which are centred on the boundary of the constrained parameter space with a diagonal covariance structure. Third, the information paradox can be observed. When testing inequality constrained hypotheses, the information paradox occurs when the Bayes factor of an inequality constrained hypothesis against its complement converges to a constant as the evidence for the first hypothesis accumulates while keeping the sample size fixed. This paradox occurs when using Zellner's g prior as a result of too much prior shrinkage. Therefore, two new methods are proposed that avoid these issues. First, partial Bayes factors are proposed based on transformed minimal training samples. These training samples result in posterior priors that are centred on the boundary of the constrained parameter space with the same covariance structure as in the sample. Second, a g prior approach is proposed by letting g go to infinity. This is possible because the Jeffreys-Lindley paradox is not an issue when testing inequality constrained hypotheses. A simulation study indicated that the Bayes factor based on this g prior approach converges fastest to the true inequality constrained hypothesis. © 2013 The British Psychological Society.
Model-data fusion across ecosystems: from multisite optimizations to global simulations
NASA Astrophysics Data System (ADS)
Kuppel, S.; Peylin, P.; Maignan, F.; Chevallier, F.; Kiely, G.; Montagnani, L.; Cescatti, A.
2014-11-01
This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model-data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model-data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP - gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index) measurements indicates an improvement of the simulated seasonal variations of the foliar cover for all considered PFTs.
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
Automatic x-ray image contrast enhancement based on parameter auto-optimization.
Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan
2017-11-01
Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more accurate treatment setup and facilitating the subsequent offline review and verification. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Laferriere, Craig; Ravenscroft, Neil; Wilson, Seanette; Combrink, Jill; Gordon, Lizelle; Petre, Jean
2011-10-01
The introduction of type b Haemophilus influenzae conjugate vaccines into routine vaccination schedules has significantly reduced the burden of this disease; however, widespread use in developing countries is constrained by vaccine costs, and there is a need for a simple and high-yielding manufacturing process. The vaccine is composed of purified capsular polysaccharide conjugated to an immunogenic carrier protein. To improve the yield and rate of the reductive amination conjugation reaction used to make this vaccine, some of the carboxyl groups of the carrier protein, tetanus toxoid, were modified to hydrazides, which are more reactive than the ε -amine of lysine. Other reaction parameters, including the ratio of the reactants, the size of the polysaccharide, the temperature and the salt concentration, were also investigated. Experimental design was used to minimize the number of experiments required to optimize all these parameters to obtain conjugate in high yield with target characteristics. It was found that increasing the reactant ratio and decreasing the size of the polysaccharide increased the polysaccharide:protein mass ratio in the product. Temperature and salt concentration did not improve this ratio. These results are consistent with a diffusion controlled rate limiting step in the conjugation reaction. Excessive modification of tetanus toxoid with hydrazide was correlated with reduced yield and lower free polysaccharide. This was attributed to a greater tendency for precipitation, possibly due to changes in the isoelectric point. Experimental design and multiple regression helped identify key parameters to control and thereby optimize this conjugation reaction.
Universally Sloppy Parameter Sensitivities in Systems Biology Models
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-01-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Constraining Cosmological Models with Different Observations
NASA Astrophysics Data System (ADS)
Wei, J. J.
2016-07-01
With the observations of Type Ia supernovae (SNe Ia), scientists discovered that the Universe is experiencing an accelerated expansion, and then revealed the existence of dark energy in 1998. Since the amazing discovery, cosmology has became a hot topic in the physical research field. Cosmology is a subject that strongly depends on the astronomical observations. Therefore, constraining different cosmological models with all kinds of observations is one of the most important research works in the modern cosmology. The goal of this thesis is to investigate cosmology using the latest observations. The observations include SNe Ia, Type Ic Super Luminous supernovae (SLSN Ic), Gamma-ray bursts (GRBs), angular diameter distance of galaxy cluster, strong gravitational lensing, and age measurements of old passive galaxies, etc. In Chapter 1, we briefly review the research background of cosmology, and introduce some cosmological models. Then we summarize the progress on cosmology from all kinds of observations in more details. In Chapter 2, we present the results of our studies on the supernova cosmology. The main difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing SN luminosities simultaneously with the parameters of an expansion model of the Universe. We have confirmed that one should optimize all of the parameters by carrying out the method of maximum likelihood estimation in any situation where the parameters include an unknown intrinsic dispersion. The commonly used method, which estimates the dispersion by requiring the reduced χ^{2} to equal unity, does not take into account all possible variances among the parameters. We carry out such a comparison of the standard ΛCDM cosmology and the R_{h}=ct Universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. Moreover, it is quite evident that SLSNe Ic may be useful cosmological probes, perhaps even out to redshifts much greater (z≫2) than those accessible using SNe Ia. However, the currently available sample of SNe Ia is still quite small. Our simulations have shown that if SLSNe Ic can be commonly detected in the future, they have the potential of greatly refining the measurement of cosmological parameters, particularly the parameter w_{de} of the dark energy equation of state. In Chapter 3, we focus on GRB cosmology. We firstly use GRBs as standard candles in constructing the Hubble diagram at redshifts beyond the current reach of SNe Ia observations. Then we measure high-z star formation rate (SFR) using GRBs. We confirm that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to SFR at high redshifts. The observed discrepancy between the GRB rate and the SFR may be eliminated by assuming a cosmic evolution in metallicity. Assuming that the SFR and GRB rate are related via an evolving metallicity, we find that the GRB data constrain the slope of the high-z SFR to be -2.41_{-2.09}^{+1.87}. In addition, first stars can only form in structures that are suitably dense, which can be parameterized by the minimum dark matter halo mass M_{min}. M_{min} must play an important role in star formation. We can constrain M_{min}<10^{12.5} M_{⊙} at 68% confidence level from the GRB data. In Chapter 4, we assemble a catalog of 69 strong gravitational lensing systems, and carefully introduce how to constrain cosmological parameters using these important data. We find that both ΛCDM and the R_{h}=ct Universe account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. In Chapters 5 and 6, we use measurements of the galaxy-cluster angular diameter distances and 32 age measurements of passively evolving galaxies to test and compare the standard model (ΛCDM) and the R_{h}=ct Universe, respectively. We show that both models appear to account for these two data very well. However, because of the different number of free parameters in these models, we have to judge the goodness-of-fit of cosmological models with selection tools, such as the Akaike, Kullback, and Bayes Information Criteria, favoring R_{h}=ct over ΛCDM with a likelihood of about 70%, 75%, and 80%, respectively. Finally, some open questions and an outlook in the cosmology field are summarized in Chapter 7.
How wet should be the reaction coordinate for ligand unbinding?
Tiwary, Pratyush; Berne, B J
2016-08-07
We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom.
How wet should be the reaction coordinate for ligand unbinding?
NASA Astrophysics Data System (ADS)
Tiwary, Pratyush; Berne, B. J.
2016-08-01
We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom.
Optimizing integrated luminosity of future hadron colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank
2015-10-01
The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).
How wet should be the reaction coordinate for ligand unbinding?
Tiwary, Pratyush; Berne, B. J.
2016-01-01
We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom. PMID:27497545
The Insight ToolKit image registration framework
Avants, Brian B.; Tustison, Nicholas J.; Stauffer, Michael; Song, Gang; Wu, Baohua; Gee, James C.
2014-01-01
Publicly available scientific resources help establish evaluation standards, provide a platform for teaching and improve reproducibility. Version 4 of the Insight ToolKit (ITK4) seeks to establish new standards in publicly available image registration methodology. ITK4 makes several advances in comparison to previous versions of ITK. ITK4 supports both multivariate images and objective functions; it also unifies high-dimensional (deformation field) and low-dimensional (affine) transformations with metrics that are reusable across transform types and with composite transforms that allow arbitrary series of geometric mappings to be chained together seamlessly. Metrics and optimizers take advantage of multi-core resources, when available. Furthermore, ITK4 reduces the parameter optimization burden via principled heuristics that automatically set scaling across disparate parameter types (rotations vs. translations). A related approach also constrains steps sizes for gradient-based optimizers. The result is that tuning for different metrics and/or image pairs is rarely necessary allowing the researcher to more easily focus on design/comparison of registration strategies. In total, the ITK4 contribution is intended as a structure to support reproducible research practices, will provide a more extensive foundation against which to evaluate new work in image registration and also enable application level programmers a broad suite of tools on which to build. Finally, we contextualize this work with a reference registration evaluation study with application to pediatric brain labeling.1 PMID:24817849
Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Joshua; Chodas, Paul W.; Englander, Jacob A.
2017-01-01
This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https://cneos.jpl.nasa.gov/ pd/cs/pdc17/. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or lowthrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft/asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth/spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection
Toward Overcoming the Local Minimum Trap in MFBD
2015-07-14
the first two years of this grant: • A. Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind Deconvolution...Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Numerical Optimization Meth- ods for Blind Deconvolution, Numerical Algorithms, volume 65, issue 1...Publications (published) during reporting period: A. Cornelio, E. Loli Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind
NASA Astrophysics Data System (ADS)
Cioaca, Alexandru
A deep scientific understanding of complex physical systems, such as the atmosphere, can be achieved neither by direct measurements nor by numerical simulations alone. Data assimila- tion is a rigorous procedure to fuse information from a priori knowledge of the system state, the physical laws governing the evolution of the system, and real measurements, all with associated error statistics. Data assimilation produces best (a posteriori) estimates of model states and parameter values, and results in considerably improved computer simulations. The acquisition and use of observations in data assimilation raises several important scientific questions related to optimal sensor network design, quantification of data impact, pruning redundant data, and identifying the most beneficial additional observations. These questions originate in operational data assimilation practice, and have started to attract considerable interest in the recent past. This dissertation advances the state of knowledge in four dimensional variational (4D-Var) data assimilation by developing, implementing, and validating a novel computational framework for estimating observation impact and for optimizing sensor networks. The framework builds on the powerful methodologies of second-order adjoint modeling and the 4D-Var sensitivity equations. Efficient computational approaches for quantifying the observation impact include matrix free linear algebra algorithms and low-rank approximations of the sensitivities to observations. The sensor network configuration problem is formulated as a meta-optimization problem. Best values for parameters such as sensor location are obtained by optimizing a performance criterion, subject to the constraint posed by the 4D-Var optimization. Tractable computational solutions to this "optimization-constrained" optimization problem are provided. The results of this work can be directly applied to the deployment of intelligent sensors and adaptive observations, as well as to reducing the operating costs of measuring networks, while preserving their ability to capture the essential features of the system under consideration.
A greedy algorithm for species selection in dimension reduction of combustion chemistry
NASA Astrophysics Data System (ADS)
Hiremath, Varun; Ren, Zhuyin; Pope, Stephen B.
2010-09-01
Computational calculations of combustion problems involving large numbers of species and reactions with a detailed description of the chemistry can be very expensive. Numerous dimension reduction techniques have been developed in the past to reduce the computational cost. In this paper, we consider the rate controlled constrained-equilibrium (RCCE) dimension reduction method, in which a set of constrained species is specified. For a given number of constrained species, the 'optimal' set of constrained species is that which minimizes the dimension reduction error. The direct determination of the optimal set is computationally infeasible, and instead we present a greedy algorithm which aims at determining a 'good' set of constrained species; that is, one leading to near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving methane premixed combustion with chemistry described by the GRI-Mech 1.2 mechanism containing 31 species is used to test the algorithm. Results on dimension reduction errors for different sets of constrained species are presented to assess the effectiveness of the greedy algorithm. It is shown that the first four constrained species selected using the proposed greedy algorithm produce lower dimension reduction error than constraints on the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species selected using the proposed greedy algorithm produce a non-increasing dimension reduction error with every additional constrained species; and produce the lowest dimension reduction error in many cases tested over a wide range of equivalence ratios, pressures and initial temperatures.
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION
Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy
2016-01-01
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method—named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results. PMID:26778864
Domain decomposition in time for PDE-constrained optimization
Barker, Andrew T.; Stoll, Martin
2015-08-28
Here, PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions
NASA Astrophysics Data System (ADS)
Lienert, Sebastian; Joos, Fortunat
2018-05-01
A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC). Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties Latin hypercube sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with a diverse set of global and spatiotemporally resolved observational constraints. We discuss the performance of the constrained ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained ensemble is used to investigate historical emissions due to LULCC (ELUC) and their sensitivity to model parametrization. We find a global ELUC estimate of 158 (108, 211) PgC (median and 90 % confidence interval) between 1800 and 2016. We compare ELUC to other estimates both globally and regionally. Spatial patterns are investigated and estimates of ELUC of the 10 countries with the largest contribution to the flux over the historical period are reported. We consider model versions with and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global ELUC is on the same order of magnitude as parameter-induced uncertainty and in some cases could potentially even be offset with appropriate parameter choice.
Form of prior for constrained thermodynamic processes with uncertainty
NASA Astrophysics Data System (ADS)
Aneja, Preety; Johal, Ramandeep S.
2015-05-01
We consider the quasi-static thermodynamic processes with constraints, but with additional uncertainty about the control parameters. Motivated by inductive reasoning, we assign prior distribution that provides a rational guess about likely values of the uncertain parameters. The priors are derived explicitly for both the entropy-conserving and the energy-conserving processes. The proposed form is useful when the constraint equation cannot be treated analytically. The inference is performed using spin-1/2 systems as models for heat reservoirs. Analytical results are derived in the high-temperatures limit. An agreement beyond linear response is found between the estimates of thermal quantities and their optimal values obtained from extremum principles. We also seek an intuitive interpretation for the prior and the estimated value of temperature obtained therefrom. We find that the prior over temperature becomes uniform over the quantity kept conserved in the process.
Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.
Clarke, Clyde; Etienne-Cummings, Ralph
2006-01-01
A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.
MM Algorithms for Geometric and Signomial Programming
Lange, Kenneth; Zhou, Hua
2013-01-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
Dense motion estimation using regularization constraints on local parametric models.
Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein
2004-11-01
This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
Benchmarking optimization software with COPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, E.D.; More, J.J.
2001-01-08
The COPS test set provides a modest selection of difficult nonlinearly constrained optimization problems from applications in optimal design, fluid dynamics, parameter estimation, and optimal control. In this report we describe version 2.0 of the COPS problems. The formulation and discretization of the original problems have been streamlined and improved. We have also added new problems. The presentation of COPS follows the original report, but the description of the problems has been streamlined. For each problem we discuss the formulation of the problem and the structural data in Table 0.1 on the formulation. The aim of presenting this data ismore » to provide an approximate idea of the size and sparsity of the problem. We also include the results of computational experiments with the LANCELOT, LOQO, MINOS, and SNOPT solvers. These computational experiments differ from the original results in that we have deleted problems that were considered to be too easy. Moreover, in the current version of the computational experiments, each problem is tested with four variations. An important difference between this report and the original report is that the tables that present the computational experiments are generated automatically from the testing script. This is explained in more detail in the report.« less
Grid generation and adaptation via Monge-Kantorovich optimization in 2D and 3D
NASA Astrophysics Data System (ADS)
Delzanno, Gian Luca; Chacon, Luis; Finn, John M.
2008-11-01
In a recent paper [1], Monge-Kantorovich (MK) optimization was proposed as a method of grid generation/adaptation in two dimensions (2D). The method is based on the minimization of the L2 norm of grid point displacement, constrained to producing a given positive-definite cell volume distribution (equidistribution constraint). The procedure gives rise to the Monge-Amp'ere (MA) equation: a single, non-linear scalar equation with no free-parameters. The MA equation was solved in Ref. [1] with the Jacobian Free Newton-Krylov technique and several challenging test cases were presented in squared domains in 2D. Here, we extend the work of Ref. [1]. We first formulate the MK approach in physical domains with curved boundary elements and in 3D. We then show the results of applying it to these more general cases. We show that MK optimization produces optimal grids in which the constraint is satisfied numerically to truncation error. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, submitted to Journal of Computational Physics (2008).
Design and optimization of organic rankine cycle for low temperature geothermal power plant
NASA Astrophysics Data System (ADS)
Barse, Kirtipal A.
Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R245ca and R600 in non-constrained IHX configuration. LCOE is dependent on net power and higher net power favors to lower the cost of electricity. Overall R245ca, R601, R601a, R600 and R236ea show better performance among the fluids studied. Non constrained configurations display better performance compared to the constrained configurations. Base non-constrained offered the highest net power and lowest LCOE.
Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home
NASA Astrophysics Data System (ADS)
Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake
2018-01-01
MilkyWay@home is a 0.5 PetaFLOPS volunteer computing platform that is mapping out the density substructure of the Sagittarius Dwarf Tidal Stream, the so-called bifurcated portion of the Sagittarius Stream, and the Virgo Overdensity, using turnoff stars from the Sloan Digital Sky Survey. It is also using the density of stars along tidal streams such as the Orphan Stream to constrain properties of the dwarf galaxy progenitor of this stream, including the dark matter portion. Both of these programs are enabled by a specially-built optimization package that uses differential evolution or particle swarm methods to find the optimal model parameters to fit a set of data. To fit the density of tidal streams, 20 parameters are simultaneously fit to each 2.5-degree-wide stripe of SDSS data. Five parameters describing the stellar and dark matter profile of the Orphan Stream progenitor and the time that the dwarf galaxy has been evolved through the Galactic potential are used in an n-body simulation that is then fit to observations of the Orphan Stream. New results from MilkyWay@home will be presented. This project was supported by NSF grant AST 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.
Uncertainty Analysis of Simulated Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.
2012-12-01
Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2018-05-01
Application of the multi-arm space robot will be more effective than single arm especially when the target is tumbling. This paper investigates the application of particle swarm optimization (PSO) strategy to coordinated trajectory planning of the dual-arm space robot in free-floating mode. In order to overcome the dynamics singularities issue, the direct kinematics equations in conjunction with constrained PSO are employed for coordinated trajectory planning of dual-arm space robot. The joint trajectories are parametrized with Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for coordinated trajectory planning of two kinematically redundant manipulators mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.
Deterministic Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.
1998-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
Vehicle routing problem with time windows using natural inspired algorithms
NASA Astrophysics Data System (ADS)
Pratiwi, A. B.; Pratama, A.; Sa’diyah, I.; Suprajitno, H.
2018-03-01
Process of distribution of goods needs a strategy to make the total cost spent for operational activities minimized. But there are several constrains have to be satisfied which are the capacity of the vehicles and the service time of the customers. This Vehicle Routing Problem with Time Windows (VRPTW) gives complex constrains problem. This paper proposes natural inspired algorithms for dealing with constrains of VRPTW which involves Bat Algorithm and Cat Swarm Optimization. Bat Algorithm is being hybrid with Simulated Annealing, the worst solution of Bat Algorithm is replaced by the solution from Simulated Annealing. Algorithm which is based on behavior of cats, Cat Swarm Optimization, is improved using Crow Search Algorithm to make simplier and faster convergence. From the computational result, these algorithms give good performances in finding the minimized total distance. Higher number of population causes better computational performance. The improved Cat Swarm Optimization with Crow Search gives better performance than the hybridization of Bat Algorithm and Simulated Annealing in dealing with big data.
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Simonetto, Andrea; Dall'Anese, Emiliano
2017-07-26
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
Balancing building and maintenance costs in growing transport networks
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco
2017-09-01
The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.
Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator
NASA Astrophysics Data System (ADS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
2006-05-01
Optimized laser launch trajectories have been developed for a 1.4 m diameter, 120 kg (empty mass) Lightcraft Technology Demonstrator (LTD). The lightcraft's combined-cycle airbreathing/rocket engine is designed for single-stage-to-orbit flights with a mass ratio of 2 propelled by a 100 MW class ground-based laser built on a 3 km mountain peak. Once in orbit, the vehicle becomes an autonomous micro-satellite. Two types of trajectories were simulated with the SORT (Simulation and Optimization of Rocket Trajectories) software package: a) direct GBL boost to orbit, and b) GBL boost aided by laser relay satellite. Several new subroutines were constructed for SORT to input engine performance (as a function of Mach number and altitude), vehicle aerodynamics, guidance algorithms, and mass history. A new guidance/steering option required the lightcraft to always point at the GBL or laser relay satellite. SORT iterates on trajectory parameters to optimize vehicle performance, achieve a desired criteria, or constrain the solution to avoid some specific limit. The predicted laser-boost performance for the LTD is undoubtedly revolutionary, and SORT simulations have helped to define this new frontier.
Constrained minimization of smooth functions using a genetic algorithm
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Pamadi, Bandu N.
1994-01-01
The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
NASA Technical Reports Server (NTRS)
Baecher, Juergen; Bandte, Oliver; DeLaurentis, Dan; Lewis, Kemper; Sicilia, Jose; Soboleski, Craig
1995-01-01
This report documents the efforts of a Georgia Tech High Speed Civil Transport (HSCT) aerospace student design team in completing a design methodology demonstration under NASA's Advanced Design Program (ADP). Aerodynamic and propulsion analyses are integrated into the synthesis code FLOPS in order to improve its prediction accuracy. Executing the integrated product and process development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory (ASDL), an improved sizing process is described followed by a combined aero-propulsion optimization, where the objective function, average yield per revenue passenger mile ($/RPM), is constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals include successful demonstration of the application of the response surface methodolgy (RSM) to parameter design, introduction to higher fidelity disciplinary analysis than normally feasible at the conceptual and early preliminary level, and investigations of relationships between aerodynamic and propulsion design parameters and their effect on the objective function, $/RPM. A unique approach to aircraft synthesis is developed in which statistical methods, specifically design of experiments and the RSM, are used to more efficiently search the design space for optimum configurations. In particular, two uses of these techniques are demonstrated. First, response model equations are formed which represent complex analysis in the form of a regression polynomial. Next, a second regression equation is constructed, not for modeling purposes, but instead for the purpose of optimization at the system level. Such an optimization problem with the given tools normally would be difficult due to the need for hard connections between the various complex codes involved. The statistical methodology presents an alternative and is demonstrated via an example of aerodynamic modeling and planform optimization for a HSCT.
Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouri, Drew Philip; Surowiec, Thomas M.
Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less
Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
Kouri, Drew Philip; Surowiec, Thomas M.
2018-06-05
Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng
2015-01-01
Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264
Guo, P; Huang, G H
2010-03-01
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.
Mixed-Strategy Chance Constrained Optimal Control
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.
2013-01-01
This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.
Optimal apodization design for medical ultrasound using constrained least squares part I: theory.
Guenther, Drake A; Walker, William F
2007-02-01
Aperture weighting functions are critical design parameters in the development of ultrasound systems because beam characteristics affect the contrast and point resolution of the final output image. In previous work by our group, we developed a metric that quantifies a broadband imaging system's contrast resolution performance. We now use this metric to formulate a novel general ultrasound beamformer design method. In our algorithm, we use constrained least squares (CLS) techniques and a linear algebra formulation to describe the system point spread function (PSF) as a function of the aperture weightings. In one approach, we minimize the energy of the PSF outside a certain boundary and impose a linear constraint on the aperture weights. In a second approach, we minimize the energy of the PSF outside a certain boundary while imposing a quadratic constraint on the energy of the PSF inside the boundary. We present detailed analysis for an arbitrary ultrasound imaging system and discuss several possible applications of the CLS techniques, such as designing aperture weightings to maximize contrast resolution and improve the system depth of field.
NASA Technical Reports Server (NTRS)
Koshak, William; Solakiewicz, Richard
2012-01-01
The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error plots are provided for both the simulations and actual data analyses.
Characterization of the High-Albedo NEA 3691 Bede
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.;
2016-01-01
Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv˜0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.
Characterization of the high-albedo NEA 3691 Bede
NASA Astrophysics Data System (ADS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David Emerson
2016-10-01
Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.
A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.
Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa
2018-02-01
Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.
NASA Astrophysics Data System (ADS)
Chan, C. H.; Brown, G.; Rikvold, P. A.
2017-05-01
A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.
NASA Astrophysics Data System (ADS)
Shi, Z.; Crowell, S.; Luo, Y.; Rayner, P. J.; Moore, B., III
2015-12-01
Uncertainty in predicted carbon-climate feedback largely stems from poor parameterization of global land models. However, calibration of global land models with observations has been extremely challenging at least for two reasons. First we lack global data products from systematical measurements of land surface processes. Second, computational demand is insurmountable for estimation of model parameter due to complexity of global land models. In this project, we will use OCO-2 retrievals of dry air mole fraction XCO2 and solar induced fluorescence (SIF) to independently constrain estimation of net ecosystem exchange (NEE) and gross primary production (GPP). The constrained NEE and GPP will be combined with data products of global standing biomass, soil organic carbon and soil respiration to improve the community land model version 4.5 (CLM4.5). Specifically, we will first develop a high fidelity emulator of CLM4.5 according to the matrix representation of the terrestrial carbon cycle. It has been shown that the emulator fully represents the original model and can be effectively used for data assimilation to constrain parameter estimation. We will focus on calibrating those key model parameters (e.g., maximum carboxylation rate, turnover time and transfer coefficients of soil carbon pools, and temperature sensitivity of respiration) for carbon cycle. The Bayesian Markov chain Monte Carlo method (MCMC) will be used to assimilate the global databases into the high fidelity emulator to constrain the model parameters, which will be incorporated back to the original CLM4.5. The calibrated CLM4.5 will be used to make scenario-based projections. In addition, we will conduct observing system simulation experiments (OSSEs) to evaluate how the sampling frequency and length could affect the model constraining and prediction.
The signal of mantle anisotropy in the coupling of normal modes
NASA Astrophysics Data System (ADS)
Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.
2008-12-01
We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Necessary optimality conditions for infinite dimensional state constrained control problems
NASA Astrophysics Data System (ADS)
Frankowska, H.; Marchini, E. M.; Mazzola, M.
2018-06-01
This paper is concerned with first order necessary optimality conditions for state constrained control problems in separable Banach spaces. Assuming inward pointing conditions on the constraint, we give a simple proof of Pontryagin maximum principle, relying on infinite dimensional neighboring feasible trajectories theorems proved in [20]. Further, we provide sufficient conditions guaranteeing normality of the maximum principle. We work in the abstract semigroup setting, but nevertheless we apply our results to several concrete models involving controlled PDEs. Pointwise state constraints (as positivity of the solutions) are allowed.
Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection
NASA Astrophysics Data System (ADS)
Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan
2017-08-01
Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl
The space-based gravitational wave (GW) detector, evolved Laser Interferometer Space Antenna (eLISA) is expected to observe millions of compact Galactic binaries that populate our Milky Way. GW measurements obtained from the eLISA detector are in many cases complimentary to possible electromagnetic (EM) data. In our previous papers, we have shown that the EM data can significantly enhance our knowledge of the astrophysically relevant GW parameters of Galactic binaries, such as the amplitude and inclination. This is possible due to the presence of some strong correlations between GW parameters that are measurable by both EM and GW observations, for example, themore » inclination and sky position. In this paper, we quantify the constraints in the physical parameters of the white-dwarf binaries, i.e., the individual masses, chirp mass, and the distance to the source that can be obtained by combining the full set of EM measurements such as the inclination, radial velocities, distances, and/or individual masses with the GW measurements. We find the following 2σ fractional uncertainties in the parameters of interest. The EM observations of distance constrain the chirp mass to ∼15%-25%, whereas EM data of a single-lined spectroscopic binary constrain the secondary mass and the distance with factors of two to ∼40%. The single-line spectroscopic data complemented with distance constrains the secondary mass to ∼25%-30%. Finally, EM data on double-lined spectroscopic binary constrain the distance to ∼30%. All of these constraints depend on the inclination and the signal strength of the binary systems. We also find that the EM information on distance and/or the radial velocity are the most useful in improving the estimate of the secondary mass, inclination, and/or distance.« less
High Order Entropy-Constrained Residual VQ for Lossless Compression of Images
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen
1995-01-01
High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.
NASA Technical Reports Server (NTRS)
De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.
2012-01-01
We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.
Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model
NASA Astrophysics Data System (ADS)
Samaniego, L.; Kumar, R.; Attinger, S.
2007-12-01
Any spatially explicit hydrological model at the mesoscale is a conceptual approximation of the hydrological cycle and its dominant process occurring at this scale. Manual-expert calibration of this type of models may become quite tedious---if not impossible---taking into account the enormous amount of data required by these kind of models and the intrinsic uncertainty of both the data (input-output) and the model structure. Additionally, the model should be able to reproduce well several process which are accounted by a number of predefined objectives. As a consequence, some degree of automatic calibration would be required to find "good" solutions, each one constituting a trade-off among all calibration criteria. In other words, it is very likely that a number of parameter sets fulfil the optimization criteria and thus can be considered a model solution. In this study, we dealt with two research questions: 1) How to assess the adequate level of model complexity so that model overparameterization is avoided? And, 2) How to find a good solution with a relatively low computational burden? In the present study, a grid-based conceptual hydrological model denoted as HBV-UFZ based on some of the original HBV concepts was employed. This model was driven by 12~h precipitation, temperature, and PET grids which are acquired either from satellite products or from data of meteorological stations. In the latter case, the data was interpolated with external drift Kriging. The first research question was addressed in this study with the implementation of nonlinear transfer functions that regionalize most model parameters as a function of other spatially distributed observables such as land cover (time dependent) and other time independent basin characteristics such as soil type, slope, aspect, geological formations among others. The second question was addressed with an adaptive constrained optimization algorithm based on a parallel implementation of simulated annealing (SA). The main difference with the standard SA is the parameter search routine which uses adaptive heuristic rules to improve its efficiency. These rules are based on the relative behavior of the efficiency criteria. The efficiency of the model is evaluated with the Nash-Sutcliffe efficiency coefficient (NS) and the RMSE obtained for various short and long term runoff characteristics such as daily flows; semiannual high and low flow characteristics such as total drought duration frequency of high flows; and annual specific discharge at various gauging stations. Additionally, the parameter search was constrained with the 95% confidence bands of the runoff characteristics mentioned above. The proposed method was calibrated in the Upper Neckar River basin covering an area of approximately 4000~km2 during the period from 1961 to 1993. The spatial and temporal resolutions used were a grid size of (1000 × 1000)~m and 12~h intervals respectively. The results of the study indicate significant improvement in model performance (e.g. Nash-Sutcliffe of various runoff characteristics ~ 0.8) and a significant reduction in computational burden of at least 25%.
Constrained variational calculus for higher order classical field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David
2010-11-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Constrained spectral clustering under a local proximity structure assumption
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Xu, Qianjun; des Jardins, Marie
2005-01-01
This work focuses on incorporating pairwise constraints into a spectral clustering algorithm. A new constrained spectral clustering method is proposed, as well as an active constraint acquisition technique and a heuristic for parameter selection. We demonstrate that our constrained spectral clustering method, CSC, works well when the data exhibits what we term local proximity structure.
A RSSI-based parameter tracking strategy for constrained position localization
NASA Astrophysics Data System (ADS)
Du, Jinze; Diouris, Jean-François; Wang, Yide
2017-12-01
In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.
NASA Astrophysics Data System (ADS)
Elkhateeb, Esraa
2018-01-01
We consider a cosmological model based on a generalization of the equation of state proposed by Nojiri and Odintsov (2004) and Štefančić (2005, 2006). We argue that this model works as a dark fluid model which can interpolate between dust equation of state and the dark energy equation of state. We show how the asymptotic behavior of the equation of state constrained the parameters of the model. The causality condition for the model is also studied to constrain the parameters and the fixed points are tested to determine different solution classes. Observations of Hubble diagram of SNe Ia supernovae are used to further constrain the model. We present an exact solution of the model and calculate the luminosity distance and the energy density evolution. We also calculate the deceleration parameter to test the state of the universe expansion.
Robust Path Planning and Feedback Design Under Stochastic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars
2008-01-01
Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.
Dynamic optimization and its relation to classical and quantum constrained systems
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo
2017-08-01
We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.
State transformations and Hamiltonian structures for optimal control in discrete systems
NASA Astrophysics Data System (ADS)
Sieniutycz, S.
2006-04-01
Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.
Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E
2012-11-16
By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0.044), respectively (p = 0.005). The results indicate that the constrained ABA algorithm can accurately align prone breast FDG-PET images acquired at different time points while keeping the tumor from being substantially compressed or distorted. NCT00474604.
A Bayesian approach to earthquake source studies
NASA Astrophysics Data System (ADS)
Minson, Sarah
Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also to determine their uncertainties. So while kinematic source modeling and the estimation of source parameters is not new, with CATMIP I am able to use Bayesian sampling to determine which parts of the source process are well-constrained and which are not.
NASA Astrophysics Data System (ADS)
Mai, J.; Cuntz, M.; Zink, M.; Schaefer, D.; Thober, S.; Samaniego, L. E.; Shafii, M.; Tolson, B.
2015-12-01
Hydrologic models are traditionally calibrated against discharge. Recent studies have shown however, that only a few global model parameters are constrained using the integral discharge measurements. It is therefore advisable to use additional information to calibrate those models. Snow pack data, for example, could improve the parametrization of snow-related processes, which might be underrepresented when using only discharge. One common approach is to combine these multiple objectives into one single objective function and allow the use of a single-objective algorithm. Another strategy is to consider the different objectives separately and apply a Pareto-optimizing algorithm. Both methods are challenging in the choice of appropriate multiple objectives with either conflicting interests or the focus on different model processes. A first aim of this study is to compare the two approaches employing the mesoscale Hydrologic Model mHM at several distinct river basins over Europe and North America. This comparison will allow the identification of the single-objective solution on the Pareto front. It is elucidated if this position is determined by the weighting and scaling of the multiple objectives when combing them to the single objective. The principal second aim is to guide the selection of proper objectives employing sensitivity analyses. These analyses are used to determine if an additional information would help to constrain additional model parameters. The additional information are either multiple data sources or multiple signatures of one measurement. It is evaluated if specific discharge signatures can inform different parts of the hydrologic model. The results show that an appropriate selection of discharge signatures increased the number of constrained parameters by more than 50% compared to using only NSE of the discharge time series. It is further assessed if the use of these signatures impose conflicting objectives on the hydrologic model. The usage of signatures is furthermore contrasted to the use of additional observations such as soil moisture or snow height. The gain of using an auxiliary dataset is determined using the parametric sensitivity on the respective modeled variable.
NASA Astrophysics Data System (ADS)
Liang, Guanghui; Ren, Shangjie; Dong, Feng
2018-07-01
The ultrasound/electrical dual-modality tomography utilizes the complementarity of ultrasound reflection tomography (URT) and electrical impedance tomography (EIT) to improve the speed and accuracy of image reconstruction. Due to its advantages of no-invasive, no-radiation and low-cost, ultrasound/electrical dual-modality tomography has attracted much attention in the field of dual-modality imaging and has many potential applications in industrial and biomedical imaging. However, the data fusion of URT and EIT is difficult due to their different theoretical foundations and measurement principles. The most commonly used data fusion strategy in ultrasound/electrical dual-modality tomography is incorporating the structured information extracted from the URT into the EIT image reconstruction process through a pixel-based constraint. Due to the inherent non-linearity and ill-posedness of EIT, the reconstructed images from the strategy suffer from the low resolution, especially at the boundary of the observed inclusions. To improve this condition, an augmented Lagrangian trust region method is proposed to directly reconstruct the shapes of the inclusions from the ultrasound/electrical dual-modality measurements. In the proposed method, the shape of the target inclusion is parameterized by a radial shape model whose coefficients are used as the shape parameters. Then, the dual-modality shape inversion problem is formulated by an energy minimization problem in which the energy function derived from EIT is constrained by an ultrasound measurements model through an equality constraint equation. Finally, the optimal shape parameters associated with the optimal inclusion shape guesses are determined by minimizing the constrained cost function using the augmented Lagrangian trust region method. To evaluate the proposed method, numerical tests are carried out. Compared with single modality EIT, the proposed dual-modality inclusion boundary reconstruction method has a higher accuracy and is more robust to the measurement noise.
Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen
2013-01-01
One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...
Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks
Bistra Dilkina; Rachel Houtman; Carla P. Gomes; Claire A. Montgomery; Kevin S. McKelvey; Katherine Kendall; Tabitha A. Graves; Richard Bernstein; Michael K. Schwartz
2016-01-01
Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a...
NASA Technical Reports Server (NTRS)
Downie, John D.
1995-01-01
Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.
Constrained ripple optimization of Tokamak bundle divertors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.; Rome, J.A.; Lynch, V.E.
1983-02-01
Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have lowmore » on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.« less
Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization
Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2015-01-01
The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-21
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Optimal test selection for prediction uncertainty reduction
Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel
2016-12-02
Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less
Tests of the Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval
NASA Technical Reports Server (NTRS)
Koshak, William; Solakiewicz, Richard; Attele, Rohan
2011-01-01
Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
Characterization of Kilopixel TES detector arrays for PIPER
NASA Astrophysics Data System (ADS)
Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-01
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Maximizing the information learned from finite data selects a simple model
NASA Astrophysics Data System (ADS)
Mattingly, Henry H.; Transtrum, Mark K.; Abbott, Michael C.; Machta, Benjamin B.
2018-02-01
We use the language of uninformative Bayesian prior choice to study the selection of appropriately simple effective models. We advocate for the prior which maximizes the mutual information between parameters and predictions, learning as much as possible from limited data. When many parameters are poorly constrained by the available data, we find that this prior puts weight only on boundaries of the parameter space. Thus, it selects a lower-dimensional effective theory in a principled way, ignoring irrelevant parameter directions. In the limit where there are sufficient data to tightly constrain any number of parameters, this reduces to the Jeffreys prior. However, we argue that this limit is pathological when applied to the hyperribbon parameter manifolds generic in science, because it leads to dramatic dependence on effects invisible to experiment.
A TV-constrained decomposition method for spectral CT
NASA Astrophysics Data System (ADS)
Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang
2017-03-01
Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.
A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm
NASA Technical Reports Server (NTRS)
Ortiz, Francisco
2004-01-01
COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.
Bayesian multiple-source localization in an uncertain ocean environment.
Dosso, Stan E; Wilmut, Michael J
2011-06-01
This paper considers simultaneous localization of multiple acoustic sources when properties of the ocean environment (water column and seabed) are poorly known. A Bayesian formulation is developed in which the environmental parameters, noise statistics, and locations and complex strengths (amplitudes and phases) of multiple sources are considered to be unknown random variables constrained by acoustic data and prior information. Two approaches are considered for estimating source parameters. Focalization maximizes the posterior probability density (PPD) over all parameters using adaptive hybrid optimization. Marginalization integrates the PPD using efficient Markov-chain Monte Carlo methods to produce joint marginal probability distributions for source ranges and depths, from which source locations are obtained. This approach also provides quantitative uncertainty analysis for all parameters, which can aid in understanding of the inverse problem and may be of practical interest (e.g., source-strength probability distributions). In both approaches, closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Examples are presented of both approaches applied to single- and multi-frequency localization of multiple sources in an uncertain shallow-water environment, and a Monte Carlo performance evaluation study is carried out. © 2011 Acoustical Society of America
Ferrari, Ulisse
2016-08-01
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.
Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.
Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R
2016-01-01
The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function
NASA Technical Reports Server (NTRS)
Wrenn, Gregory A.
1989-01-01
A technique is described for converting a constrained optimization problem into an unconstrained problem. The technique transforms one of more objective functions into reduced objective functions, which are analogous to goal constraints used in the goal programming method. These reduced objective functions are appended to the set of constraints and an envelope of the entire function set is computed using the Kreisselmeir-Steinhauser function. This envelope function is then searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods to find a constrained minimum without the draw down factor typical of penalty function methods, and that the technique may be started from the feasible or infeasible design space. In multiobjective applications, the approach has the advantage of locating a compromise minimum design without the need to optimize for each individual objective function separately.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Gray, Justin S.
2012-01-01
The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.
Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
DOE Office of Scientific and Technical Information (OSTI.GOV)
DallAnese, Emiliano; Baker, Kyri; Summers, Tyler
This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less
Optimal lifting ascent trajectories for the space shuttle
NASA Technical Reports Server (NTRS)
Rau, T. R.; Elliott, J. R.
1972-01-01
The performance gains which are possible through the use of optimal trajectories for a particular space shuttle configuration are discussed. The spacecraft configurations and aerodynamic characteristics are described. Shuttle mission payload capability is examined with respect to the optimal orbit inclination for unconstrained, constrained, and nonlifting conditions. The effects of velocity loss and heating rate on the optimal ascent trajectory are investigated.
Artifact reduction in short-scan CBCT by use of optimization-based reconstruction
Zhang, Zheng; Han, Xiao; Pearson, Erik; Pelizzari, Charles; Sidky, Emil Y; Pan, Xiaochuan
2017-01-01
Increasing interest in optimization-based reconstruction in research on, and applications of, cone-beam computed tomography (CBCT) exists because it has been shown to have to potential to reduce artifacts observed in reconstructions obtained with the Feldkamp–Davis–Kress (FDK) algorithm (or its variants), which is used extensively for image reconstruction in current CBCT applications. In this work, we carried out a study on optimization-based reconstruction for possible reduction of artifacts in FDK reconstruction specifically from short-scan CBCT data. The investigation includes a set of optimization programs such as the image-total-variation (TV)-constrained data-divergency minimization, data-weighting matrices such as the Parker weighting matrix, and objects of practical interest for demonstrating and assessing the degree of artifact reduction. Results of investigative work reveal that appropriately designed optimization-based reconstruction, including the image-TV-constrained reconstruction, can reduce significant artifacts observed in FDK reconstruction in CBCT with a short-scan configuration. PMID:27046218
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
NASA Astrophysics Data System (ADS)
Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.
2014-06-01
The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.
Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.
Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C
2017-08-15
To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation
Dmochowski, Jacek P.; Koessler, Laurent; Norcia, Anthony M.; Bikson, Marom; Parra, Lucas C.
2018-01-01
To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4–7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. PMID:28578130
Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuhiro; Parkinson, David; Hamana, Takashi; Nichol, Robert C.; Suto, Yasushi
2007-07-01
We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parametrize the cosmic expansion by the two parameters, w0 and wa, and the linear growth rate of density fluctuations by Linder’s γ, independently. Dark energy models generically predict γ≈0.55, while the Dvali-Gabadadze-Porrati (DGP) model γ≈0.68. To determine if future imaging surveys can constrain γ within 20% (or Δγ<0.1), we perform the Fisher matrix analysis for a weak-lensing survey such as the ongoing Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the figure of merit (FoM) as a function of the exposure time texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around texp≃several˜10min; a shallow and wide survey is preferred to constrain the γ parameter. While Δγ<0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like Wide-field Fiber-fed Multi-Object Spectrograph (WFMOS) and/or future cosmic microwave background (CMB) observations.
Empirical Model of Precipitating Ion Oval
NASA Astrophysics Data System (ADS)
Goldstein, Jerry
2017-10-01
In this brief technical report published maps of ion integral flux are used to constrain an empirical model of the precipitating ion oval. The ion oval is modeled as a Gaussian function of ionospheric latitude that depends on local time and the Kp geomagnetic index. The three parameters defining this function are the centroid latitude, width, and amplitude. The local time dependences of these three parameters are approximated by Fourier series expansions whose coefficients are constrained by the published ion maps. The Kp dependence of each coefficient is modeled by a linear fit. Optimization of the number of terms in the expansion is achieved via minimization of the global standard deviation between the model and the published ion map at each Kp. The empirical model is valid near the peak flux of the auroral oval; inside its centroid region the model reproduces the published ion maps with standard deviations of less than 5% of the peak integral flux. On the subglobal scale, average local errors (measured as a fraction of the point-to-point integral flux) are below 30% in the centroid region. Outside its centroid region the model deviates significantly from the H89 integral flux maps. The model's performance is assessed by comparing it with both local and global data from a 17 April 2002 substorm event. The model can reproduce important features of the macroscale auroral region but none of its subglobal structure, and not immediately following a substorm.
Program Aids Analysis And Optimization Of Design
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Lamarsh, William J., II
1994-01-01
NETS/ PROSSS (NETS Coupled With Programming System for Structural Synthesis) computer program developed to provide system for combining NETS (MSC-21588), neural-network application program and CONMIN (Constrained Function Minimization, ARC-10836), optimization program. Enables user to reach nearly optimal design. Design then used as starting point in normal optimization process, possibly enabling user to converge to optimal solution in significantly fewer iterations. NEWT/PROSSS written in C language and FORTRAN 77.
Prediction of noise constrained optimum takeoff procedures
NASA Technical Reports Server (NTRS)
Padula, S. L.
1980-01-01
An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.
Efficiency-wage competition and nonlinear dynamics
NASA Astrophysics Data System (ADS)
Guerrazzi, Marco; Sodini, Mauro
2018-05-01
In this paper we develop a nonlinear version of the efficiency-wage competition model pioneered by Hahn (1987) [27]. Under the assumption that the strategic relationship among optimal wage bids put forward by competing firms is non-monotonic, we show that market wage offers can actually display persistent fluctuations described by a piece-wise non-invertible map. Thereafter, assuming that employers are never constrained in the labour market, we give evidence that in the parameter region of chaotic dynamics, the model is able to reproduce the business cycle regularity according to which in the short-run average wages fluctuate less than aggregate employment. In addition, we show that the efficiency-wage competition among firms leads to some inefficiencies in the wage setting process.
Optimal vibration control of a rotating plate with self-sensing active constrained layer damping
NASA Astrophysics Data System (ADS)
Xie, Zhengchao; Wong, Pak Kin; Lo, Kin Heng
2012-04-01
This paper proposes a finite element model for optimally controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model viscoelastic material, and an additional iterative approach which is only available in frequency domain has to be used to include the material's frequency dependency. It is meaningful to model the viscoelastic damping layer in rotating part by using the anelastic displacement fields (ADF) in order to include the frequency dependency in both the time and frequency domain. Also, unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator under an linear quadratic regulation (LQR) controller. After being compared with verified data, this newly proposed finite element model is validated and could be used for future research.
Hacker, David E; Hoinka, Jan; Iqbal, Emil S; Przytycka, Teresa M; Hartman, Matthew C T
2017-03-17
Highly constrained peptides such as the knotted peptide natural products are promising medicinal agents because of their impressive biostability and potent activity. Yet, libraries of highly constrained peptides are challenging to prepare. Here, we present a method which utilizes two robust, orthogonal chemical steps to create highly constrained bicyclic peptide libraries. This technology was optimized to be compatible with in vitro selections by mRNA display. We performed side-by-side monocyclic and bicyclic selections against a model protein (streptavidin). Both selections resulted in peptides with mid-nanomolar affinity, and the bicyclic selection yielded a peptide with remarkable protease resistance.
NASA Astrophysics Data System (ADS)
Lee, Dae Young
The design of a small satellite is challenging since they are constrained by mass, volume, and power. To mitigate these constraint effects, designers adopt deployable configurations on the spacecraft that result in an interesting and difficult optimization problem. The resulting optimization problem is challenging due to the computational complexity caused by the large number of design variables and the model complexity created by the deployables. Adding to these complexities, there is a lack of integration of the design optimization systems into operational optimization, and the utility maximization of spacecraft in orbit. The developed methodology enables satellite Multidisciplinary Design Optimization (MDO) that is extendable to on-orbit operation. Optimization of on-orbit operations is possible with MDO since the model predictive controller developed in this dissertation guarantees the achievement of the on-ground design behavior in orbit. To enable the design optimization of highly constrained and complex-shaped space systems, the spherical coordinate analysis technique, called the "Attitude Sphere", is extended and merged with an additional engineering tools like OpenGL. OpenGL's graphic acceleration facilitates the accurate estimation of the shadow-degraded photovoltaic cell area. This technique is applied to the design optimization of the satellite Electric Power System (EPS) and the design result shows that the amount of photovoltaic power generation can be increased more than 9%. Based on this initial methodology, the goal of this effort is extended from Single Discipline Optimization to Multidisciplinary Optimization, which includes the design and also operation of the EPS, Attitude Determination and Control System (ADCS), and communication system. The geometry optimization satisfies the conditions of the ground development phase; however, the operation optimization may not be as successful as expected in orbit due to disturbances. To address this issue, for the ADCS operations, controllers based on Model Predictive Control that are effective for constraint handling were developed and implemented. All the suggested design and operation methodologies are applied to a mission "CADRE", which is space weather mission scheduled for operation in 2016. This application demonstrates the usefulness and capability of the methodology to enhance CADRE's capabilities, and its ability to be applied to a variety of missions.
Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?
Newberry, Mitchell G.; Savage, Van M.
2016-01-01
Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. PMID:27902691
NASA Astrophysics Data System (ADS)
Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.
2012-12-01
A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model which had been used for Western North Pacific (WNP) tropical cyclone (TC) genesis (Hall 2011) as well as North Atlantic tropical cyclone genesis (Hall and Jewson 2007). The introduction of these tracks complements the shortage of the historical samples and allows for more reliable PDFs required for implementation of JPM-OS. Using the 33,731 tracks and JPM-OS, an optimal storm ensemble is determined. This approach results in different storms/winds for storm surge and inundation modeling, and produces different Base Flood Elevation maps for coastal regions. Coastal inundation maps produced by the two different methods will be discussed in detail in the poster paper.
Terrestrial Sagnac delay constraining modified gravity models
NASA Astrophysics Data System (ADS)
Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.
2018-04-01
Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.
Constraining the braneworld with gravitational wave observations.
McWilliams, Sean T
2010-04-09
Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm.
Constraining the Braneworld with Gravitational Wave Observations
NASA Technical Reports Server (NTRS)
McWilliams, Sean T.
2011-01-01
Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, L, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining L via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain L at the approximately 1 micron level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of L less than or equal to 5 microns.
A hierarchical transition state search algorithm
NASA Astrophysics Data System (ADS)
del Campo, Jorge M.; Köster, Andreas M.
2008-07-01
A hierarchical transition state search algorithm is developed and its implementation in the density functional theory program deMon2k is described. This search algorithm combines the double ended saddle interpolation method with local uphill trust region optimization. A new formalism for the incorporation of the distance constrain in the saddle interpolation method is derived. The similarities between the constrained optimizations in the local trust region method and the saddle interpolation are highlighted. The saddle interpolation and local uphill trust region optimizations are validated on a test set of 28 representative reactions. The hierarchical transition state search algorithm is applied to an intramolecular Diels-Alder reaction with several internal rotors, which makes automatic transition state search rather challenging. The obtained reaction mechanism is discussed in the context of the experimentally observed product distribution.
CONSOLE: A CAD tandem for optimization-based design interacting with user-supplied simulators
NASA Technical Reports Server (NTRS)
Fan, Michael K. H.; Wang, Li-Sheng; Koninckx, Jan; Tits, Andre L.
1989-01-01
CONSOLE employs a recently developed design methodology (International Journal of Control 43:1693-1721) which provides the designer with a congenial environment to express his problem as a multiple ojective constrained optimization problem and allows him to refine his characterization of optimality when a suboptimal design is approached. To this end, in CONSOLE, the designed formulates the design problem using a high-level language and performs design task and explores tradeoff through a few short and clearly defined commands. The range of problems that can be solved efficiently using a CAD tools depends very much on the ability of this tool to be interfaced with user-supplied simulators. For instance, when designing a control system one makes use of the characteristics of the plant, and therefore, a model of the plant under study has to be made available to the CAD tool. CONSOLE allows for an easy interfacing of almost any simulator the user has available. To date CONSOLE has already been used successfully in many applications, including the design of controllers for a flexible arm and for a robotic manipulator and the solution of a parameter selection problem for a neural network.
The bias of the log power spectrum for discrete surveys
NASA Astrophysics Data System (ADS)
Repp, Andrew; Szapudi, István
2018-03-01
A primary goal of galaxy surveys is to tighten constraints on cosmological parameters, and the power spectrum P(k) is the standard means of doing so. However, at translinear scales P(k) is blind to much of these surveys' information - information which the log density power spectrum recovers. For discrete fields (such as the galaxy density), A* denotes the statistic analogous to the log density: A* is a `sufficient statistic' in that its power spectrum (and mean) capture virtually all of a discrete survey's information. However, the power spectrum of A* is biased with respect to the corresponding log spectrum for continuous fields, and to use P_{A^*}(k) to constrain the values of cosmological parameters, we require some means of predicting this bias. Here, we present a prescription for doing so; for Euclid-like surveys (with cubical cells 16h-1 Mpc across) our bias prescription's error is less than 3 per cent. This prediction will facilitate optimal utilization of the information in future galaxy surveys.
Developing Lathing Parameters for PBX 9501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodrum, Randall Brock
This thesis presents the work performed on lathing PBX 9501 to gather and analyze cutting force and temperature data during the machining process. This data will be used to decrease federal-regulation-constrained machining time of the high explosive PBX 9501. The effects of machining parameters depth of cut, surface feet per minute, and inches per revolution on cutting force and cutting interface were evaluated. Cutting tools of tip radius 0.005 -inches and 0.05 -inches were tested to determine what effect the tool shape had on the machining process as well. A consistently repeatable relationship of temperature to changing depth of cutmore » and surface feet per minute is found, while only a weak dependence was found to changing inches per revolution. Results also show the relation of cutting force to depth of cut and inches per revolution, while weak dependence on SFM is found. Conclusions suggest rapid, shallow cuts optimize machining time for a billet of PBX 9501, while minimizing temperature increase and cutting force.« less
Cyclic steaming in heavy oil diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Beatty, F.D.
1995-12-31
Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less
NASA Astrophysics Data System (ADS)
Kamalabadi, Farzad; Qin, Jianqi; Harding, Brian J.; Iliou, Dimitrios; Makela, Jonathan J.; Meier, R. R.; England, Scott L.; Frey, Harald U.; Mende, Stephen B.; Immel, Thomas J.
2018-06-01
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.
Electrochemical model based charge optimization for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Anwar, Sohel
2016-05-01
In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.
NASA Astrophysics Data System (ADS)
Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk
2010-05-01
Numerical models are of precious help for predicting water fluxes in the vadose zone and more specifically in Soil-Vegetation-Atmosphere (SVA) systems. For such simulations, robust models and representative soil hydraulic parameters are required. Calibration of unsaturated hydraulic properties is known to be a difficult optimization problem due to the high non-linearity of the water flow equations. Therefore, robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. Additionally, GAs offer the opportunity to assess the confidence in the hydraulic parameter estimations, because of the large number of model realizations. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the Campine region in the north of Belgium. Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step in two lysimeters. The water table level, which is varying between 95 and 170 cm, has been recorded with intervals of 0.5 hour. The leaf area index was measured as well at some selected time moments during the year in order to evaluate the energy which reaches the soil and to deduce the potential evaporation. Water contents at several depths have been recorded. Based on the profile description, five soil layers have been distinguished in the podzol. Two models have been used for simulating water fluxes: (i) a mechanistic model, the HYDRUS-1D model, which solves the Richards' equation, and (ii) a compartmental model, which treats the soil profile as a bucket into which water flows until its maximum capacity is reached. A global sensitivity analysis (Morris' one-at-a-time sensitivity analysis) was run previously to the calibration, in order to check the sensitivity in the chosen parameter search space. For the inversion procedure a genetical algorithm (GA) was used. Specific features such as elitism, roulette-wheel process for selection operator and island theory were implemented. Optimization was based on the water content measurements recorded at several depths. Ten scenarios have been elaborated and applied on the two lysimeters in order to investigate the impact of the conceptual model in terms of processes description (mechanistic or compartmental) and geometry (number of horizons in the profile description) on the calibration accuracy. Calibration leads to a good agreement with the measured water contents. The most critical parameters for improving the goodness of fit are the number of horizons and the type of process description. Best fit are found for a mechanistic model with 5 horizons resulting in absolute differences between observed and simulated water contents less than 0.02 cm3cm-3 in average. Parameter estimate analysis shows that layers thicknesses are poorly constrained whereas hydraulic parameters are much well defined.
Experimental study of ERT monitoring ability to measure solute dispersion.
Lekmine, Grégory; Pessel, Marc; Auradou, Harold
2012-01-01
This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
The added value of remote sensing products in constraining hydrological models
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.
H2, fixed architecture, control design for large scale systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1990-01-01
The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki; Pavone, Marco; Balaram, J. (Bob)
2012-01-01
This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.
Akwabi-Ameyaw, Adwoa; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce
2011-10-15
To further explore the optimum placement of the acid moiety in conformationally constrained analogs of GW 4064 1a, a series of stilbene replacements were prepared. The benzothiophene 1f and the indole 1g display the optimal orientation of the carboxylate for enhanced FXR agonist potency. Copyright © 2011 Elsevier Ltd. All rights reserved.
On optimal strategies in event-constrained differential games
NASA Technical Reports Server (NTRS)
Heymann, M.; Rajan, N.; Ardema, M.
1985-01-01
Combat games are formulated as zero-sum differential games with unilateral event constraints. An interior penalty function approach is employed to approximate optimal strategies for the players. The method is very attractive computationally and possesses suitable approximation and convergence properties.
NASA Astrophysics Data System (ADS)
Moreenthaler, George W.; Khatib, Nader; Kim, Byoungsoo
2003-08-01
For two decades now, the use of Remote Sensing/Precision Agriculture to improve farm yields while reducing the use of polluting chemicals and the limited water supply has been a major goal. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, farm efficiency must increase to meet future food requirements and to make farming a sustainable, profitable occupation. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The real goal is to increase farm profitability by identifying the additional treatments of chemicals and water that increase revenues more than they increase costs and do no exceed pollution standards (constrained optimization). Even though the economic and environmental benefits appear to be great, Remote Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now in place, but other needed factors have been missing. Commercial satellite systems can now image the Earth (multi-spectrally) with a resolution as fine as 2.5 m. Precision variable dispensing systems using GPS are now available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been developed. Personal computers and internet access are now in place in most farm homes and can provide a mechanism for periodically disseminating advice on what quantities of water and chemicals are needed in specific regions of each field. Several processes have been selected that fuse the disparate sources of information on the current and historic states of the crop and soil, and the remaining resource levels available, with the critical decisions that farmers are required to make. These are done in a way that is easy for the farmer to understand and profitable to implement. A "Constrained Optimization Algorithm" to further improve these processes will be presented. The objective function of the model will used to maximize the farmer's profit via increasing yields while decreasing environmental damage and decreasing applications of costly treatments. This model will incorporate information from Remote Sensing, from in-situ weather sources, from soil history, and from tacit farmer knowledge of the relative productivity of selected "Management Zones" of the farm, to provide incremental advice throughout the growing season on the optimum usage of water and chemical treatments.
NASA Astrophysics Data System (ADS)
Morgenthaler, George; Khatib, Nader; Kim, Byoungsoo
with information to improve their crop's vigor has been a major topic of interest. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, the efficiency of farming must increase to meet future food requirements and to make farming a sustainable occupation for the farmer. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The goal is to increase farm revenue by increasing crop yield and decreasing applications of costly chemical and water treatments. In addition, this methodology will decrease the environmental costs of farming, i.e., reduce air, soil, and water pollution. Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now available. Commercial satellite systems can image (multi-spectral) the Earth with a resolution of approximately 2.5 m. Variable precision dispensing systems using GPS are available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been formulated. Personal computers and internet access are in place in most farm homes and can provide a mechanism to periodically disseminate, e.g. bi-weekly, advice on what quantities of water and chemicals are needed in individual regions of the field. What is missing is a model that fuses the disparate sources of information on the current states of the crop and soil, and the remaining resource levels available with the decisions farmers are required to make. This must be a product that is easy for the farmer to understand and to implement. A "Constrained Optimization Feed-back Control Model" to fill this void will be presented. The objective function of the model will be used to maximize the farmer's profit by increasing yields while decreasing environmental costs and decreasing application of costly treatments. This model will incorporate information from remote sensing, in-situ weather sources, soil measurements, crop models, and tacit farmer knowledge of the relative productivity of the selected control regions of the farm to provide incremental advice throughout the growing season on water and chemical treatments. Genetic and meta-heuristic algorithms will be used to solve the constrained optimization problem that possesses complex constraints and a non-linear objective function. *
3D-PTV around Operational Wind Turbines
NASA Astrophysics Data System (ADS)
Brownstein, Ian; Dabiri, John
2016-11-01
Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.
An approximate, maximum terminal velocity descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1987-01-01
No closed form control solution exists for maximizing the terminal velocity of a hypersonic glider at an arbitrary point. As an alternative, this study uses neighboring extremal theory to provide a sampled data feedback law to guide the vehicle to a constrained ground range and altitude. The guidance algorithm is divided into two parts: 1) computation of a nominal, approximate, maximum terminal velocity trajectory to a constrained final altitude and computation of the resulting unconstrained groundrange, and 2) computation of the neighboring extremal control perturbation at the sample value of flight path angle to compensate for changes in the approximatemore » physical model and enable the vehicle to reach the on-board computed groundrange. The trajectories are characterized by glide and dive flight to the target to minimize the time spent in the denser parts of the atmosphere. The proposed on-line scheme successfully brings the final altitude and range constraints together, as well as compensates for differences in flight model, atmosphere, and aerodynamics at the expense of guidance update computation time. Comparison with an independent, parameter optimization solution for the terminal velocity is excellent. 6 refs., 3 figs.« less
Hot forming of composite prepreg : Experimental study
NASA Astrophysics Data System (ADS)
Tardif, Xavier; Duthille, Bertrand; Bechtel, Stephane; le Pinru, Louis; Campagne, Benjamin; Destombes, Gautier; Deshors, Antoine; Marchand, Christophe; Azzouzi, Khalid El; Moro, Tanguy
2017-10-01
The hot forming of thermoset prepreg consists in bending an uncured composite part by applying a mechanical constrain on the hot laminate. Most of the time, the mold is inserted in a vacuum box and the mechanical constrain is applied on the composite laminate by a single membrane or a double-membrane. But the performance improvement products resulted in forming increasingly complex parts with advanced materials having a less formability. These new complex parts require a finer comprehension of the process and an optimization of the key parameters to get acceptable quality. In this work, an experimental study has been carried out to identify the process conditions that do not lead to unacceptable defaults: undulations of fibers. In the present study, downward-bending has been evaluated with an original light mechanical forming concept, for a given stacking sequence. The influence of the part's temperature and the part's bending speed are investigated. To carry this study out, a hot forming test bench has been designed and manufactured to have a precise supervision of the process conditions. It is able to bend parts of 1500 mm length x 600 mm width x 20 mm thick.
NASA Astrophysics Data System (ADS)
He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.
2016-12-01
Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with observations for OCS, implicating that OCS could provide independent constraint in joint inversion. Optimization makes less total GPP and Re but more NEE, when testing with prior CO2 fluxes from two biosphere models. This study gives an in-depth insight into the role of joint atmospheric OCS and CO2 observations in constraining CO2 fluxes.
Minimal models from W-constrained hierarchies via the Kontsevich-Miwa transform
NASA Astrophysics Data System (ADS)
Gato-Rivera, B.; Semikhatov, A. M.
1992-08-01
A direct relation between the conformal formalism for 2D quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the KP tau function and decoupling equations corresponding to Virasoro null vectors. The Kontsevich-Miwa transform maps the W ( l) -constrained KP hierarchy to the ( p‧, p‧) minimal model, with the tau function being given by the correlator of a product of (dressed) ( l, 1) [or (1, l)] operators, provided the Miwa parameter ni and the free parameter (an abstract bc spin) present in the constraint are expressed through the ratio p‧/ p and the level l.
Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations
NASA Astrophysics Data System (ADS)
Weng, H.; Yang, H.
2017-12-01
Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten H.
2016-09-01
PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt ), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles- placement method and a constrained optimization problem is solved to find the best tuning.
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews
2015-03-01
This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.
Robust Constrained Blackbox Optimization with Surrogates
2015-05-21
algorithms with OPAL . Mathematical Programming Computation, 6(3):233–254, 2014. 6. M.S. Ouali, H. Aoudjit, and C. Audet. Replacement scheduling of a fleet of...Orban. Optimization of Algorithms with OPAL . Mathematical Programming Computation, 6(3), 233-254, September 2014. DISTRIBUTION A: Distribution
Optimal Control of Evolution Mixed Variational Inclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions
NASA Astrophysics Data System (ADS)
Ilgen, Marc R.
This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value of the flight path angle. A summary of performance results for all these guidance laws is presented in the fifth part of this thesis along with recommendations for further research.
Noninferiority trial designs for odds ratios and risk differences.
Hilton, Joan F
2010-04-30
This study presents constrained maximum likelihood derivations of the design parameters of noninferiority trials for binary outcomes with the margin defined on the odds ratio (ψ) or risk-difference (δ) scale. The derivations show that, for trials in which the group-specific response rates are equal under the point-alternative hypothesis, the common response rate, π(N), is a fixed design parameter whose value lies between the control and experimental rates hypothesized at the point-null, {π(C), π(E)}. We show that setting π(N) equal to the value of π(C) that holds under H(0) underestimates the overall sample size requirement. Given {π(C), ψ} or {π(C), δ} and the type I and II error rates, or algorithm finds clinically meaningful design values of π(N), and the corresponding minimum asymptotic sample size, N=n(E)+n(C), and optimal allocation ratio, γ=n(E)/n(C). We find that optimal allocations are increasingly imbalanced as ψ increases, with γ(ψ)<1 and γ(δ)≈1/γ(ψ), and that ranges of allocation ratios map to the minimum sample size. The latter characteristic allows trialists to consider trade-offs between optimal allocation at a smaller N and a preferred allocation at a larger N. For designs with relatively large margins (e.g. ψ>2.5), trial results that are presented on both scales will differ in power, with more power lost if the study is designed on the risk-difference scale and reported on the odds ratio scale than vice versa. 2010 John Wiley & Sons, Ltd.
Number-unconstrained quantum sensing
NASA Astrophysics Data System (ADS)
Mitchell, Morgan W.
2017-12-01
Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.
Colbert, Alison M; Goshin, Lorie S; Durand, Vanessa; Zoucha, Rick; Sekula, L Kathleen
2016-12-01
Health priorities of women after incarceration remain poorly understood, constraining development of interventions targeted at their health during that time. We explored the experience of health and health care after incarceration in a focused ethnography of 28 women who had been released from prison or jail within the past year and were living in community corrections facilities. The women's outlook on health was rooted in a newfound core optimism, but this was constrained by their pressing health-related issues; stress and uncertainty; and the pressures of the criminal justice system. These external forces threatened to cause collapse of women's core optimism. Findings support interventions that capitalize on women's optimism and address barriers specific to criminal justice contexts. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Y; Liang, J; Liu, W
2015-06-15
Purpose: We propose to apply a probabilistic framework, namely chanceconstrained optimization, in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to hedge against the influence of uncertainties and improve robustness of treatment plans. Methods: IMPT plans were generated for a typical prostate patient. Nine dose distributions are computed — the nominal one and one each for ±5mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. These nine dose distributions are supplied to the solver CPLEX as chance constraints to explicitly control plan robustness under these representative uncertainty scenarios withmore » certain probability. This probability is determined by the tolerance level. We make the chance-constrained model tractable by converting it to a mixed integer optimization problem. The quality of plans derived from this method is evaluated using dose-volume histogram (DVH) indices such as tumor dose homogeneity (D5% – D95%) and coverage (D95%) and normal tissue sparing like V70 of rectum, V65, and V40 of bladder. We also compare the results from this novel method with the conventional PTV-based method to further demonstrate its effectiveness Results: Our model can yield clinically acceptable plans within 50 seconds. The chance-constrained optimization produces IMPT plans with comparable target coverage, better target dose homogeneity, and better normal tissue sparing compared to the PTV-based optimization [D95% CTV: 67.9 vs 68.7 (Gy), D5% – D95% CTV: 11.9 vs 18 (Gy), V70 rectum: 0.0 % vs 0.33%, V65 bladder: 2.17% vs 9.33%, V40 bladder: 8.83% vs 21.83%]. It also simultaneously makes the plan more robust [Width of DVH band at D50%: 2.0 vs 10.0 (Gy)]. The tolerance level may be varied to control the tradeoff between plan robustness and quality. Conclusion: The chance-constrained optimization generates superior IMPT plan compared to the PTV-based optimization with explicit control of plan robustness. NIH/NCI K25CA168984, Eagles Cancer Research Career Development, The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, Mayo ASU Seed Grant, and The Kemper Marley Foundation.« less
Maximum entropy production: Can it be used to constrain conceptual hydrological models?
M.C. Westhoff; E. Zehe
2013-01-01
In recent years, optimality principles have been proposed to constrain hydrological models. The principle of maximum entropy production (MEP) is one of the proposed principles and is subject of this study. It states that a steady state system is organized in such a way that entropy production is maximized. Although successful applications have been reported in...
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.
Robust H∞ control of active vehicle suspension under non-stationary running
NASA Astrophysics Data System (ADS)
Guo, Li-Xin; Zhang, Li-Ping
2012-12-01
Due to complexity of the controlled objects, the selection of control strategies and algorithms in vehicle control system designs is an important task. Moreover, the control problem of automobile active suspensions has been become one of the important relevant investigations due to the constrained peculiarity and parameter uncertainty of mathematical models. In this study, after establishing the non-stationary road surface excitation model, a study on the active suspension control for non-stationary running condition was conducted using robust H∞ control and linear matrix inequality optimization. The dynamic equation of a two-degree-of-freedom quarter car model with parameter uncertainty was derived. The H∞ state feedback control strategy with time-domain hard constraints was proposed, and then was used to design the active suspension control system of the quarter car model. Time-domain analysis and parameter robustness analysis were carried out to evaluate the proposed controller stability. Simulation results show that the proposed control strategy has high systemic stability on the condition of non-stationary running and parameter uncertainty (including suspension mass, suspension stiffness and tire stiffness). The proposed control strategy can achieve a promising improvement on ride comfort and satisfy the requirements of dynamic suspension deflection, dynamic tire loads and required control forces within given constraints, as well as non-stationary running condition.
Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design
NASA Technical Reports Server (NTRS)
Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. Additionally, when these obstacles are coupled with The Program to Optimize Simulated Trajectories [1] (POST), an industry standard program to optimize ascent trajectories that is difficult to use, it requires expert trajectory analysts to effectively optimize a vehicle's ascent trajectory. As it has been pointed out, the paradigm of trajectory optimization is still a very manual one because using modern computational resources on POST is still a challenging problem. The nuances and difficulties involved in correctly utilizing, and therefore automating, the program presents a large problem. In order to address these issues, the authors will discuss a methodology that has been developed. The methodology is two-fold: first, a set of heuristics will be introduced and discussed that were captured while working with expert analysts to replicate the current state-of-the-art; secondly, leveraging the power of modern computing to evaluate multiple trajectories simultaneously, and therefore, enable the exploration of the trajectory's design space early during the pre-conceptual and conceptual phases of design. When this methodology is coupled with design of experiments in order to train surrogate models, the authors were able to visualize the trajectory design space, enabling parametric optimal ascent trajectory information to be introduced with other pre-conceptual and conceptual design tools. The potential impact of this methodology's success would be a fully automated POST evaluation suite for the purpose of conceptual and preliminary design trade studies. This will enable engineers to characterize the ascent trajectory's sensitivity to design changes in an arbitrary number of dimensions and for finding settings for trajectory specific variables, which result in optimal performance for a "dialed-in" launch vehicle design. The effort described in this paper was developed for the Advanced Concepts Office [2] at NASA Marshall Space Flight Center
NASA Astrophysics Data System (ADS)
Sif Gylfadóttir, Sigríður; Kim, Jihwan; Kristinn Helgason, Jón; Brynjólfsson, Sveinn; Höskuldsson, Ármann; Jóhannesson, Tómas; Bonnevie Harbitz, Carl; Løvholt, Finn
2016-04-01
The Askja central volcano is located in the Northern Volcanic Zone of Iceland. Within the main caldera an inner caldera was formed in an eruption in 1875 and over the next 40 years it gradually subsided and filled up with water, forming Lake Askja. A large rockslide was released from the Southeast margin of the inner caldera into Lake Askja on 21 July 2014. The release zone was located from 150 m to 350 m above the water level and measured 800 m across. The volume of the rockslide is estimated to have been 15-30 million m3, of which 10.5 million m3 was deposited in the lake, raising the water level by almost a meter. The rockslide caused a large tsunami that traveled across the lake, and inundated the shores around the entire lake after 1-2 minutes. The vertical run-up varied typically between 10-40 m, but in some locations close to the impact area it ranged up to 70 m. Lake Askja is a popular destination visited by tens of thousands of tourists every year but as luck would have it, the event occurred near midnight when no one was in the area. Field surveys conducted in the months following the event resulted in an extensive dataset. The dataset contains e.g. maximum inundation, high-resolution digital elevation model of the entire inner caldera, as well as a high resolution bathymetry of the lake displaying the landslide deposits. Using these data, a numerical model of the Lake Askja landslide and tsunami was developed using GeoClaw, a software package for numerical analysis of geophysical flow problems. Both the shallow water version and an extension of GeoClaw that includes dispersion, was employed to simulate the wave generation, propagation, and run-up due to the rockslide plunging into the lake. The rockslide was modeled as a block that was allowed to stretch during run-out after entering the lake. An optimization approach was adopted to constrain the landslide parameters through inverse modeling by comparing the calculated inundation with the observed run-up. By taking the minimum mean squared error between simulations and observations, a set of best-fit landslide parameters (friction parameters, initial speed and block size) were determined. While we were able to obtain a close fit with observations using the dispersive model, it proved impossible to constrain the landslide parameters to fit the data using a shallow water model. As a consequence, we conclude that in the present case, dispersive effects were crucial in obtaining the correct inundation pattern, and that a shallow water model produced large artificial offsets.
Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.
2017-06-01
Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.
An all-at-once reduced Hessian SQP scheme for aerodynamic design optimization
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1995-01-01
This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution.
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
Climate change in fish: effects of respiratory constraints on optimal life history and behaviour.
Holt, Rebecca E; Jørgensen, Christian
2015-02-01
The difference between maximum metabolic rate and standard metabolic rate is referred to as aerobic scope, and because it constrains performance it is suggested to constitute a key limiting process prescribing how fish may cope with or adapt to climate warming. We use an evolutionary bioenergetics model for Atlantic cod (Gadus morhua) to predict optimal life histories and behaviours at different temperatures. The model assumes common trade-offs and predicts that optimal temperatures for growth and fitness lie below that for aerobic scope; aerobic scope is thus a poor predictor of fitness at high temperatures. Initially, warming expands aerobic scope, allowing for faster growth and increased reproduction. Beyond the optimal temperature for fitness, increased metabolic requirements intensify foraging and reduce survival; oxygen budgeting conflicts thus constrain successful completion of the life cycle. The model illustrates how physiological adaptations are part of a suite of traits that have coevolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A formulation and analysis of combat games
NASA Technical Reports Server (NTRS)
Heymann, M.; Ardema, M. D.; Rajan, N.
1984-01-01
Combat which is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives is outlined. A target set is associated with each opponent in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously, or in neither, a joint capture or a draw, respectively, occurs. Resolution of the encounter is formulated as a combat game; as a pair of competing event constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero sum differential game. Otherwise the optimal strategies are computed from a resulting nonzero sum game. Since optimal combat strategies may frequently not exist, approximate or delta combat games are also formulated leading to approximate or delta optimal strategies. The turret game is used to illustrate combat games. This game is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit evasion games.
NASA Technical Reports Server (NTRS)
Giesy, D. P.
1978-01-01
A technique is presented for the calculation of Pareto-optimal solutions to a multiple-objective constrained optimization problem by solving a series of single-objective problems. Threshold-of-acceptability constraints are placed on the objective functions at each stage to both limit the area of search and to mathematically guarantee convergence to a Pareto optimum.
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki
2013-01-01
A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.
SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, V; Zhang, J
Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. Themore » phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.« less
Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D
2002-07-01
Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.
Pump-dump iterative squeezing of vibrational wave packets.
Chang, Bo Y; Sola, Ignacio R
2005-12-22
The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.
Expert system for generating initial layouts of zoom systems with multiple moving lens groups
NASA Astrophysics Data System (ADS)
Cheng, Xuemin; Wang, Yongtian; Hao, Qun; Sasián, José M.
2005-01-01
An expert system is developed for the automatic generation of initial layouts for the design of zoom systems with multiple moving lens groups. The Gaussian parameters of the zoom system are optimized using the damped-least-squares method to achieve smooth zoom cam curves, with the f-number of each lens group in the zoom system constrained to a rational value. Then each lens group is selected automatically from a database according to its range of f-number, field of view, and magnification ratio as it is used in the zoom system. The lens group database is established from the results of analyzing thousands of zoom lens patents. Design examples are given, which show that the scheme is a practical approach to generate starting points for zoom lens design.
Optimization of knowledge-based systems and expert system building tools
NASA Technical Reports Server (NTRS)
Yasuda, Phyllis; Mckellar, Donald
1993-01-01
The objectives of the NASA-AMES Cooperative Agreement were to investigate, develop, and evaluate, via test cases, the system parameters and processing algorithms that constrain the overall performance of the Information Sciences Division's Artificial Intelligence Research Facility. Written reports covering various aspects of the grant were submitted to the co-investigators for the grant. Research studies concentrated on the field of artificial intelligence knowledge-based systems technology. Activities included the following areas: (1) AI training classes; (2) merging optical and digital processing; (3) science experiment remote coaching; (4) SSF data management system tests; (5) computer integrated documentation project; (6) conservation of design knowledge project; (7) project management calendar and reporting system; (8) automation and robotics technology assessment; (9) advanced computer architectures and operating systems; and (10) honors program.
Cai, Yefeng; Wu, Ming; Yang, Jun
2014-02-01
This paper describes a method for focusing the reproduced sound in the bright zone without disturbing other people in the dark zone in personal audio systems. The proposed method combines the least-squares and acoustic contrast criteria. A constrained parameter is introduced to tune the balance between two performance indices, namely, the acoustic contrast and the spatial average error. An efficient implementation of this method using convex optimization is presented. Offline simulations and real-time experiments using a linear loudspeaker array are conducted to evaluate the performance of the presented method. Results show that compared with the traditional acoustic contrast control method, the proposed method can improve the flatness of response in the bright zone by sacrificing the level of acoustic contrast.
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system.
Fine-structure constant constraints on dark energy. II. Extending the parameter space
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.
2016-01-01
Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto
Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here themore » possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.« less
Experimental designs for detecting synergy and antagonism between two drugs in a pre-clinical study.
Sperrin, Matthew; Thygesen, Helene; Su, Ting-Li; Harbron, Chris; Whitehead, Anne
2015-01-01
The identification of synergistic interactions between combinations of drugs is an important area within drug discovery and development. Pre-clinically, large numbers of screening studies to identify synergistic pairs of compounds can often be ran, necessitating efficient and robust experimental designs. We consider experimental designs for detecting interaction between two drugs in a pre-clinical in vitro assay in the presence of uncertainty of the monotherapy response. The monotherapies are assumed to follow the Hill equation with common lower and upper asymptotes, and a common variance. The optimality criterion used is the variance of the interaction parameter. We focus on ray designs and investigate two algorithms for selecting the optimum set of dose combinations. The first is a forward algorithm in which design points are added sequentially. This is found to give useful solutions in simple cases but can lack robustness when knowledge about the monotherapy parameters is insufficient. The second algorithm is a more pragmatic approach where the design points are constrained to be distributed log-normally along the rays and monotherapy doses. We find that the pragmatic algorithm is more stable than the forward algorithm, and even when the forward algorithm has converged, the pragmatic algorithm can still out-perform it. Practically, we find that good designs for detecting an interaction have equal numbers of points on monotherapies and combination therapies, with those points typically placed in positions where a 50% response is expected. More uncertainty in monotherapy parameters leads to an optimal design with design points that are more spread out. Copyright © 2015 John Wiley & Sons, Ltd.
Made-to-measure modelling of observed galaxy dynamics
NASA Astrophysics Data System (ADS)
Bovy, Jo; Kawata, Daisuke; Hunt, Jason A. S.
2018-01-01
Amongst dynamical modelling techniques, the made-to-measure (M2M) method for modelling steady-state systems is amongst the most flexible, allowing non-parametric distribution functions in complex gravitational potentials to be modelled efficiently using N-body particles. Here, we propose and test various improvements to the standard M2M method for modelling observed data, illustrated using the simple set-up of a one-dimensional harmonic oscillator. We demonstrate that nuisance parameters describing the modelled system's orientation with respect to the observer - e.g. an external galaxy's inclination or the Sun's position in the Milky Way - as well as the parameters of an external gravitational field can be optimized simultaneously with the particle weights. We develop a method for sampling from the high-dimensional uncertainty distribution of the particle weights. We combine this in a Gibbs sampler with samplers for the nuisance and potential parameters to explore the uncertainty distribution of the full set of parameters. We illustrate our M2M improvements by modelling the vertical density and kinematics of F-type stars in Gaia DR1. The novel M2M method proposed here allows full probabilistic modelling of steady-state dynamical systems, allowing uncertainties on the non-parametric distribution function and on nuisance parameters to be taken into account when constraining the dark and baryonic masses of stellar systems.
NASA Astrophysics Data System (ADS)
Ferrari, Ulisse
A maximal entropy model provides the least constrained probability distribution that reproduces experimental averages of an observables set. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a ``rectified'' Data-Driven algorithm that is fast and by sampling from the parameters posterior avoids both under- and over-fitting along all the directions of the parameters space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method. This research was supported by a Grant from the Human Brain Project (HBP CLAP).
Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J
2013-01-01
Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S
2017-03-01
Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-06-01
The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.
Bonnet, V; Dumas, R; Cappozzo, A; Joukov, V; Daune, G; Kulić, D; Fraisse, P; Andary, S; Venture, G
2017-09-06
This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9N and 10Nm) were much lower than obtained using a classical inverse dynamics approach (22N and 30Nm). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico
NASA Astrophysics Data System (ADS)
Solano Rojas, D. E.; Wdowinski, S.; Minderhoud, P. P. S.; Pacheco, J.; Cabral, E.
2016-12-01
The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model using Deltares iMOD (interactive MODeling), based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stresse along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.
Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico
NASA Astrophysics Data System (ADS)
Solano Rojas, D. E.; Pacheco, J.; Wdowinski, S.; Minderhoud, P. S. J.; Cabral-Cano, E.; Albino, F.
2017-12-01
The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model, based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stress along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.
CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.
Zahery, Mahsa; Maes, Hermine H; Neale, Michael C
2017-08-01
We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.
Chowdhary, A G; Challis, J H
2001-07-07
A series of overarm throws, constrained to the parasagittal plane, were simulated using a muscle model actuated two-segment model representing the forearm and hand plus projectile. The parameters defining the modeled muscles and the anthropometry of the two-segment models were specific to the two young male subjects. All simulations commenced from a position of full elbow flexion and full wrist extension. The study was designed to elucidate the optimal inter-muscular coordination strategies for throwing projectiles to achieve maximum range, as well as maximum projectile kinetic energy for a variety of projectile masses. A proximal to distal (PD) sequence of muscle activations was seen in many of the simulated throws but not all. Under certain conditions moment reversal produced a longer throw and greater projectile energy, and deactivation of the muscles resulted in increased projectile energy. Therefore, simple timing of muscle activation does not fully describe the patterns of muscle recruitment which can produce optimal throws. The models of the two subjects required different timings of muscle activations, and for some of the tasks used different coordination patterns. Optimal strategies were found to vary with the mass of the projectile, the anthropometry and the muscle characteristics of the subjects modeled. The tasks examined were relatively simple, but basic rules for coordinating these tasks were not evident. Copyright 2001 Academic Press.
Benchmarking optimization software with COPS 3.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, E. D.; More, J. J.; Munson, T. S.
2004-05-24
The authors describe version 3.0 of the COPS set of nonlinearly constrained optimization problems. They have added new problems, as well as streamlined and improved most of the problems. They also provide a comparison of the FILTER, KNITRO, LOQO, MINOS, and SNOPT solvers on these problems.
Evaluating data worth for ground-water management under uncertainty
Wagner, B.J.
1999-01-01
A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information - i.e., the projected reduction in management costs - with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Rapid Slewing of Flexible Space Structures
2015-09-01
axis gimbal with elastic joints. The performance of the system can be enhanced by designing antenna maneuvers in which the flexible effects are...the effects of the nonlinearities so the vibrational motion can be constrained for a time-optimal slew. It is shown that by constructing an...joints. The performance of the system can be enhanced by designing antenna maneuvers in which the flexible effects are properly constrained, thus
Backes, Bradley J; Longenecker, Kenton; Hamilton, Gregory L; Stewart, Kent; Lai, Chunqiu; Kopecka, Hana; von Geldern, Thomas W; Madar, David J; Pei, Zhonghua; Lubben, Thomas H; Zinker, Bradley A; Tian, Zhenping; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Black-Schaefer, Candace; Sham, Hing L; Trevillyan, James M
2007-04-01
A novel series of pyrrolidine-constrained phenethylamines were developed as dipeptidyl peptidase IV (DPP4) inhibitors for the treatment of type 2 diabetes. The cyclohexene ring of lead-like screening hit 5 was replaced with a pyrrolidine to enable parallel chemistry, and protein co-crystal structural data guided the optimization of N-substituents. Employing this strategy, a >400x improvement in potency over the initial hit was realized in rapid fashion. Optimized compounds are potent and selective inhibitors with excellent pharmacokinetic profiles. Compound 30 was efficacious in vivo, lowering blood glucose in ZDF rats that were allowed to feed freely on a mixed meal.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Wang, Mingqiang; Ning, Xingyao
2018-02-01
Spinning reserve (SR) should be scheduled considering the balance between economy and reliability. To address the computational intractability cursed by the computation of loss of load probability (LOLP), many probabilistic methods use simplified formulations of LOLP to improve the computational efficiency. Two tradeoffs embedded in the SR optimization model are not explicitly analyzed in these methods. In this paper, two tradeoffs including primary tradeoff and secondary tradeoff between economy and reliability in the maximum LOLP constrained unit commitment (UC) model are explored and analyzed in a small system and in IEEE-RTS System. The analysis on the two tradeoffs can help in establishing new efficient simplified LOLP formulations and new SR optimization models.
NASA Astrophysics Data System (ADS)
Swensson, Richard G.; King, Jill L.; Good, Walter F.; Gur, David
2000-04-01
A constrained ROC formulation from probability summation is proposed for measuring observer performance in detecting abnormal findings on medical images. This assumes the observer's detection or rating decision on each image is determined by a latent variable that characterizes the specific finding (type and location) considered most likely to be a target abnormality. For positive cases, this 'maximum- suspicion' variable is assumed to be either the value for the actual target or for the most suspicious non-target finding, whichever is the greater (more suspicious). Unlike the usual ROC formulation, this constrained formulation guarantees a 'well-behaved' ROC curve that always equals or exceeds chance- level decisions and cannot exhibit an upward 'hook.' Its estimated parameters specify the accuracy for separating positive from negative cases, and they also predict accuracy in locating or identifying the actual abnormal findings. The present maximum-likelihood procedure (runs on PC with Windows 95 or NT) fits this constrained formulation to rating-ROC data using normal distributions with two free parameters. Fits of the conventional and constrained ROC formulations are compared for continuous and discrete-scale ratings of chest films in a variety of detection problems, both for localized lesions (nodules, rib fractures) and for diffuse abnormalities (interstitial disease, infiltrates or pnumothorax). The two fitted ROC curves are nearly identical unless the conventional ROC has an ill behaved 'hook,' below the constrained ROC.
NASA Astrophysics Data System (ADS)
Verbeke, C.; Asvestari, E.; Scolini, C.; Pomoell, J.; Poedts, S.; Kilpua, E.
2017-12-01
Coronal Mass Ejections (CMEs) are one of the big influencers on the coronal and interplanetary dynamics. Understanding their origin and evolution from the Sun to the Earth is crucial in order to determine the impact on our Earth and society. One of the key parameters that determine the geo-effectiveness of the coronal mass ejection is its internal magnetic configuration. We present a detailed parameter study of the Gibson-Low flux rope model. We focus on changes in the input parameters and how these changes affect the characteristics of the CME at Earth. Recently, the Gibson-Low flux rope model has been implemented into the inner heliosphere model EUHFORIA, a magnetohydrodynamics forecasting model of large-scale dynamics from 0.1 AU up to 2 AU. Coronagraph observations can be used to constrain the kinematics and morphology of the flux rope. One of the key parameters, the magnetic field, is difficult to determine directly from observations. In this work, we approach the problem by conducting a parameter study in which flux ropes with varying magnetic configurations are simulated. We then use the obtained dataset to look for signatures in imaging observations and in-situ observations in order to find an empirical way of constraining the parameters related to the magnetic field of the flux rope. In particular, we focus on events observed by at least two spacecraft (STEREO + L1) in order to discuss the merits of using observations from multiple viewpoints in constraining the parameters.
NASA Astrophysics Data System (ADS)
Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.
2018-06-01
A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.
Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System
NASA Astrophysics Data System (ADS)
Nouiraa, H.; Deschaud, J. E.; Goulettea, F.
2016-06-01
LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.
Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation
NASA Technical Reports Server (NTRS)
Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta
2017-01-01
A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.
Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task.
Bonnet, Vincent; Azevedo-Coste, Christine; Robert, Thomas; Fraisse, Philippe; Venture, Gentiane
2017-07-01
This paper aims at developing and evaluating a new practical method for the real-time estimate of joint torques and external wrenches during multi-contact sit-to-stand (STS) task using kinematics data only. The proposed method allows also identifying subject specific body inertial segment parameters that are required to perform inverse dynamics. The identification phase is performed using simple and repeatable motions. Thanks to an accurately identified model the estimate of the total external wrench can be used as an input to solve an under-determined multi-contact problem. It is solved using a constrained quadratic optimization process minimizing a hybrid human-like energetic criterion. The weights of this hybrid cost function are adjusted and a sensitivity analysis is performed in order to reproduce robustly human external wrench distribution. The results showed that the proposed method could successfully estimate the external wrenches under buttocks, feet, and hands during STS tasks (RMS error lower than 20 N and 6 N.m). The simplicity and generalization abilities of the proposed method allow paving the way of future diagnosis solutions and rehabilitation applications, including in-home use.
Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation.
Akbar, Ruzbeh; Cosh, Michael H; O'Neill, Peggy E; Entekhabi, Dara; Moghaddam, Mahta
2017-07-01
A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.
A real-time approximate optimal guidance law for flight in a plane
NASA Technical Reports Server (NTRS)
Feeley, Timothy S.; Speyer, Jason L.
1990-01-01
A real-time guidance scheme is presented for the problem of maximizing the payload into orbit subject to the equations of motion of a rocket over a nonrotating spherical earth. The flight is constrained to a path in the equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of the problem can be separated into primary and perturbation effects by a small parameter, epsilon, which is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The neglected perturbation terms are included in the higher-order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only integrations which are quadratures. The quadratures can be performed rapidly with emerging computer capability, so that real-time approximate optimization can be used to construct the launch guidance law. The application of this technique to flight in three-dimensions is made apparent from the solution presented.
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimating free-body modal parameters from tests of a constrained structure
NASA Technical Reports Server (NTRS)
Cooley, Victor M.
1993-01-01
Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.
Geometric optimization of thermal systems
NASA Astrophysics Data System (ADS)
Alebrahim, Asad Mansour
2000-10-01
The work in chapter 1 extends to three dimensions and to convective heat transfer the constructal method of minimizing the thermal resistance between a volume and one point. In the first part, the heat flow mechanism is conduction, and the heat generating volume is occupied by low conductivity material (k 0) and high conductivity inserts (kp) that are shaped as constant-thickness disks mounted on a common stem of kp material. In the second part the interstitial spaces once occupied by k0 material are bathed by forced convection. The internal and external geometric aspect ratios of the elemental volume and the first assembly are optimized numerically subject to volume constraints. Chapter 2 presents the constrained thermodynamic optimization of a cross-flow heat exchanger with ram air on the cold side, which is used in the environmental control systems of aircraft. Optimized geometric features such as the ratio of channel spacings and flow lengths are reported. It is found that the optimized features are relatively insensitive to changes in other physical parameters of the installation and relatively insensitive to the additional irreversibility due to discharging the ram-air stream into the atmosphere, emphasizing the robustness of the thermodynamic optimum. In chapter 3 the problem of maximizing exergy extraction from a hot stream by distributing streams over a heat transfer surface is studied. In the first part, the cold stream is compressed in an isothermal compressor, expanded in an adiabatic turbine, and discharged into the ambient. In the second part, the cold stream is compressed in an adiabatic compressor. Both designs are optimized with respect to the capacity-rate imbalance of the counter-flow and the pressure ratio maintained by the compressor. This study shows the tradeoff between simplicity and increased performance, and outlines the path for further conceptual work on the extraction of exergy from a hot stream that is being cooled gradually. The aim of chapter 4 was to optimize the performance of a boot-strap air cycle of an environmental control system (ECS) for aircraft. New in the present study was that the optimization refers to the performance of the entire ECS system, not to the performance of an individual component. Also, there were two heat exchangers, not one, and their relative positions and sizes were not specified in advance. This study showed that geometric optimization can be identified when the optimization procedure refers to the performance of the entire ECS system, not to the performance of an individual component. This optimized features were robust relative to some physical parameters. This robustness may be used to simplify future optimization of similar systems.
Model independent constraints on transition redshift
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Holanda, R. F. L.; Pereira, S. H.
2018-05-01
This paper aims to put constraints on the transition redshift zt, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to perform our analyses, we consider a flat universe and assume a parametrization for the comoving distance DC(z) up to third degree on z, a second degree parametrization for the Hubble parameter H(z) and a linear parametrization for the deceleration parameter q(z). For each case, we show that type Ia supernovae and H(z) data complement each other on the parameter space and tighter constrains for the transition redshift are obtained. By combining the type Ia supernovae observations and Hubble parameter measurements it is possible to constrain the values of zt, for each approach, as 0.806± 0.094, 0.870± 0.063 and 0.973± 0.058 at 1σ c.l., respectively. Then, such approaches provide cosmological-model independent estimates for this parameter.
Pareto joint inversion of 2D magnetotelluric and gravity data
NASA Astrophysics Data System (ADS)
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13
Application’s Method of Quadratic Programming for Optimization of Portfolio Selection
NASA Astrophysics Data System (ADS)
Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro
Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
Fitting Prony Series To Data On Viscoelastic Materials
NASA Technical Reports Server (NTRS)
Hill, S. A.
1995-01-01
Improved method of fitting Prony series to data on viscoelastic materials involves use of least-squares optimization techniques. Based on optimization techniques yields closer correlation with data than traditional method. Involves no assumptions regarding the gamma'(sub i)s and higher-order terms, and provides for as many Prony terms as needed to represent higher-order subtleties in data. Curve-fitting problem treated as design-optimization problem and solved by use of partially-constrained-optimization techniques.
InSAR constraints on the kinematics and magnitude of the 2001 Bhuj earthquake
NASA Astrophysics Data System (ADS)
Schmidt, D.; Bürgmann, R.
2005-12-01
The Mw 7.6 Bhuj intraplate event occurred along a blind thrust within the Kutch Rift basin of western India in January of 2001. The lack of any surface rupture and limited geodetic data have made it difficult to place the event on a known fault and constrain its source parameters. Moment tensor solutions and aftershock relocations indicate that the earthquake was a reverse event along an east-west striking, south dipping fault. In an effort to image the surface deformation, we have processed a total of 9 interferograms that span the coseismic event. Interferometry has proven difficult for the region because of technical difficulties experienced by the ERS Satellite around the time of the earthquake and because of low coherence. The stabilization of the orbital control by the European Space Agency beginning in 2002 has allowed us to interfere more recent SAR data with pre-earthquake data. Therefore, all available interferograms of the event include the first year of any postseismic deformation. The source region is characterized by broad floodplains interrupted by isolated highlands. Coherence is limited to the surrounding highlands and no data is available directly over the epicenter. Using the InSAR data along two descending and one ascending tracks, we perform a gridded search for the optimal source parameters of the earthquake. The deformation pattern is modeled assuming uniform slip on an elastic dislocation. Since the highland regions are discontinuous, the coherent InSAR phase is isolated to several individual patches. For each iteration of the gridded search algorithm, we optimize the fit to the data by solving for number of 2π phase cycles between coherent patches and the orbital gradient across each interferogram. Since the look angle varies across a SAR scene, a variable unit vector is calculated for each track. Inversion results place the center of the fault plane at 70.33° E/23.42° N at a depth of 21 km, and are consistent with the strike and dip suggested by the relocated aftershocks. The data also constrain the magnitude, rake, and finiteness of the event.