Stabilizing model predictive control for constrained nonlinear distributed delay systems.
Mahboobi Esfanjani, R; Nikravesh, S K Y
2011-04-01
In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example.
NASA Astrophysics Data System (ADS)
Witheephanich, K.; Escaño, J. M.; Hayes, M. J.
2011-08-01
This work considers the problem of controlling transmit power within a wireless sensor network (WSN), where the practical constraints typically posed by an ambulatory healthcare setting are explicitly taken into account, as a constrained received signal strength indicator (RSSI) tracking control problem. The problem is formulated using an explicit generalised predictive control (GPC) strategy for dynamic transmission power control that ensures a balance between energy consumption and quality of service (QoS) through the creation of a stable floor on information throughput. Optimal power assignment is achieved by an explicit solution of the constrained GPC problem that is computed off-line using a multi-parametric quadratic program (mpQP). The solution is shown to be a piecewise-affine function. The new design is demonstrated to be practically feasible via a resource-constrained, fully IEEE 802.15.4 compliant, Moteiv's Tmote Sky sensor node platform. Design utility is benchmarked experimentally using a representative selection of scaled ambulatory scenarios.
Stock management in hospital pharmacy using chance-constrained model predictive control.
Jurado, I; Maestre, J M; Velarde, P; Ocampo-Martinez, C; Fernández, I; Tejera, B Isla; Prado, J R Del
2016-05-01
One of the most important problems in the pharmacy department of a hospital is stock management. The clinical need for drugs must be satisfied with limited work labor while minimizing the use of economic resources. The complexity of the problem resides in the random nature of the drug demand and the multiple constraints that must be taken into account in every decision. In this article, chance-constrained model predictive control is proposed to deal with this problem. The flexibility of model predictive control allows taking into account explicitly the different objectives and constraints involved in the problem while the use of chance constraints provides a trade-off between conservativeness and efficiency. The solution proposed is assessed to study its implementation in two Spanish hospitals. PMID:26724992
Stock management in hospital pharmacy using chance-constrained model predictive control.
Jurado, I; Maestre, J M; Velarde, P; Ocampo-Martinez, C; Fernández, I; Tejera, B Isla; Prado, J R Del
2016-05-01
One of the most important problems in the pharmacy department of a hospital is stock management. The clinical need for drugs must be satisfied with limited work labor while minimizing the use of economic resources. The complexity of the problem resides in the random nature of the drug demand and the multiple constraints that must be taken into account in every decision. In this article, chance-constrained model predictive control is proposed to deal with this problem. The flexibility of model predictive control allows taking into account explicitly the different objectives and constraints involved in the problem while the use of chance constraints provides a trade-off between conservativeness and efficiency. The solution proposed is assessed to study its implementation in two Spanish hospitals.
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Gibbs, Gary P.
2000-01-01
make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential
Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng
2015-03-01
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method.
Chance-constrained model predictive control applied to inventory management in hospitalary pharmacy.
Maestre, Jose Maria; Ocampo-Martinez, Carlos
2014-01-01
This extended abstract addresses the preliminary results of applying uncertainty handling strategies and advanced control techniques to the inventary management of hospitality pharmacy. Inventory management is one of the main tasks that a pharmacy department has to carry out in a hospital. It is a complex problem because it requires to establish a tradeoff between contradictory optimization criteria. The final goal of the proposed research is to update the inventory management system of hospitals such that it is possible to reduce the average inventory while maintaining preestablished clinical guarantees.
Chance-constrained model predictive control applied to inventory management in hospitalary pharmacy.
Maestre, Jose Maria; Ocampo-Martinez, Carlos
2014-01-01
This extended abstract addresses the preliminary results of applying uncertainty handling strategies and advanced control techniques to the inventary management of hospitality pharmacy. Inventory management is one of the main tasks that a pharmacy department has to carry out in a hospital. It is a complex problem because it requires to establish a tradeoff between contradictory optimization criteria. The final goal of the proposed research is to update the inventory management system of hospitals such that it is possible to reduce the average inventory while maintaining preestablished clinical guarantees. PMID:25488247
Xavier, MA; Trimboli, MS
2015-07-01
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.
Testing a Constrained MPC Controller in a Process Control Laboratory
ERIC Educational Resources Information Center
Ricardez-Sandoval, Luis A.; Blankespoor, Wesley; Budman, Hector M.
2010-01-01
This paper describes an experiment performed by the fourth year chemical engineering students in the process control laboratory at the University of Waterloo. The objective of this experiment is to test the capabilities of a constrained Model Predictive Controller (MPC) to control the operation of a Double Pipe Heat Exchanger (DPHE) in real time.…
Trajectory generation and constrained control of quadrotors
NASA Astrophysics Data System (ADS)
Tule, Carlos Alberto
Unmanned Aerial Systems, although still in early development, are expected to grow in both the military and civil sectors. As part of the UAV sector, the Quadrotor helicopter platform has been receiving a lot of interest from various academic and research institutions because of their simplistic design and low cost to manufacture, yet remaining a challenging platform to control. Four different controllers were derived for the trajectory generation and constrained control of a quadrotor platform. The first approach involves the linear version of the Model Predictive Control (MPC) algorithm to solve the state constrained optimization problem. The second approach uses the State Dependent Coefficient (SDC) form to capture the system non-linearities into a pseudo-linear system matrix, which is used to derive the State Dependent Riccati Equation (SDRE) based optimal control. For the third approach, the SDC form is exploited for obtaining a nonlinear equivalent of the model predictive control. Lastly, a combination of the nonlinear MPC and SDRE optimal control algorithms is used to explore the feasibility of a near real-time nonlinear optimization technique.
Determination of optimal gains for constrained controllers
Kwan, C.M.; Mestha, L.K.
1993-08-01
In this report, we consider the determination of optimal gains, with respect to a certain performance index, for state feedback controllers where some elements in the gain matrix are constrained to be zero. Two iterative schemes for systematically finding the constrained gain matrix are presented. An example is included to demonstrate the procedures.
Prediction of noise constrained optimum takeoff procedures
NASA Technical Reports Server (NTRS)
Padula, S. L.
1980-01-01
An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.
Geometrically constrained observability. [control theory
NASA Technical Reports Server (NTRS)
Brammer, R. F.
1974-01-01
This paper deals with observed processes in situations in which observations are available only when the state vector lies in certain regions. For linear autonomous observed processes, necessary and sufficient conditions are obtained for half-space observation regions. These results are shown to contain a theorem dual to a controllability result proved by the author for a linear autonomous control system whose control restraint set does not contain the origin as an interior point. Observability results relating to continuous observation systems and sampled data systems are presented, and an example of observing the state of an electrical network is given.
Mixed-Strategy Chance Constrained Optimal Control
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.
2013-01-01
This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.
Optimal performance of constrained control systems
NASA Astrophysics Data System (ADS)
Harvey, P. Scott, Jr.; Gavin, Henri P.; Scruggs, Jeffrey T.
2012-08-01
This paper presents a method to compute optimal open-loop trajectories for systems subject to state and control inequality constraints in which the cost function is quadratic and the state dynamics are linear. For the case in which inequality constraints are decentralized with respect to the controls, optimal Lagrange multipliers enforcing the inequality constraints may be found at any time through Pontryagin’s minimum principle. In so doing, the set of differential algebraic Euler-Lagrange equations is transformed into a nonlinear two-point boundary-value problem for states and costates whose solution meets the necessary conditions for optimality. The optimal performance of inequality constrained control systems is calculable, allowing for comparison to previous, sub-optimal solutions. The method is applied to the control of damping forces in a vibration isolation system subjected to constraints imposed by the physical implementation of a particular controllable damper. An outcome of this study is the best performance achievable given a particular objective, isolation system, and semi-active damper constraints.
CCTOP: a Consensus Constrained TOPology prediction web server.
Dobson, László; Reményi, István; Tusnády, Gábor E
2015-07-01
The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided.
CCTOP: a Consensus Constrained TOPology prediction web server
Dobson, László; Reményi, István; Tusnády, Gábor E.
2015-01-01
The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided. PMID:25943549
Natural enemy interactions constrain pest control in complex agricultural landscapes.
Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2013-04-01
Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by differences in natural enemy interactions across landscapes, rather than by the effectiveness of individual natural enemy guilds. In a field exclusion experiment, pest control by flying insect enemies increased with landscape complexity. However, so did antagonistic interactions between flying insects and birds, which were neutral in simple landscapes and increasingly negative in complex landscapes. Negative natural enemy interactions thus constrained pest control in complex landscapes. These results show that, by altering natural enemy interactions, landscape complexity can provide ecosystem services as well as disservices. Careful handling of the tradeoffs among multiple ecosystem services, biodiversity, and societal concerns is thus crucial and depends on our ability to predict the functional consequences of landscape-scale changes in trophic interactions. PMID:23513216
Constraining geostatistical models with hydrological data to improve prediction realism
NASA Astrophysics Data System (ADS)
Demyanov, V.; Rojas, T.; Christie, M.; Arnold, D.
2012-04-01
Geostatistical models reproduce spatial correlation based on the available on site data and more general concepts about the modelled patters, e.g. training images. One of the problem of modelling natural systems with geostatistics is in maintaining realism spatial features and so they agree with the physical processes in nature. Tuning the model parameters to the data may lead to geostatistical realisations with unrealistic spatial patterns, which would still honour the data. Such model would result in poor predictions, even though although fit the available data well. Conditioning the model to a wider range of relevant data provide a remedy that avoid producing unrealistic features in spatial models. For instance, there are vast amounts of information about the geometries of river channels that can be used in describing fluvial environment. Relations between the geometrical channel characteristics (width, depth, wave length, amplitude, etc.) are complex and non-parametric and are exhibit a great deal of uncertainty, which is important to propagate rigorously into the predictive model. These relations can be described within a Bayesian approach as multi-dimensional prior probability distributions. We propose a way to constrain multi-point statistics models with intelligent priors obtained from analysing a vast collection of contemporary river patterns based on previously published works. We applied machine learning techniques, namely neural networks and support vector machines, to extract multivariate non-parametric relations between geometrical characteristics of fluvial channels from the available data. An example demonstrates how ensuring geological realism helps to deliver more reliable prediction of a subsurface oil reservoir in a fluvial depositional environment.
Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping
NASA Technical Reports Server (NTRS)
Gibbs, Gary P.; Cabell, Randolph H.
2003-01-01
A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.
A lexicographic approach to constrained MDP admission control
NASA Astrophysics Data System (ADS)
Panfili, Martina; Pietrabissa, Antonio; Oddi, Guido; Suraci, Vincenzo
2016-02-01
This paper proposes a reinforcement learning-based lexicographic approach to the call admission control problem in communication networks. The admission control problem is modelled as a multi-constrained Markov decision process. To overcome the problems of the standard approaches to the solution of constrained Markov decision processes, based on the linear programming formulation or on a Lagrangian approach, a multi-constraint lexicographic approach is defined, and an online implementation based on reinforcement learning techniques is proposed. Simulations validate the proposed approach.
Constrained modes in control theory - Transmission zeros of uniform beams
NASA Technical Reports Server (NTRS)
Williams, T.
1992-01-01
Mathematical arguments are presented demonstrating that the well-established control system concept of the transmission zero is very closely related to the structural concept of the constrained mode. It is shown that the transmission zeros of a flexible structure form a set of constrained natural frequencies for it, with the constraints depending explicitly on the locations and the types of sensors and actuators used for control. Based on this formulation, an algorithm is derived and used to produce dimensionless plots of the zero of a uniform beam with a compatible sensor/actuator pair.
A Riccati approach for constrained linear quadratic optimal control
NASA Astrophysics Data System (ADS)
Sideris, Athanasios; Rodriguez, Luis A.
2011-02-01
An active-set method is proposed for solving linear quadratic optimal control problems subject to general linear inequality path constraints including mixed state-control and state-only constraints. A Riccati-based approach is developed for efficiently solving the equality constrained optimal control subproblems generated during the procedure. The solution of each subproblem requires computations that scale linearly with the horizon length. The algorithm is illustrated with numerical examples.
Constrained output feedback control of flexible rotor-bearing systems
NASA Astrophysics Data System (ADS)
Kim, Jong-Sun; Lee, Chong-Won
1990-04-01
The design of an optimal constrained output feedback controller for a rotor-bearing system is described, based on a reduced order model. The aims are to stabilize the unstable or marginally stable motion and to control the large build-up of periodic disturbances occurring during operation. The reduced order model is constructed on the basis of a modal model and singular perturbation, retaining the advantages of the two methods. The onset of instability due to spillover is prevented by the constrained optimization, and the robustness and pole assignability are improved by designing not merely a static output feedback but a dynamic compensator. The periodic disturbances, usually caused by rotation, are reduced by using the disturbance observer and feed-forward compensation. The efficiency of the proposed method is demonstrated through two simulation models, a rigid shaft supported by soft bearings at its ends and an overhung rotor system with a tip disk, under both transient vibration and sudden imbalance situations.
Control of the constrained planar simple inverted pendulum
NASA Technical Reports Server (NTRS)
Bavarian, B.; Wyman, B. F.; Hemami, H.
1983-01-01
Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.
Stable predictive control horizons
NASA Astrophysics Data System (ADS)
Estrada, Raúl; Favela, Antonio; Raimondi, Angelo; Nevado, Antonio; Requena, Ricardo; Beltrán-Carbajal, Francisco
2012-04-01
The stability theory of predictive and adaptive predictive control for processes of linear and stable nature is based on the hypothesis of a physically realisable driving desired trajectory (DDT). The formal theoretical verification of this hypothesis is trivial for processes with a stable inverse, but it is not for processes with an unstable inverse. The extended strategy of predictive control was developed with the purpose of overcoming methodologically this stability problem and it has delivered excellent performance and stability in its industrial applications given a suitable choice of the prediction horizon. From a theoretical point of view, the existence of a prediction horizon capable of ensuring stability for processes with an unstable inverse was proven in the literature. However, no analytical solution has been found for the determination of the prediction horizon values which guarantee stability, in spite of the theoretical and practical interest of this matter. This article presents a new method able to determine the set of prediction horizon values which ensure stability under the extended predictive control strategy formulation and a particular performance criterion for the design of the DDT generically used in many industrial applications. The practical application of this method is illustrated by means of simulation examples.
Deadbeat Predictive Controllers
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1997-01-01
Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.
NASA Astrophysics Data System (ADS)
Kim, Yoonsoo
This dissertation focuses on cooperative control between multiple agents (e.g., spacecraft, UAVs). In particular, motivated by future NASA's multiple spacecraft missions, we have been guided to consider fundamental aspects of spacecraft formation flying, including collision avoidance issues; constraints on the relative position and attitude. In this venue, we have realized that one of the main challenges is dealing with nonconvex state constraints. In this dissertation, we will address such complications using classical control theory, heuristic techniques, and more recent semidefinite programming-based approaches. We then proceed to consider communication and interspacecraft sensing issues in multiple agent dynamic system setting. In this direction, we will study (1) how conventional control techniques should be augmented to meet our design objectives when the information flow between multiple agents is taken into account; (2) which information structures (e.g., information graphs) yield best performance guarantees in terms of stability, robustness, or fast agreement. In this work, we provide theoretical answers to these problems. Moreover, as many design problems involving information networks and graphs lead to combinatorial problems, which can be formulated as rank optimization problems over matrices, we consider these class of problems in this dissertation. Rank optimization problems also arise in system theory and are considered to be of paramount importance in modern control synthesis problems.
Complexity Increases Predictability in Allometrically Constrained Food Webs.
Iles, Alison C; Novak, Mark
2016-07-01
All ecosystems are subjected to chronic disturbances, such as harvest, pollution, and climate change. The capacity to forecast how species respond to such press perturbations is limited by our imprecise knowledge of pairwise species interaction strengths and the many direct and indirect pathways along which perturbations can propagate between species. Network complexity (size and connectance) has thereby been seen to limit the predictability of ecological systems. Here we demonstrate a counteracting mechanism in which the influence of indirect effects declines with increasing network complexity when species interactions are governed by universal allometric constraints. With these constraints, network size and connectance interact to produce a skewed distribution of interaction strengths whose skew becomes more pronounced with increasing complexity. Together, the increased prevalence of weak interactions and the increased relative strength and rarity of strong interactions in complex networks limit disturbance propagation and preserve the qualitative predictability of net effects even when pairwise interaction strengths exhibit substantial variation or uncertainty.
Calcium constrains plant control over forest ecosystem nitrogen cycling.
Groffman, Peter M; Fisk, Melany C
2011-11-01
Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.
On identified predictive control
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
Self-tuning control algorithms are potential successors to manually tuned PID controllers traditionally used in process control applications. A very attractive design method for self-tuning controllers, which has been developed over recent years, is the long-range predictive control (LRPC). The success of LRPC is due to its effectiveness with plants of unknown order and dead-time which may be simultaneously nonminimum phase and unstable or have multiple lightly damped poles (as in the case of flexible structures or flexible robot arms). LRPC is a receding horizon strategy and can be, in general terms, summarized as follows. Using assumed long-range (or multi-step) cost function the optimal control law is found in terms of unknown parameters of the predictor model of the process, current input-output sequence, and future reference signal sequence. The common approach is to assume that the input-output process model is known or separately identified and then to find the parameters of the predictor model. Once these are known, the optimal control law determines control signal at the current time t which is applied at the process input and the whole procedure is repeated at the next time instant. Most of the recent research in this field is apparently centered around the LRPC formulation developed by Clarke et al., known as generalized predictive control (GPC). GPC uses ARIMAX/CARIMA model of the process in its input-output formulation. In this paper, the GPC formulation is used but the process predictor model is derived from the state space formulation of the ARIMAX model and is directly identified over the receding horizon, i.e., using current input-output sequence. The underlying technique in the design of identified predictive control (IPC) algorithm is the identification algorithm of observer/Kalman filter Markov parameters developed by Juang et al. at NASA Langley Research Center and successfully applied to identification of flexible structures.
Constrained motion control on a hemispherical surface: path planning.
Berman, Sigal; Liebermann, Dario G; McIntyre, Joseph
2014-03-01
Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path (the shortest path between 2 points on a sphere) is advantageous not only in terms of path length but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from 11 healthy subjects. The task comprised point-to-point motion between targets at two elevations (30° and 60°). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements compared with the others. The "better" performance reflects the dynamical advantages of following the geodesic path and may also reflect invariant features of control policies used to produce such a surface-constrained motion.
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
NASA Astrophysics Data System (ADS)
McDonough, Kevin K.
these sets for aircraft longitudinal and lateral aircraft dynamics are reported, and it is shown that these sets can be larger in size compared to the more commonly used safe sets. An approach to constrained maneuver planning based on chaining recoverable sets or integral safe sets is described and illustrated with a simulation example. To facilitate the application of this maneuver planning approach in aircraft loss of control (LOC) situations when the model is only identified at the current trim condition but when these sets need to be predicted at other flight conditions, the dependence trends of the safe and recoverable sets on aircraft flight conditions are characterized. The scaling procedure to estimate subsets of safe and recoverable sets at one trim condition based on their knowledge at another trim condition is defined. Finally, two control schemes that exploit integral safe sets are proposed. The first scheme, referred to as the controller state governor (CSG), resets the controller state (typically an integrator) to enforce the constraints and enlarge the set of plant states that can be recovered without constraint violation. The second scheme, referred to as the controller state and reference governor (CSRG), combines the controller state governor with the reference governor control architecture and provides the capability of simultaneously modifying the reference command and the controller state to enforce the constraints. Theoretical results that characterize the response properties of both schemes are presented. Examples are reported that illustrate the operation of these schemes on aircraft flight dynamics models and gas turbine engine dynamic models.
A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation.
Williams, Nicholas S G; Hahs, Amy K; Morgan, John W
2008-03-01
Developing tools to predict the location of new biological invasions is essential if exotic species are to be controlled before they become widespread. Currently, alpine areas in Australia are largely free of exotic plant species but face increasing pressure from invasive species due to global warming and intensified human use. To predict the potential spread of highly invasive orange hawkweed (Hieracium aurantiacum) from existing founder populations on the Bogong High Plains in southern Australia, we developed an expert-based, spatially explicit, dispersal-constrained, habitat suitability model. The model combines a habitat suitability index, developed from disturbance, site wetness, and vegetation community parameters, with a phenomenological dispersal kernel that uses wind direction and observed dispersal distances. After generating risk maps that defined the relative suitability of H. aurantiacum establishment across the study area, we intensively searched several locations to evaluate the model. The highest relative suitability for H. aurantiacum establishment was southeast from the initial infestations. Native tussock grasslands and disturbed areas had high suitability for H. aurantiacum establishment. Extensive field searches failed to detect new populations. Time-step evaluation using the location of populations known in 1998-2000, accurately assigned high relative suitability for locations where H. aurantiacum had established post-2003 (AUC [area under curve] = 0.855 +/- 0.035). This suggests our model has good predictive power and will improve the ability to detect populations and prioritize areas for ongoing monitoring.
Application of constrained optimization to active control of aeroelastic response
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1981-01-01
Active control of aeroelastic response is a complex in which the designer usually tries to satisfy many criteria which are often conflicting. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear-Quadratic-Gaussian (LQG) method are of the same high order as the aeroelastic plant. To overcome this disadvantage of the LQG mode, an approach developed for designing low order optimal control laws which uses a nonlinear programming algorithm to search for the values of the control law variables that minimize a composite performance index, was extended to the constrained optimization problem. The method involves searching for the values of the control law variables that minimize a basic performance index while satisfying several inequality constraints that describe the design criteria. The method is applied to gust load alleviation of a drone aircraft.
Control of nanoparticle formation using the constrained dewetting of polymer brushes
NASA Astrophysics Data System (ADS)
Lee, Thomas; Hendy, Shaun C.; Neto, Chiara
2015-02-01
We have used coarse-grained molecular dynamics simulations to investigate the use of pinned micelles formed by the constrained dewetting of polymer brushes to act as a template for nanoparticle formation. The evaporation of a thin film containing a dissolved solute from a polymer brush was modeled to study the effect of solubility, concentration, grafting density, and evaporation rate on the nucleation and growth of nanoparticles. Control over particle nucleation could be imposed when the solution was dilute enough such that particle nucleation occurred following the onset of constrained dewetting. We predict that nanoparticles with sizes on the order of 1 nm to 10 nm could be produced from a range of organic molecules under experimentally accessible conditions. This method could allow the functionality of organic materials to potentially be imparted onto surfaces without the need for synthetic modification of the functional molecule, and with control over particle size and aggregation, for application in the preparation of surfaces with useful optical, pharmaceutical, or electronic properties.We have used coarse-grained molecular dynamics simulations to investigate the use of pinned micelles formed by the constrained dewetting of polymer brushes to act as a template for nanoparticle formation. The evaporation of a thin film containing a dissolved solute from a polymer brush was modeled to study the effect of solubility, concentration, grafting density, and evaporation rate on the nucleation and growth of nanoparticles. Control over particle nucleation could be imposed when the solution was dilute enough such that particle nucleation occurred following the onset of constrained dewetting. We predict that nanoparticles with sizes on the order of 1 nm to 10 nm could be produced from a range of organic molecules under experimentally accessible conditions. This method could allow the functionality of organic materials to potentially be imparted onto surfaces without the
Control of nanoparticle formation using the constrained dewetting of polymer brushes
NASA Astrophysics Data System (ADS)
Lee, Thomas; Hendy, Shaun C.; Neto, Chiara
2015-03-01
We have used coarse-grained molecular dynamics simulations to investigate the use of pinned micelles formed by the constrained dewetting of polymer brushes to act as a template for nanoparticle formation. The evaporation of a thin film containing a dissolved solute from a polymer brush was modeled to study the effect of solubility, concentration, grafting density, and evaporation rate on the nucleation and growth of nanoparticles. Control over particle nucleation could be imposed when the solution was dilute enough such that particle nucleation occurred following the onset of constrained dewetting. We predict that nanoparticles with sizes on the order of 1 nm to 10 nm could be produced from a range of organic molecules under experimentally accessable conditions. This method could allow the functionality of organic materials to be imparted onto surfaces without the need for synthetic modification of the functional molecule, and with control over particle size and aggregation, allowing for the preparation of surfaces with useful optical, pharmaceutical, or electronic properties. Now at Department of Civil and Environmental Engineering, Massachusettes Institute of Technology, Cambridge, MA.
An framework for robust flight control design using constrained optimization
NASA Technical Reports Server (NTRS)
Palazoglu, A.; Yousefpor, M.; Hess, R. A.
1992-01-01
An analytical framework is described for the design of feedback control systems to meet specified performance criteria in the presence of structured and unstructured uncertainty. Attention is focused upon the linear time invariant, single-input, single-output problem for the purposes of exposition. The framework provides for control of the degree of the stabilizing compensator or controller.
Human energy - optimal control of disturbance rejection during constrained standing.
Mihelj, M; Munih, M; Ponikvar, M
2003-01-01
An optimal control system that enables a subject to stand without hand support in the sagittal plane was designed. The subject was considered as a double inverted pendulum structure with a voluntarily controlled degree of freedom in the upper trunk and artificially controlled degree of freedom in the ankle joints. The control system design was based on a minimization of cost function that estimated the effort of the ankle joint muscles through observation of the ground reaction force position relative to the ankle joint axis. By maintaining the centre of pressure close to the ankle joint axis the objective of the upright stance is fulfilled with minimal ankle muscle energy cost. The performance of the developed controller was evaluated in a simulation-based study. The results were compared with the responses of an unimpaired subject to different disturbances in the sagittal plane. The proposed cost function was shown to produce a reasonable approximation of human natural behaviour. PMID:12936049
Human energy - optimal control of disturbance rejection during constrained standing.
Mihelj, M; Munih, M; Ponikvar, M
2003-01-01
An optimal control system that enables a subject to stand without hand support in the sagittal plane was designed. The subject was considered as a double inverted pendulum structure with a voluntarily controlled degree of freedom in the upper trunk and artificially controlled degree of freedom in the ankle joints. The control system design was based on a minimization of cost function that estimated the effort of the ankle joint muscles through observation of the ground reaction force position relative to the ankle joint axis. By maintaining the centre of pressure close to the ankle joint axis the objective of the upright stance is fulfilled with minimal ankle muscle energy cost. The performance of the developed controller was evaluated in a simulation-based study. The results were compared with the responses of an unimpaired subject to different disturbances in the sagittal plane. The proposed cost function was shown to produce a reasonable approximation of human natural behaviour.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214
State-Constrained Optimal Control Problems of Impulsive Differential Equations
Forcadel, Nicolas; Rao Zhiping Zidani, Hasnaa
2013-08-01
The present paper studies an optimal control problem governed by measure driven differential systems and in presence of state constraints. The first result shows that using the graph completion of the measure, the optimal solutions can be obtained by solving a reparametrized control problem of absolutely continuous trajectories but with time-dependent state-constraints. The second result shows that it is possible to characterize the epigraph of the reparametrized value function by a Hamilton-Jacobi equation without assuming any controllability assumption.
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
NASA Technical Reports Server (NTRS)
Richter, hanz; Singaraju, Anil; Litt, Jonathan S.
2008-01-01
Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.
Improved Sensitivity Relations in State Constrained Optimal Control
Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.
2015-04-15
Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because
NASA Astrophysics Data System (ADS)
Denning, S.
2014-12-01
The carbon-climate community has an historic opportunity to make a step-function improvement in climate prediction by using regional constraints to improve mechanistic model representation of carbon cycle processes. Interactions among atmospheric CO2, global biogeochemistry, and physical climate constitute leading sources of uncertainty in future climate. First-order differences among leading models of these processes produce differences in climate as large as differences in aerosol-cloud-radiation interactions and fossil fuel combustion. Emergent constraints based on global observations of interannual variations provide powerful constraints on model parameterizations. Additional constraints can be defined at regional scales. Organized intercomparison experiments have shown that uncertainties in future carbon-climate feedback arise primarily from model representations of the dependence of photosynthesis on CO2 and drought stress and the dependence of decomposition on temperature. Just as representations of net carbon fluxes have benefited from eddy flux, ecosystem manipulations, and atmospheric CO2, component carbon fluxes (photosynthesis, respiration, decomposition, disturbance) can be constrained at regional scales using new observations. Examples include biogeochemical tracers such as isotopes and carbonyl sulfide as well as remotely-sensed parameters such as chlorophyll fluorescence and biomass. Innovative model evaluation experiments will be needed to leverage the information content of new observations to improve process representations as well as to provide accurate initial conditions for coupled climate model simulations. Successful implementation of a comprehensive benchmarking program could have a huge impact on understanding and predicting future climate change.
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.
Inhibitory Control Predicts Grammatical Ability.
Ibbotson, Paul; Kearvell-White, Jennifer
2015-01-01
We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control.
Inhibitory Control Predicts Grammatical Ability
Ibbotson, Paul; Kearvell-White, Jennifer
2015-01-01
We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control. PMID:26659926
Understanding and constraining global controls on dust emissions from playas
NASA Astrophysics Data System (ADS)
Bryant, Robert; Eckardt, Frank; Vickery, Kate; Wiggs, Giles; Hipondoka, Martin; Murray, Jon; Baddock, Matt; Brindley, Helen; King, James; Nield, Jo; Thomas, Dave; Washington, Richard; Haustein, Karsten
2016-04-01
Playas are ephemeral, endorheic lake systems that are common in arid regions. They have been identified as both regionally and globally significant sources of mineral dust. Emissions of dust from large playas can therefore impact significantly on regional climate through a range of land/atmosphere interactions. However, not all playas have or will emit dust, and those that do emit dust rarely do so consistently. Thus, global models that target ephemeral lakes at source areas often struggle to model the emission characteristics of the locations accurately. It is clear that our understanding of controls on dust emission from these environments varies at global scales (i.e. relevant to climate models) is poorly understood. Existing research confirms that the potential for dust emission from playas within dryland regions can be extremely varied; large disparities are noted to exist from one playa to another, and significant spatial/temporal heterogeneity has been observed within those playas that do emit dust. Research also shows that dust fluxes from playa surfaces varies vary based on hydrological gradient or ephemeral inflows and may change over time in response to human or climate forcing mechanisms. Consequently, despite the presence of abundant fine sediment and suitable wind conditions, some playas will remain supply limited and will not emit dust as they are either too wet (e.g. via extensive groundwater discharge) not salty enough (e.g. salts have been removed from the surface by groundwater recharge) or there is not a sufficient supply of sand (coarse particles) on or at the upwind edge of the playa surface to cause dust emission. Other playas (e.g. Owens Lake) have emitted dust at a disproportionate (regionally/nationally) significant level seemingly without constraint (becoming effectively transport capacity limited) through optimal combinations of the same factors. Finally, we can also see situations where dust emitting playa systems flip between supply
Adaptive, Distributed Control of Constrained Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
Predictive control and estimation - State space approach
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure and a new controller design based on the predictive control law are presented. A new predictive estimator enhances system performance. The predictive controller was designed and applied to the tracking control of the NASA/JPL 70-m antenna. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
Global calcite cycling constrained by sediment preservation controls
NASA Astrophysics Data System (ADS)
Dunne, John P.; Hales, Burke; Toggweiler, J. R.
2012-09-01
We assess the global balance of calcite export through the water column and burial in sediments as it varies regionally. We first drive a comprehensive 1-D model for sediment calcite preservation with globally gridded field observations and satellite-based syntheses. We then reformulate this model into a simpler five-parameter box model, and combine it with algorithms for surface calcite export and water column dissolution for a single expression for the vertical calcite balance. The resulting metamodel is optimized to fit the observed distributions of calcite burial flux. We quantify the degree to which calcite export, saturation state, organic carbon respiration, and lithogenic sedimentation modulate the burial of calcite. We find that 46% of burial and 88% of dissolution occurs in sediments overlain by undersaturated bottom water with sediment calcite burial strongly modulated by surface export. Relative to organic carbon export, we find surface calcite export skewed geographically toward relatively warm, oligotrophic areas dominated by small, prokaryotic phytoplankton. We assess century-scale projected impacts of warming and acidification on calcite export, finding high sensitive to inferred saturation state controls. With respect to long-term glacial cycling, our analysis supports the hypothesis that strong glacial abyssal stratification drives the lysocline toward much closer correspondence with the saturation horizon. Our analysis suggests that, over the transition from interglacial to glacial ocean, a resulting ˜0.029 PgC a-1decrease in deep Atlantic, Indian and Southern Ocean calcite burial leads to slow increase in ocean alkalinity until Pacific mid-depth calcite burial increases to compensate.
Empirically Constrained Predictions for Metal-line Emission from the Circumgalactic Medium
NASA Astrophysics Data System (ADS)
Corlies, Lauren; Schiminovich, David
2016-08-01
The circumgalactic medium (CGM) is one of the remaining least constrained components of galaxies and as such has significant potential for advancing galaxy formation theories. In this work, we vary the extragalactic ultraviolet background for a high-resolution cosmological simulation of a Milky-Way-like galaxy and examine the effect on the absorption and emission properties of metals in the CGM. We find that a reduced quasar background brings the column density predictions into better agreement with recent data. Similarly, when the observationally derived physical properties of the gas are compared to the simulation, we find that the simulation gas is always at temperatures approximately 0.5 dex higher. Thus, similar column densities can be produced from fundamentally different gas. However, emission maps can provide complementary information to the line-of-sight column densities to better derive gas properties. From the simulations, we find that the brightest emission is less sensitive to the extragalactic background and that it closely follows the fundamental filamentary structure of the halo. This becomes increasingly true as the galaxy evolves from z = 1 to z = 0 and the majority of the gas transitions to a hotter, more diffuse phase. For the brightest ions (C iii, C iv, O vi), detectable emission can extend as far as 120 kpc at z = 0. Finally, resolution is a limiting factor for the conclusions we can draw from emission observations, but with moderate resolution and reasonable detection limits, upcoming instrumentation should place constraints on the physical properties of the CGM.
Investigating constrained quantum control through a kinematic-to-dynamic-variable transformation
NASA Astrophysics Data System (ADS)
Donovan, A.; Rabitz, H.
2014-07-01
A search for the variables that control a quantum system's dynamics occurs over a landscape, defined as the target objective as a function of the variables. Prior studies show that upon satisfaction of three specific assumptions, the topology of the landscape is free of suboptimal traps that could prematurely halt the search for an optimal control. One key assumption is free access to all necessary control variables; however, in practice, the controls are always limited in some fashion which may result in constraint-induced traps on the landscape. This paper aims to introduce the means to systematically explore the nature of constrained controls that yield suboptimal outcomes. The procedure utilizes kinematic controls, which comprise a simple set of time-independent variables, and then performs a landscape topology-preserving transformation into corresponding dynamic controls. The equivalent landscape topology of these two formulations permits the study of a family of dynamic controls that reflect constrained control landscape behavior. In particular, constrained dynamic controls are identified as isolated points on the landscape or as suboptimal level sets. The wide range of such dynamic controls indicates the richness and complexity of constraint-induced features on the landscape.
Valencia-Palomo, G; Rossiter, J A
2011-01-01
This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules.
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
Constrained control landscape for population transfer in a two-level system.
Moore Tibbetts, Katharine; Rabitz, Herschel
2015-02-01
The growing success of controlling the dynamics of quantum systems has been ascribed to the favorable topology of the quantum control landscape, which represents the physical observable as a function of the control field. The landscape contains no suboptimal trapping extrema when reasonable physical assumptions are satisfied, including that no significant constraints are placed on the control resources. A topic of prime interest is understanding the effects of control field constraints on the apparent landscape topology, as constraints on control resources are inevitable in the laboratory. This work particularly explores the effects of constraining the control field fluence on the topology and features of the control landscape for pure-state population transfer in a two-level system through numerical simulations, where unit probability population transfer in the system is only accessible in the strong coupling regime within the model explored here. With the fluence and three phase variables used for optimization, no local optima are found on the landscape, although saddle features are widespread at low fluence values. Global landscape optima are found to exist at two disconnected regions of the fluence that possess distinct topologies and structures. Broad scale connected optimal level sets are found when the fluence is sufficiently large, while the connectivity is reduced as the fluence becomes more constrained. These results suggest that seeking optimal fields with constrained fluence or other resources may encounter complex landscape features, calling for sophisticated algorithms that can efficiently find optimal controls. PMID:25515970
Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R
2011-06-01
Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved
NASA Astrophysics Data System (ADS)
Kugelmann, B.; Pesch, H. J.
1990-12-01
The application and the performance of the neighboring optimal feedback scheme presented in Part 1 of this paper is demonstrated for the heating-constrained cross-range maximization problem of a space-shuttle-orbiter-type vehicle. This problem contains five state variables, two control variables, and a state variable inequality constraint of order zero.
Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2016-08-01
To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding.
Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2016-08-01
To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039
Data-Based Predictive Control with Multirate Prediction Step
NASA Technical Reports Server (NTRS)
Barlow, Jonathan S.
2010-01-01
Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.
NASA Astrophysics Data System (ADS)
Davidson, C. D.; Dietze, M.
2011-12-01
Arctic climate is warming at a rate disproportionate to the rest of the world, and recent interest has emerged in using terrestrial biosphere models to understand and predict the response of tundra ecosystems to such warming. Of particular interest are the potential feedbacks between permafrost melting, plant community dynamics, and biogeochemical cycles. Here, we report on efforts to calibrate and validate version 2 of the Ecosystem Demography model (ED2) for the Alaskan tundra and on the use of model analyses to motivate targeted field measurements. ED2 is a terrestrial biosphere model unique in its ability to scale physiological and plant community dynamics to regional levels. We began by assessing the ability of ED2's land surface model to capture permafrost thermodynamics and hydrology. Simulations at Barrow and Toolik Lake, Alaska bore several incongruities with observed data, with soil temperatures significantly higher and soil moisture lower than observed. Modifications were made to increase the soil column depth and to simulate the effect of wind compaction on snow density, and in turn, the insulation of winter soils. In addition to these changes, a new soil class was created to represent unique characteristics within the organic horizon of tundra soils. Together these changes significantly improved permafrost dynamics without substantially altering dynamics in the temperate region. To capture tundra vegetation dynamics, tundra species were classified into three plant functional types (graminoid, deciduous shrub, evergreen shrub). ED2 was then iteratively calibrated for the tundra using the Predictive Ecosystem Analyzer (PEcAn), a scientific workflow and ecoinformatics toolbox developed to aid model parameterization and analysis. Initial parameter estimates were derived from a formal Bayesian meta-analysis of compiled plant trait data. Sensitivity analyses and variance decomposition demonstrated that model uncertainties were driven by the minimum
Adaptive recurrent neural network control of uncertain constrained nonholonomic mobile manipulators
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Zhou, T.; Mao, Y.; Chen, Q. J.
2014-02-01
In this article, motion/force control problem of a class of constrained mobile manipulators with unknown dynamics is considered. The system is subject to both holonomic and nonholonomic constraints. An adaptive recurrent neural network controller is proposed to deal with the unmodelled system dynamics. The proposed control strategy guarantees that the system motion asymptotically converges to the desired manifold while the constraint force remains bounded. In addition, an adaptive method is proposed to identify the contact surface. Simulation studies are carried out to verify the validation of the proposed approach.
Broadband Noise Control Using Predictive Techniques
NASA Technical Reports Server (NTRS)
Eure, Kenneth W.; Juang, Jer-Nan
1997-01-01
Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.
NASA Astrophysics Data System (ADS)
Chen, Zhang; Liang, Bin; Zhang, Tao
2016-05-01
When teleoperations are implemented in the constrained environment, the lack of environment information would lead to contacts and undesired excessive contact forces, which are more evident with the existence of time delays. In this paper, a hybrid compliant bilateral controller is proposed to deal with this problem. The controller adopts a self-adjusting selecting scheme to divide the subspaces online. The master and slave manipulators are synchronized in the position subspace through an adaptive bilateral control scheme. At the same time, the slave manipulator is controlled by a local sliding mode impedance controller in order to achieve the desired compliant motion when contacting with the environment. Theoretical analysis proves the stability of the hybrid bilateral controller and concludes the transient performance of the teleoperators. Simulations are carried out to verify the effectiveness of the proposed approach. The results show that the control goals are all achieved.
NASA Technical Reports Server (NTRS)
Postma, Barry Dirk
2005-01-01
This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
Viskari, Toni; Hardiman, Brady; Desai, Ankur R; Dietze, Michael C
2015-03-01
Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE.
Controlling and Predicting Unpredictable Behavior.
de Souza Barba, Lourenço
2015-05-01
Behaving predictably can be advantageous in some situations, but unpredictability can also be advantageous in some competitive situations like sports, games, and war. Can, however, unpredictable behavior be conditioned? If a contingency of reinforcement based upon the predictability of behavior generates unpredictable responding, is it possible to conclude that predictability is itself a reinforceable dimension of behavior? In this paper, I address these questions by examining the concept and measures of predictability and the procedures generally used to increase unpredictable responding. I discuss the hypothesis that contingencies based on response frequency shape the generalized operant "to vary" and an alternative hypothesis that such contingencies generate unpredictable responding by balancing the strength of each alternative response over time. I discuss the findings that support the balance hypothesis as well as its limitations. I conclude that the two alternative hypotheses may be complementary in explaining unpredictable responding. PMID:27606162
NASA Technical Reports Server (NTRS)
Parker, Kevin Kit; Brock, Amy Lepre; Brangwynne, Cliff; Mannix, Robert J.; Wang, Ning; Ostuni, Emanuele; Geisse, Nicholas A.; Adams, Josephine C.; Whitesides, George M.; Ingber, Donald E.
2002-01-01
Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.
Constraining the brachial plexus does not compromise regional control in oropharyngeal carcinoma
2013-01-01
Background Accumulating evidence suggests that brachial plexopathy following head and neck cancer radiotherapy may be underreported and that this toxicity is associated with a dose–response. Our purpose was to determine whether the dose to the brachial plexus (BP) can be constrained, without compromising regional control. Methods The radiation plans of 324 patients with oropharyngeal carcinoma (OPC) treated with intensity-modulated radiation therapy (IMRT) were reviewed. We identified 42 patients (13%) with gross nodal disease <1 cm from the BP. Normal tissue constraints included a maximum dose of 66 Gy and a D05 of 60 Gy for the BP. These criteria took precedence over planning target volume (PTV) coverage of nodal disease near the BP. Results There was only one regional failure in the vicinity of the BP, salvaged with neck dissection (ND) and regional re-irradiation. There have been no reported episodes of brachial plexopathy to date. Conclusions In combined-modality therapy, including ND as salvage, regional control did not appear to be compromised by constraining the dose to the BP. This approach may improve the therapeutic ratio by reducing the long-term risk of brachial plexopathy. PMID:23835205
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2016-09-01
In this paper, the static output-feedback control problem of active suspension systems with information structure constraints is investigated. In order to simultaneously improve the ride comfort and stability, a half car model is used. Other constraints such as suspension deflection, actuator saturation, and controller constrained information are also considered. A novel static output-feedback design method based on the variable substitution is employed in the controller design. A single-step linear matrix inequality (LMI) optimization problem is solved to derive the initial feasible solution with a sparsity constraint. The initial infeasibility issue of the static output-feedback is resolved by using state-feedback information. Specifically, an optimization algorithm is proposed to search for less conservative results based on the feasible controller gain matrix. Finally, the validity of the designed controller for different road profiles is illustrated through numerical examples. The simulation results indicate that the optimized static output-feedback controller can achieve better suspension performances when compared with the feasible static output-feedback controller.
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations.
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. PMID:26356598
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.
1987-01-01
Atmospheric photochemistry models have been used to predict the sensitivity of the ozone layer to various perturbations. These same models also predict concentrations of chemical species in the present day atmosphere which can be compared to observations. Model results for both present day values and sensitivity to perturbation depend upon input data for reaction rates, photodissociation rates, and boundary conditions. A method of combining the results of a Monte Carlo uncertainty analysis with the existing set of present atmospheric species measurements is developed. The method is used to examine the range of values for the sensitivity of ozone to chlorine perturbations that is possible within the currently accepted ranges for input data. It is found that model runs which predict ozone column losses much greater than 10 percent as a result of present fluorocarbon fluxes produce concentrations and column amounts in the present atmosphere which are inconsistent with the measurements for ClO, HCl, NO, NO2, and HNO3.
PREDICTING CME EJECTA AND SHEATH FRONT ARRIVAL AT L1 WITH A DATA-CONSTRAINED PHYSICAL MODEL
Hess, Phillip; Zhang, Jie
2015-10-20
We present a method for predicting the arrival of a coronal mass ejection (CME) flux rope in situ, as well as the sheath of solar wind plasma accumulated ahead of the driver. For faster CMEs, the front of this sheath will be a shock. The method is based upon geometrical separate measurement of the CME ejecta and sheath. These measurements are used to constrain a drag-based model, improved by including both a height dependence and accurate de-projected velocities. We also constrain the geometry of the model to determine the error introduced as a function of the deviation of the CME nose from the Sun–Earth line. The CME standoff-distance in the heliosphere fit is also calculated, fit, and combined with the ejecta model to determine sheath arrival. Combining these factors allows us to create predictions for both fronts at the L1 point and compare them against observations. We demonstrate an ability to predict the sheath arrival with an average error of under 3.5 hr, with an rms error of about 1.58 hr. For the ejecta the error is less than 1.5 hr, with an rms error within 0.76 hr. We also discuss the physical implications of our model for CME expansion and density evolution. We show the power of our method with ideal data and demonstrate the practical implications of having a permanent L5 observer with space weather forecasting capabilities, while also discussing the limitations of the method that will have to be addressed in order to create a real-time forecasting tool.
Yen, Eric A; Tsay, Aaron; Waldispuhl, Jerome; Vogel, Jackie
2014-05-01
Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and visualization of the hidden
Ghosh, Shameek; Feng, Mengling; Nguyen, Hung; Li, Jinyan
2014-01-01
The development of acute hypotension in a critical care patient causes decreased tissue perfusion, which can lead to multiple organ failures. Existing systems that employ population level prognostic scores to stratify the risks of critical care patients based on hypotensive episodes are suboptimal in predicting impending critical conditions, or in directing an effective goal-oriented therapy. In this work, we propose a sequential pattern mining approach which target novel and informative sequential contrast patterns for the detection of hypotension episodes. Our results demonstrate the competitiveness of the approach, in terms of both prediction performance as well as knowledge interpretability. Hence, sequential patterns-based computational biomarkers can help comprehend unusual episodes in critical care patients ahead of time for early warning systems. Sequential patterns can thus aid in the development of a powerful critical care knowledge discovery framework for facilitating novel patient treatment plans.
Ngalame, Paulyne M; Williams, Holly Ann; Jones, Caroline; Nyamongo, Isaac; Diop, Samba; Gaspar, Felisbela
2004-01-01
Objective To examine the enabling and constraining factors that influence African social scientists involvement in malaria control. Methods Convenience and snowball sampling was used to identify participants. Data collection was conducted in two phases: a mailed survey was followed by in-depth phone interviews with selected individuals chosen from the survey. Findings Most participants did not necessarily seek malaria as a career path. Having a mentor who provided research and training opportunities, and developing strong technical skills in malaria control and grant or proposal writing facilitated career opportunities in malaria. A paucity of jobs and funding and inadequate technical skills in malaria limited the type and number of opportunities available to social scientists in malaria control. Conclusion Understanding the factors that influence job satisfaction, recruitment and retention in malaria control is necessary for better integration of social scientists into malaria control. However, given the wide array of skills that social scientists have and the variety of deadly diseases competing for attention in Sub Saharan Africa, it might be more cost effective to employ social scientists to work broadly on issues common to communicable diseases in general rather than solely on malaria. PMID:15579214
Post, Wilfred M; King, Anthony Wayne; Dragoni, Danilo
2011-01-01
Many parameters in terrestrial biogeochemical models are inherently uncertain, leading to uncertainty in predictions of key carbon cycle variables. At observation sites, this uncertainty can be quantified by applying model-data fusion techniques to estimate model parameters using eddy covariance observations and associated biometric data sets as constraints. Uncertainty is reduced as data records become longer and different types of observations are added. We estimate parametric and associated predictive uncertainty at the Morgan Monroe State Forest in Indiana, USA. Parameters in the Local Terrestrial Ecosystem Carbon (LoTEC) are estimated using both synthetic and actual constraints. These model parameters and uncertainties are then used to make predictions of carbon flux for up to 20 years. We find a strong dependence of both parametric and prediction uncertainty on the length of the data record used in the model-data fusion. In this model framework, this dependence is strongly reduced as the data record length increases beyond 5 years. If synthetic initial biomass pool constraints with realistic uncertainties are included in the model-data fusion, prediction uncertainty is reduced by more than 25% when constraining flux records are less than 3 years. If synthetic annual aboveground woody biomass increment constraints are also included, uncertainty is similarly reduced by an additional 25%. When actual observed eddy covariance data are used as constraints, there is still a strong dependence of parameter and prediction uncertainty on data record length, but the results are harder to interpret because of the inability of LoTEC to reproduce observed interannual variations and the confounding effects of model structural error.
NASA Astrophysics Data System (ADS)
Iden, Sascha C.; Peters, Andre; Durner, Wolfgang
2015-11-01
The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.
A Robustly Stabilizing Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Ackmece, A. Behcet; Carson, John M., III
2007-01-01
A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.
Superpartners at LHC and future colliders: predictions from constrained compactified M-theory
NASA Astrophysics Data System (ADS)
Ellis, Sebastian A. R.; Kane, Gordon L.; Zheng, Bob
2015-07-01
We study a realistic top-down M-theory compactification with low-scale effective Supersymmetry, consistent with phenomenological constraints. A combination of top-down and generic phenomenological constraints fix the spectrum. Three and only three superpartner channels, , χ {2/0} χ {1/±} and χ {1/+} χ {1/-} (where χ {2/0} , χ {1/±} are Wino-like), are expected to be observable at LHC-14. We also investigate the prospects of finding heavy squarks and Higgsinos at future colliders. Gluino-stop-top, gluino-sbottom-bottom associated production and first generation squark associated production should be observable at a 100 TeV collider, along with direct production of heavy Higgsinos. Within this framework the discovery of a single sparticle is sufficient to determine uniquely the SUSY spectrum, yielding a number of concrete testable predictions for LHC-14 and future colliders, and determination of M 3/2 and thereby other fundamental quantities.
An efficient artificial bee colony algorithm with application to nonlinear predictive control
NASA Astrophysics Data System (ADS)
Ait Sahed, Oussama; Kara, Kamel; Benyoucef, Abousoufyane; Laid Hadjili, Mohamed
2016-05-01
In this paper a constrained nonlinear predictive control algorithm, that uses the artificial bee colony (ABC) algorithm to solve the optimization problem, is proposed. The main objective is to derive a simple and efficient control algorithm that can solve the nonlinear constrained optimization problem with minimal computational time. Indeed, a modified version, enhancing the exploring and the exploitation capabilities, of the ABC algorithm is proposed and used to design a nonlinear constrained predictive controller. This version allows addressing the premature and the slow convergence drawbacks of the standard ABC algorithm, using a modified search equation, a well-known organized distribution mechanism for the initial population and a new equation for the limit parameter. A convergence statistical analysis of the proposed algorithm, using some well-known benchmark functions is presented and compared with several other variants of the ABC algorithm. To demonstrate the efficiency of the proposed algorithm in solving engineering problems, the constrained nonlinear predictive control of the model of a Multi-Input Multi-Output industrial boiler is considered. The control performances of the proposed ABC algorithm-based controller are also compared to those obtained using some variants of the ABC algorithms.
Prediction, Control and the Challenge to Complexity
ERIC Educational Resources Information Center
Radford, Mike
2008-01-01
The dominant discourse in research, management and teaching is one that may loosely be characterised as that of prediction and control. The objective of research is to identify causal correlations within policy, management, teaching strategies and educational outcomes that are sufficiently robust as to be able to predict outcomes and make…
A Course in... Model Predictive Control.
ERIC Educational Resources Information Center
Arkun, Yaman; And Others
1988-01-01
Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example. PMID:24808590
Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.
Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei
2015-08-01
In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.
Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes.
Antolík, Ján; Hofer, Sonja B; Bednar, James A; Mrsic-Flogel, Thomas D
2016-06-01
Accurate estimation of neuronal receptive fields is essential for understanding sensory processing in the early visual system. Yet a full characterization of receptive fields is still incomplete, especially with regard to natural visual stimuli and in complete populations of cortical neurons. While previous work has incorporated known structural properties of the early visual system, such as lateral connectivity, or imposing simple-cell-like receptive field structure, no study has exploited the fact that nearby V1 neurons share common feed-forward input from thalamus and other upstream cortical neurons. We introduce a new method for estimating receptive fields simultaneously for a population of V1 neurons, using a model-based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume that a population of V1 neurons shares a common pool of thalamic inputs, and consists of two layers of simple and complex-like V1 neurons. When fit to recordings of a local population of mouse layer 2/3 V1 neurons, our model offers an accurate description of their response to natural images and significant improvement of prediction power over the current state-of-the-art methods. We show that the responses of a large local population of V1 neurons with locally diverse receptive fields can be described with surprisingly limited number of thalamic inputs, consistent with recent experimental findings. Our structural model not only offers an improved functional characterization of V1 neurons, but also provides a framework for studying the relationship between connectivity and function in visual cortical areas. PMID:27348548
Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes
Antolík, Ján; Hofer, Sonja B.; Bednar, James A.; Mrsic-Flogel, Thomas D.
2016-01-01
Accurate estimation of neuronal receptive fields is essential for understanding sensory processing in the early visual system. Yet a full characterization of receptive fields is still incomplete, especially with regard to natural visual stimuli and in complete populations of cortical neurons. While previous work has incorporated known structural properties of the early visual system, such as lateral connectivity, or imposing simple-cell-like receptive field structure, no study has exploited the fact that nearby V1 neurons share common feed-forward input from thalamus and other upstream cortical neurons. We introduce a new method for estimating receptive fields simultaneously for a population of V1 neurons, using a model-based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume that a population of V1 neurons shares a common pool of thalamic inputs, and consists of two layers of simple and complex-like V1 neurons. When fit to recordings of a local population of mouse layer 2/3 V1 neurons, our model offers an accurate description of their response to natural images and significant improvement of prediction power over the current state-of-the-art methods. We show that the responses of a large local population of V1 neurons with locally diverse receptive fields can be described with surprisingly limited number of thalamic inputs, consistent with recent experimental findings. Our structural model not only offers an improved functional characterization of V1 neurons, but also provides a framework for studying the relationship between connectivity and function in visual cortical areas. PMID:27348548
Demand management in healthcare IT. Controlling IT demand to meet constrained IT resource supply.
Mohrmann, Gregg; Schlusberg, Craig; Kropf, Roger
2007-01-01
Healthcare is behind other industries in the ability to manage and control increasing demand for IT services, and to ensure that IT staff are available when and where needed. From everyday support requests to large capital projects, the IT department's ability to meet demand is limited. Organizational and IT leaders need to proactively address this issue and do a better job of predicting when services will be needed and whether appropriate resources will be available. This article describes the common issues that healthcare IT departments face in the efficient delivery of services as a result of factors such as budget constraints, skill sets and project dependencies. Best practices for controlling demand are discussed, including resource allocation, governance processes and a graphical analysis of forecasted vs. actual thresholds. Using specific healthcare provider examples, the article intends to provide IT management with an approach to predicting and controlling resource demand. PMID:19195282
NASA Astrophysics Data System (ADS)
Blacksberg, Jordana; Eiler, John; Brown, Mike; Ehlmann, Bethany; Hand, Kevin; Hodyss, Robert; Mahjoub, Ahmed; Poston, Michael; Liu, Yang; Choukroun, Mathieu; Carey, Elizabeth; Wong, Ian
2014-11-01
Hypotheses based on recent dynamical models (e.g. the Nice Model) shape our current understanding of solar system evolution, suggesting radical rearrangement in the first hundreds of millions of years of its history, changing the orbital distances of Jupiter, Saturn, and a large number of small bodies. The goal of this work is to build a methodology to concretely tie individual solar system bodies to dynamical models using observables, providing evidence for their origins and evolutionary pathways. Ultimately, one could imagine identifying a set of chemical or mineralogical signatures that could quantitatively and predictably measure the radial distance at which icy and rocky bodies first accreted. The target of the work presented here is the Jupiter Trojan asteroids, predicted by the Nice Model to have initially formed in the Kuiper belt and later been scattered inward to co-orbit with Jupiter. Here we present our strategy which is fourfold: (1) Generate predictions about the mineralogical, chemical, and isotopic compositions of materials accreted in the early solar system as a function of distance from the Sun. (2) Use temperature and irradiation to simulate evolutionary processing of ices and silicates, and measure the alteration in spectral properties from the UV to mid-IR. (3) Characterize simulants to search for potential fingerprints of origin and processing pathways, and (4) Use telescopic observations to increase our knowledge of the Trojan asteroids, collecting data on populations and using spectroscopy to constrain their compositions. In addition to the overall strategy, we will present preliminary results on compositional modeling, observations, and the synthesis, processing, and characterization of laboratory simulants including ices and silicates. This work has been supported by the Keck Institute for Space Studies (KISS). The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National
Fast predictive control of networked energy systems
NASA Astrophysics Data System (ADS)
Chuang, Frank Fu-Han
In this thesis we study the optimal control of networked energy systems. Networked energy systems consist of a collection of energy storage nodes and a network of links and inputs which allow energy to be exchanged, injected, or removed from the nodes. The nodes may exchange energy between each other autonomously or via controlled flows between the nodes. Examples of networked systems include building heating, ventilation, and air conditioning (HVAC) systems and networked battery systems. In the building system example, the nodes of the system are rooms which store thermal energy in the air and other elements which have thermal capacity. The rooms transfer energy autonomously through thermal conduction, convection, and radiation. Thermal energy can be injected into or removed from the rooms via conditioned air or slabs. In the case of a networked battery system, the batteries store electrical energy in their chemical cells. The batteries may be electrically linked so that a controller can move electrical charge from one battery to another. Networked energy systems are typically large-scale (contain many states and inputs), affected by uncertain forecasts and disturbances, and require fast computation on cheap embedded platforms. In this thesis, the optimal control technique we study is model predictive control for networked energy systems. Model predictive or receding horizon control is a time-domain optimization-based control technique which uses predictive models of a system to forecast its behavior and minimize a performance cost subject to system constraints. In this thesis we address two primary issues concerning model predictive control for networked energy systems: robustness to uncertainty in forecasts and reducing the complexity of the large-scale optimization problem for use in embedded platforms. The first half of the thesis deals primarily with the efficient computation of robust controllers for dealing with random and adversarial uncertainties in the
Stefanucci, Azzurra; Pinnen, Francesco; Feliciani, Federica; Cacciatore, Ivana; Lucente, Gino; Mollica, Adriano
2011-01-01
A successful design of peptidomimetics must come to terms with χ-space control. The incorporation of χ-space constrained amino acids into bioactive peptides renders the χ1 and χ2 torsional angles of pharmacophore amino acids critical for activity and selectivity as with other relevant structural features of the template. This review describes histidine analogues characterized by replacement of native α and/or β-hydrogen atoms with alkyl substituents as well as analogues with α, β-didehydro unsaturation or Cα-Cβ cyclopropane insertion (ACC derivatives). Attention is also dedicated to the relevant field of β-aminoacid chemistry by describing the synthesis of β2- and β3-models (β-hHis). Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described. Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given. PMID:21686155
Robust predictive cruise control for commercial vehicles
NASA Astrophysics Data System (ADS)
Junell, Jaime; Tumer, Kagan
2013-10-01
In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.
Tian, Xinyu; Wang, Xuefeng; Chen, Jun
2014-01-01
Classic multinomial logit model, commonly used in multiclass regression problem, is restricted to few predictors and does not take into account the relationship among variables. It has limited use for genomic data, where the number of genomic features far exceeds the sample size. Genomic features such as gene expressions are usually related by an underlying biological network. Efficient use of the network information is important to improve classification performance as well as the biological interpretability. We proposed a multinomial logit model that is capable of addressing both the high dimensionality of predictors and the underlying network information. Group lasso was used to induce model sparsity, and a network-constraint was imposed to induce the smoothness of the coefficients with respect to the underlying network structure. To deal with the non-smoothness of the objective function in optimization, we developed a proximal gradient algorithm for efficient computation. The proposed model was compared to models with no prior structure information in both simulations and a problem of cancer subtype prediction with real TCGA (the cancer genome atlas) gene expression data. The network-constrained mode outperformed the traditional ones in both cases. PMID:25635165
Neural predictive control for active buffet alleviation
NASA Astrophysics Data System (ADS)
Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald
1998-06-01
The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.
Moissenet, Florent; Chèze, Laurence; Dumas, Raphaël
2012-06-01
Inverse dynamics combined with a constrained static optimization analysis has often been proposed to solve the muscular redundancy problem. Typically, the optimization problem consists in a cost function to be minimized and some equality and inequality constraints to be fulfilled. Penalty-based and Lagrange multipliers methods are common optimization methods for the equality constraints management. More recently, the pseudo-inverse method has been introduced in the field of biomechanics. The purpose of this paper is to evaluate the ability and the efficiency of this new method to solve the muscular redundancy problem, by comparing respectively the musculo-tendon forces prediction and its cost-effectiveness against common optimization methods. Since algorithm efficiency and equality constraints fulfillment highly belong to the optimization method, a two-phase procedure is proposed in order to identify and compare the complexity of the cost function, the number of iterations needed to find a solution and the computational time of the penalty-based method, the Lagrange multipliers method and pseudo-inverse method. Using a 2D knee musculo-skeletal model in an isometric context, the study of the cost functions isovalue curves shows that the solution space is 2D with the penalty-based method, 3D with the Lagrange multipliers method and 1D with the pseudo-inverse method. The minimal cost function area (defined as the area corresponding to 5% over the minimal cost) obtained for the pseudo-inverse method is very limited and along the solution space line, whereas the minimal cost function area obtained for other methods are larger or more complex. Moreover, when using a 3D lower limb musculo-skeletal model during a gait cycle simulation, the pseudo-inverse method provides the lowest number of iterations while Lagrange multipliers and pseudo-inverse method have almost the same computational time. The pseudo-inverse method, by providing a better suited cost function and an
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Optimization approaches to nonlinear model predictive control
Biegler, L.T. . Dept. of Chemical Engineering); Rawlings, J.B. . Dept. of Chemical Engineering)
1991-01-01
With the development of sophisticated methods for nonlinear programming and powerful computer hardware, it now becomes useful and efficient to formulate and solve nonlinear process control problems through on-line optimization methods. This paper explores and reviews control techniques based on repeated solution of nonlinear programming (NLP) problems. Here several advantages present themselves. These include minimization of readily quantifiable objectives, coordinated and accurate handling of process nonlinearities and interactions, and systematic ways of dealing with process constraints. We motivate this NLP-based approach with small nonlinear examples and present a basic algorithm for optimization-based process control. As can be seen this approach is a straightforward extension of popular model-predictive controllers (MPCs) that are used for linear systems. The statement of the basic algorithm raises a number of questions regarding stability and robustness of the method, efficiency of the control calculations, incorporation of feedback into the controller and reliable ways of handling process constraints. Each of these will be treated through analysis and/or modification of the basic algorithm. To highlight and support this discussion, several examples are presented and key results are examined and further developed. 74 refs., 11 figs.
NASA Astrophysics Data System (ADS)
Travis, K.; Jacob, D. J.; Fisher, J. A.; Marais, E. A.; Kim, S.; Zhu, L.; Yu, K.; Yantosca, R.; Payer Sulprizio, M.; Paulot, F.; Mao, J.; Wennberg, P. O.; Crounse, J.; Ryerson, T. B.; Wisthaler, A.; Huey, L. G.; Thompson, A. M.
2014-12-01
The Southeast United States (SEUS) is unique in its atmospheric chemistry and the difficulty of models in reproducing observed ozone (O3) (Fiore et al, 2009). Unlike the Western U.S., O3 variability is more heavily influenced by anthropogenic impacts than background sources such as wildfires, foreign transport, and stratospheric intrusions (Zhang et al, 2011). In addition, the SEUS has biogenic VOC emissions, important O3 precursors, which are among the highest in the world. We use observations from the SEAC4RS campaign over the SEUS in summer 2013, interpreted with the global chemical transport model GEOS-Chem, to evaluate the factors controlling O3 in this region. We use the GEOS-Chem model version v9-02 with significant updates, including improved treatment of isoprene nitrates (Lee et al, 2014), revised yields of MVK and MACR (Liu et al, 2013), improved treatment of isoprene epoxides (Bates et al, 2014), and faster deposition of isoprene oxidation products. The model significantly over predicts the observed O3, particularly in isoprene-rich, low-NOx regions. Properly capturing the fate of the isoprene peroxy radical (RO2) is essential to modeling O3 during the campaign. The amount of NOx in the SEUS is mainly driven by anthropogenic emissions with a smaller contribution from lightning and soil NOx, in addition to the amount of NOx recycled by isoprene nitrates. The variability in the amount of HOx available in the model can be influenced by the recycling of OH assumed in the GEOS-Chem chemical mechanism. We use the ratio of measured isoprene hydroxyperoxide (ISOPOOH) to isoprene nitrates (ISOPN) to constrain the modeled branching between the RO2 + HO2 and RO2 + NO2 pathways. Based on this ratio, we find that the RO2 + HO2 pathway is underestimated in our current chemical mechanism. Moreover, our NOx emissions may be overestimated by comparison with satellite tropospheric NO2 columns. We increase the importance of the RO2 + HO2 pathway with the inclusion of HONO
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten H.
2016-09-01
PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt ), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles- placement method and a constrained optimization problem is solved to find the best tuning.
Optimal Control of Distributed Energy Resources using Model Predictive Control
Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen
2012-07-22
In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.
A constrained-gradient method to control divergence errors in numerical MHD
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-10-01
In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.
Mazinan, A H
2016-03-01
The research addresses a Lyapunov-based constrained control strategy to deal with the autonomous space system in the presence of large disturbances. The aforementioned autonomous space system under control is first represented through a dynamics model and subsequently the proposed control strategy is fully investigated with a focus on the three-axis detumbling and the corresponding pointing mode control approaches. The three-axis detumbling mode control approach is designed to deal with the unwanted angular rates of the system to be zero, while the saturations of the actuators are taken into consideration. Moreover, the three-axis pointing mode control approach is designed in the similar state to deal with the rotational angles of the system to be desirable. The contribution of the research is mathematically made to propose a control law in connection with a new candidate of Lyapunov function to deal with the rotational angles and the related angular rates of the present autonomous space system with respect to state-of-the-art. A series of experiments are carried out to consider the efficiency of the proposed control strategy, as long as a number of benchmarks are realized in the same condition to verify and guarantee the strategy performance in both modes of control approaches. PMID:26850751
Cascade generalized predictive control strategy for boiler drum level.
Xu, Min; Li, Shaoyuan; Cai, Wenjian
2005-07-01
This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.
A method to predict circulation control noise
NASA Astrophysics Data System (ADS)
Reger, Robert W.
Underwater vehicles suffer from reduced maneuverability with conventional lifting append-\\ ages due to the low velocity of operation. Circulation control offers a method to increase maneuverability independent of vehicle speed. However, with circulation control comes additional noise sources, which are not well understood. To better understand these noise sources, a modal-based prediction method is developed, potentially offering a quantitative connection between flow structures and far-field noise. This method involves estimation of the velocity field, surface pressure field, and far-field noise, using only non-time-resolved velocity fields and time-resolved probe measurements. Proper orthogonal decomposition, linear stochastic estimation and Kalman smoothing are employed to estimate time-resolved velocity fields. Poisson's equation is used to calculate time-resolved pressure fields from velocity. Curle's analogy is then used to propagate the surface pressure forces to the far field. This method is developed on a direct numerical simulation of a two-dimensional cylinder at a low Reynolds number (150). Since each of the fields to be estimated are also known from the simulation, a means of obtaining the error from using the methodology is provided. The velocity estimation and the simulated velocity match well when the simulated additive measurement noise is low. The pressure field suffers due to a small domain size; however, the surface pressures estimates fare much better. The far-field estimation contains similar frequency content with reduced magnitudes, attributed to the exclusion of the viscous forces in Curle's analogy. In the absence of added noise, the estimation procedure performs quite nicely for this model problem. The method is tested experimentally on a 650,000 chord-Reynolds-number flow over a 2-D, 20% thick, elliptic circulation control airfoil. Slot jet momentum coefficients of 0 and 0.10 are investigated. Particle image velocimetry, unsteady
Predictive controller and estimator for NASA Deep Space Network antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1992-01-01
A new design procedure is presented for a predictive controller that significantly improves antenna tracking performance. The predictive controller uses future values of the stored output command to generate the control signal. For antennas tracking stars or spacecraft, these values are known in advance, hence the predictive control scheme is easily implemented in this case. The predictive controller is designed for tracking control of the the NASA/JPL 70-m antenna. On-axis tracking is considered, where the output is taken on the encoder, or tachometer. Simulation results show a significant improvement in performance over the LQ controller.
Controller Switching Strategy for Constrained Systems and Its Application to Hard Disk Drives
NASA Astrophysics Data System (ADS)
Okuyama, Atsushi; Yamaguchi, Takashi
We propose a switching control strategy for systems with state and control constraints. Prior studies have proven that switching control strategies have the ability to meet performance objectives, such as fast response and good disturbance rejections, while avoiding constraint violations. The controller is selected on-line from a given set of controllers by supervisory rules based on the concept of a maximal output admissible set. The selected controller needs to be appropriately initialized during switching, but how to decide the controller's initial state is still a problem. This paper proposes a method that utilizes an initial value compensation (IVC) technique for determining the initial state of the controller. The IVC technique has the following features. First, the controller's initial state is chosen according to the plant's initial state. Therefore, the number of variables that the supervisory rules need to consider is reduced. Second, smooth and fast transient responses can be obtained after switching, therefore the region of the closed-loop initial state variables that satisfy the desired response specifications under the given constraints can be expanded. Experimental evaluations of the proposed switching control strategy were performed with a 2.5-inch form-factor hard disk drive.
Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
NASA Astrophysics Data System (ADS)
Jaffery, Mujtaba H.; Shead, Leo; Forshaw, Jason L.; Lappas, Vaios J.
2013-12-01
A new linear model predictive control (MPC) algorithm in a state-space framework is presented based on the fusion of two past MPC control laws: steady-state optimal MPC (SSOMPC) and Laguerre optimal MPC (LOMPC). The new controller, SSLOMPC, is demonstrated to have improved feasibility, tracking performance and computation time than its predecessors. This is verified in both simulation and practical experimentation on a quadrotor unmanned air vehicle in an indoor motion-capture testbed. The performance of the control law is experimentally compared with proportional-integral-derivative (PID) and linear quadratic regulator (LQR) controllers in an unconstrained square manoeuvre. The use of soft control output and hard control input constraints is also examined in single and dual constrained manoeuvres.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Optimal control landscape for the generation of unitary transformations with constrained dynamics
Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel
2010-06-15
The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.
Source-Constrained Recall: Front-End and Back-End Control of Retrieval Quality
ERIC Educational Resources Information Center
Halamish, Vered; Goldsmith, Morris; Jacoby, Larry L.
2012-01-01
Research on the strategic regulation of memory accuracy has focused primarily on monitoring and control processes used to edit out incorrect information after it is retrieved (back-end control). Recent studies, however, suggest that rememberers also enhance accuracy by preventing the retrieval of incorrect information in the first place (front-end…
Predictive and Neural Predictive Control of Uncertain Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.
NASA Astrophysics Data System (ADS)
Moorcroft, P. R.; Zhang, K.; Ali, A. A.; Scott, D.
2015-12-01
In both natural and managed ecosystems the fluxes of carbon into and out of the ecosystem are strongly connected to the dynamics of soil moisture. In this study, we examine how remote-sensing derived estimates of root zone soil moisture (RZSM) available from the AirMOSS P-band radar remote sensing instrument can be used to constrain terrestrial biosphere model predictions of carbon, water and energy fluxes on timescales ranging from hours to decades. Results from ecosystems in the continental US, including an eastern temperate forest, a mid-western grassland, a Californian oak-savannah, and a western conifer forest, indicate that RZSM measurements can provide an important data-constraint on terrestrial biosphere model predictions of how plant photosynthesis and ecosystem respiration respond to changes in soil moisture availability. In doing so, they pave the way for improved estimates of key model parameters and for reducing uncertainty in regional and continental carbon budgets.
Precise flight-path control using a predictive algorithm
NASA Technical Reports Server (NTRS)
Hess, R. A.; Jung, Y. C.
1991-01-01
Generalized predictive control describes an algorithm for the control of dynamic systems in which a control input is generated that minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. A design technique is discussed for applying the single-input/single-output generalized predictive control algorithm to a problem of longitudinal/vertical terrain-following flight of a rotorcraft. By using the generalized predictive control technique to provide inputs to a classically designed stability and control augmentation system, it is demonstrated that a robust flight-path control system can be created that exhibits excellent tracking performance.
Blashfield, Roger K; Fuller, A Kenneth
2016-06-01
Twenty years ago, slightly after the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition was published, we predicted the characteristics of the future Diagnostic and Statistical Manual of Mental Disorders (fifth edition) (). Included in our predictions were how many diagnoses it would contain, the physical size of the Diagnostic and Statistical Manual of Mental Disorders (fifth edition), who its leader would be, how many professionals would be involved in creating it, the revenue generated, and the color of its cover. This article reports on the accuracy of our predictions. Our largest prediction error concerned financial revenue. The earnings growth of the DSM's has been remarkable. Drug company investments, insurance benefits, the financial need of the American Psychiatric Association, and the research grant process are factors that have stimulated the growth of the DSM's. Restoring order and simplicity to the classification of mental disorders will not be a trivial task.
Hormuth, David A; Weis, Jared A; Barnes, Stephanie L; Miga, Michael I; Rericha, Erin C; Quaranta, Vito; Yankeelov, Thomas E
2015-06-04
Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor 'grown' for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model's accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.
NASA Astrophysics Data System (ADS)
Hormuth, David A., II; Weis, Jared A.; Barnes, Stephanie L.; Miga, Michael I.; Rericha, Erin C.; Quaranta, Vito; Yankeelov, Thomas E.
2015-07-01
Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.
A non-linear model predictive controller with obstacle avoidance for a space robot
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2016-04-01
This study investigates the use of the non-linear model predictive control (NMPC) strategy for a kinematically redundant space robot to approach an un-cooperative target in complex space environment. Collision avoidance, traditionally treated as a high level planning problem, can be effectively translated into control constraints as part of the NMPC. The objective of this paper is to evaluate the performance of the predictive controller in a constrained workspace and to investigate the feasibility of imposing additional constraints into the NMPC. In this paper, we reformulated the issue of the space robot motion control by using NMPC with predefined objectives under input, output and obstacle constraints over a receding horizon. An on-line quadratic programming (QP) procedure is employed to obtain the constrained optimal control decisions in real-time. This study has been implemented for a 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a 6 DOF free-floating spacecraft via simulation studies. Real-time trajectory tracking and collision avoidance particularly demonstrate the effectiveness and potential of the proposed NMPC strategy for the space robot.
NASA Astrophysics Data System (ADS)
Niaki, Seyed Taghi Akhavan; Javad Ershadi, Mohammad
2012-12-01
In this research, the main parameters of the multivariate cumulative sum (CUSUM) control chart (the reference value k, the control limit H, the sample size n and the sampling interval h) are determined by minimising the Lorenzen-Vance cost function [Lorenzen, T.J., and Vance, L.C. (1986), 'The Economic Design of Control Charts: A Unified Approach', Technometrics, 28, 3-10], in which the external costs of employing the chart are added. In addition, the model is statistically constrained to achieve desired in-control and out-of-control average run lengths. The Taguchi loss approach is used to model the problem and a genetic algorithm, for which its main parameters are tuned using the response surface methodology (RSM), is proposed to solve it. At the end, sensitivity analyses on the main parameters of the cost function are presented and their practical conclusions are drawn. The results show that RSM significantly improves the performance of the proposed algorithm and the external costs of applying the chart, which are due to real-world constraints, do not increase the average total loss very much.
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. PMID:23706414
Wu, Jian; Singla, Mithun; Olmi, Claudio; Shieh, Leang S; Song, Gangbing
2010-07-01
In this paper, a scalar sign function-based digital design methodology is developed for modeling and control of a class of analog nonlinear systems that are restricted by the absolute value function constraints. As is found to be not uncommon, many real systems are subject to the constraints which are described by the non-smooth functions such as absolute value function. The non-smooth and nonlinear nature poses significant challenges to the modeling and control work. To overcome these difficulties, a novel idea proposed in this work is to use a scalar sign function approach to effectively transform the original nonlinear and non-smooth model into a smooth nonlinear rational function model. Upon the resulting smooth model, a systematic digital controller design procedure is established, in which an optimal linearization method, LQR design and digital implementation through an advanced digital redesign technique are sequentially applied. The example of tracking control of a piezoelectric actuator system is utilized throughout the paper for illustrating the proposed methodology.
An Anatomically Constrained, Stochastic Model of Eye Movement Control in Reading
ERIC Educational Resources Information Center
McDonald, Scott A.; Carpenter, R. H. S.; Shillcock, Richard C.
2005-01-01
This article presents SERIF, a new model of eye movement control in reading that integrates an established stochastic model of saccade latencies (LATER; R. H. S. Carpenter, 1981) with a fundamental anatomical constraint on reading: the vertically split fovea and the initial projection of information in either visual field to the contralateral…
Analytical optimal controls for the state constrained addition and removal of cryoprotective agents
Chicone, Carmen C.; Critser, John K.
2014-01-01
Cryobiology is a field with enormous scientific, financial and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes, and pointing to a direction for the cryopreservation of many other cell types. PMID:22527943
Constrained tension control of a tethered space-tug system with only length measurement
NASA Astrophysics Data System (ADS)
Wen, Hao; Zhu, Zheng H.; Jin, Dongping; Hu, Haiyan
2016-02-01
The paper presents a tension control law to stabilize the motions of a Tethered Space-Tug system during its deorbiting process by regulating the tension in the tether. The tension control law is designed on a basis of two straightforward ideas, i.e., the potential energy shaping and the damping injection. The law is expressed in an analytical feedback form in terms of only the tether length without the need of the feedback of full state information. Meanwhile, the requirements of measuring velocities are removed with the aid of a dynamic extension technique based on the feedback interconnection of Euler-Lagrange systems. The positive and bounded tension constraint is taken into consideration explicitly by including a pair of special saturation terms in the feedback control law. The relative motions of the space-tug and the debris are described with respect to a local non-inertial orbital frame of reference, whereas the orbital motion equations of the system are formulated in terms of the modified equinoctial elements of the orbit. Finally, the effectiveness of the proposed scheme is demonstrated via numerical case studies.
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
NASA Astrophysics Data System (ADS)
Glasgow, M. E.; Schmandt, B.; Gaeuman, D.
2015-12-01
To evaluate the utility of riverside seismic monitoring for constraining temporal and spatial variations in coarse bedload transport in gravel-bed rivers we collected seismic data during a dam-controlled flood of the Trinity River in northern California in May 2015. This field area was chosen because the Trinity River Restoration Project conducts extensive monitoring of water and sediment transport, and riverbed morphology to guide management of the river with the goal of improving salmon habitat. Four three component broadband seismometers were collocated with water discharge and bedload physical sampling sites along a ~30 km reach of the Trinity River downstream of the Lewiston Dam. Arrays with 10-80 cable-free vertical component geophones were also deployed at each of the four sites in order to constrain spatial variability and amplitude decay of seismic signals emanating from the river. Nominal inter-station spacing within the geophone arrays was ~30 m. The largest geophone array consisted of 83 nodes along a 700 m reach of the Trinity River with a gravel augmentation site at its upstream end. Initial analyses of the seismic data show that ground velocity power from averaged from ~7 - 90 Hz is correlated with discharge at all sites. The array at the gravel injection site shows greater high frequency (>30 Hz) power at the upstream end where gravel was injected during the release compared to ~300 m downstream, consistent with bedload transport providing a significant source of seismic energy in addition to water discharge. Declining seismic power during a ~3 day plateau at peak discharge when physical sampler data shows decreasing bedload flux provides a further indication that the seismic data are sensitive to bedload transport. We will use the array data to back-project the seismic signals in multiple frequency bands into the channel to create maps of the time-varying spatial intensity of seismic energy production. We hypothesize that the greatest seismic
Wang, Sen; Wang, Weihong; Xiong, Shaofeng
2016-09-01
Considering a class of skid-to-turn (STT) missile with fixed target and constrained terminal impact angles, a novel three-dimensional (3D) integrated guidance and control (IGC) scheme is proposed in this paper. Based on coriolis theorem, the fully nonlinear IGC model without the assumption that the missile flies heading to the target at initial time is established in the three-dimensional space. For this strict-feedback form of multi-variable system, dynamic surface control algorithm is implemented combining with extended observer (ESO) to complete the preliminary design. Then, in order to deal with the problems of the input constraints, a hyperbolic tangent function is introduced to approximate the saturation function and auxiliary system including a Nussbaum function established to compensate for the approximation error. The stability of the closed-loop system is proven based on Lyapunov theory. Numerical simulations results show that the proposed integrated guidance and control algorithm can ensure the accuracy of target interception with initial alignment angle deviation and the input saturation is suppressed with smooth deflection curves.
Wang, Sen; Wang, Weihong; Xiong, Shaofeng
2016-09-01
Considering a class of skid-to-turn (STT) missile with fixed target and constrained terminal impact angles, a novel three-dimensional (3D) integrated guidance and control (IGC) scheme is proposed in this paper. Based on coriolis theorem, the fully nonlinear IGC model without the assumption that the missile flies heading to the target at initial time is established in the three-dimensional space. For this strict-feedback form of multi-variable system, dynamic surface control algorithm is implemented combining with extended observer (ESO) to complete the preliminary design. Then, in order to deal with the problems of the input constraints, a hyperbolic tangent function is introduced to approximate the saturation function and auxiliary system including a Nussbaum function established to compensate for the approximation error. The stability of the closed-loop system is proven based on Lyapunov theory. Numerical simulations results show that the proposed integrated guidance and control algorithm can ensure the accuracy of target interception with initial alignment angle deviation and the input saturation is suppressed with smooth deflection curves. PMID:27167987
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Sheikh, Tanwir; Chandramouli, Lavanya
2004-04-01
Previous field-deployable distributed sensing systems for health/biomedical applications and environmental sensing have been designed for data collection and data transmission at pre-set intervals, rather than for on-board processing These previous sensing systems lack autonomous capabilities, and have limited lifespans. We propose the use of an integrated machine learning architecture, with automated planning-scheduling and resource management capabilities that can be used for a variety of autonomous sensing applications with very limited computing, power, and bandwidth resources. We lay out general solutions for efficient processing in a multi-tiered (three-tier) machine learning framework that is suited for remote, mobile sensing systems. Novel dimensionality reduction techniques that are designed for classification are used to compress each individual sensor data and pass only relevant information to the mobile multisensor fusion module (second-tier). Statistical classifiers that are capable of handling missing/partial sensory data due to sensor failure or power loss are used to detect critical events and pass the information to the third tier (central server) for manual analysis and/or analysis by advanced pattern recognition techniques. Genetic optimisation algorithms are used to control the system in the presence of dynamic events, and also ensure that system requirements (i.e. minimum life of the system) are met. This tight integration of control optimisation and machine learning algorithms results in a highly efficient sensor network with intelligent decision making capabilities. The applicability of our technology in remote health monitoring and environmental monitoring is shown. Other uses of our solution are also discussed.
Voltage control in pulsed system by predict-ahead control
Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.
1994-01-01
A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.
Voltage control in pulsed system by predict-ahead control
Payne, A.N.; Watson, J.A.; Sampayan, S.E.
1994-09-13
A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.
Valtonen, Anu; Ayres, Matthew P; Roininen, Heikki; Pöyry, Juha; Leinonen, Reima
2011-01-01
Ecological systems have naturally high interannual variance in phenology. Component species have presumably evolved to maintain appropriate phenologies under historical climates, but cases of inappropriate phenology can be expected with climate change. Understanding controls on phenology permits predictions of ecological responses to climate change. We studied phenological control systems in Lepidoptera by analyzing flight times recorded at a network of sites in Finland. We evaluated the strength and form of controls from temperature and photoperiod, and tested for geographic variation within species. Temperature controls on phenology were evident in 51% of 112 study species and for a third of those thermal controls appear to be modified by photoperiodic cues. For 24% of the total, photoperiod by itself emerged as the most likely control system. Species with thermal control alone should be most immediately responsive in phenology to climate warming, but variably so depending upon the minimum temperature at which appreciable development occurs and the thermal responsiveness of development rate. Photoperiodic modification of thermal controls constrains phenotypic responses in phenologies to climate change, but can evolve to permit local adaptation. Our results suggest that climate change will alter the phenological structure of the Finnish Lepidoptera community in ways that are predictable with knowledge of the proximate physiological controls. Understanding how phenological controls in Lepidoptera compare to that of their host plants and enemies could permit general inferences regarding climatic effects on mid- to high-latitude ecosystems.
Zhang, Y M; Huang, G; Lu, H W; He, Li
2015-08-15
A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control.
Zhang, Y M; Huang, G; Lu, H W; He, Li
2015-08-15
A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. PMID:25897733
Comparison of Predictive Control Methods for High Consumption Industrial Furnace
2013-01-01
We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn. PMID:24319354
Comparison of predictive control methods for high consumption industrial furnace.
Stojanovski, Goran; Stankovski, Mile
2013-01-01
We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.
Robust model predictive control by iterative optimisation for polytopic uncertain systems
NASA Astrophysics Data System (ADS)
Wang, Chuanxu
2012-09-01
This article addresses robust model predictive control (MPC) for constrained systems with polytopic uncertainty description. Firstly, in the technique which parametrises the infinite horizon control moves into a single state feedback law and invokes the parameter-dependent Lyapunov method for achieving closed-loop stability, the slack matrices are iteratively solved at each sampling time. Secondly, in the technique which parametrises the infinite horizon control moves into a set of free perturbations followed by a single state feedback law, the feedback gains within the switch horizon are iteratively found at each sampling time, rather than just inherited from the previous sampling time. Numerical examples show that iterative MPC can not only improve the control performance, but also enlarge the region of attraction.
Predictability Influences Stopping and Response Control
ERIC Educational Resources Information Center
Morein-Zamir, Sharon; Chua, Romeo; Franks, Ian; Nagelkerke, Paul; Kingstone, Alan
2007-01-01
Using a continuous tracking task, the authors examined whether stopping is resistant to expectancies as well as whether it is a representative measure of response control. Participants controlled the speed of a moving marker by continuously adjusting their response force. Participants stopped their ongoing tracking in response to auditory signals…
NASA Astrophysics Data System (ADS)
Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui
2012-12-01
In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.
Prospects for earthquake prediction and control
Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.
1972-01-01
The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.
NASA Technical Reports Server (NTRS)
Probst, D.; Jensen, L.
1991-01-01
Delay-insensitive VLSI systems have a certain appeal on the ground due to difficulties with clocks; they are even more attractive in space. We answer the question, is it possible to control state explosion arising from various sources during automatic verification (model checking) of delay-insensitive systems? State explosion due to concurrency is handled by introducing a partial-order representation for systems, and defining system correctness as a simple relation between two partial orders on the same set of system events (a graph problem). State explosion due to nondeterminism (chiefly arbitration) is handled when the system to be verified has a clean, finite recurrence structure. Backwards branching is a further optimization. The heart of this approach is the ability, during model checking, to discover a compact finite presentation of the verified system without prior composition of system components. The fully-implemented POM verification system has polynomial space and time performance on traditional asynchronous-circuit benchmarks that are exponential in space and time for other verification systems. We also sketch the generalization of this approach to handle delay-constrained VLSI systems.
Luo, Shaohua; Hou, Zhiwei; Chen, Zhong
2015-12-15
In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.
Launch ascent guidance by discrete multi-model predictive control
NASA Astrophysics Data System (ADS)
Vachon, Alexandre; Desbiens, André; Gagnon, Eric; Bérard, Caroline
2014-02-01
This paper studies the application of discrete multi-model predictive control as a trajectory tracking guidance law for a space launcher. Two different algorithms are developed, each one based on a different representation of launcher translation dynamics. These representations are based on an interpolation of the linear approximation of nonlinear pseudo-five degrees of freedom equations of translation around an elliptical Earth. The interpolation gives a linear-time-varying representation and a linear-fractional representation. They are used as the predictive model of multi-model predictive controllers. The controlled variables are the orbital parameters, and constraints on a terminal region for the minimal accepted precision are also included. Use of orbital parameters as the controlled variables allows for a partial definition of the trajectory. Constraints can also be included in multi-model predictive control to reduce the number of unknowns of the problem by defining input shaping constraints. The guidance algorithms are tested in nominal conditions and off-nominal conditions with uncertainties on the thrust. The results are compared to those of a similar formulation with a nonlinear model predictive controller and to a guidance method based on the resolution of a simplified version of the two-point boundary value problem. In nominal conditions, the model predictive controllers are more precise and produce a more optimal trajectory but are longer to compute than the two-point boundary solution. Moreover, in presence of uncertainties, developed algorithms exhibit poor robustness properties. The multi-model predictive control algorithms do not reach the desired orbit while the nonlinear model predictive control algorithm still converges but produces larger maneuvers than the other method.
Rate-Based Model Predictive Control of Turbofan Engine Clearance
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.
2006-01-01
An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Algorithm for predictive control implementation on fiber optic transmission lines
NASA Astrophysics Data System (ADS)
Andreev, Vladimir A.; Burdin, Vladimir A.; Voronkov, Andrey A.
2014-04-01
This paper presents the algorithm for predictive control implementation on fiber-optic transmission lines. In order to improve the maintenance of fiber optic communication lines, the algorithm prediction uptime optic communication cables have been worked out. It considers the results of scheduled preventive maintenance and database of various works on the track cable line during maintenance.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. PMID:26850752
Power-constrained supercomputing
NASA Astrophysics Data System (ADS)
Bailey, Peter E.
. Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels
Neural network learning of optimal Kalman prediction and control.
Linsker, Ralph
2008-11-01
Although there are many neural network (NN) algorithms for prediction and for control, and although methods for optimal estimation (including filtering and prediction) and for optimal control in linear systems were provided by Kalman in 1960 (with nonlinear extensions since then), there has been, to my knowledge, no NN algorithm that learns either Kalman prediction or Kalman control (apart from the special case of stationary control). Here we show how optimal Kalman prediction and control (KPC), as well as system identification, can be learned and executed by a recurrent neural network composed of linear-response nodes, using as input only a stream of noisy measurement data. The requirements of KPC appear to impose significant constraints on the allowed NN circuitry and signal flows. The NN architecture implied by these constraints bears certain resemblances to the local-circuit architecture of mammalian cerebral cortex. We discuss these resemblances, as well as caveats that limit our current ability to draw inferences for biological function. It has been suggested that the local cortical circuit (LCC) architecture may perform core functions (as yet unknown) that underlie sensory, motor, and other cortical processing. It is reasonable to conjecture that such functions may include prediction, the estimation or inference of missing or noisy sensory data, and the goal-driven generation of control signals. The resemblances found between the KPC NN architecture and that of the LCC are consistent with this conjecture.
Towards feasible and effective predictive wavefront control for adaptive optics
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
Predictive neuro-fuzzy controller for multilink robot manipulator
NASA Astrophysics Data System (ADS)
Kaymaz, Emre; Mitra, Sunanda
1995-10-01
A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.
Multi-objective optimization for model predictive control.
Wojsznis, Willy; Mehta, Ashish; Wojsznis, Peter; Thiele, Dirk; Blevins, Terry
2007-06-01
This paper presents a technique of multi-objective optimization for Model Predictive Control (MPC) where the optimization has three levels of the objective function, in order of priority: handling constraints, maximizing economics, and maintaining control. The greatest weights are assigned dynamically to control or constraint variables that are predicted to be out of their limits. The weights assigned for economics have to out-weigh those assigned for control objectives. Control variables (CV) can be controlled at fixed targets or within one- or two-sided ranges around the targets. Manipulated Variables (MV) can have assigned targets too, which may be predefined values or current actual values. This MV functionality is extremely useful when economic objectives are not defined for some or all the MVs. To achieve this complex operation, handle process outputs predicted to go out of limits, and have a guaranteed solution for any condition, the technique makes use of the priority structure, penalties on slack variables, and redefinition of the constraint and control model. An engineering implementation of this approach is shown in the MPC embedded in an industrial control system. The optimization and control of a distillation column, the standard Shell heavy oil fractionator (HOF) problem, is adequately achieved with this MPC. PMID:17382946
Improving active space telescope wavefront control using predictive thermal modeling
NASA Astrophysics Data System (ADS)
Gersh-Range, Jessica; Perrin, Marshall D.
2015-01-01
Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.
Prediction and control of limit cycling motions in boosting rockets
NASA Astrophysics Data System (ADS)
Newman, Brett
An investigation concerning the prediction and control of observed limit cycling behavior in a boosting rocket is considered. The suspected source of the nonlinear behavior is the presence of Coulomb friction in the nozzle pivot mechanism. A classical sinusoidal describing function analysis is used to accurately recreate and predict the observed oscillatory characteristic. In so doing, insight is offered into the limit cycling mechanism and confidence is gained in the closed-loop system design. Nonlinear simulation results are further used to support and verify the results obtained from describing function theory. Insight into the limit cycling behavior is, in turn, used to adjust control system parameters in order to passively control the oscillatory tendencies. Tradeoffs with the guidance and control system stability/performance are also noted. Finally, active control of the limit cycling behavior, using a novel feedback algorithm to adjust the inherent nozzle sticking-unsticking characteristics, is considered.
Optimized continuous pharmaceutical manufacturing via model-predictive control.
Rehrl, Jakob; Kruisz, Julia; Sacher, Stephan; Khinast, Johannes; Horn, Martin
2016-08-20
This paper demonstrates the application of model-predictive control to a feeding blending unit used in continuous pharmaceutical manufacturing. The goal of this contribution is, on the one hand, to highlight the advantages of the proposed concept compared to conventional PI-controllers, and, on the other hand, to present a step-by-step guide for controller synthesis. The derivation of the required mathematical plant model is given in detail and all the steps required to develop a model-predictive controller are shown. Compared to conventional concepts, the proposed approach allows to conveniently consider constraints (e.g. mass hold-up in the blender) and offers a straightforward, easy to tune controller setup. The concept is implemented in a simulation environment. In order to realize it on a real system, additional aspects (e.g., state estimation, measurement equipment) will have to be investigated. PMID:27317987
Optimized continuous pharmaceutical manufacturing via model-predictive control.
Rehrl, Jakob; Kruisz, Julia; Sacher, Stephan; Khinast, Johannes; Horn, Martin
2016-08-20
This paper demonstrates the application of model-predictive control to a feeding blending unit used in continuous pharmaceutical manufacturing. The goal of this contribution is, on the one hand, to highlight the advantages of the proposed concept compared to conventional PI-controllers, and, on the other hand, to present a step-by-step guide for controller synthesis. The derivation of the required mathematical plant model is given in detail and all the steps required to develop a model-predictive controller are shown. Compared to conventional concepts, the proposed approach allows to conveniently consider constraints (e.g. mass hold-up in the blender) and offers a straightforward, easy to tune controller setup. The concept is implemented in a simulation environment. In order to realize it on a real system, additional aspects (e.g., state estimation, measurement equipment) will have to be investigated.
Model predictive torque control with an extended prediction horizon for electrical drive systems
NASA Astrophysics Data System (ADS)
Wang, Fengxiang; Zhang, Zhenbin; Kennel, Ralph; Rodríguez, José
2015-07-01
This paper presents a model predictive torque control method for electrical drive systems. A two-step prediction horizon is achieved by considering the reduction of the torque ripples. The electromagnetic torque and the stator flux error between predicted values and the references, and an over-current protection are considered in the cost function design. The best voltage vector is selected by minimising the value of the cost function, which aims to achieve a low torque ripple in two intervals. The study is carried out experimentally. The results show that the proposed method achieves good performance in both steady and transient states.
Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Eure, Kenneth W.
1998-01-01
Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.
Self-Control Assessments and Implications for Predicting Adolescent Offending.
Fine, Adam; Steinberg, Laurence; Frick, Paul J; Cauffman, Elizabeth
2016-04-01
Although low self-control is consistently related to adolescent offending, it is unknown whether self-report measures or laboratory behavior tasks yield better predictive utility, or if a combination yields incremental predictive power. This is particularly important because developmental theory indicates that self-control is related to adolescent offending and, consequently, risk assessments rely on self-control measures. The present study (a) examines relationships between self-reported self-control on the Weinberger Adjustment Inventory with Go/No-Go response inhibition, and (b) compares the predictive utility of both assessment strategies for short- and long-term adolescent reoffending. It uses longitudinal data from the Crossroads Study of male, first-time adolescent offenders ages 13-17 (N = 930; 46 % Hispanic/Latino, 37 % Black/African-American, 15 % non-Hispanic White, 2 % other race). The results of the study indicate that the measures are largely unrelated, and that the self-report measure is a better indicator of both short- and long-term reoffending. The laboratory task measure does not add value to what is already predicted by the self-report measure. Implications for assessing self-control during adolescence and consequences of assessment strategy are discussed. PMID:26792266
Predicted torque equilibrium attitude utilization for Space Station attitude control
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.
1990-01-01
An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.
Neural Generalized Predictive Control: A Newton-Raphson Implementation
NASA Technical Reports Server (NTRS)
Soloway, Donald; Haley, Pamela J.
1997-01-01
An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.
Stabilisation of difference equations with noisy prediction-based control
NASA Astrophysics Data System (ADS)
Braverman, E.; Kelly, C.; Rodkina, A.
2016-07-01
We consider the influence of stochastic perturbations on stability of a unique positive equilibrium of a difference equation subject to prediction-based control. These perturbations may be multiplicative We begin by relaxing the control parameter in the deterministic equation, and deriving a range of values for the parameter over which all solutions eventually enter an invariant interval. Then, by allowing the variation to be stochastic, we derive sufficient conditions (less restrictive than known ones for the unperturbed equation) under which the positive equilibrium will be globally a.s. asymptotically stable: i.e. the presence of noise improves the known effectiveness of prediction-based control. Finally, we show that systemic noise has a "blurring" effect on the positive equilibrium, which can be made arbitrarily small by controlling the noise intensity. Numerical examples illustrate our results.
Fuzzy Predictive Control Strategy in the Application of the Industrial Furnace Temperature Control
NASA Astrophysics Data System (ADS)
Dai, Luping; Chen, Xingliang; Chen, Liu; Liu, Xia
Ceramic kiln with large heat capacity, big lag and nonlinear characteristic, this paper proposes a combining fuzzy control and predictive control of the control algorithm, to enhance the tracking and anti-interference ability of the algorithm. The simulation results show, this method compared with the control of PID has the high steady precision and dynamic characteristic.
The predictive protective control of the heat exchanger
NASA Astrophysics Data System (ADS)
Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav
2016-06-01
The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.
Automaticity and cognitive control in the learned predictiveness effect.
Shone, Lauren T; Harris, Irina M; Livesey, Evan J
2015-01-01
In novel contexts, learning is biased toward cues previously experienced as predictive compared with cues previously experienced as nonpredictive. This is known as learned predictiveness. A recent finding has shown that instructions issued about the causal status of cues influences the expression of learned predictiveness, suggesting that controlled, volitional processes play a role in this effect. Three experiments are reported further investigating the effects of instructional manipulations on learned predictiveness. Experiment 1 confirms the influence of inferential processes, extending previous work to suggest that instructions affect associative memory as well as causal reasoning. Experiments 2 and 3 used a procedure designed to tease apart inferential and automatic contributions to the bias by presenting instructed causes that were previously predictive and previously nonpredictive. The results demonstrate that the prior predictiveness of cues influences subsequent learning over and above the effect of explicit instruction. However, it appears that the relationship between explicit instruction and predictive history is interactive rather than additive. Potential explanations for this interactivity are discussed.
Predicting asthma control: the role of psychological triggers.
Ritz, Thomas; Bobb, Carol; Griffiths, Chris
2014-01-01
Asthma triggers have been linked to adverse health outcomes in asthma, but little is known about their association with asthma control. Because trigger avoidance is an integral part of successful asthma management, psychological triggers in particular may be associated with suboptimal asthma control, given the difficulty of controlling them. We examined cross-sectional and longitudinal associations of perceived asthma triggers with self-report of asthma control impairment, symptoms, and spirometric lung function (forced expiratory volume in the 1st second, [FEV1]) in 179 adult primary care asthma patients. Perceived asthma triggers explained up to 42.5% of the variance in asthma control and symptoms, but not in FEV1 alone. Allergic triggers explained up to 12.1% of the asthma control and symptom variance, three nonallergic trigger types, air pollution/irritants, physical activity, and infection, explained up to 26.2% over and above allergic triggers, and psychological triggers up to 9.5% over and above all other triggers. Psychological triggers alone explained up to 33.9% of the variance and were the only trigger class that was consistently significant in all final multiple regression models predicting control and symptoms. Psychological triggers also predicted lower asthma control 3-6 months later, although controlling for initial asthma control eliminated this association. In free reports of individually relevant triggers, only psychological triggers were associated with suboptimal asthma control. Trigger factors are important predictors of self-reported asthma control and symptoms but not actual lung function. Particular attention should be directed to psychological triggers as indicators of patients' perceptions of suboptimal asthma control.
Adaptive model predictive process control using neural networks
Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.
1997-01-01
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Composite predictive flight control for airbreathing hypersonic vehicles
NASA Astrophysics Data System (ADS)
Yang, Jun; Zhao, Zhenhua; Li, Shihua; Zheng, Wei Xing
2014-09-01
The robust optimised tracking control problem for a generic airbreathing hypersonic vehicle (AHV) subject to nonvanishing mismatched disturbances/uncertainties is investigated in this paper. A baseline nonlinear model predictive control (MPC) method is firstly introduced for optimised tracking control of the nominal dynamics. A nonlinear-disturbance-observer-based control law is then developed for robustness enhancement in the presence of both external disturbances and uncertainties. Compared with the existing robust tracking control methods for AHVs, the proposed composite nonlinear MPC method obtains not only promising robustness and disturbance rejection performance but also optimised nominal tracking control performance. The merits of the proposed method are validated by implementing simulation studies on the AHV system.
Motivation to control prejudice predicts categorization of multiracials.
Chen, Jacqueline M; Moons, Wesley G; Gaither, Sarah E; Hamilton, David L; Sherman, Jeffrey W
2014-05-01
Multiracial individuals often do not easily fit into existing racial categories. Perceivers may adopt a novel racial category to categorize multiracial targets, but their willingness to do so may depend on their motivations. We investigated whether perceivers' levels of internal motivation to control prejudice (IMS) and external motivation to control prejudice (EMS) predicted their likelihood of categorizing Black-White multiracial faces as Multiracial. Across four studies, IMS positively predicted perceivers' categorizations of multiracial faces as Multiracial. The association between IMS and Multiracial categorizations was strongest when faces were most racially ambiguous. Explicit prejudice, implicit prejudice, and interracial contact were ruled out as explanations for the relationship between IMS and Multiracial categorizations. EMS may be negatively associated with the use of the Multiracial category. Therefore, perceivers' motivations to control prejudice have important implications for racial categorization processes.
Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions
NASA Technical Reports Server (NTRS)
Miller, Christopher J.
2011-01-01
A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.
Global connectivity of prefrontal cortex predicts cognitive control and intelligence
Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.
2012-01-01
Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498
Effects of modeling errors on trajectory predictions in air traffic control automation
NASA Technical Reports Server (NTRS)
Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda
1996-01-01
Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.
Model Predictive Control of Integrated Gasification Combined Cycle Power Plants
B. Wayne Bequette; Priyadarshi Mahapatra
2010-08-31
The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
Predictive onboard flow control in packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, E. A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
Model predictive control of a wind turbine modelled in Simpack
NASA Astrophysics Data System (ADS)
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to
Flutter prediction for a wing with active aileron control
NASA Technical Reports Server (NTRS)
Penning, K.; Sandlin, D. R.
1983-01-01
A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.
Punishment sensitivity predicts the impact of punishment on cognitive control.
Braem, Senne; Duthoo, Wout; Notebaert, Wim
2013-01-01
Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control.
Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.
Adaptive Pole Placement Controllers For Robotic Manipulators With Predictive Action
NASA Astrophysics Data System (ADS)
Kaynak, Okyay; Hoyer, Helmut
1987-10-01
This paper proposes two pole assignment control schemes for robotic manipulators, based on an anticipatory action. In one, the control objective is for the velocity tracking error to decay with a prespecified dynamics. In the other, a generalised cost function is minimized and the weighting factors in the cost function are determined to achieve desired closed loop pole locations for the tracking error. The prediction scheme used ensures a high degree of robustness against system-model mismatch as demonstrated by the simulation results presented.
Prediction and control of chaotic processes using nonlinear adaptive networks
Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
NASA Astrophysics Data System (ADS)
Li, Liang; Jia, Gang; Chen, Jie; Zhu, Hongjun; Cao, Dongpu; Song, Jian
2015-08-01
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.
Application of linear gauss pseudospectral method in model predictive control
NASA Astrophysics Data System (ADS)
Yang, Liang; Zhou, Hao; Chen, Wanchun
2014-03-01
This paper presents a model predictive control(MPC) method aimed at solving the nonlinear optimal control problem with hard terminal constraints and quadratic performance index. The method combines the philosophies of the nonlinear approximation model predictive control, linear quadrature optimal control and Gauss Pseudospectral method. The current control is obtained by successively solving linear algebraic equations transferred from the original problem via linearization and the Gauss Pseudospectral method. It is not only of high computational efficiency since it does not need to solve nonlinear programming problem, but also of high accuracy though there are a few discrete points. Therefore, this method is suitable for on-board applications. A design of terminal impact with a specified direction is carried out to evaluate the performance of this method. Augmented PN guidance law in the three-dimensional coordinate system is applied to produce the initial guess. And various cases for target with straight-line movements are employed to demonstrate the applicability in different impact angles. Moreover, performance of the proposed method is also assessed by comparison with other guidance laws. Simulation results indicate that this method is not only of high computational efficiency and accuracy, but also applicable in the framework of guidance design.
Multiplexed model predictive control for active vehicle suspensions
NASA Astrophysics Data System (ADS)
Hu, Yinlong; Chen, Michael Z. Q.; Hou, Zhongsheng
2015-02-01
Multiplexed model predictive control (MMPC) is a recently proposed efficient model predictive control (MPC) algorithm, which can effectively reduce the computational burden of the online optimisation in MPC implementation by updating the control inputs in an asynchronous manner. This paper investigates the application of MMPC in active vehicle suspension design. An MMPC controller integrated with soft constraints and a Kalman filter is proposed based on a full-car model. Ride comfort, roadholding and suspension deflection are considered in this paper, where ride comfort and roadholding are formulated as a quadratic cost function in terms of sprung mass accelerations and tyre deflections, while suspension deflection performance is formulated as a hard constraint. The saturation of the actuator force is also considered and formulated as a hard constraint as well. Numerical simulation is performed with respect to different choices of weighting factors, vehicle speeds and control horizons. The results show that the overall performance of ride comfort and roadholding can be improved significantly by employing MMPC and the average time taken by MMPC to solve the individual quadratic programming problem is considerably smaller than that of the conventional MPC, which effectively demonstrate the effectiveness of the proposed method.
A novel trajectory prediction control for proximate time-optimal digital control DC—DC converters
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Shen, Xu; Weifeng, Sun; Longxing, Shi
2014-09-01
The purpose of this paper is to present a novel trajectory prediction method for proximate time-optimal digital control DC—DC converters. The control method provides pre-estimations of the duty ratio in the next several switching cycles, so as to compensate the computational time delay of the control loop and increase the control loop bandwidth, thereby improving the response speed. The experiment results show that the fastest transient response time of the digital DC—DC with the proposed prediction is about 8 μs when the load current changes from 0.6 to 0.1 A.
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
Control of nonlinear processes by using linear model predictive control algorithms.
Gu, Bingfeng; Gupta, Yash P
2008-04-01
Most chemical processes are inherently nonlinear. However, because of their simplicity, linear control algorithms have been used for the control of nonlinear processes. In this study, the use of the dynamic matrix control algorithm and a simplified model predictive control algorithm for control of a bench-scale pH neutralization process is investigated. The nonlinearity is handled by dividing the operating region into sub-regions and by switching the controller model as the process moves from one sub-region to another. A simple modification for model predictive control algorithms is presented to handle the switching. The simulation and experimental results show that the modification can provide a significant improvement in the control of nonlinear processes. PMID:18255068
NASA Astrophysics Data System (ADS)
Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien
2015-04-01
Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite
Lopez-Rios, Javier; Speziale, Dario; Robay, Dimitri; Scotti, Martina; Osterwalder, Marco; Nusspaumer, Gretel; Galli, Antonella; Holländer, Georg A.; Kmita, Marie; Zeller, Rolf
2015-01-01
SUMMARY Inactivation of Gli3, a key component of Hedgehog signaling in vertebrates, results in formation of additional digits (polydactyly) during limb bud development. The analysis of mouse embryos constitutively lacking Gli3 has revealed the essential GLI3 functions in specifying the anteroposterior (AP) limb axis and digit identities. We conditionally inactivated Gli3 during mouse hand plate development, which uncoupled the resulting preaxial polydactyly from known GLI3 functions in establishing AP and digit identities. Our analysis revealed that GLI3 directly restricts the expression of regulators of the G1–S cell-cycle transition such as Cdk6 and constrains S phase entry of digit progenitors in the anterior hand plate. Furthermore, GLI3 promotes the exit of proliferating progenitors toward BMP-dependent chondrogenic differentiation by spatiotemporally restricting and terminating the expression of the BMP antagonist Gremlin1. Thus, Gli3 is a negative regulator of the proliferative expansion of digit progenitors and acts as a gatekeeper for the exit to chondrogenic differentiation. PMID:22465667
A model predictive control approach for the Italian LBE XADS
NASA Astrophysics Data System (ADS)
Cammi, Antonio; Casella, Francesco; Luzzi, Lelio; Milano, Alessandro; Ricotti, Marco E.
2008-06-01
In this paper, model predictive control (MPC) is applied to the Italian 80 MW th experimental accelerator driven system (XADS), referring to a simple, non-linear model for the dynamic simulation of the plant, which has been developed and described in a previous work [A. Cammi, L. Luzzi, A.A. Porta, M.E. Ricotti, Prog. Nucl. Energ. 48 (2006) 578], in order to describe the interactions among the different subsystems: i.e., the accelerator-core coupling, the lead bismuth eutectic (LBE) primary system, the secondary system with diathermic oil and air coolers batteries, which reject the thermal power to the environment. Hereinafter, a model predictive controller is proposed, with the objective to minimize the difference between the average temperature of the diathermic oil and its reference value, while also minimizing the variations of the control input, which is the air coolers mass flow rate. The dynamic response of the LBE-XADS has been evaluated with reference to a reduction of 20% in the reactor power from nominal load conditions: this transient is very demanding for the overall plant, nevertheless the obtained results indicate the effectiveness of the proposed controller.
Prediction and control of neural responses to pulsatile electrical stimulation
NASA Astrophysics Data System (ADS)
Campbell, Luke J.; Sly, David James; O'Leary, Stephen John
2012-04-01
This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.
Limits of Executive Control: Sequential Effects in Predictable Environments.
Verbruggen, Frederick; McAndrew, Amy; Weidemann, Gabrielle; Stevens, Tobias; McLaren, Ian P L
2016-05-01
Cognitive-control theories attribute action control to executive processes that modulate behavior on the basis of expectancy or task rules. In the current study, we examined corticospinal excitability and behavioral performance in a go/no-go task. Go and no-go trials were presented in runs of five, and go and no-go runs alternated predictably. At the beginning of each trial, subjects indicated whether they expected a go trial or a no-go trial. Analyses revealed that subjects immediately adjusted their expectancy ratings when a new run started. However, motor excitability was primarily associated with the properties of the previous trial, rather than the predicted properties of the current trial. We also observed a large latency cost at the beginning of a go run (i.e., reaction times were longer for the first trial in a go run than for the second trial). These findings indicate that actions in predictable environments are substantially influenced by previous events, even if this influence conflicts with conscious expectancies about upcoming events. PMID:27000177
Structural Acoustic Prediction and Interior Noise Control Technology
NASA Technical Reports Server (NTRS)
Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)
2001-01-01
This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
Energy-efficient container handling using hybrid model predictive control
NASA Astrophysics Data System (ADS)
Xin, Jianbin; Negenborn, Rudy R.; Lodewijks, Gabriel
2015-11-01
The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of three key interacting machines for carrying out the so-called bay handling task, involving transporting containers between a vessel and the stacking area in an automated container terminal. The behaviours of the interacting machines are modelled as a collection of interconnected hybrid systems. Hybrid model predictive control (MPC) is proposed to achieve optimal performance, balancing the handling capacity and energy consumption. The underlying control problem is hereby formulated as a mixed-integer linear programming problem. Simulation studies illustrate that a higher penalty on energy consumption indeed leads to improved sustainability using less energy. Moreover, simulations illustrate how the proposed energy-efficient hybrid MPC controller performs under different types of uncertainties.
Terminal spacecraft rendezvous and capture with LASSO model predictive control
NASA Astrophysics Data System (ADS)
Hartley, Edward N.; Gallieri, Marco; Maciejowski, Jan M.
2013-11-01
The recently investigated ℓasso model predictive control (MPC) is applied to the terminal phase of a spacecraft rendezvous and capture mission. The interaction between the cost function and the treatment of minimum impulse bit is also investigated. The propellant consumption with ℓasso MPC for the considered scenario is noticeably less than with a conventional quadratic cost and control actions are sparser in time. Propellant consumption and sparsity are competitive with those achieved using a zone-based ℓ1 cost function, whilst requiring fewer decision variables in the optimisation problem than the latter. The ℓasso MPC is demonstrated to meet tighter specifications on control precision and also avoids the risk of undesirable behaviours often associated with pure ℓ1 stage costs.
NASA Astrophysics Data System (ADS)
Amengonu, Yawo H.; Kakad, Yogendra P.
2014-07-01
Quasivelocity techniques were applied to derive the dynamics of a Differential Wheeled Mobile Robot (DWMR) in the companion paper. The present paper formulates a control system design for trajectory tracking of this class of robots. The method develops a feedback linearization technique for the nonlinear system using dynamic extension algorithm. The effectiveness of the nonlinear controller is illustrated with simulation example.
Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
Predictive control and estimation algorithms for the NASA/JPL Deep Space Network antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure, and a new controller design based on the predictive control law are presented. Also, the predictive estimator is developed to complement the controller, and to enhance the system performance. The predictive controller was designed and applied to the tracking control of the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) 70-m antenna. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
Model Predictive Control for the Operation of Building Cooling Systems
Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip
2010-06-29
A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.
[The quality control based on the predictable performance].
Zheng, D X
2016-09-01
The clinical performance can only be evaluated when it comes to the last step in the conventional way of prosthesis. However, it often causes the failure because of the unconformity between the expectation and final performance. Resulting from this kind of situation, quality control based on the predictable results has been suggested. It is a new idea based on the way of reverse thinking, and focuses on the need of patient and puts the final performance of the prosthesis to the first place. With the prosthodontically driven prodedure, dentists can complete the unification with the expectation and the final performance. PMID:27596338
Low inhibitory control and restrictive feeding practices predict weight outcomes
Anzman, Stephanie L.; Birch, Leann L.
2009-01-01
Objective A priority for research is to identify individuals early in development who are particularly susceptible to weight gain in the current, obesogenic environment. This longitudinal study investigated whether early individual differences in inhibitory control, an aspect of temperament, predicted weight outcomes and whether parents’ restrictive feeding practices moderated this relation. Study design Participants included 197 non-Hispanic White girls and their parents; families were assessed when girls were 5, 7, 9, 11, 13, and 15 years old. Measures included mothers’ reports of girls’ inhibitory control levels, girls’ reports of parental restriction in feeding, girls’ body mass indexes (BMIs), and parents’ BMIs, education, and income. Results Girls with lower inhibitory control at age 7 had higher concurrent BMIs, greater weight gain, higher BMIs at all subsequent time points, and were 1.95 times more likely to be overweight at age 15. Girls who perceived higher parental restriction exhibited the strongest inverse relation between inhibitory control and weight status. Conclusion Variability in inhibitory control could help identify individuals who are predisposed to obesity risk; the current findings also highlight the importance of parenting practices as potentially modifiable factors which exacerbate or attenuate this risk. PMID:19595373
Tuning the Model Predictive Control of a Crude Distillation Unit.
Yamashita, André Shigueo; Zanin, Antonio Carlos; Odloak, Darci
2016-01-01
Tuning the parameters of the Model Predictive Control (MPC) of an industrial Crude Distillation Unit (CDU) is considered here. A realistic scenario is depicted where the inputs of the CDU system have optimizing targets, which are provided by the Real Time Optimization layer of the control structure. It is considered the nominal case, in which both the CDU model and the MPC model are the same. The process outputs are controlled inside zones instead of at fixed set points. Then, the tuning procedure has to define the weights that penalize the output error with respect to the control zone, the weights that penalize the deviation of the inputs from their targets, as well as the weights that penalize the input moves. A tuning approach based on multi-objective optimization is proposed and applied to the MPC of the CDU system. The performance of the controller tuned with the proposed approach is compared through simulation with the results of an existing approach also based on multi-objective optimization. The simulation results are similar, but the proposed approach has a computational load significantly lower than the existing method. The tuning effort is also much lower than in the conventional practical approaches that are usually based on ad-hoc procedures.
Predictive IP controller for robust position control of linear servo system.
Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi
2016-07-01
Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme.
Predictive process control for sub-0.2-um lithography
NASA Astrophysics Data System (ADS)
Zavecz, Terrence E.; Blanquies, Rene M.
2000-06-01
An advanced control system providing modeling and predictive data simulation for pass-fail criteria of overlay production control has been used in 0.18 micrometer Design Rule production facilities for over a year. During this period overlay was measured on both product wafers and during periodic process qualification tests. The resulting raw data is modeled using exposure tool specific and layer-focused models. Modeled results, measured process statistics and tool signatures are combined in a real-time simulation to calculate the true overlay distribution over the entire wafer and lot. All results and raw data are automatically gathered and stored in a database for on-going analysis. In this manner, tool, product technology and process performance data are gathered for every overlay process-step. The data provides valuable insights into not only tool stability but also the process- step characteristic errors that contribute to the overlay spectrum of distortions. Data gathered in this manner is very stable and can be used to predict a feed-forward correction for all correctable coefficients. The technique must take into consideration algorithm modeled coefficient variations resulting from: (1) Reticle pattern-to-alignment mark design errors. (2) Process film variations. (3) Tool-to-tool static matching. (4) Tool-to-tool dynamic matching errors which are match-residual, process or time induced. This extensive database has resulted in a method of conducting Predictive Process Control (PPC) for overlay lithography within an advanced semiconductor line. Using PPC the wafer production facility experiences: (1) Improved Yield: Lots are always exposed with optimum setup. Optimized setups reduce rework levels and therefore wafer handling. (2) Capacity Improvement: Elimination of rework tacitly improves capacity in the facility. WIP is also simplified because lots do not have to wait for a dedicated exposure tool to become available. (3) Dynamic MatchingTM: Matching of
Evidence for predictive control in lifting series of virtual objects.
Mawase, Firas; Karniel, Amir
2010-06-01
The human motor control system gracefully behaves in a dynamic and time varying environment. Here, we explored the predictive capabilities of the motor system in a simple motor task of lifting a series of virtual objects. When a subject lifts an object, she/he uses an expectation of the weight of the object to generate a motor command. All models of motor learning employ learning algorithms that essentially expect the future to be similar to the previously experienced environment. In this study, we asked subjects to lift a series of increasing weights and determined whether they extrapolated from past experience and predicted the next weight in the series even though that weight had never been experienced. The grip force at the beginning of the lifting task is a clean indication of the motor expectation. In contrast to the motor learning literature asserting adaptation by means of expecting a weighted average based on past experience, our results suggest that the motor system is able to predict the subsequent weight that follows a series of increasing weights.
Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Laks, Jason H.
This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.
Striatal prediction errors support dynamic control of declarative memory decisions
Scimeca, Jason M.; Katzman, Perri L.; Badre, David
2016-01-01
Adaptive memory requires context-dependent control over how information is retrieved, evaluated and used to guide action, yet the signals that drive adjustments to memory decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum support control over memory decisions. Human participants completed a recognition memory test that incorporated biased feedback to influence participants' recognition criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and expected value of a memory decision—correlate with striatal activity and predict individuals' final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather than the expected trial outcome. Follow-up experiments show that the learned recognition criterion transfers to free recall, and targeting biased feedback to experimentally manipulate the magnitude of PEs influences criterion consistent with PEs scaled relative to memory strength. This provides convergent evidence that declarative memory decisions can be regulated via striatally mediated reinforcement learning signals. PMID:27713407
Predictive models of procedural human supervisory control behavior
NASA Astrophysics Data System (ADS)
Boussemart, Yves
Human supervisory control systems are characterized by the computer-mediated nature of the interactions between one or more operators and a given task. Nuclear power plants, air traffic management and unmanned vehicles operations are examples of such systems. In this context, the role of the operators is typically highly proceduralized due to the time and mission-critical nature of the tasks. Therefore, the ability to continuously monitor operator behavior so as to detect and predict anomalous situations is a critical safeguard for proper system operation. In particular, such models can help support the decision J]l8king process of a supervisor of a team of operators by providing alerts when likely anomalous behaviors are detected By exploiting the operator behavioral patterns which are typically reinforced through standard operating procedures, this thesis proposes a methodology that uses statistical learning techniques in order to detect and predict anomalous operator conditions. More specifically, the proposed methodology relies on hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs) to generate predictive models of unmanned vehicle systems operators. Through the exploration of the resulting HMMs in two distinct single operator scenarios, the methodology presented in this thesis is validated and shown to provide models capable of reliably predicting operator behavior. In addition, the use of HSMMs on the same data scenarios provides the temporal component of the predictions missing from the HMMs. The final step of this work is to examine how the proposed methodology scales to more complex scenarios involving teams of operators. Adopting a holistic team modeling approach, both HMMs and HSMMs are learned based on two team-based data sets. The results show that the HSMMs can provide valuable timing information in the single operator case, whereas HMMs tend to be more robust to increased team complexity. In addition, this thesis discusses the
NASA Astrophysics Data System (ADS)
Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi
2016-03-01
This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.
Study on noise prediction model and control schemes for substation.
Chen, Chuanmin; Gao, Yang; Liu, Songtao
2014-01-01
With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356
Study on noise prediction model and control schemes for substation.
Chen, Chuanmin; Gao, Yang; Liu, Songtao
2014-01-01
With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
Control when it counts: Change in executive control under stress predicts depression symptoms.
Quinn, Meghan E; Joormann, Jutta
2015-08-01
Individual differences in the ability to regulate affect following stressful life events have been associated with an increased risk for experiencing depression symptoms. Research further suggests that emotion regulation may depend on executive control which, in turn, has been shown to decline following stress exposure. Whether individual differences in stress-induced change in executive control predict depression symptoms, however, remains unknown. The current study examined whether trait executive control as well as stress-induced change in executive control predicts depression symptoms during a stressful time of life. The current study recruited 43 individuals during their first year of college. Participants completed an executive control task before and after a laboratory stress induction. Participants reported baseline depression symptoms during the laboratory session and follow-up depression symptoms during the final weeks of the semester. Results demonstrate that stress-induced change in executive control predicted an increase in depression symptoms at the end of the semester. The findings suggest that individual differences in the degree of decline in executive control following stress exposure may be a key factor in explaining why some individuals are vulnerable to depression during a stressful time of life. PMID:26098731
Control when it counts: Change in executive control under stress predicts depression symptoms.
Quinn, Meghan E; Joormann, Jutta
2015-08-01
Individual differences in the ability to regulate affect following stressful life events have been associated with an increased risk for experiencing depression symptoms. Research further suggests that emotion regulation may depend on executive control which, in turn, has been shown to decline following stress exposure. Whether individual differences in stress-induced change in executive control predict depression symptoms, however, remains unknown. The current study examined whether trait executive control as well as stress-induced change in executive control predicts depression symptoms during a stressful time of life. The current study recruited 43 individuals during their first year of college. Participants completed an executive control task before and after a laboratory stress induction. Participants reported baseline depression symptoms during the laboratory session and follow-up depression symptoms during the final weeks of the semester. Results demonstrate that stress-induced change in executive control predicted an increase in depression symptoms at the end of the semester. The findings suggest that individual differences in the degree of decline in executive control following stress exposure may be a key factor in explaining why some individuals are vulnerable to depression during a stressful time of life.
Two-Step Design Method of Engine Control System Based on Generalized Predictive Control
NASA Astrophysics Data System (ADS)
Hashimoto, Seiji; Okuda, Hiroyuki; Okada, Yasushi; Adachi, Shuichi; Niwa, Shinji; Kajitani, Mitsunobu
Conservation of the environment has become critical to the automotive industry. Recently, requirements for on-board diagnostic and engine control systems have been strictly enforced. In the present paper, in order to meet the requirements for a low-emissions vehicle, a novel construction method of the air-fuel ratio (A/F) control system is proposed. The construction method of the system is divided into two steps. The first step is to design the A/F control system for the engine based on an open loop design. The second step is to design the A/F control system for the catalyst system. The design method is based on the generalized predictive control in order to satisfy the robustness to open loop control as well as model uncertainty. The effectiveness of the proposed A/F control system is verified through experiments using full-scale products.
de Melo-Martín, Inmaculada; Sondhi, Dolan; Crystal, Ronald G
2011-09-01
For more than three decades clinical research in the United States has been explicitly guided by the idea that ethical considerations must be central to research design and practice. In spite of the centrality of this idea, attempting to balance the sometimes conflicting values of advancing scientific knowledge and protecting human subjects continues to pose challenges. Possible conflicts between the standards of scientific research and those of ethics are particularly salient in relation to trial design. Specifically, the choice of a control arm is an aspect of trial design in which ethical and scientific issues are deeply entwined. Although ethical quandaries related to the choice of control arms may arise when conducting any type of clinical trials, they are conspicuous in early phase gene transfer trials that involve highly novel approaches and surgical procedures and have children as the research subjects. Because of children's and their parents' vulnerabilities, in trials that investigate therapies for fatal, rare diseases affecting minors, the scientific and ethical concerns related to choosing appropriate controls are particularly significant. In this paper we use direct gene transfer to the central nervous system to treat late infantile neuronal ceroid lipofuscinosis to illustrate some of these ethical issues and explore possible solutions to real and apparent conflicts between scientific and ethical considerations.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James
2010-01-01
Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.
Morisset, J. B.; Mothe, F.; Bock, J.; Bréda, N.; Colin, F.
2012-01-01
Background and Aims There is increasing evidence that suppressed bud burst and thus epicormic shoot emergence (sprouting) are controlled by water–carbohydrate supplies to entire trees and buds. This direct evidence is still lacking for oak. In other respects, recent studies focused on sessile oak, Quercus petraea, have confirmed the important constraints of sprouting by epicormic ontogeny. The main objective of this paper was thus to provide provisional confirmation of the water–carbohydrate control and direct evidence of the ontogenic constraints by bringing together results already published in separate studies on water status and distribution of carbohydrates, and on accompanying vegetation and epicormics, which also quantify epicormic ontogeny. Methods This paper analyses results gained from a sessile oak experiment in which part of the site was free from fairly tall, dense accompanying vegetation. This experiment was initially focused on stand water status and more recently on the carbohydrate distribution of dominant trees. External observations of the epicormic composition and internal observations with X-ray computer tomography were undertaken on 60 and six trees, respectively. Key Results Sprouting was more intense in the part of the stand free from accompanying vegetation and on upper trunk segments. A clear effect of epicormic ontogeny was demonstrated as well: the more epicormics a trunk segment bears, the more chances it had to bear sprouts. Conclusions These results indirectly infer water–carbohydrate control and show direct evidence of constraints by epicormic ontogeny. These results have far-reaching consequences related to the quantification of all functions fulfilled by any type of epicormic structure in any part of the tree. PMID:22147545
NASA Astrophysics Data System (ADS)
Amengonu, Yawo H.; Kakad, Yogendra P.
2014-07-01
Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.
NASA Astrophysics Data System (ADS)
Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.
2016-06-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.
Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.
2016-01-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260
Jacox, Michael G; Hazen, Elliott L; Bograd, Steven J
2016-01-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998-1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260
NASA Astrophysics Data System (ADS)
Carlota, Clara; Chá, Sílvia; Ornelas, António
2016-07-01
We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1, in any dimension d ∈ N, by including a pointwise state-constraint. More precisely, given a x ‾ (ṡ) ∈W p , 1 ([ a , b ] ,Rd) solving the convexified p-th order differential inclusion Lp x ‾ (t) ∈ co {u0 (t) ,u1 (t) , … ,um (t) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. Lp x ˆ (t) ∈ {u0 (t) ,u1 (t) , … ,um (t) } a.e.) under the same boundary-data, x ˆ (k) (a) =x ‾ (k) (a) &x ˆ (k) (b) =x ‾ (k) (b) (k = 0 , 1 , … , p - 1); but restricted, moreover, by a pointwise state constraint of the type < x ˆ (t) , ω > ≤ < x ‾ (t) , ω > ∀ t ∈ [ a , b ] (e.g. ω = (1 , 0 , … , 0) yielding xˆ1 (t) ≤x‾1 (t)). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with Lp x (ṡ) =x‧ (ṡ)), followed by Cerf & Mariconda results, who solved the general case of linear differential operators Lp of order p ≥ 2 with C0 ([ a , b ]) -coefficients. This paper is dedicated to: focus on the missing case p = 1, i.e. using Lp x (ṡ) =x‧ (ṡ) + A (ṡ) x (ṡ) ; generalize the dimension of x (ṡ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A (ṡ) now becomes a d × d-integrable matrix; and allow the directional vector ω to become a moving AC function ω (ṡ) . Previous vectorial results had constant ω, no matrix (i.e. A (ṡ) ≡ 0) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).
Montgomery, P.; Farr, M.R.; Franseen, E.K.; Goldstein, R.H.
2001-01-01
A high-resolution chronostratigraphy has been developed for Miocene shallow-water carbonate strata in the Cabo de Gata region of SE Spain for evaluation of local, regional and global factors that controlled platform architecture prior to and during the Messinian salinity crisis. Paleomagnetic data were collected from strata at three localities. Mean natural remanent magnetization (NRM) ranges between 1.53 ?? 10-8 and 5.2 ?? 10-3 Am2/kg. Incremental thermal and alternating field demagnetization isolated the characteristic remanent magnetization (ChRM). Rock magnetic studies show that the dominant magnetic mineral is magnetite, but mixtures of magnetite and hematite occur. A composite chronostratigraphy was derived from five stratigraphic sections. Regional stratigraphic data, biostratigraphic data, and an 40Ar/39Ar date of 8.5 ?? 0.1 Ma, for an interbedded volcanic flow, place the strata in geomagnetic polarity Chrons C4r to C3r. Sequence-stratigraphic and diagenetic evidence indicate a major unconformity at the base of depositional sequence (DS)3 that contains a prograding reef complex, suggesting that approximately 250 000 yr of record (Subchrons C3Br.2r to 3Br.1r) are missing near the Messinian-Tortonian boundary. Correlation to the GPTS shows that the studied strata represent five third- to fourth-order DSs. Basal units are temperate to subtropical ramps (DS1A, DS1B, DS2); these are overlain by subtropical to tropical reefal platforms (DS3), which are capped by subtropical to tropical cyclic carbonates (Terminal Carbonate Complex, TCC). Correlation of the Cabo de Gata record to the Melilla area of Morocco, and the Sorbas basin of Spain indicate that early - Late Tortonian ramp strata from these areas are partially time-equivalent. Similar strata are extensively developed in the Western Mediterranean and likely were influenced by a cool climate or influx of nutrients during an overall rise in global sea-level. After ramp deposition, a sequence boundary (SB3) in
Predictive wavefront control for Adaptive Optics with arbitrary control loop delays
Poyneer, L A; Veran, J
2007-10-30
We present a modification of the closed-loop state space model for AO control which allows delays that are a non-integer multiple of the system frame rate. We derive the new forms of the Predictive Fourier Control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Shi, Yang; Wang, Junmin
2013-10-01
This paper is concerned with a tracking controller design problem for discrete-time networked predictive control systems. The control law used here is a combined state-feedback control and integral control. Since not all the states are available in practice, a local Luenberger observer is utilised to estimate the state vector. The measured output and estimated state vector are packed together and transmitted to the tracking controller via a communication channel with a limited capacity. Meanwhile, the control signal is also transmitted through a communication network.Network-induced delays on both links are considered for the signal transmission and modelled by Markov chains. Moreover, it is assumed that the elements in Markov transition matrices are subject to uncertainties. In order to fully compensate for network-induced delays, the controller generates a sequence of control signals which are dependent on each possible delay in the feedforward channel. By taking the augmentation twice, we obtain delay-free stochastic closed-loop systems and the controlled output is chosen as the tracking error. Sufficient conditions are provided for the energy-to-peak performance of the closed-loop systems. The feedback gains of the controller can be derived by solving a minimisation problem. Two examples are illustrated to demonstrate the effectiveness of the proposed design method.
Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A
2016-01-12
Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.
NASA Astrophysics Data System (ADS)
Xiong, Naixue; Vasilakos, Athanasios V.; Yang, Laurence T.; Long, Fei; Shu, Lei; Li, Yingshu
The main difficulty arising in designing an efficient congestion control scheme lies in the large propagation delay in data transfer which usually leads to a mismatch between the network resources and the amount of admitted traffic. To attack this problem, this chapter describes a novel congestion control scheme that is based on a Back Propagation (BP) neural network technique.We consider a general computer communication model with multiple sources and one destination node. The dynamic buffer occupancy of the bottleneck node is predicted and controlled by using a BP neural network. The controlled best-effort traffic of the sources uses the bandwidth, which is left over by the guaranteed traffic. This control mechanism is shown to be able to avoid network congestion efficiently and to optimize the transfer performance both by the theoretic analyzing procedures and by the simulation studies.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Predictive powertrain control using powertrain history and GPS data
Weslati, Feisel; Krupadanam, Ashish A
2015-03-03
A method and powertrain apparatus that predicts a route of travel for a vehicle and uses historical powertrain loads and speeds for the predicted route of travel to optimize at least one powertrain operation for the vehicle.
NASA Astrophysics Data System (ADS)
Cihan, A.; Birkholzer, J. T.; Bianchi, M.
2014-12-01
Injection of large volume of CO2 into deep geological reservoirs for geologic carbon sequestration (GCS) is expected to cause significant pressure perturbations in subsurface. Large-scale pressure increases in injection reservoirs during GCS operations, if not controlled properly, may limit dynamic storage capacity and increase risk of environmental impacts. The high pressure may impact caprock integrity, induce fault slippage, and cause leakage of brine and/or CO2 into shallow fresh groundwater resources. Thus, monitoring and controlling pressure buildup are critically important for environmentally safe implementation of GCS projects. Extraction of native brine during GCS operations is a pressure management approach to reduce significant pressure buildup. Extracted brine can be transferred to the surface for utilization or re-injected into overlying/underlying saline aquifers. However, pumping, transportation, treatment and disposal of extracted brine can be challenging and costly. Therefore, minimizing volume of extracted brine, while maximizing CO2 storage, is an essential objective of the pressure management with brine extraction schemes. Selection of optimal well locations and extraction rates are critical for maximizing storage and minimizing brine extraction during GCS. However, placing of injection and extraction wells is not intuitive because of heterogeneity in reservoir properties and complex reservoir geometry. Efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well locations and control parameters. This study presents a global optimization methodology for pressure management during geologic CO2 sequestration. A constrained differential evolution (CDE) algorithm is introduced for solving optimization problems involving well placement and injection/extraction control. The CDE methodology is tested and applied for realistic CO2 storage scenarios with the presence of uncertainty in
Autonomous formation flight of helicopters: Model predictive control approach
NASA Astrophysics Data System (ADS)
Chung, Hoam
Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected
EPR oxygen images predict tumor control by a 50 percent tumor control radiation dose
Elas, Martyna; Magwood, Jessica M.; Butler, Brandi; Li, Chanel; Wardak, Rona; Barth, Eugene D.; Epel, Boris; Rubinstein, Samuel; Pelizzari, Charles A.; Weichselbaum, Ralph R.; Halpern, Howard J.
2013-01-01
Clinical trials to ameliorate hypoxia as a strategy to relieve the radiation resistance it causes have prompted a need to assay the precise extent and location of hypoxia in tumors. Electron Paramagnetic Resonance oxygen imaging (EPR O2 imaging) provides a non-invasive means to address this need. To obtain a preclinical proof of principle that EPR O2 images could predict radiation control, we treated mouse tumors at or near doses required to achieve 50 percent control (TCD50). Mice with FSa fibrosarcoma or MCa4 carcinoma were subjected to EPR O2 imaging and immediately radiated to a TCD50 or TCD50 ±10 Gy.. Statistical analysis was permitted by collection of ~ 1300 tumor pO2 image voxels, including the fraction of tumor voxels with pO2 less than 10 mm Hg (HF10). Tumors were followed for 90 days (FSa) or 120 days (MCa4) to determine local control or failure. HF10 obtained from EPR images showed statistically significant differences between tumors that were controlled by the TCD50 and those that were not controlled for both FSa and MCa4. Kaplan-Meier analysis of both types of tumors showed ~90% of mildly hypoxic tumors were controlled (HF10<10%), and only 37% (FSA) and 23% (MCa4) tumors controlled if hypoxic. EPR pO2 image voxel distributions in these ~0.5 ml tumors provide a prediction of radiation curability independent of radiation dose. These data confirm the significance of EPR pO2 hypoxic fractions. The ~90% control of low HF10 tumors argue that ½ ml subvolumes of tumors may be more sensitive to radiation and may need less radiation for high tumor control rates. PMID:23861469
Constrained optimization in human walking: cost minimization and gait plasticity.
Bertram, John E A
2005-03-01
As walking speed increases, consistent relationships emerge between the three determinant parameters of walking, speed, step frequency and step length. However, when step length or step frequency are predetermined rather than speed, different relationships are spontaneously selected. This result is expected if walking parameters are selected to optimize to an underlying objective function, known as the constrained optimization hypothesis. The most likely candidate for the objective function is metabolic cost per distance traveled, where the hypothesis predicts that the subject will minimize the cost of travel under a given gait constraint even if this requires an unusual step length and frequency combination. In the current study this is tested directly by measuring the walking behavior of subjects constrained systematically to determined speeds, step frequencies or step lengths and comparing behavior to predictions derived directly from minimization of measured metabolic cost. A metabolic cost surface in speed-frequency space is derived from metabolic rate for 10 subjects walking at 49 speed-frequency conditions. Optimization is predicted from the iso-energetic cost contours derived from this surface. Substantial congruence is found between the predicted and observed behavior using the cost of walking per unit distance. Although minimization of cost per distance appears to dominate walking control, certain notable differences from predicted behavior suggest that other factors must also be considered. The results of these studies provide a new perspective on the integration of walking cost with neuromuscular control, and provide a novel approach to the investigation of the control features involved in gait parameter selection.
Predictable SCR co-benefits for mercury control
Pritchard, S.
2009-01-15
A test program, performed in cooperation with Dominion Power and the Babcock and Wilcox Co., was executed at Dominion Power's Mount Storm power plant in Grant County, W. Va. The program was focused on both the selective catalytic reduction (SCR) catalyst capability to oxide mercury as well as the scrubber's capability to capture and retain the oxidized mercury. This article focuses on the SCR catalyst performance aspects. The Mount Storm site consists of three units totaling approximately 1,660 MW. All units are equipped with SCR systems for NOx control. A full-scale test to evaluate the effect of the SCR was performed on Unit 2, a 550 MWT-fired boiler firing a medium sulfur bituminous coal. This test program demonstrated that the presence of an SCR catalyst can significantly affect the mercury speciation profile. Observation showed that in the absence of an SCR catalyst, the extent of oxidation of element a mercury at the inlet of the flue gas desulfurization system was about 64%. The presence of a Cornertech SCR catalyst improved this oxidation to levels greater than 95% almost all of which was captured by the downstream wet FGD system. Cornertech's proprietary SCR Hg oxidation model was used to accurately predict the field results. 1 ref., 2 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.
2000-01-01
The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.
Ringa, N; Bauch, C T
2014-12-01
Many countries have eliminated foot and mouth disease (FMD), but outbreaks remain common in other countries. Rapid development of international trade in animals and animal products has increased the risk of disease introduction to FMD-free countries. Most mathematical models of FMD are tailored to settings that are normally disease-free, and few models have explored the impact of constrained control measures in a 'near-endemic' spatially distributed host population subject to frequent FMD re-introductions from nearby endemic wild populations, as characterizes many low-income, resource-limited countries. Here we construct a pair approximation model of FMD and investigate the impact of constraints on total vaccine supply for prophylactic and ring vaccination, and constraints on culling rates and cumulative culls. We incorporate natural immunity waning and vaccine waning, which are important factors for near-endemic populations. We find that, when vaccine supply is sufficiently limited, the optimal approach for minimizing cumulative infections combines rapid deployment of ring vaccination during outbreaks with a contrasting approach of careful rationing of prophylactic vaccination over the year, such that supplies last as long as possible (and with the bulk of vaccines dedicated toward prophylactic vaccination). Thus, for optimal long-term control of the disease by vaccination in near-endemic settings when vaccine supply is limited, it is best to spread out prophylactic vaccination as much as possible. Regardless of culling constraints, the optimal culling strategy is rapid identification of infected premises and their immediate contacts at the initial stages of an outbreak, and rapid culling of infected premises and farms deemed to be at high risk of infection (as opposed to culling only the infected farms). Optimal culling strategies are similar when social impact is the outcome of interest. We conclude that more FMD transmission models should be developed that are
NASA Astrophysics Data System (ADS)
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
The role of prediction and outcomes in adaptive cognitive control.
Schiffer, Anne-Marike; Waszak, Florian; Yeung, Nick
2015-01-01
Humans adaptively perform actions to achieve their goals. This flexible behaviour requires two core abilities: the ability to anticipate the outcomes of candidate actions and the ability to select and implement actions in a goal-directed manner. The ability to predict outcomes has been extensively researched in reinforcement learning paradigms, but this work has often focused on simple actions that are not embedded in hierarchical and sequential structures that are characteristic of goal-directed human behaviour. On the other hand, the ability to select actions in accordance with high-level task goals, particularly in the presence of alternative responses and salient distractors, has been widely researched in cognitive control paradigms. Cognitive control research, however, has often paid less attention to the role of action outcomes. The present review attempts to bridge these accounts by proposing an outcome-guided mechanism for selection of extended actions. Our proposal builds on constructs from the hierarchical reinforcement learning literature, which emphasises the concept of reaching and evaluating informative states, i.e., states that constitute subgoals in complex actions. We develop an account of the neural mechanisms that allow outcome-guided action selection to be achieved in a network that relies on projections from cortical areas to the basal ganglia and back-projections from the basal ganglia to the cortex. These cortico-basal ganglia-thalamo-cortical 'loops' allow convergence - and thus integration - of information from non-adjacent cortical areas (for example between sensory and motor representations). This integration is essential in action sequences, for which achieving an anticipated sensory state signals the successful completion of an action. We further describe how projection pathways within the basal ganglia allow selection between representations, which may pertain to movements, actions, or extended action plans. The model lastly envisages
Model predictive control for a class of systems with isolated nonlinearity.
Tao, Jili; Zhu, Yong; Fan, Qinru
2014-07-01
The paper is concerned with an overall convergent nonlinear model predictive control design for a kind of nonlinear mechatronic drive systems. The proposed nonlinear model predictive control results in the improvement of regulatory capacity for reference tracking and load disturbance rejection. The design of the nonlinear model predictive controller consists of two steps: the first step is to design a linear model predictive controller based on the linear part of the system at each sample instant, then an overall convergent nonlinear part is added to the linear model predictive controller to combine a nonlinear controller using error driven. The structure of the proposed controller is similar to that of classical PI optimal regulator but it also bears a set-point feed forward control loop, thus tracking ability and disturbance rejection are improved. The proposed method is compared with the results from recent literature, where control performance under both model match and mismatch cases are enlightened. PMID:24755053
Analysis, prediction and control of radio frequency interference with respect to DSN
NASA Astrophysics Data System (ADS)
Degroot, N. F.
1982-06-01
Susceptibility modeling, prediction of radio frequency interference from satellites, operational radio frequency interference control, and international regulations are considered. The existing satellite interference prediction program DSIP2 is emphasized. A summary status evaluation and recommendations for future work are given.
Haves, Phillip; Hencey, Brandon; Borrell, Francesco; Elliot, John; Ma, Yudong; Coffey, Brian; Bengea, Sorin; Wetter, Michael
2010-06-29
constrained and often determined by the chilled water return temperature (CHWR). The CHWR temperature is primarily comprised of warm water from the top of the TES tank. The CHWR temperature falls substantially as the thermocline approaches the top of the tank, which reduces the chiller loading. As a result, it has been determined that overcharging the TES tank can be detrimental to the chilled water plant efficiency. The resulting MPC policy differs from the current practice of fully charging the TES tank. A heuristic rule could possible avoid this problem without using predictive control. Similarly, the COP improvements from the change in CWS set-point were largely captured by a static set-point change by the operators. Further research is required to determine how much of the MPC savings could be garnered through simplified rules (based on the MPC study), with and without prediction.
Baker, S R; Stephenson, D
2000-01-01
Control or control-belief is often viewed as being directly instrumental in facilitating coping mechanisms in aversive situations, and yet the empirical evidence for the beneficial effects of control is inconclusive. In this study we investigated the role of predictability in determining the effects of perceived control during an aversive reaction time task. Fifty-six subjects were allocated to one of four groups; predictable-control, predictable-no control, unpredictable-control, unpredictable-no control. In the predictable conditions, subjects could temporally predict the occurrence of an aversive noise. In the perceived control conditions, duration of the aversive tone was contingent on subject's performance. All subjects were matched in terms of the nature of the task and in the number and time of receipt of both the warning signal and noise. Heart rate reactivity and two performance parameters were measured, reaction time and performance increase. Both predictability and control-belief led to a reduction in heart rate reactivity, although they appeared to function independently and at different points in the sequence of events. That is, predictability or perceived control was sufficient to mitigate the effects of an aversive situation. Neither perception of control or predictability led to better task performance. These results are discussed in terms of behavioural uncertainty explanations.
Predictive Techniques for Spacecraft Cabin Air Quality Control
NASA Technical Reports Server (NTRS)
Perry, J. L.; Cromes, Scott D. (Technical Monitor)
2001-01-01
As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.
NASA Astrophysics Data System (ADS)
Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Graus, M.; Warneke, C.; Gilman, J.; De Gouw, J. A.; Jimenez, J. L.
2014-12-01
To investigate atmospheric processing of urban emissions, we deployed an oxidation flow reactor with measurements of size-resolved chemical composition of submicron aerosol during CalNex-LA, a field study investigating air quality and climate change at a receptor site in the Los Angeles Basin. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging of hours to ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min to survey the effects of a range of oxidation exposures on gases and aerosols. This approach is a valuable tool for in-situ evaluation of changes in organic aerosol (OA) concentration and composition due to photochemical processing over a range of ambient atmospheric conditions and composition. Combined with collocated gas-phase measurements of volatile organic compounds, this novel approach enables the comparison of measured SOA to predicted SOA formation from a prescribed set of precursors. Results from CalNex-LA show enhancements of OA and inorganic aerosol from gas-phase precursors. The OA mass enhancement from aging was highest at night and correlated with trimethylbenzene, indicating the importance of relatively short-lived VOC (OH lifetime of ~12 hrs or less) as SOA precursors in the LA Basin. Maximum net SOA production is observed between 3-6 days of aging and decreases at higher exposures. Aging in the reactor shows similar behavior to atmospheric processing; the elemental composition of ambient and reactor measurements follow similar slopes when plotted in a Van Krevelen diagram. Additionally, for air processed in the reactor, oxygen-to-carbon ratios (O/C) of aerosol extended over a larger range compared to ambient aerosol observed in the LA Basin. While reactor aging always increases O/C, often beyond maximum observed ambient levels, a transition from net OA production to destruction occurs at intermediate OHexp, suggesting a transition
Constraining Galileon inflation
Regan, Donough; Anderson, Gemma J.; Hull, Matthew; Seery, David E-mail: G.Anderson@sussex.ac.uk E-mail: D.Seery@sussex.ac.uk
2015-02-01
In this short paper, we present constraints on the Galileon inflationary model from the CMB bispectrum. We employ a principal-component analysis of the independent degrees of freedom constrained by data and apply this to the WMAP 9-year data to constrain the free parameters of the model. A simple Bayesian comparison establishes that support for the Galileon model from bispectrum data is at best weak.
Prediction Models are Basis for Rational Air Quality Control
ERIC Educational Resources Information Center
Daniels, Anders; Bach, Wilfrid
1973-01-01
An air quality control scheme employing meteorological diffusion, time averaging and frequency, and cost-benefit models is discussed. The methods outlined provide a constant feedback system for air quality control. Flow charts and maps are included. (BL)
NASA Technical Reports Server (NTRS)
Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.
1999-01-01
The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
ERIC Educational Resources Information Center
Hughes, Gethin; Desantis, Andrea; Waszak, Florian
2013-01-01
Sensory processing of action effects has been shown to differ from that of externally triggered stimuli, with respect both to the perceived timing of their occurrence (intentional binding) and to their intensity (sensory attenuation). These phenomena are normally attributed to forward action models, such that when action prediction is consistent…
Hurricane prediction and control: impact of large computers.
Hammond, A L
1973-08-17
This is the third is a continuing series of articles on natural disasters, their prediction and mnodification, and progress in understanding the physical bases of these phenomena. Two earlier articles (Science, 25 May, p. 851, and 1 June, p. 940) reported advances in earthquake prediction. Hurricanes are the subject here. Generally less devastating than major earthquakes-although a single hurricane in 1970 killed an estimated 200,000 persons in Bangladesh-these storms are still the most destructive of all atmospheric phenomena. A recent report of the National Academy of Sciences (see box) recommends that efforts to modify hurricanes and other severe storms become a national goal.
Levine, Max E; Stern, Robert M; Koch, Kenneth L
2014-08-01
Nausea is a debilitating condition that is typically accompanied by gastric dysrhythmia. The enhancement of perceived control and predictability has generally been found to attenuate the physiological stress response. The aim of the present study was to test the effect of these psychosocial variables in the context of nausea, motion sickness, and gastric dysrhythmia. A 2x2, independent-groups, factorial design was employed in which perceived control and predictability were each provided at high or low levels to 80 participants before exposure to a rotating optokinetic drum. Ratings of nausea were obtained throughout a 6-min baseline period and a 16-min drum rotation period. Noninvasive recordings of the electrical activity of the stomach called electrogastrograms were also obtained throughout the study. Nausea scores were significantly lower among participants with high control than among those with low control, and were significantly lower among participants with high predictability than among those with low predictability. Estimates of gastric dysrhythmia obtained from the EGG during drum rotation were significantly lower among participants with high predictability than among those with low predictability. A significant interaction effect of control and predictability on gastric dysrhythmia was also observed, such that high control was only effective for arresting the development of gastric dysrhythmia when high predictability was also available. Stronger perceptions of control and predictability may temper the development of nausea and gastric dysrhythmia during exposure to provocative motion. Psychosocial interventions in a variety of nausea contexts may represent an alternative means of symptom control. PMID:24748483
Levine, Max E; Stern, Robert M; Koch, Kenneth L
2014-08-01
Nausea is a debilitating condition that is typically accompanied by gastric dysrhythmia. The enhancement of perceived control and predictability has generally been found to attenuate the physiological stress response. The aim of the present study was to test the effect of these psychosocial variables in the context of nausea, motion sickness, and gastric dysrhythmia. A 2x2, independent-groups, factorial design was employed in which perceived control and predictability were each provided at high or low levels to 80 participants before exposure to a rotating optokinetic drum. Ratings of nausea were obtained throughout a 6-min baseline period and a 16-min drum rotation period. Noninvasive recordings of the electrical activity of the stomach called electrogastrograms were also obtained throughout the study. Nausea scores were significantly lower among participants with high control than among those with low control, and were significantly lower among participants with high predictability than among those with low predictability. Estimates of gastric dysrhythmia obtained from the EGG during drum rotation were significantly lower among participants with high predictability than among those with low predictability. A significant interaction effect of control and predictability on gastric dysrhythmia was also observed, such that high control was only effective for arresting the development of gastric dysrhythmia when high predictability was also available. Stronger perceptions of control and predictability may temper the development of nausea and gastric dysrhythmia during exposure to provocative motion. Psychosocial interventions in a variety of nausea contexts may represent an alternative means of symptom control.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
Prediction by neural network methods compared for energy control problems
Surkan, A.J.; Skurikhin, A.N.
1996-10-01
Daily recordings of energy consumption are sequenced to construct a time series that is used to test the accuracy of a variety of neural networks in making one- and two-day demand predictions. Five neural network methods were applied to the same data for a problem of predicting daily energy usage. These included four which were gradient-based, namely, back propagation (BACKPROP), quick-propagation (QUICKPROP), cascade correlation (CASCOR), memory neuron network (MNN), and a correlation-based method called ALOPEX. The observed time series is the only information source used for making predictions. Other supplementary parallel series of independent data can produce improvements. It was demonstrated that these neural network learning algorithms can train networks to predict consistently, one-day-ahead, over one year of set-aside test patterns and reduce the average error to below 19%. Reported is a comparison of applicability of neural networks by programmed simulations of the widely used gradient-based algorithms along with newer algorithms MNN and ALOPEX. The diverse capabilities of these various networks give insights which are a useful basis for selecting further studies.
An application of generalized predictive control to rotorcraft terrain-following flight
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Jung, Yoon C.
1989-01-01
Generalized predictive control (GPC) describes an algorithm for the control of dynamic systems in which a control input is generated which minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. The GPC algorithm is first applied to a simplified rotorcraft terrain-following problem, and GPC performance is compared to that of a conventional compensatory automatic system in terms of flight-path following, control activity, and control law implementation. Next, more realistic vehicle dynamics are utilized, and the GPC algorithm is applied to simultaneous terrain following and velocity control in the presence of atmospheric disturbances and errors in the internal model of the vehicle. The online computational and sensing requirements for implementing the GPC algorithm are minimal. Its use for manual control models appears promising.
Self-tuning Generalized Predictive Control applied to terrain following flight
NASA Technical Reports Server (NTRS)
Hess, R. A.; Jung, Y. C.
1989-01-01
Generalized Predictive Control (GPC) describes an algorithm for the control of dynamic systems in which a control input is generated which minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. Self-tuning GPC refers to an implementation of the GPC algorithm in which the parameters of the internal model(s) are estimated on-line and the predictive control law tuned to the parameters so identified. The self-tuning GPC algorithm is applied to a problem of rotorcraft longitudinal/vertical terrain-following flight. The ability of the algorithm to tune to the initial vehicle parameters and to successfully adapt to a stability augmentation failure is demonstrated. Flight path performance is compared to a conventional, classically designed flight path control system.
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2006-01-01
Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.
Inhibitory Control Predicts Language Switching Performance in Trilingual Speech Production
ERIC Educational Resources Information Center
Linck, Jared A.; Schwieter, John W.; Sunderman, Gretchen
2012-01-01
This study investigated the role of domain-general inhibitory control in trilingual speech production. Taking an individual differences approach, we examined the relationship between performance on a non-linguistic measure of inhibitory control (the Simon task) and a multilingual language switching task for a group of fifty-six native English (L1)…
Predicting preschool effortful control from toddler temperament and parenting behavior
Cipriano, Elizabeth A.; Stifter, Cynthia A.
2010-01-01
This longitudinal study assessed whether maternal behavior and emotional tone moderated the relationship between toddler temperament and preschooler's effortful control. Maternal behavior and emotional tone were observed during a parent-child competing demands task when children were 2 years of age. Child temperament was also assessed at 2 years of age, and three temperament groups were formed: inhibited, exuberant, and low reactive. At 4.5 years of age, children's effortful control was measured from parent-report and observational measures. Results indicated that parental behavior and emotional tone appear to be especially influential on exuberant children's effortful control development. Exuberant children whose mothers used commands and prohibitive statements with a positive emotional tone were more likely to be rated higher on parent-reported effortful control 2.5 years later. When mothers conveyed redirections and reasoning-explanations in a neutral tone, their exuberant children showed poorer effortful control at 4.5 years. PMID:23814350
Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R
1991-04-01
A combined predictive and feedback control algorithm based on measurements of the concentration of glucose on-line has been developed to control fed-batch fermentations of Escherichia coli. The predictive control algorithm was based on the on-line calculation of glucose demand by the culture and plotting a linear regression to the next datum point to obtain a predicted glucose demand. This provided a predictive "coarse" control for the glucose-based nutrient feed. A direct feedback control using a proportional controller, based on glucose measurements every 2 min, fine-tuned the feed rate. These combined control schemes were used to maintain glucose concentrations in fed-batch fermentations as tight as 0.49 +/- 0.04 g/liter during growth of E. coli to high cell densities. PMID:2059049
Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R
1991-01-01
A combined predictive and feedback control algorithm based on measurements of the concentration of glucose on-line has been developed to control fed-batch fermentations of Escherichia coli. The predictive control algorithm was based on the on-line calculation of glucose demand by the culture and plotting a linear regression to the next datum point to obtain a predicted glucose demand. This provided a predictive "coarse" control for the glucose-based nutrient feed. A direct feedback control using a proportional controller, based on glucose measurements every 2 min, fine-tuned the feed rate. These combined control schemes were used to maintain glucose concentrations in fed-batch fermentations as tight as 0.49 +/- 0.04 g/liter during growth of E. coli to high cell densities. PMID:2059049
Dix, Sean T; Scott, Joseph K; Getman, Rachel B; Campbell, Charles T
2016-07-01
Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation of n-butane to 1-butanol with O2 over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed at 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C-H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O2 pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O2 was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and that highly selectivity oxidation can sometimes be achieved by
ERIC Educational Resources Information Center
Kopystynska, Olena; Spinrad, Tracy L.; Seay, Danielle M.; Eisenberg, Nancy
2016-01-01
The goal of this work was to examine the complex interrelation of mothers' early gentle control and sensitivity in predicting children's effortful control (EC) and academic functioning. Maternal gentle control, maternal sensitivity, and children's EC were measured when children were 18, 30, and 42 months of age (T1, T2, and T3, respectively), and…
Kunz, Martin; Liddle, Andrew R.; Parkinson, David; Gao Changjun
2009-10-15
Cosmological observations are normally fit under the assumption that the dark sector can be decomposed into dark matter and dark energy components. However, as long as the probes remain purely gravitational, there is no unique decomposition and observations can only constrain a single dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this dark fluid in a model-independent way, demonstrating, in particular, that the data cannot be fit by a dark fluid with a single constant equation of state. Parametrizing the dark fluid equation of state by a variety of polynomials in the scale factor a, we use current kinematical data to constrain the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of separate dark matter and cosmological constant contributions, our results cover other model types including unified dark energy/matter scenarios.
Choosing health, constrained choices.
Chee Khoon Chan
2009-12-01
In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.
Predicting the operations alert levels for dengue surveillance and control.
Sampath, Kameshwaran; Dayama, Pankaj
2014-01-01
Operations alert level is a discrete measure that quantifies the severity of epidemic outbreak with respect to operational measures. The alert levels are ordered based on the amount of response operations required. In this paper, we develop multi-class classification models based on ordinal multinomial logistic regression for predicting the alert levels for dengue at twenty weeks in advance. The regression uses the dynamic lag non-linear models to account for the non-linearity of the dengue incidence, along with its lagged values. The performance of the models is tested for the dengue case count data of Singapore.
Transition prediction and control in subsonic flow over a hump
NASA Technical Reports Server (NTRS)
Masad, Jamal A.; Iyer, Venkit
1993-01-01
The influence of a surface roughness element in the form of a two-dimensional hump on the transition location in a two-dimensional subsonic flow with a free-stream Mach number up to 0.8 is evaluated. Linear stability theory, coupled with the N-factor transition criterion, is used in the evaluation. The mean flow over the hump is calculated by solving the interacting boundary-layer equations; the viscous-inviscid coupling is taken into consideration, and the flow is solved within the separation bubble. The effects of hump height, length, location, and shape; unit Reynolds number; free-stream Mach number, continuous suction level; location of a suction strip; continuous cooling level; and location of a heating strip on the transition location are evaluated. The N-factor criterion predictions agree well with the experimental correlation of Fage; in addition, the N-factor criterion is more general and powerful than experimental correlations. The theoretically predicted effects of the hump's parameters and flow conditions on transition location are consistent and in agreement with both wind-tunnel and flight observations.
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1983-01-01
The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.
Meditation-induced states predict attentional control over time.
Colzato, Lorenza S; Sellaro, Roberta; Samara, Iliana; Baas, Matthijs; Hommel, Bernhard
2015-12-01
Meditation is becoming an increasingly popular topic for scientific research and various effects of extensive meditation practice (ranging from weeks to several years) on cognitive processes have been demonstrated. Here we show that extensive practice may not be necessary to achieve those effects. Healthy adult non-meditators underwent a brief single session of either focused attention meditation (FAM), which is assumed to increase top-down control, or open monitoring meditation (OMM), which is assumed to weaken top-down control, before performing an Attentional Blink (AB) task - which assesses the efficiency of allocating attention over time. The size of the AB was considerably smaller after OMM than after FAM, which suggests that engaging in meditation immediately creates a cognitive-control state that has a specific impact on how people allocate their attention over time.
Brickell, Tracey A; Chatzisarantis, Nikos L D; Pretty, Grace M
2006-01-01
This study examined the utility of the theory of planned behaviour (TPB) along with additional constructs in predicting exercise, and explored the motivational antecedents of exercise intentions. Participants included 162 Canadian University College students (61% females). Measures of TPB, autonomous and controlling intention, perceived autonomy support and core autonomous intention were completed during phase 1 of data collection. Two and three weeks later behaviour was assessed. Hierarchical regression analyses revealed that: (a) attitude and perceived behavioural control significantly predicted TPB intention and core autonomous intention; (b) subjective norm predicted controlling intention; and (c) perceived autonomy support predicted autonomous and core autonomous intention. TPB intention significantly predicted behaviour. TPB is a fairly useful model for predicting behaviour and important information can be gained when other measures of intention are explored.
Haase, Claudia M; Poulin, Michael J; Heckhausen, Jutta
2012-08-01
What motivates individuals to invest time and effort and overcome obstacles (i.e., strive for primary control) when pursuing important goals? We propose that positive affect predicts primary control striving for career and educational goals, and we explore the mediating role of control beliefs. In Study 1, positive affect predicted primary control striving for career goals in a two-wave longitudinal study of a U.S. sample. In Study 2, positive affect predicted primary control striving for career and educational goals and objective career outcomes in a six-wave longitudinal study of a German sample. Control beliefs partially mediated the longitudinal associations with primary control striving. Thus, when individuals experience positive affect, they become more motivated to invest time and effort, and overcome obstacles when pursuing their goals, in part because they believe they have more control over attaining their goals. PMID:22569224
NASA Astrophysics Data System (ADS)
Marcos, Natalia I.; Fraser Forbes, J.; Guay, Martin
2014-08-01
In this paper, a coordinated-distributed model predictive control (CDMPC) scheme is proposed for discrete-time, linear, unconstrained dynamic systems. The proposed control scheme incorporates a coordinator that communicates with local CDMPC controllers. With the assistance of the coordinator, the local CDMPC controllers adjust their calculated control actions iteratively to achieve the optimal plant-wide operation. A 'prediction-driven' algorithm is used to coordinate the local CDMPC controllers. Convergence of the prediction-driven algorithm is shown along with a stability analysis of the closed-loop system under coordinated-distributed control. A simulation example is used to illustrate the effectiveness of the proposed coordinated-distributed control scheme.
Cognitive Control Predicts Academic Achievement in Kindergarten Children
ERIC Educational Resources Information Center
Coldren, Jeffrey T.
2013-01-01
Children's ability to shift behavior in response to changing environmental demands is critical for successful intellectual functioning. While the processes underlying the development of cognitive control have been thoroughly investigated, its functioning in an ecologically relevant setting such as school is less well understood. Given the alarming…
Predicting Preschool Effortful Control from Toddler Temperament and Parenting Behavior
ERIC Educational Resources Information Center
Cipriano, Elizabeth A.; Stifter, Cynthia A.
2010-01-01
This longitudinal study assessed whether maternal behavior and emotional tone moderated the relationship between toddler temperament and preschooler's effortful control. Maternal behavior and emotional tone were observed during a parent-child competing demands task when children were 2 years of age. Child temperament was also assessed at 2 years…
Adaptive and predictive control of a simulated robot arm.
Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo
2013-06-01
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
Controllability modulates the neural response to predictable but not unpredictable threat in humans.
Wood, Kimberly H; Wheelock, Muriah D; Shumen, Joshua R; Bowen, Kenton H; Ver Hoef, Lawrence W; Knight, David C
2015-10-01
Stress resilience is mediated, in part, by our ability to predict and control threats within our environment. Therefore, determining the neural mechanisms that regulate the emotional response to predictable and controllable threats may provide important new insight into the processes that mediate resilience to emotional dysfunction and guide the future development of interventions for anxiety disorders. To better understand the effect of predictability and controllability on threat-related brain activity in humans, two groups of healthy volunteers participated in a yoked Pavlovian fear conditioning study during functional magnetic resonance imaging (fMRI). Threat predictability was manipulated by presenting an aversive unconditioned stimulus (UCS) that was either preceded by a conditioned stimulus (i.e., predictable) or by presenting the UCS alone (i.e., unpredictable). Similar to animal model research that has employed yoked fear conditioning procedures, one group (controllable condition; CC), but not the other group (uncontrollable condition; UC) was able to terminate the UCS. The fMRI signal response within the dorsolateral prefrontal cortex (PFC), dorsomedial PFC, ventromedial PFC, and posterior cingulate was diminished during predictable compared to unpredictable threat (i.e., UCS). In addition, threat-related activity within the ventromedial PFC and bilateral hippocampus was diminished only to threats that were both predictable and controllable. These findings provide insight into how threat predictability and controllability affects the activity of brain regions (i.e., ventromedial PFC and hippocampus) involved in emotion regulation, and may have important implications for better understanding neural processes that mediate emotional resilience to stress.
New technologies in predicting, preventing and controlling emerging infectious diseases
Christaki, Eirini
2015-01-01
Surveillance of emerging infectious diseases is vital for the early identification of public health threats. Emergence of novel infections is linked to human factors such as population density, travel and trade and ecological factors like climate change and agricultural practices. A wealth of new technologies is becoming increasingly available for the rapid molecular identification of pathogens but also for the more accurate monitoring of infectious disease activity. Web-based surveillance tools and epidemic intelligence methods, used by all major public health institutions, are intended to facilitate risk assessment and timely outbreak detection. In this review, we present new methods for regional and global infectious disease surveillance and advances in epidemic modeling aimed to predict and prevent future infectious diseases threats. PMID:26068569
Burns, S M; Maniss, S; Young, L R L; Gaubatz, M
2005-02-01
This investigation explored the utility of the health locus of control construct in predicting the mental health quality of life (MHQOL) ratings of 72 Latinos living with HIV/AIDS. After controlling for patient CD4 count, viral load, time since diagnosis, Physical Health Quality of Life and acculturative status, Powerful Others Locus of Control beliefs accounted for a significant increment of the variance in Mental Health Quality of Life. In a similar model, Internal Locus of Control failed to predict MHQOL. Discussion and implications highlight how cultural considerations may broaden investigations of health among diverse, minority populations.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
A Computerized Test of Self-Control Predicts Classroom Behavior
Hoerger, Marguerite L; Mace, F. Charles
2006-01-01
We assessed choices on a computerized test of self-control (CTSC) for a group of children with features of attention deficit hyperactivity disorder (ADHD) and a group of controls. Thirty boys participated in the study. Fifteen of the children had been rated by their parents as hyperactive and inattentive, and 15 were age- and gender-matched controls in the same classroom. The children were observed in the classroom for three consecutive mornings, and data were collected on their activity levels and attention. The CTSC consisted of two tasks. In the delay condition, children chose to receive three rewards after a delay of 60 s or one reward immediately. In the task-difficulty condition, the children chose to complete a difficult math problem and receive three rewards or complete an easier problem for one reward. The children with ADHD features made more impulsive choices than their peers during both conditions, and these choices correlated with measures of their activity and attention in the classroom. PMID:16813037
Predictive Multiple Model Switching Control with the Self-Organizing Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2000-01-01
A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.
Testing constrained sequential dominance models of neutrinos
NASA Astrophysics Data System (ADS)
Björkeroth, Fredrik; King, Stephen F.
2015-12-01
Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We analyze a class of CSD(n) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the ‘atmospheric’ and ‘solar’ neutrino masses with Yukawa couplings to ({ν }e,{ν }μ ,{ν }τ ) proportional to (0,1,1) and (1,n,n-2), respectively, where n is a positive integer. These coupling patterns may arise in indirect family symmetry models based on A 4. With two right-handed neutrinos, using a χ 2 test, we find a good agreement with data for CSD(3) and CSD(4) where the entire Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is controlled by a single phase η, which takes simple values, leading to accurate predictions for mixing angles and the magnitude of the oscillation phase | {δ }{CP}| . We carefully study the perturbing effect of a third ‘decoupled’ right-handed neutrino, leading to a bound on the lightest physical neutrino mass {m}1{{≲ }}1 meV for the viable cases, corresponding to a normal neutrino mass hierarchy. We also discuss a direct link between the oscillation phase {δ }{CP} and leptogenesis in CSD(n) due to the same see-saw phase η appearing in both the neutrino mass matrix and leptogenesis.
NASA Astrophysics Data System (ADS)
Talukder, A.; Panangadan, A. V.; Blumberg, A. F.; Herrington, T.; Georgas, N.
2008-12-01
The New York Harbor Observation and Prediction System (NYHOPS) is a real-time, estuarine and coastal ocean observing and modeling system for the New York Harbor and surrounding waters. Real-time measurements from in-situ mobile and stationary sensors in the NYHOPS networks are assimilated into marine forecasts in order to reduce the discrepancy with ground truth. The forecasts are obtained from the ECOMSED hydrodynamic model, a shallow water derivative of the Princeton Ocean Model. Currently, all sensors in the NYHOPS system are operated in a fixed mode with uniform sampling rates. This technology infusion effort demonstrates the use of Model Predictive Control (MPC) to autonomously adapt the operation of both mobile and stationary sensors in response to changing events that are -automatically detected from the ECOMSED forecasts. The controller focuses sensing resources on those regions that are expected to be impacted by the detected events. The MPC approach involves formulating the problem of calculating the optimal sensor parameters as a constrained multi-objective optimization problem. We have developed an objective function that takes into account the spatiotemporal relationship of the in-situ sensor locations and the locations of events detected by the model. Experiments in simulation were carried out using data collected during a freshwater flooding event. The location of the resulting freshwater plume was calculated from the corresponding model forecasts and was used by the MPC controller to derive control parameters for the sensing assets. The operational parameters that are controlled include the sampling rates of stationary sensors, paths of unmanned underwater vehicles (UUVs), and data transfer routes between sensors and the central modeling computer. The simulation experiments show that MPC-based sensor control reduces the RMS error in the forecast by a factor of 380% as compared to uniform sampling. The paths of multiple UUVs were simultaneously
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
BICEP2 constrains composite inflation
NASA Astrophysics Data System (ADS)
Channuie, Phongpichit
2014-07-01
In light of BICEP2, we re-examine single field inflationary models in which the inflation is a composite state stemming from various four-dimensional strongly coupled theories. We study in the Einstein frame a set of cosmological parameters, the primordial spectral index ns and tensor-to-scalar ratio r, predicted by such models. We confront the predicted results with the joint Planck data, and with the recent BICEP2 data. We constrain the number of e-foldings for composite models of inflation in order to obtain a successful inflation. We find that the minimal composite inflationary model is fully consistent with the Planck data. However it is in tension with the recent BICEP2 data. The observables predicted by the glueball inflationary model can be consistent with both Planck and BICEP2 contours if a suitable number of e-foldings are chosen. Surprisingly, the super Yang-Mills inflationary prediction is significantly consistent with the Planck and BICEP2 observations.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control. PMID:19700825
The Minimal Control Principle Predicts Strategy Shifts in the Abstract Decision Making Task
ERIC Educational Resources Information Center
Taatgen, Niels A.
2011-01-01
The minimal control principle (Taatgen, 2007) predicts that people strive for problem-solving strategies that require as few internal control states as possible. In an experiment with the Abstract Decision Making task (ADM task; Joslyn & Hunt, 1998) the reward structure was manipulated to make either a low-control strategy or a high-strategy…
Jet Engine Noise Generation, Prediction and Control. Chapter 86
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Envia, Edmane
2004-01-01
. An example of this type of engine is shown in Figure IC, which is a schematic of the Honeywell T55 engine that powers the CH-47 Chinook helicopter. Since the noise from the propellers or helicopter rotors is usually dominant for turbo-shaft engines, less attention has been paid to these engines in so far as community noise considerations are concerned. This chapter will concentrate mostly on turbofan engine noise and will highlight common methods for their noise prediction and reduction.
Technology Transfer Automated Retrieval System (TEKTRAN)
Due to ever increasing state and federal regulations, the future use of fumigants is predicted on negative environmental impacts while offering sufficient pest control efficacy. To foster the development of the best management practice (BMP), an integrated tool is needed to simultaneously predict fu...
NASA Astrophysics Data System (ADS)
Davenport, Mark A.; Massimino, Andrew K.; Needell, Deanna; Woolf, Tina
2016-10-01
Suppose that we wish to estimate a vector $\\mathbf{x} \\in \\mathbb{C}^n$ from a small number of noisy linear measurements of the form $\\mathbf{y} = \\mathbf{A x} + \\mathbf{z}$, where $\\mathbf{z}$ represents measurement noise. When the vector $\\mathbf{x}$ is sparse, meaning that it has only $s$ nonzeros with $s \\ll n$, one can obtain a significantly more accurate estimate of $\\mathbf{x}$ by adaptively selecting the rows of $\\mathbf{A}$ based on the previous measurements provided that the signal-to-noise ratio (SNR) is sufficiently large. In this paper we consider the case where we wish to realize the potential of adaptivity but where the rows of $\\mathbf{A}$ are subject to physical constraints. In particular, we examine the case where the rows of $\\mathbf{A}$ are constrained to belong to a finite set of allowable measurement vectors. We demonstrate both the limitations and advantages of adaptive sensing in this constrained setting. We prove that for certain measurement ensembles, the benefits offered by adaptive designs fall far short of the improvements that are possible in the unconstrained adaptive setting. On the other hand, we also provide both theoretical and empirical evidence that in some scenarios adaptivity does still result in substantial improvements even in the constrained setting. To illustrate these potential gains, we propose practical algorithms for constrained adaptive sensing by exploiting connections to the theory of optimal experimental design and show that these algorithms exhibit promising performance in some representative applications.
Predictive Analysis of Geochemical Controls in an Alpine Stream
NASA Astrophysics Data System (ADS)
Jochems, A. P.; Sherson, L. R.; Crossey, L. J.; Karlstrom, K. E.
2010-12-01
hydrographs during late winter, as well as on the falling limb of flow during summer. Cation and anion concentrations experience significant declines during periods of high flow, though loadings remain high. Solute concentrations were found to increase downstream regardless of season. Downstream increases take place abruptly where the river crosses fault systems that localize discharge of hot spring brines from the hydrothermal system. Analyses completed during the spring of 2010 indicate that arsenic greatly exceeds EPA drinking water standards at low flows (<30 cfs). TDS and sulfate concentrations in the Jemez also exceed these standards at similar discharge. Stable isotope analyses demonstrate contributions from geothermal systems, with isotopically enriched values of δ18O for thermal waters, and near-meteoric values for most river waters. A model predicting solute concentrations as a function of snowmelt demonstrates that the Jemez River is susceptible to significant degradation of water quality under scenarios of decreasing snowpack. Fluctuations in water chemistries of this system directly affect recreational use and water quality of the Jemez River and shallow aquifer recharge, and must be considered for any proposed domestic or municipal use in the future.
Constraining primordial magnetism
NASA Astrophysics Data System (ADS)
Shaw, J. Richard; Lewis, Antony
2012-08-01
Primordial magnetic fields could provide an explanation for the galactic magnetic fields observed today; in which case, they may leave interesting signals in the CMB and the small-scale matter power spectrum. We discuss how to approximately calculate the important nonlinear magnetic effects within the guise of linear perturbation theory and calculate the matter and CMB power spectra including the Sunyaev-Zel’dovich contribution. We then use various cosmological data sets to constrain the form of the magnetic field power spectrum. Using solely large-scale CMB data (WMAP7, QUaD, and ACBAR) we find a 95% C.L. on the variance of the magnetic field at 1 Mpc of Bλ<6.4nG. When we include South Pole Telescope data to constrain the Sunyaev-Zel’dovich effect, we find a revised limit of Bλ<4.1nG. The addition of Sloan Digital Sky Survey Lyman-α data lowers this limit even further, roughly constraining the magnetic field to Bλ<1.3nG.
NASA Astrophysics Data System (ADS)
Goodwin, Graham. C.; Medioli, Adrian. M.
2013-08-01
Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.
Auxiliary particle filter-model predictive control of the vacuum arc remelting process
NASA Astrophysics Data System (ADS)
Lopez, F.; Beaman, J.; Williamson, R.
2016-07-01
Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.
The role of action prediction and inhibitory control for joint action coordination in toddlers.
Meyer, M; Bekkering, H; Haartsen, R; Stapel, J C; Hunnius, S
2015-11-01
From early in life, young children eagerly engage in social interactions. Yet, they still have difficulties in performing well-coordinated joint actions with others. Adult literature suggests that two processes are important for smooth joint action coordination: action prediction and inhibitory control. The aim of the current study was to disentangle the potential role of these processes in the early development of joint action coordination. Using a simple turn-taking game, we assessed 2½-year-old toddlers' joint action coordination, focusing on timing variability and turn-taking accuracy. In two additional tasks, we examined their action prediction capabilities with an eye-tracking paradigm and examined their inhibitory control capabilities with a classic executive functioning task (gift delay task). We found that individual differences in action prediction and inhibitory action control were distinctly related to the two aspects of joint action coordination. Toddlers who showed more precision in their action predictions were less variable in their action timing during the joint play. Furthermore, toddlers who showed more inhibitory control in an individual context were more accurate in their turn-taking performance during the joint action. On the other hand, no relation between timing variability and inhibitory control or between turn-taking accuracy and action prediction was found. The current results highlight the distinct role of action prediction and inhibitory action control for the quality of joint action coordination in toddlers. Underlying neurocognitive mechanisms and implications for processes involved in joint action coordination in general are discussed. PMID:26150055
Is It Really Self-Control? Examining the Predictive Power of the Delay of Gratification Task
Duckworth, Angela L.; Tsukayama, Eli; Kirby, Teri A.
2013-01-01
This investigation tests whether the predictive power of the delay of gratification task (colloquially known as the “marshmallow test”) derives from its assessment of self-control or of theoretically unrelated traits. Among 56 school-age children in Study 1, delay time was associated with concurrent teacher ratings of self-control and Big Five conscientiousness—but not with other personality traits, intelligence, or reward-related impulses. Likewise, among 966 preschool children in Study 2, delay time was consistently associated with concurrent parent and caregiver ratings of self-control but not with reward-related impulses. While delay time in Study 2 was also related to concurrently measured intelligence, predictive relations with academic, health, and social outcomes in adolescence were more consistently explained by ratings of effortful control. Collectively, these findings suggest that delay task performance may be influenced by extraneous traits, but its predictive power derives primarily from its assessment of self-control. PMID:23813422
NASA Technical Reports Server (NTRS)
Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.
2013-01-01
A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.
Is it really self-control? Examining the predictive power of the delay of gratification task.
Duckworth, Angela L; Tsukayama, Eli; Kirby, Teri A
2013-07-01
This investigation tests whether the predictive power of the delay of gratification task (colloquially known as the "marshmallow test") derives from its assessment of self-control or of theoretically unrelated traits. Among 56 school-age children in Study 1, delay time was associated with concurrent teacher ratings of self-control and Big Five conscientiousness-but not with other personality traits, intelligence, or reward-related impulses. Likewise, among 966 preschool children in Study 2, delay time was consistently associated with concurrent parent and caregiver ratings of self-control but not with reward-related impulses. While delay time in Study 2 was also related to concurrently measured intelligence, predictive relations with academic, health, and social outcomes in adolescence were more consistently explained by ratings of effortful control. Collectively, these findings suggest that delay task performance may be influenced by extraneous traits, but its predictive power derives primarily from its assessment of self-control.
NASA Astrophysics Data System (ADS)
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
Constraining weak annihilation using semileptonic D decays
Ligeti, Zoltan; Luke, Michael; Manohar, Aneesh V.
2010-08-01
The recently measured semileptonic D{sub s} decay rate can be used to constrain weak annihilation (WA) effects in semileptonic D and B decays. We revisit the theoretical predictions for inclusive semileptonic D{sub (s)} decays using a variety of quark mass schemes. The most reliable results are obtained if the fits to B decay distributions are used to eliminate the charm quark mass dependence, without using any specific charm mass scheme. Our fit to the available data shows that WA is smaller than commonly assumed. There is no indication that the WA octet contribution (which is better constrained than the singlet contribution) dominates. The results constrain an important source of uncertainty in the extraction of |V{sub ub}| from inclusive semileptonic B decays.
Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba
2016-05-01
In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies.
Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba
2016-05-01
In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. PMID:26725504
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Craig, D M; Wade, K E; Allison, K R; Irving, H M; Williams, J I; Hlibka, C M
2000-01-01
Using the Theory of Planned Behaviour (Ajzen, 1988) as a conceptual framework, 705 secondary school students were surveyed to identify their intentions to use birth control pills, condoms, and birth control pills in combination with condoms. Hierarchical multiple regression revealed that the theory explained between 23.5% and 45.8% of the variance in intentions. Variables external to the model such as past use, age, and ethnicity exhibited some independent effects. Attitudes were consistently predictive of intentions to use condoms, pills, and condoms in combination with pills for both male and female students. However, there were differences by gender in the degree to which subjective norms and perceived behavioural control predicted intentions. The findings suggest that programs should focus on: creation of positive attitudes regarding birth control pills and condoms; targeting important social influences, particularly regarding males' use of condoms; and developing strategies to increase students' control over the use of condoms.
Craig, D M; Wade, K E; Allison, K R; Irving, H M; Williams, J I; Hlibka, C M
2000-01-01
Using the Theory of Planned Behaviour (Ajzen, 1988) as a conceptual framework, 705 secondary school students were surveyed to identify their intentions to use birth control pills, condoms, and birth control pills in combination with condoms. Hierarchical multiple regression revealed that the theory explained between 23.5% and 45.8% of the variance in intentions. Variables external to the model such as past use, age, and ethnicity exhibited some independent effects. Attitudes were consistently predictive of intentions to use condoms, pills, and condoms in combination with pills for both male and female students. However, there were differences by gender in the degree to which subjective norms and perceived behavioural control predicted intentions. The findings suggest that programs should focus on: creation of positive attitudes regarding birth control pills and condoms; targeting important social influences, particularly regarding males' use of condoms; and developing strategies to increase students' control over the use of condoms. PMID:11089290
Controllability modulates the neural response to predictable but not unpredictable threat in humans.
Wood, Kimberly H; Wheelock, Muriah D; Shumen, Joshua R; Bowen, Kenton H; Ver Hoef, Lawrence W; Knight, David C
2015-10-01
Stress resilience is mediated, in part, by our ability to predict and control threats within our environment. Therefore, determining the neural mechanisms that regulate the emotional response to predictable and controllable threats may provide important new insight into the processes that mediate resilience to emotional dysfunction and guide the future development of interventions for anxiety disorders. To better understand the effect of predictability and controllability on threat-related brain activity in humans, two groups of healthy volunteers participated in a yoked Pavlovian fear conditioning study during functional magnetic resonance imaging (fMRI). Threat predictability was manipulated by presenting an aversive unconditioned stimulus (UCS) that was either preceded by a conditioned stimulus (i.e., predictable) or by presenting the UCS alone (i.e., unpredictable). Similar to animal model research that has employed yoked fear conditioning procedures, one group (controllable condition; CC), but not the other group (uncontrollable condition; UC) was able to terminate the UCS. The fMRI signal response within the dorsolateral prefrontal cortex (PFC), dorsomedial PFC, ventromedial PFC, and posterior cingulate was diminished during predictable compared to unpredictable threat (i.e., UCS). In addition, threat-related activity within the ventromedial PFC and bilateral hippocampus was diminished only to threats that were both predictable and controllable. These findings provide insight into how threat predictability and controllability affects the activity of brain regions (i.e., ventromedial PFC and hippocampus) involved in emotion regulation, and may have important implications for better understanding neural processes that mediate emotional resilience to stress. PMID:26149610
Controllability Modulates the Neural Response to Predictable but not Unpredictable Threat in Humans
Wood, Kimberly H.; Wheelock, Muriah D.; Shumen, Joshua R.; Bowen, Kenton H.; Ver Hoef, Lawrence W.; Knight, David C.
2015-01-01
Stress resilience is mediated, in part, by our ability to predict and control threats within our environment. Therefore, determining the neural mechanisms that regulate the emotional response to predictable and controllable threat may provide important new insight into the processes that mediate resilience to emotional dysfunction and guide the future development of interventions for anxiety disorders. To better understand the effect of predictability and controllability on threat-related brain activity in humans, two groups of healthy volunteers participated in a yoked Pavlovian fear conditioning study during functional magnetic resonance imaging (fMRI). Threat predictability was manipulated by presenting an aversive unconditioned stimulus (UCS) that was either preceded by a conditioned stimulus (i.e., predictable) or by presenting the UCS alone (i.e., unpredictable). Similar to animal model research that has employed yoked fear conditioning procedures, one group (Controllable Condition; CC), but not the other group (Uncontrollable Condition; UC) was able to terminate the UCS. The fMRI signal response within the dorsolateral prefrontal cortex (PFC), dorsomedial PFC, ventromedial PFC, and posterior cingulate was diminished during predictable compared to unpredictable threat (i.e., UCS). In addition, threat-related activity within the ventromedial PFC and bilateral hippocampus was diminished only to threats that were both predictable and controllable. These findings provide insight into how threat predictability and controllability affects the activity of brain regions (i.e., ventromedial PFC and hippocampus) involved in emotion regulation, and may have important implications for better understanding neural processes that mediate emotional resilience to stress. PMID:26149610
NASA Astrophysics Data System (ADS)
Sirazetdinov, T. K.; Kiselev, V. I.
A method is presented for multiple-step terminal control at a section of the glide path of a flight vehcile in the dense layers of the atmosphere. In accordance with the method, the parameters are identified and predicted at each step of the control process. Results of a computer simulation of the motion of a flight vehicle are presented.
Evaluation of model predictive control in run-to-run processing in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Mullins, James A.; Campbell, W. J.; Stock, Allen D.
1997-08-01
Many steps in the manufacturing of semiconductors offer no opportunity for real-time measurement of the wafer state, necessitating the use of pre- and post-process measurements of the wafer state in a run-to-run control algorithm. The predominant algorithm in the industry is an extended form of SPC using an EWMA filter to adjust a model parameter vector using the available measurements. This paper evaluates the merits of using an optimal discrete controller relying on a discrete-time constrained state-space process model that incorporates feedforward action using the pre-process measurement and feedback using the post-process measurement, accounts for the process statistics using a noise model and optimal filtering theory, and ensures integral action in the controller by estimating unmeasured disturbances. Comparison to the EWMA algorithm are presented using simulations based on actual plant data from a chemical-mechanical polishing application. The polish process is particularly suitable for the application of such a controller because of the natural method the controller provides for incorporating unmeasured disturbances, like pad and slurry changes, in the control action.
Kiryu, T; Minagawa, H
2013-01-01
Several types of electric motor assists have been developed, as a result, it is important to control muscular fatigue on-site in terms of health promotion and motor rehabilitation. Predicting the perceived fatigue by several biosignal-related variables with the multiple regression model and polynomial approximation, we try to propose a self control design for the electrically assisted bicycle (EAB). We also determine the meaningful muscles during pedaling by muscle synergies in relation to the motion maturity. In field experiments, prediction of ongoing perceived physical fatigue could have the potential of suitable control of EAB.
Kiryu, T; Minagawa, H
2013-01-01
Several types of electric motor assists have been developed, as a result, it is important to control muscular fatigue on-site in terms of health promotion and motor rehabilitation. Predicting the perceived fatigue by several biosignal-related variables with the multiple regression model and polynomial approximation, we try to propose a self control design for the electrically assisted bicycle (EAB). We also determine the meaningful muscles during pedaling by muscle synergies in relation to the motion maturity. In field experiments, prediction of ongoing perceived physical fatigue could have the potential of suitable control of EAB. PMID:24110131
Artificial neural network implementation of a near-ideal error prediction controller
NASA Technical Reports Server (NTRS)
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error
NASA Astrophysics Data System (ADS)
Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.
2015-03-01
Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.
Sun, Jimeng; McNaughton, Candace D; Zhang, Ping; Perer, Adam; Gkoulalas-Divanis, Aris; Denny, Joshua C; Kirby, Jacqueline; Lasko, Thomas; Saip, Alexander; Malin, Bradley A
2014-01-01
Objective Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control. Method In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier. Results The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780). Conclusions This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans. PMID:24045907
NASA Astrophysics Data System (ADS)
Kamel, Ouari; Mohand, Ouhrouche; Toufik, Rekioua; Taib, Nabil
2015-01-01
In order to improvement of the performances for wind energy conversions systems (WECS), an advanced control techniques must be used. In this paper, as an alternative to conventional PI-type control methods, a nonlinear predictive control (NPC) approach is developed for DFIG-based wind turbine. To enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. An explicitly analytical form of the optimal predictive controller is given consequently on-line optimization is not necessary The DFIG is fed through the rotor windings by a back-to-back converter controlled by Pulse Width Modulation (PWM), where the stator winding is directly connected to the grid. The presented simulation results show a good performance in trajectory tracking of the proposed strategy and rejection of disturbances is successfully achieved.
Operational flood control of a low-lying delta system using large time step Model Predictive Control
NASA Astrophysics Data System (ADS)
Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick
2015-01-01
The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.
NASA Astrophysics Data System (ADS)
Balbi, V.; Kuhl, E.; Ciarletta, P.
2015-05-01
With nine meters in length, the gastrointestinal tract is not only our longest, but also our structurally most diverse organ. During embryonic development, it evolves as a bilayered tube with an inner endodermal lining and an outer mesodermal layer. Its inner surface displays a wide variety of morphological patterns, which are closely correlated to digestive function. However, the evolution of these intestinal patterns remains poorly understood. Here we show that geometric and mechanical factors can explain intestinal pattern formation. Using the nonlinear field theories of mechanics, we model surface morphogenesis as the instability problem of constrained differential growth. To allow for internal and external expansion, we model the gastrointestinal tract with homogeneous Neumann boundary conditions. To establish estimates for the folding pattern at the onset of folding, we perform a linear stability analysis supplemented by the perturbation theory. To predict pattern evolution in the post-buckling regime, we perform a series of nonlinear finite element simulations. Our model explains why longitudinal folds emerge in the esophagus with a thick and stiff outer layer, whereas circumferential folds emerge in the jejunum with a thinner and softer outer layer. In intermediate regions like the feline esophagus, longitudinal and circumferential folds emerge simultaneously. Our model could serve as a valuable tool to explain and predict alterations in esophageal morphology as a result of developmental disorders or certain digestive pathologies including food allergies.
PLIO: a generic tool for real-time operational predictive optimal control of water networks.
Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M
2011-01-01
This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation).
PLIO: a generic tool for real-time operational predictive optimal control of water networks.
Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M
2011-01-01
This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation). PMID:22097020
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Carson, John M., III
2006-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.
NASA Technical Reports Server (NTRS)
Acikmese, Behcet A.; Carson, John M., III
2005-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.
Optimum constrained image restoration filters
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1977-01-01
The research described centered on development of an optimum image restoration filter (IRF) minimizing the radius of gyration of the corrected or composite system point-spread function (P-SF) subject to contraints, and reducing 2-dimensional spatial smearing or blurring of an image. The constraints are imposed on the radius of gyration of the IRF P-SF, the total restored image noise power, and the shape of the composite system frequency spectrum. The image degradation corresponds to mapping many points from the original image into a single resolution element. The P-SF is obtained as solution to a set of simultaneous differential equations obeying nonlinear integral constraints. Truncation errors due to edge effects are controlled by constraining the radius of gyration of the IRF P-SF. An iterative technique suppresses sidelobes of the composite system P-SF.
An autonomous vehicle: Constrained test and evaluation
NASA Astrophysics Data System (ADS)
Griswold, Norman C.
1991-11-01
The objective of the research is to develop an autonomous vehicle which utilizes stereo camera sensors (using ambient light) to follow complex paths at speeds up to 35 mph with consideration of moving vehicles within the path. The task is intended to demonstrate the contribution to safety of a vehicle under automatic control. All of the long-term scenarios investigating future reduction in congestion involve an automatic system taking control, or partial control, of the vehicle. A vehicle which includes a collision avoidance system is a prerequisite to an automatic control system. The report outlines the results of a constrained test of a vision controlled vehicle. In order to demonstrate its ability to perform on the current street system the vehicle was constrained to recognize, approach, and stop at an ordinary roadside stop sign.
Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte
2015-10-01
Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. PMID:26075793
Model predictive control of bidirectional isolated DC-DC converter for energy conversion system
NASA Astrophysics Data System (ADS)
Akter, Parvez; Uddin, Muslem; Mekhilef, Saad; Tan, Nadia Mei Lin; Akagi, Hirofumi
2015-08-01
Model predictive control (MPC) is a powerful and emerging control algorithm in the field of power converters and energy conversion systems. This paper proposes a model predictive algorithm to control the power flow between the high-voltage and low-voltage DC buses of a bidirectional isolated full-bridge DC-DC converter. The predictive control algorithm utilises the discrete nature of the power converters and predicts the future nature of the system, which are compared with the references to calculate the cost function. The switching state that minimises the cost function is selected for firing the converter in the next sampling time period. The proposed MPC bidirectional DC-DC converter is simulated with MATLAB/Simulink and further verified with a 2.5 kW experimental configuration. Both the simulation and experimental results confirm that the proposed MPC algorithm of the DC-DC converter reduces reactive power by avoiding the phase shift between primary and secondary sides of the high-frequency transformer and allow power transfer with unity power factor. Finally, an efficiency comparison is performed between the MPC and dual-phase-shift-based pulse-width modulation controlled DC-DC converter which ensures the effectiveness of the MPC controller.
Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte
2015-10-01
Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower.
Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus
NASA Astrophysics Data System (ADS)
Zeng, Xiaohua; Yang, Nannan; Wang, Junnian; Song, Dafeng; Zhang, Nong; Shang, Mingli; Liu, Jianxin
2015-08-01
Parameter-matching methods and optimal control strategies of the top-selling hybrid electric vehicle (HEV), namely, power-split HEV, are widely studied. In particular, extant research on control strategy focuses on the steady-state energy management strategy to obtain better fuel economy. However, given that multi-power sources are highly coupled in power-split HEVs and influence one another during mode shifting, conducting research on dynamic coordination control strategy (DCCS) to achieve riding comfort is also important. This paper proposes a predictive-model-based DCCS. First, the dynamic model of the objective power-split HEV is built and the mode shifting process is analyzed based on the developed model to determine the reason for the system shock generated. Engine torque estimation algorithm is then designed according to the principle of the nonlinear observer, and the prediction model of the degree of shock is established based on the theory of model predictive control. Finally, the DCCS with adaptation for a complex driving cycle is realized by combining the feedback control and the predictive model. The presented DCCS is validated on the co-simulation platform of AMESim and Simulink. Results show that the shock during mode shifting is well controlled, thereby improving riding comfort.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Qunjing; Li, Guoli
2016-05-01
This article deals with the identification of nonlinear model and Nonlinear Predictive Functional Controller (NPFC) design based on the Hammerstein structure for the turntable servo system. As a mechanism with multi-mass rotational system, nonlinearities significantly influence the system operation, especially when the turntable is in the states of zero-crossing distortion or rapid acceleration/deceleration, etc. The field data from identification experiments are processed by Comprehensive Learning Particle Swarm Optimization (CLPSO). As a result, Hammerstein model can be derived to describe the input-output relationship globally, considering all the linear and nonlinear factors of the turntable system. Cross validation results demonstrate good correspondence between the real equipment and the identified model. In the second part of this manuscript, a nonlinear control strategy based on the genetic algorithm and predictive control is developed. The global nonlinear predictive controller is carried out by two steps: (i) build the linear predictive functional controller with state space equations for the linear subsystem of Hammerstein model, and (ii) optimize the global control variable by minimizing the cost function through genetic algorithm. On the basis of distinguish model for turntable and the effectiveness of NPFC, the good performance of tracking ability is achieved in the simulation results.
LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Carson, John M., III
2007-01-01
This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. PMID:26341070
Validation of engineering methods for predicting hypersonic vehicle controls forces and moments
NASA Technical Reports Server (NTRS)
Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.
1991-01-01
This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
Multi input single output model predictive control of non-linear bio-polymerization process
Arumugasamy, Senthil Kumar; Ahmad, Z.
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
Supervisory sampling and control: Sources of suboptimality in a prediction task
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Rouse, W. B.
1972-01-01
A process supervisor is defined as a person who decides when to sample the process input and what values of a control variable to specify in order to maximize (minimize) a given value function of input sampling period, control setting, and process state. Presented experimental data in such a process where the value function is a time-averaged sampling cost plus mean squared difference between input and control variable. The task was unpaced prediction of the output of a second order filter driven by white noise. Experimental results, when compared to the optical strategy, reveal several consistently suboptimal behaviors. One is a tendency not to choose a long prediction interval even though the optimal strategy dictates that one should. Some results are also interpreted in terms of those input parameters according to which each subjects' behavior would have been nearest optimal. Differences of those parameters from actual input parameters served to quantify how subjects' prediction behavior differed from optimal.
A predictive control framework for optimal energy extraction of wind farms
NASA Astrophysics Data System (ADS)
Vali, M.; van Wingerden, J. W.; Boersma, S.; Petrović, V.; Kühn, M.
2016-09-01
This paper proposes an adjoint-based model predictive control for optimal energy extraction of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic interactions through the wake. The performance index is defined here as the total power production of the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization problem in a cost effective way and the first part of the optimal solution is implemented over the control horizon. This procedure is repeated at the next controller sample time providing the feedback into the optimization. The effectiveness and some key features of the proposed approach are studied for a two turbine test case through simulations.
Constrained space camera assembly
Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.
1999-01-01
A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.
NASA Astrophysics Data System (ADS)
DONG, Q.; Lall, U.
2014-12-01
We consider the empirical prediction of the peak flood volume on the Yangtze River at the Three Gorges Dam. The dam is operated for flood control, hydropower production and irrigation. The flood control space reserved in the reservoir each year during the monsoon season limits the ability to supply hydropower and irrigation services. Allocating a variable amount of flood control space based on a pre-season forecast of the peak event flood volume, or of the flood volume over a specific duration is consequently, more useful than a prediction of the annual maximum peak flow for this dam and for other flood control dams. The joint distribution of annual peak flow, the corresponding flood volume, and the event duration is investigated based on the copula theory. A statistical model is developed for the conditional prediction of this joint distribution using pre-season climate indicators. The potential for the guidance for water management in the Yangtze River basin and for insights to the design of the large flood control reservoirs in the future is illustrated.
Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts
NASA Technical Reports Server (NTRS)
Mogford, Richard; Kopardekar, Parimal
2001-01-01
The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.
Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation
NASA Astrophysics Data System (ADS)
Ekin Aydin, Boran; Rutten, Martine
2016-04-01
Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.
Buss, Kristin A.; Kiel, Elizabeth J.; Morales, Santiago; Robinson, Emily
2013-01-01
Poor inhibitory control and bold-approach have been found to predict the development of externalizing behavior problems in young children. Less research has examined how positive affect may influence the development of externalizing behavior in the context of low inhibitory control and high approach. We used a multimethod approach to examine how observed toddler inhibitory control, bold-approach, and positive affect predicted externalizing outcomes (observed, adult- and self-reported) in additive and interactive ways at the beginning of kindergarten. 24-month-olds (N = 110) participated in a laboratory visit and 84 were followed up in kindergarten for externalizing behaviors. Overall, children who were low in inhibitory control, high in bold-approach, and low in positive affect at 24-months of age were at greater risk for externalizing behaviors during kindergarten. PMID:25018589
Neural Network-Based Resistance Spot Welding Control and Quality Prediction
Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.
1999-07-10
This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.
A Two-Time Scale Decentralized Model Predictive Controller Based on Input and Output Model
Niu, Jian; Zhao, Jun; Xu, Zuhua; Qian, Jixin
2009-01-01
A decentralized model predictive controller applicable for some systems which exhibit different dynamic characteristics in different channels was presented in this paper. These systems can be regarded as combinations of a fast model and a slow model, the response speeds of which are in two-time scale. Because most practical models used for control are obtained in the form of transfer function matrix by plant tests, a singular perturbation method was firstly used to separate the original transfer function matrix into two models in two-time scale. Then a decentralized model predictive controller was designed based on the two models derived from the original system. And the stability of the control method was proved. Simulations showed that the method was effective. PMID:19834542
A gradient of childhood self-control predicts health, wealth, and public safety
Moffitt, Terrie E.; Arseneault, Louise; Belsky, Daniel; Dickson, Nigel; Hancox, Robert J.; Harrington, HonaLee; Houts, Renate; Poulton, Richie; Roberts, Brent W.; Ross, Stephen; Sears, Malcolm R.; Thomson, W. Murray; Caspi, Avshalom
2011-01-01
Policy-makers are considering large-scale programs aimed at self-control to improve citizens’ health and wealth and reduce crime. Experimental and economic studies suggest such programs could reap benefits. Yet, is self-control important for the health, wealth, and public safety of the population? Following a cohort of 1,000 children from birth to the age of 32 y, we show that childhood self-control predicts physical health, substance dependence, personal finances, and criminal offending outcomes, following a gradient of self-control. Effects of children's self-control could be disentangled from their intelligence and social class as well as from mistakes they made as adolescents. In another cohort of 500 sibling-pairs, the sibling with lower self-control had poorer outcomes, despite shared family background. Interventions addressing self-control might reduce a panoply of societal costs, save taxpayers money, and promote prosperity. PMID:21262822
A new methane control and prediction software suite for longwall mines
NASA Astrophysics Data System (ADS)
Dougherty, Heather N.; Özgen Karacan, C.
2011-09-01
This paper presents technical and application aspects of a new software suite, MCP (Methane Control and Prediction), developed for addressing some of the methane and methane control issues in longwall coal mines. The software suite consists of dynamic link library (DLL) extensions to MS-Access TM, written in C++. In order to create the DLLs, various statistical, mathematical approaches, prediction and classification artificial neural network (ANN) methods were used. The current version of MCP suite (version 1.3) discussed in this paper has four separate modules that (a) predict the dynamic elastic properties of coal-measure rocks, (b) predict ventilation emissions from longwall mines, (c) determine the type of degasification system that needs to be utilized for given situations and (d) assess the production performance of gob gas ventholes that are used to extract methane from longwall gobs. These modules can be used with the data from basic logs, mining, longwall panel, productivity, and coal bed characteristics. The applications of these modules separately or in combination for methane capture and control related problems will help improve the safety of mines. The software suite's version 1.3 is discussed in this paper. Currently, it's new version 2.0 is available and can be downloaded from http://www.cdc.gov/niosh/mining/products/product180.htm free of charge. The models discussed in this paper can be found under "ancillary models" and under "methane prediction models" for specific U.S. conditions in the new version.
Buceta, David; Tojo, Concha; Vukmirovic, Miomir B; Deepak, Francis Leonard; López-Quintela, M Arturo
2015-07-14
We present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at subnanometer resolution simply by changing the reactant concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad hoc controlled nanostructures.
T-S fuzzy model predictive speed control of electrical vehicles.
Khooban, Mohammad Hassan; Vafamand, Navid; Niknam, Taher
2016-09-01
This paper proposes a novel nonlinear model predictive controller (MPC) in terms of linear matrix inequalities (LMIs). The proposed MPC is based on Takagi-Sugeno (TS) fuzzy model, a non-parallel distributed compensation (non-PDC) fuzzy controller and a non-quadratic Lyapunov function (NQLF). Utilizing the non-PDC controller together with the Lyapunov theorem guarantees the stabilization issue of this MPC. In this approach, at each sampling time a quadratic cost function with an infinite prediction and control horizon is minimized such that constraints on the control input Euclidean norm are satisfied. To show the merits of the proposed approach, a nonlinear electric vehicle (EV) system with parameter uncertainty is considered as a case study. Indeed, the main goal of this study is to force the speed of EV to track a desired value. The experimental data, a new European driving cycle (NEDC), is used in order to examine the performance of the proposed controller. First, the equivalent TS model of the original nonlinear system is derived. After that, in order to evaluate the proficiency of the proposed controller, the achieved results of the proposed approach are compared with those of the conventional MPC controller and the optimal Fuzzy PI controller (OFPI), which are the latest research on the problem in hand. PMID:27167988
Predictive and reinforcement learning for magneto-hydrodynamic control of hypersonic flows
NASA Astrophysics Data System (ADS)
Kulkarni, Nilesh Vijay
Increasing needs for autonomy in future aerospace systems and immense progress in computing technology have motivated the development of on-line adaptive control techniques to account for modeling errors, changes in system dynamics, and faults occurring during system operation. After extensive treatment of the inner-loop adaptive control dealing mainly with stable adaptation towards desired transient behavior, adaptive optimal control has started receiving attention in literature. Motivated by the problem of optimal control of the magneto-hydrodynamic (MHD) generator at the inlet of the scramjet engine of a hypersonic flight vehicle, this thesis treats the general problem of efficiently combining off-line and on-line optimal control methods. The predictive control approach is chosen as the off-line method for designing optimal controllers using all the existing system knowledge. This controller is then adapted on-line using policy-iteration-based Q-learning, which is a stable model-free reinforcement learning approach. The combined approach is first illustrated in the optimal control of linear systems, which helps in the analysis as well as the validation of the method. A novel neural-networks-based parametric predictive control approach is then designed for the off-line optimal control of non-linear systems. The off-line approach is illustrated by applications to aircraft and spacecraft systems. This is followed by an extensive treatment of the off-line optimal control of the MHD generator using this neuro-control approach. On-line adaptation of the controller is implemented using several novel schemes derived from the policy-iteration-based Q-learning. The implementation results demonstrate the success of these on-line algorithms for adapting towards modeling errors in the off-line design.
Neural Network Assisted Inverse Dynamic Guidance for Terminally Constrained Entry Flight
Chen, Wanchun
2014-01-01
This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws. PMID:24723821
Neural network assisted inverse dynamic guidance for terminally constrained entry flight.
Zhou, Hao; Rahman, Tawfiqur; Chen, Wanchun
2014-01-01
This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws.
Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan
2015-01-01
A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%. PMID:25919372
Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan
2015-04-24
A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.
Neural-network predictive control for nonlinear dynamic systems with time-delay.
Huang, Jin-Quan; Lewis, F L
2003-01-01
A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.
Tully, Laura M; Lincoln, Sarah Hope; Hooker, Christine I
2014-01-01
LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC) activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investigated whether schizophrenia participants show LPFC deficits during cognitive control of emotional information, and whether these LPFC deficits prospectively predict changes in mood and symptoms following real-world interpersonal conflict. During fMRI, 23 individuals with schizophrenia or schizoaffective disorder and 24 healthy controls completed the Multi-Source Interference Task superimposed on neutral and negative pictures. Afterwards, schizophrenia participants completed a 21-day online daily-diary in which they rated the extent to which they experienced mood and schizophrenia-spectrum symptoms, as well as the occurrence and response to interpersonal conflict. Schizophrenia participants had lower dorsal LPFC activity (BA9) during cognitive control of task-irrelevant negative emotional information. Within schizophrenia participants, DLPFC activity during cognitive control of emotional information predicted changes in positive and negative mood on days following highly distressing interpersonal conflicts. Results have implications for understanding the specific role of LPFC in response to social stress in schizophrenia, and suggest that treatments targeting LPFC-mediated cognitive control of emotion could promote adaptive response to social stress in schizophrenia.
Effective variable switching point predictive current control for ac low-voltage drives
NASA Astrophysics Data System (ADS)
Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian
2015-07-01
This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
ERIC Educational Resources Information Center
Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.
2013-01-01
We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…
Parenting and Child "DRD4" Genotype Interact to Predict Children's Early Emerging Effortful Control
ERIC Educational Resources Information Center
Smith, Heather J.; Sheikh, Haroon I.; Dyson, Margaret W.; Olino, Thomas M.; Laptook, Rebecca S.; Durbin, C. Emily; Hayden, Elizabeth P.; Singh, Shiva M.; Klein, Daniel N.
2012-01-01
Effortful control (EC), or the trait-like capacity to regulate dominant responses, has important implications for children's development. Although genetic factors and parenting likely influence EC, few studies have examined whether they interact to predict its development. This study examined whether the "DRD4" exon III variable number tandem…
How Minimal Grade Goals and Self-Control Capacity Interact in Predicting Test Grades
ERIC Educational Resources Information Center
Bertrams, Alex
2012-01-01
The present research examined the prediction of school students' grades in an upcoming math test via their minimal grade goals (i.e., the minimum grade in an upcoming test one would be satisfied with). Due to its significance for initiating and maintaining goal-directed behavior, self-control capacity was expected to moderate the relation between…
ERIC Educational Resources Information Center
Bond, Frank W.; Flaxman, Paul E.
2006-01-01
This longitudinal study tested the degree to which an individual characteristic, psychological flexibility, and a work organization variable, job control, predicted ability to learn new skills at work, job performance, and mental health, amongst call center workers in the United Kingdom (N = 448). As hypothesized, results indicated that job…
ERIC Educational Resources Information Center
Karreman, Annemiek; van Tuijl, Cathy; van Aken, Marcel A. G.; Dekovi, Maja
2009-01-01
This study investigated interactions between observed temperamental effortful control and observed parenting in the prediction of externalizing problems. Child gender effects on these relations were examined. The relations were examined concurrently when the child was 3 years old and longitudinally at 4.5 years. The sample included 89 two-parent…
ERIC Educational Resources Information Center
Early, Diane; Barrett, Marty
This 2-year study examined the relative potency of locus of control (LOC) and motivational orientation (MO) as predictors of standardized achievement scores and learned helplessness. Also tested was the prediction that children with an extrinsic MO would be prone to adopt an external LOC over time. In the first year of the study, subjects were 158…
Constraining anisotropic baryon oscillations
NASA Astrophysics Data System (ADS)
Padmanabhan, Nikhil; White, Martin
2008-06-01
We present an analysis of anisotropic baryon acoustic oscillations and elucidate how a mis-estimation of the cosmology, which leads to incorrect values of the angular diameter distance, dA, and Hubble parameter, H, manifest themselves in changes to the monopole and quadrupole power spectrum of biased tracers of the density field. Previous work has focused on the monopole power spectrum, and shown that the isotropic dilation combination dA2H-1 is robustly constrained by an overall shift in the scale of the baryon feature. We extend this by demonstrating that the quadrupole power spectrum is sensitive to an anisotropic warping mode dAH, allowing one to break the degeneracy between dA and H. We describe a method for measuring this warping, explicitly marginalizing over the form of redshift-space distortions. We verify this method on N-body simulations and estimate that dAH can be measured with a fractional accuracy of ˜(3/V)% where the survey volume is estimated in h-3Gpc3.
Constrained space camera assembly
Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.
1999-05-11
A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.
Constrained Allocation Flux Balance Analysis.
Mori, Matteo; Hwa, Terence; Martin, Olivier C; De Martino, Andrea; Marinari, Enzo
2016-06-01
New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an "ensemble averaging" procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws.
Constrained Allocation Flux Balance Analysis.
Mori, Matteo; Hwa, Terence; Martin, Olivier C; De Martino, Andrea; Marinari, Enzo
2016-06-01
New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an "ensemble averaging" procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws. PMID:27355325
Constrained Allocation Flux Balance Analysis
Mori, Matteo; Hwa, Terence; Martin, Olivier C.
2016-01-01
New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an “ensemble averaging” procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws. PMID:27355325
Luo, Lifang; Yates, Scott R; Ashworth, Daniel J
2011-01-01
Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations.
Bertrams, Alex; Baumeister, Roy F; Englert, Chris
2016-01-01
We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests.
Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations.
Bertrams, Alex; Baumeister, Roy F; Englert, Chris
2016-01-01
We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests. PMID:27065013
Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations
Bertrams, Alex; Baumeister, Roy F.; Englert, Chris
2016-01-01
We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests. PMID:27065013
NASA Astrophysics Data System (ADS)
Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu
As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.
Prediction of Regulation Reserve Requirements in California ISO Control Area based on BAAL Standard
Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.; Ma, Jian; Loutan, Clyde
2013-07-21
This paper presents new methodologies developed at Pacific Northwest National Laboratory (PNNL) to estimate regulation capacity requirements in the California ISO control area. Two approaches have been developed: (1) an approach based on statistical analysis of actual historical area control error (ACE) and regulation data, and (2) an approach based on balancing authority ACE limit control performance standard. The approaches predict regulation reserve requirements on a day-ahead basis including upward and downward requirements, for each operating hour of a day. California ISO data has been used to test the performance of the proposed algorithms. Results show that software tool allows saving up to 30% on the regulation procurements cost .
Improving the feed-forward compensator in predictive control for setpoint tracking.
Valencia-Palomo, G; Rossiter, J A; López-Estrada, F R
2014-05-01
Simple predictive control (MPC) algorithms produce a feed-forward compensator that may be a suboptimal choice. This paper gives some insights into this issue and simple means of modifying the feed-forward to produce a more systematic and optimal design. In particular, it is shown that the optimum procedure depends upon the underlying loop tuning and also that there are, as yet under utilised, potential benefits with regard to constraint handling procedures, which helps to improve the computational efficiency of the online controller implementation. A laboratory test in a programmable logic controller (PLC) was carried out to demonstrate the code on real hardware and the effectiveness of the solution. PMID:24657005
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2015-10-01
A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.
Toward Proof of Concept of a One Health Approach to Disease Prediction and Control
Kock, Richard; Kachani, Malika; Kunkel, Rebekah; Thomas, Jason; Gilbert, Jeffrey; Wallace, Robert; Blackmore, Carina; Wong, David; Karesh, William; Natterson, Barbara; Dugas, Raymond; Rubin, Carol
2013-01-01
A One Health approach considers the role of changing environments with regard to infectious and chronic disease risks affecting humans and nonhuman animals. Recent disease emergence events have lent support to a One Health approach. In 2010, the Stone Mountain Working Group on One Health Proof of Concept assembled and evaluated the evidence regarding proof of concept of the One Health approach to disease prediction and control. Aspects examined included the feasibility of integrating human, animal, and environmental health and whether such integration could improve disease prediction and control efforts. They found evidence to support each of these concepts but also identified the need for greater incorporation of environmental and ecosystem factors into disease assessments and interventions. The findings of the Working Group argue for larger controlled studies to evaluate the comparative effectiveness of the One Health approach. PMID:24295136
Faller, W E; Schreck, S J
1995-01-01
The capability to control unsteady separated flow fields could dramatically enhance aircraft agility. To enable control, however, real-time prediction of these flow fields over a broad parameter range must be realized. The present work describes real-time predictions of three-dimensional unsteady separated flow fields and aerodynamic coefficients using neural networks. Unsteady surface-pressure readings were obtained from an airfoil pitched at a constant rate through the static stall angle. All data sets were comprised of 15 simultaneously acquired pressure records and one pitch angle record. Five such records and the associated pitch angle histories were used to train the neural network using a time-series algorithm. Post-training, the input to the network was the pitch angle (alpha), the angular velocity (dalpha/dt), and the initial 15 recorded surface pressures at time (t (0)). Subsequently, the time (t+Deltat) network predictions, for each of the surface pressures, were fed back as the input to the network throughout the pitch history. The results indicated that the neural network accurately predicted the unsteady separated flow fields as well as the aerodynamic coefficients to within 5% of the experimental data. Consistent results were obtained both for the training set as well as for generalization to both other constant pitch rates and to sinusoidal pitch motions. The results clearly indicated that the neural-network model could predict the unsteady surface-pressure distributions and aerodynamic coefficients based solely on angle of attack information. The capability for real-time prediction of both unsteady separated flow fields and aerodynamic coefficients across a wide range of parameters in turn provides a critical step towards the development of control systems targeted at exploiting unsteady aerodynamics for aircraft manoeuvrability enhancement.
Wu, Hsin-Yun; Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Chang, Kuang-Yi; Tsou, Mei-Yung; Ting, Chien-Kun
2016-01-01
Patient-controlled epidural analgesia (PCEA) has been applied to reduce postoperative pain in orthopedic surgical patients. Unfortunately, PCEA is occasionally accompanied by nausea and vomiting. The logistic regression (LR) model is widely used to predict vomiting, and recently support vector machines (SVM), a supervised machine learning method, has been used for classification and prediction. Unlike our previous work which compared Artificial Neural Networks (ANNs) with LR, this study uses a SVM-based predictive model to identify patients with high risk of vomiting during PCEA and comparing results with those derived from the LR-based model. From January to March 2007, data from 195 patients undergoing PCEA following orthopedic surgery were applied to develop two predictive models. 75% of the data were randomly selected for training, while the remainder was used for testing to validate predictive performance. The area under curve (AUC) was measured using the Receiver Operating Characteristic curve (ROC). The area under ROC curves of LR and SVM models were 0.734 and 0.929, respectively. A computer-based predictive model can be used to identify those who are at high risk for vomiting after PCEA, allowing for patient-specific therapeutic intervention or the use of alternative analgesic methods. PMID:27247165
Wu, Hsin-Yun; Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Chang, Kuang-Yi; Tsou, Mei-Yung; Ting, Chien-Kun
2016-01-01
Patient-controlled epidural analgesia (PCEA) has been applied to reduce postoperative pain in orthopedic surgical patients. Unfortunately, PCEA is occasionally accompanied by nausea and vomiting. The logistic regression (LR) model is widely used to predict vomiting, and recently support vector machines (SVM), a supervised machine learning method, has been used for classification and prediction. Unlike our previous work which compared Artificial Neural Networks (ANNs) with LR, this study uses a SVM-based predictive model to identify patients with high risk of vomiting during PCEA and comparing results with those derived from the LR-based model. From January to March 2007, data from 195 patients undergoing PCEA following orthopedic surgery were applied to develop two predictive models. 75% of the data were randomly selected for training, while the remainder was used for testing to validate predictive performance. The area under curve (AUC) was measured using the Receiver Operating Characteristic curve (ROC). The area under ROC curves of LR and SVM models were 0.734 and 0.929, respectively. A computer-based predictive model can be used to identify those who are at high risk for vomiting after PCEA, allowing for patient-specific therapeutic intervention or the use of alternative analgesic methods. PMID:27247165
Control and prediction of the course of brewery fermentations by gravimetric analysis.
Kosín, P; Savel, J; Broz, A; Sigler, K
2008-01-01
A simple, fast and cheap test suitable for predicting the course of brewery fermentations based on mass analysis is described and its efficiency is evaluated. Compared to commonly used yeast vitality tests, this analysis takes into account wort composition and other factors that influence fermentation performance. It can be used to predict the shape of the fermentation curve in brewery fermentations and in research and development projects concerning yeast vitality, fermentation conditions and wort composition. It can also be a useful tool for homebrewers to control their fermentations.
Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)
Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.
2014-02-01
Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.
Rueckert, Elmar; Čamernik, Jernej; Peters, Jan; Babič, Jan
2016-01-01
Human motor skill learning is driven by the necessity to adapt to new situations. While supportive contacts are essential for many tasks, little is known about their impact on motor learning. To study the effect of contacts an innovative full-body experimental paradigm was established. The task of the subjects was to reach for a distant target while postural stability could only be maintained by establishing an additional supportive hand contact. To examine adaptation, non-trivial postural perturbations of the subjects' support base were systematically introduced. A novel probabilistic trajectory model approach was employed to analyze the correlation between the motions of both arms and the trunk. We found that subjects adapted to the perturbations by establishing target dependent hand contacts. Moreover, we found that the trunk motion adapted significantly faster than the motion of the arms. However, the most striking finding was that observations of the initial phase of the left arm or trunk motion (100-400 ms) were sufficient to faithfully predict the complete movement of the right arm. Overall, our results suggest that the goal-directed arm movements determine the supportive arm motions and that the motion of heavy body parts adapts faster than the light arms. PMID:27328750
Rueckert, Elmar; Čamernik, Jernej; Peters, Jan; Babič, Jan
2016-01-01
Human motor skill learning is driven by the necessity to adapt to new situations. While supportive contacts are essential for many tasks, little is known about their impact on motor learning. To study the effect of contacts an innovative full-body experimental paradigm was established. The task of the subjects was to reach for a distant target while postural stability could only be maintained by establishing an additional supportive hand contact. To examine adaptation, non-trivial postural perturbations of the subjects’ support base were systematically introduced. A novel probabilistic trajectory model approach was employed to analyze the correlation between the motions of both arms and the trunk. We found that subjects adapted to the perturbations by establishing target dependent hand contacts. Moreover, we found that the trunk motion adapted significantly faster than the motion of the arms. However, the most striking finding was that observations of the initial phase of the left arm or trunk motion (100–400 ms) were sufficient to faithfully predict the complete movement of the right arm. Overall, our results suggest that the goal-directed arm movements determine the supportive arm motions and that the motion of heavy body parts adapts faster than the light arms. PMID:27328750
Unity power factor converter based on a fuzzy controller and predictive input current.
Bouafassa, Amar; Rahmani, Lazhar; Kessal, Abdelhalim; Babes, Badreddine
2014-11-01
This paper proposes analysis and control of a single-phase power factor corrector (PFC). The proposed control is capable of achieving a unity power factor for each DC link voltage or load fluctuation. The method under study is composed of two intelligent approaches, a fuzzy logic controller to ensure an output voltage at a suitable value and predictive current control. The fuzzy controller is used with minimum rules to attain a low cost. The method is verified and discussed through simulation on the MATLAB/Simulink platform. It presents high dynamic performance under various parameter changes. Moreover, in order to examine and evaluate the method in real-time, a test bench is built using dSPACE 1104. The implantation of the proposed method is very easy and flexible and allows for operation under parameter variations. Additionally, the obtained results are very significant.
Model predictive control of a wet limestone flue gas desulfurization pilot plant
Perales, A.L.V.; Ollero, P.; Ortiz, F.J.G.; Gomez-Barea, A.
2009-06-15
A model predictive control (MPC) strategy based on a dynamic matrix (DMC) is designed and applied to a wet limestone flue gas desulfurization (WLFGD) pilot plant to evaluate what enhancement in control performance can be achieved with respect to a conventional decentralized feedback control strategy. The results reveal that MPC can significantly improve both reference tracking and disturbance rejection. For disturbance rejection, the main control objective in WLFGD plants, selection of tuning parameters and sample time, is of paramount importance due to the fast effect of the main disturbance (inlet SO{sub 2} load to the absorber) on the most important controlled variable (outlet flue gas SO{sub 2} concentration). The proposed MPC strategy can be easily applied to full-scale WLFGD plants.
Modeling and Control Systems Design by Model Predictive Control for Air-path System of Diesel Engine
NASA Astrophysics Data System (ADS)
Iwadare, Mitsuhiro; Ueno, Masaki; Hattori, Yasuharu; Adachi, Shuichi
Research has been conducted on a variety of combustion technologies in order to reduce diesel engine emissions. These technologies should precisely control the state of in-cylinder gas (EGR mass flow, air mass flow, and so on). However, because the controlled object is a multi-input, multi-output (MIMO) system and a coupled system, the use of control systems based on the conventional methods that employ PID controllers represents a challenge. Model predictive control (MPC) is well known as an MIMO algorithm. An intake control system that could be applied to the intake system of a diesel engine was constructed by supplementing MPC with a feedback function using a disturbance observer and compensator for the nonlinear characteristic of the actuators. Performance tests using an actual vehicle verified that, when applied to a two-input (throttle valve and EGR valve), two-output (air mass flow and intake chamber pressure) system, the proposed MPC is able to rapidly control each output independently to the target value.
Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory
Gregor P. Henze; Moncef Krarti
2003-12-17
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building model
A novel predictive control algorithm and robust stability criteria for integrating processes.
Zhang, Bin; Yang, Weimin; Zong, Hongyuan; Wu, Zhiyong; Zhang, Weidong
2011-07-01
This paper introduces a novel predictive controller for single-input/single-output (SISO) integrating systems, which can be directly applied without pre-stabilizing the process. The control algorithm is designed on the basis of the tested step response model. To produce a bounded system response along the finite predictive horizon, the effect of the integrating mode must be zeroed while unmeasured disturbances exist. Here, a novel predictive feedback error compensation method is proposed to eliminate the permanent offset between the setpoint and the process output while the integrating system is affected by load disturbance. Also, a rotator factor is introduced in the performance index, which is contributed to the improvement robustness of the closed-loop system. Then on the basis of Jury's dominant coefficient criterion, a robust stability condition of the resulted closed loop system is given. There are only two parameters which need to be tuned for the controller, and each has a clear physical meaning, which is convenient for implementation of the control algorithm. Lastly, simulations are given to illustrate that the proposed algorithm can provide excellent closed loop performance compared with some reported methods. PMID:21353217
Hood, Anna; Grange, Dorothy K; Christ, Shawn E; Steiner, Robert; White, Desirée A
2014-04-01
A number of studies have revealed significant relationships between cognitive performance and average phenylalanine (Phe) levels in children with phenylketonuria (PKU), but only a few studies have been conducted to examine the relationships between cognitive performance and variability (fluctuations) in Phe levels. In the current study, we examined a variety of indices of Phe control to determine which index best predicted IQ and executive abilities in 47 school-age children with early- and continuously-treated PKU. Indices of Phe control were mean Phe, the index of dietary control, change in Phe with age, and several indices of variability in Phe (standard deviation, standard error of estimate, and percentage of spikes). These indices were computed over the lifetime and during 3 developmental epochs (<5, 5.0-9.9, and ≥10 years of age). Results indicated that variability in Phe was generally a stronger predictor of cognitive performance than other indices of Phe control. In addition, executive performance was better predicted by variability in Phe during older than younger developmental epochs. These results indicate that variability in Phe should be carefully controlled to maximize cognitive outcomes and that Phe control should not be liberalized as children with PKU age. PMID:24568837
Sense of Control Predicts Depressive and Anxious Symptoms Across the Transition to Parenthood
Keeton, Courtney Pierce; Perry-Jenkins, Maureen; Sayer, Aline G.
2010-01-01
In this study, the authors examined the relationship between sense of control and depressive and anxious symptoms for mothers and fathers during the 1st year of parenthood. Participants were 153 dual-earner, working-class couples who were recruited during the 3rd trimester of pregnancy at prenatal education courses. Data were collected 1 month antenatally and 1, 4, 6, and 12 months postnatally. Sense of control was decomposed into 2 distinct parts: an enduring component and a malleable component that changes with context. Consistent with a cognitive theory of emotional problems, results demonstrated that a sense of control served a protective function for mental health outcomes. A higher sense of enduring control predicted lower levels of psychological distress for new parents, and increases in control over time predicted decreases in depression and anxiety. Findings hold implications for interventions with expectant parents, such as expanding prenatal education courses to include strategies for enhancing and maintaining a sense of personal control. PMID:18410208
Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo
2016-07-01
Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice.
Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo
2016-07-01
Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice. PMID:27124127
HIV-1 DNA predicts disease progression and post-treatment virological control.
Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan; Koelsch, Kersten K; Kelleher, Anthony D; Phillips, Rodney E; Frater, John
2014-01-01
In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. PMID:25217531
Zorza, Juan P; Marino, Julián; de Lemus, Soledad; Acosta Mesas, Alberto
2013-01-01
This study explored the predictive power of effortful control (EC) on empathy, academic performance, and social competence in adolescents. We obtained self-report measures of EC and dispositional empathy in 359 students (197 girls and 162 boys) aged between 12 and 14 years. Each student provided information about the prosocial behavior of the rest of his/her classmates and completed a sociogram. At the end of the school year, we calculated the mean grade of each student and the teacher responsible for each class completed a questionnaire on the academic skills of his/her students. The study confirmed the existence of a structural equation model (SEM) in which EC directly predicted academic performance and social competence. Additionally, empathic concern partially mediated the effect of EC on social competence. Finally, social competence significantly predicted academic performance. The article discusses the practical applications of the model proposed.
HIV-1 DNA predicts disease progression and post-treatment virological control.
Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan; Koelsch, Kersten K; Kelleher, Anthony D; Phillips, Rodney E; Frater, John
2014-09-12
In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials.
Predicted versus experienced workload and performance on a supervisory control task
NASA Technical Reports Server (NTRS)
Battiste, V.; Hart, S. G.
1985-01-01
The multitask simulation of a supervisory control system was examined in order to evaluate the ability of operators to predict the workload and performance impact of unfamiliar task features, using their basic knowledge and specific information provided before each scenario. Task difficulty and experienced workload were varied by manipulating the number of elements per task, the number of tasks, task schedule, and availability of task elements for performance. The results have indicated that an operator might correctly predict the workload of a realistically complex task if (1) he is familiar with the basic system, and (2) the design, functional requirements, and operational procedures of the proposed modifications are described clearly. He is less able to predict unfamiliar rate or schedule complexity manipulations for which timing is an important element.
Using micro saint to predict performance in a nuclear power plant control room
Lawless, M.T.; Laughery, K.R.; Persenky, J.J.
1995-09-01
The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the {open_quotes}paper procedures{close_quotes} conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models` predictions were then compared to the experimental data from the {open_quotes}computerized conditions{close_quotes} of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed.
NASA Astrophysics Data System (ADS)
Farmer, Samuel; Silver-Thorn, Barbara; Voglewede, Philip; Beardsley, Scott A.
2014-10-01
Objective. Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. Approach. Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal ‘prediction’ interval between the EMG/kinematic input and the model’s estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. Main results. Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. Significance. The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model’s predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response.
Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.
MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D
2016-07-01
Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320
Prediction of Traffic Complexity and Controller Workload in Mixed Equipage NextGen Environments
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Prevot, Thomas
2012-01-01
Controller workload is a key factor in limiting en route air traffic capacity. Past efforts to quantify and predict workload have resulted in identifying objective metrics that correlate well with subjective workload ratings during current air traffic control operations. Although these metrics provide a reasonable statistical fit to existing data, they do not provide a good mechanism for estimating controller workload for future air traffic concepts and environments that make different assumptions about automation, enabling technologies, and controller tasks. One such future environment is characterized by en route airspace with a mixture of aircraft equipped with and without Data Communications (Data Comm). In this environment, aircraft with Data Comm will impact controller workload less than aircraft requiring voice communication, altering the close correlation between aircraft count and controller workload that exists in current air traffic operations. This paper outlines a new trajectory-based complexity (TBX) calculation that was presented to controllers during a human-in-the-loop simulation. The results showed that TBX accurately estimated the workload in a mixed Data Comm equipage environment and the resulting complexity values were understood and readily interpreted by the controllers. The complexity was represented as a "modified aircraft account" that weighted different complexity factors and summed them in such a way that the controllers could effectively treat them as aircraft count. The factors were also relatively easy to tune without an extensive data set. The results showed that the TBX approach is well suited for presenting traffic complexity in future air traffic environments.
Prospective versus predictive control in timing of hitting a falling ball.
Katsumata, Hiromu; Russell, Daniel M
2012-02-01
Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not
Observer-based predictive controller design with network-enhanced time-delay compensation
NASA Astrophysics Data System (ADS)
Florin Caruntu, Constantin
2015-02-01
State feedback control is very attractive due to the precise computation of the gain matrix, but the implementation of a state feedback controller is possible only when all state variables are directly measurable. This condition is almost impossible to accomplish due to the excess number of required sensors or unavailability of states for measurement in most of the practical situations. Hence, the need for an estimator or observer is obvious to estimate all the state variables by observing the input and the output of the controlled system. As such, the goal of this paper is to provide a control design methodology based on a Luenberger observer design that can assure the closed-loop performances of a vehicle drivetrain with backlash, while compensating the network-enhanced time-varying delays. This goal is achieved in a sequential manner: firstly, a piecewise linear model of two inertias drivetrain, which takes into consideration the backlash nonlinearity and the network-enhanced time-varying delay effects is derived; then, a Luenberger observer which estimates the state variables is synthesized and the robust full state-feedback predictive controller based on flexible control Lyapunov functions is designed to explicitly take into account the bounds of the disturbances caused by time-varying delays and to guarantee also the input-to-state stability of the system in a non-conservative way. The full state-feedback predictive control strategy based on the Luenberger observer design was experimentally tested on a vehicle drivetrain emulator controlled through controller area network, with the aim of minimizing the backlash effects while compensating the network-enhanced delays.
Design and analysis of a model predictive controller for active queue management.
Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan
2012-01-01
Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness.
NASA Astrophysics Data System (ADS)
Woldekidan, Korbaga
This dissertation aims at developing a novel and systematic approach to apply Model Predictive Control (MPC) to improve energy efficiency and indoor environmental quality in office buildings. Model predictive control is one of the advanced optimal control approaches that use models to predict the behavior of the process beyond the current time to optimize the system operation at the present time. In building system, MPC helps to exploit buildings' thermal storage capacity and to use the information on future disturbances like weather and internal heat gains to estimate optimal control inputs ahead of time. In this research the major challenges of applying MPC to building systems are addressed. A systematic framework has been developed for ease of implementation. New methods are proposed to develop simple and yet reasonably accurate models that can minimize the MPC development effort as well as computational time. The developed MPC is used to control a detailed building model represented by whole building performance simulation tool, EnergyPlus. A co-simulation strategy is used to communicate the MPC control developed in Matlab platform with the case building model in EnergyPlus. The co-simulation tool used (MLE+) also has the ability to talk to actual building management systems that support the BACnet communication protocol which makes it easy to implement the developed MPC control in actual buildings. A building that features an integrated lighting and window control and HVAC system with a dedicated outdoor air system and ceiling radiant panels was used as a case building. Though this study is specifically focused on the case building, the framework developed can be applied to any building type. The performance of the developed MPC was compared against a baseline control strategy using Proportional Integral and Derivative (PID) control. Various conventional and advanced thermal comfort as well as ventilation strategies were considered for the comparison. These
Longitudinal wave motion in width-constrained auxetic plates
NASA Astrophysics Data System (ADS)
Lim, Teik-Cheng
2016-05-01
This paper investigates the longitudinal wave velocity in auxetic plates in comparison to conventional ones, in which the plate is constrained from motion in the width direction. By taking into account the thickness change of the plate and its corresponding change in density, the developed wave velocity is casted not only as a function of Young’s modulus and density, but also in terms of Poisson’s ratio and longitudinal strain. Results show that density and thickness variations compensate for one another when the Poisson’s ratio is positive, but add up when the Poisson’s ratio is negative. Results also reveal that the classical model of longitudinal wave velocity for the plate is accurate when the Poisson’s ratio is about 1/3; at this Poisson’s ratio the influence from density and thickness variations cancel each other. Comparison between the current corrected model and the density-corrected Rayleigh-Lamb model reveals a number of consistent trends, while the discrepancies are elucidated. If the plate material possesses a negative Poisson’s ratio, the deviation of the actual wave velocity from the classical model becomes significant; auxeticity suppresses and enhances the wave velocity in compressive and tensile impacts, respectively. Hence the use of the corrected model is proposed when predicting longitudinal waves in width-constrained auxetic plates, and auxetic materials can be harnessed for effectively controlling wave velocities in thin-walled structures.
Prediction of forces and moments for flight vehicle control effectors: Workplan
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.
1989-01-01
Two research activities directed at hypersonic vehicle configurations are currently underway. The first involves the validation of a number of classical local surface inclination methods commonly employed in preliminary design studies of hypersonic flight vehicles. Unlike studies aimed at validating such methods for predicting overall vehicle aerodynamics, this effort emphasizes validating the prediction of forces and moments for flight control studies. Specifically, several vehicle configurations for which experimental or flight-test data are available are being examined. By comparing the theoretical predictions with these data, the strengths and weaknesses of the local surface inclination methods can be ascertained and possible improvements suggested. The second research effort, of significance to control during take-off and landing of most proposed hypersonic vehicle configurations, is aimed at determining the change due to ground effect in control effectiveness of highly swept delta planforms. Central to this research is the development of a vortex-lattice computer program which incorporates an unforced trailing vortex sheet and an image ground plane. With this program, the change in pitching moment of the basic vehicle due to ground proximity, and whether or not there is sufficient control power available to trim, can be determined. In addition to the current work, two different research directions are suggested for future study. The first is aimed at developing an interactive computer program to assist the flight controls engineer in determining the forces and moments generated by different types of control effectors that might be used on hypersonic vehicles. The first phase of this work would deal in the subsonic portion of the flight envelope, while later efforts would explore the supersonic/hypersonic flight regimes. The second proposed research direction would explore methods for determining the aerodynamic trim drag of a generic hypersonic flight vehicle
Comparisons of Prediction Models of Myofascial Pain Control after Dry Needling: A Prospective Study
Huang, Yuan-Ting; Neoh, Choo-Aun; Lin, Shun-Yuan
2013-01-01
Background. This study purposed to validate the use of artificial neural network (ANN) models for predicting myofascial pain control after dry needling and to compare the predictive capability of ANNs with that of support vector machine (SVM) and multiple linear regression (MLR). Methods. Totally 400 patients who have received dry needling treatments completed the Brief Pain Inventory (BPI) at baseline and at 1 year postoperatively. Results. Compared to the MLR and SVM models, the ANN model generally had smaller mean square error (MSE) and mean absolute percentage error (MAPE) values in the training dataset and testing dataset. Most ANN models had MAPE values ranging from 3.4% to 4.6% and most had high prediction accuracy. The global sensitivity analysis also showed that pretreatment BPI score was the best parameter for predicting pain after dry needling. Conclusion. Compared with the MLR and SVM models, the ANN model in this study was more accurate in predicting patient-reported BPI scores and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data. PMID:23853659
The prediction and control of behavior revisited: a review of the matching law.
Plaud, J J
1992-03-01
Experimental research conducted over the past 3 decades in relation to behavioral allocation and choice, collectively known as matching law research, is analyzed in this paper. The importance of the matching law for areas ranging from experimental to clinical psychology and psychiatry is discussed in relation to empirical findings that bear upon the validity and utility of the matching law for both the prediction and control of human behavior as well as for psychological and scientific inquiry in general.
Wavelet library for constrained devices
NASA Astrophysics Data System (ADS)
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Constrained orbital intercept-evasion
NASA Astrophysics Data System (ADS)
Zatezalo, Aleksandar; Stipanovic, Dusan M.; Mehra, Raman K.; Pham, Khanh
2014-06-01
An effective characterization of intercept-evasion confrontations in various space environments and a derivation of corresponding solutions considering a variety of real-world constraints are daunting theoretical and practical challenges. Current and future space-based platforms have to simultaneously operate as components of satellite formations and/or systems and at the same time, have a capability to evade potential collisions with other maneuver constrained space objects. In this article, we formulate and numerically approximate solutions of a Low Earth Orbit (LEO) intercept-maneuver problem in terms of game-theoretic capture-evasion guaranteed strategies. The space intercept-evasion approach is based on Liapunov methodology that has been successfully implemented in a number of air and ground based multi-player multi-goal game/control applications. The corresponding numerical algorithms are derived using computationally efficient and orbital propagator independent methods that are previously developed for Space Situational Awareness (SSA). This game theoretical but at the same time robust and practical approach is demonstrated on a realistic LEO scenario using existing Two Line Element (TLE) sets and Simplified General Perturbation-4 (SGP-4) propagator.
Planning horizon for a predictive optimal controller for thermal energy storage systems
Krarti, M.; Henze, G.P.; Bell, D.
1999-07-01
This paper presents the results of a detailed simulation analysis to determine the planning horizon for a predictive optimal controller for thermal energy storage (TES) systems. The objective of the simulation analysis is to determine the sensitivity of the performance of a TES optimal controller and the planning horizon length to different design parameters, including: chiller capacity, cooling plant model, storage system capacity, and load profile. The analysis is performed using two commercial buildings: a 20-floor office building in Wisconsin, and a hotel in California.
Buceta, David; Tojo, Concha; Vukmirovic, Miomir B.; Deepak, F. Leonard; Lopez-Quintela, M. Arturo
2015-06-02
In this study, we present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at sub-nanometer resolution simply by changing the reactants concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures.
Design of a generalized predictive controller for a biological wastewater treatment plant.
Sadeghassadi, M; Macnab, C J B; Westwick, D
2016-01-01
This paper presents a generalized predictive control (GPC) technique to regulate the activated sludge process found in a bioreactor used in wastewater treatment. The control strategy can track dissolved oxygen setpoint changes quickly, adapting to the system uncertainties and disturbances. Tests occur on an Activated Sludge Model No. 1 benchmark of an activated sludge process. A T filter added to the GPC framework results in an effective control strategy in the presence of coloured measurement noise. This work also suggests how a constraint on the measured variable can be added as a penalty term to the GPC framework which leads to improved control of the dissolved oxygen concentration in the presence of dynamic input disturbance. PMID:27120654
Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Jacques Loeb, B. F. Skinner, and the legacy of prediction and control.
Hackenberg, T D
1995-01-01
The biologist Jacques Loeb is an important figure in the history of behavior analysis. Between 1890 and 1915, Loeb championed an approach to experimental biology that would later exert substantial influence on the work of B. F. Skinner and behavior analysis. This paper examines some of these sources of influence, with a particular emphasis on Loeb's firm commitment to prediction and control as fundamental goals of an experimental life science, and how these goals were extended and broadened by Skinner. Both Loeb and Skinner adopted a pragmatic approach to science that put practical control of their subject matter above formal theory testing, both based their research programs on analyses of reproducible units involving the intact organism, and both strongly endorsed technological applications of basic laboratory science. For Loeb, but especially for Skinner, control came to mean something more than mere experimental or technological control for its own sake; it became synonomous with scientific understanding. This view follows from (a) the successful working model of science Loeb and Skinner inherited from Ernst Mach, in which science is viewed as human social activity, and effective practical action is taken as the basis of scientific knowledge, and (b) Skinner's analysis of scientific activity, situated in the world of direct experience and related to practices arranged by scientific verbal communities. From this perspective, prediction and control are human acts that arise from and are maintained by social circumstances in which such acts meet with effective consequences.
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei
2016-02-01
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Digging Soil Experiments for Micro Hydraulic Excavators based on Model Predictive Tracking Control
NASA Astrophysics Data System (ADS)
Tomatsu, Takumi; Nonaka, Kenichiro; Sekiguchi, Kazuma; Suzuki, Katsumasa
2016-09-01
Recently, the increase of burden to operators and lack of skilled operators are the issue in the work of the hydraulic excavator. These problems are expected to be improved by autonomous control. In this paper, we present experimental results of hydraulic excavators using model predictive control (MPC) which incorporates servo mechanism. MPC optimizes digging operations by the optimal control input which is calculated by predicting the future states and satisfying the constraints. However, it is difficult for MPC to cope with the reaction force from soil when a hydraulic excavator performs excavation. Servo mechanism suppresses the influence of the constant disturbance using the error integration. However, the bucket tip deviates from a specified shape by the sudden change of the disturbance. We can expect that the tracking performance is improved by combining MPC and servo mechanism. Path-tracking controls of the bucket tip are performed using the optimal control input. We apply the proposed method to the Komatsu- made micro hydraulic excavator PC01 by experiments. We show the effectiveness of the proposed method through the experiment of digging soil by comparing servo mechanism and pure MPC with the proposed method.
Low speed hybrid generalized predictive control of a gasoline-propelled car.
Romero, M; de Madrid, A P; Mañoso, C; Milanés, V
2015-07-01
Low-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers׳ standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals.
Low speed hybrid generalized predictive control of a gasoline-propelled car.
Romero, M; de Madrid, A P; Mañoso, C; Milanés, V
2015-07-01
Low-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers׳ standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals. PMID:25634584
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
Testing predictions from the male control theory of men's partner violence.
Bates, Elizabeth A; Graham-Kevan, Nicola; Archer, John
2014-01-01
The aim of this study was to test predictions from the male control theory of intimate partner violence (IPV) and Johnson's [Johnson, M. P. (1995). Journal of Marriage and the Family, 57, 282-294] typology. A student sample (N = 1,104) reported on their use of physical aggression and controlling behavior, to partners and to same-sex non-intimates. Contrary to the male control theory, women were found to be more physically aggressive to their partners than men were, and the reverse pattern was found for aggression to same-sex non-intimates. Furthermore, there were no substantial sex differences in controlling behavior, which significantly predicted physical aggression in both sexes. IPV was found to be associated with physical aggression to same-sex non-intimates, thereby demonstrating a link with aggression outside the family. Using Johnson's typology, women were more likely than men to be classed as "intimate terrorists," which was counter to earlier findings. Overall, these results do not support the male control theory of IPV. Instead, they fit the view that IPV does not have a special etiology, and is better studied within the context of other forms of aggression.
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei
2016-02-01
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration. PMID:26336152
Komulainen, Emilia; Zdrojewska, Justyna; Freemantle, Erika; Mohammad, Hasan; Kulesskaya, Natalia; Deshpande, Prasannakumar; Marchisella, Francesca; Mysore, Raghavendra; Hollos, Patrik; Michelsen, Kimmo A.; Mågard, Mats; Rauvala, Heikki; James, Peter; Coffey, Eleanor T.
2014-01-01
Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia, and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1), the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622, and T1625 (Uniprot P15146) corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622, and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative Sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central. PMID:25309320
Brain activity in predictive sensorimotor control for landings: an EEG pilot study.
Baumeister, J; von Detten, S; van Niekerk, S-M; Schubert, M; Ageberg, E; Louw, Q A
2013-12-01
Landing from a jump is related to predictive sensorimotor control. Frontal, central and parietal brain areas are known to play a role in this process based on online sensory feedback. This can be measured by EEG. However, there is only limited knowledge about brain activity during predictive preparation for drop landings (DL). The purpose is to demonstrate changes in brain activity in preparation for DL in different conditions. After resting, 10 athletes performed a series of DLs and were asked to concentrate on the landing preparation for 10 s before an auditory signal required them to drop land from a 30 cm platform. This task was executed before and after a standardized fatigue protocol. EEG spectral power was calculated during DL preparation. Frontal Theta power was increased during preparation compared to rest. Parietal Alpha-2 power demonstrated higher values in preparation after fatigue condition while lower limb kinematics remained unchanged. Cortical activity in frontal and parietal brain areas is sensitive for predictive sensorimotor control of drop landings. Frontal Theta power demonstrates an increase and is related to higher attentional control. In a fatigued condition the parietal Alpha-2 power increase might be related to a deactivation in the somatosensory brain areas. PMID:23740338
Fertuck, Eric A.; Keilp, John; Song, Inkyung; Morris, Melissa C.; Wilson, Scott T.; Brodsky, Beth S.; Stanley, Barbara
2011-01-01
Background Non-completion of a prescribed course of treatment occurs in 20–60% of individuals diagnosed with borderline personality disorder (BPD). While symptom severity, personality traits and environmental factors have been implicated as predictors of treatment non-completion (TNC), there have been no studies of neuropsychological predictors in this population. Methods From a randomized controlled trial, a subsample of 31, unmedicated outpatients diagnosed with BPD with recent self-injurious behavior was assessed on 5 neuropsychological domains. Patients were also assessed for general IQ, demographic and other salient clinical variables. Patients were randomized to one of four treatment conditions, which lasted up to 1 year. Number of weeks in treatment (WIT) up to 1 year was utilized as the index of TNC. Results Thirty-three percent of the subsample (n = 12) did not complete 1 year of treatment. However, more WIT were predicted by better baseline executive control (Trails B; p < 0.01) and visual memory performance (Benton visual retention; p < 0.001); other neuropsychological domains did not predict WIT. Conclusion In the treatment of outpatients with BPD, better executive control and visual memory performance predict more WIT. Assessing and addressing these neurocognitive factors in treatment may reduce TNC in this high-risk population. PMID:22116411
Efficacy of predictive wavefront control for compensating aero-optical aberrations
NASA Astrophysics Data System (ADS)
Goorskey, David J.; Schmidt, Jason; Whiteley, Matthew R.
2013-07-01
Imaging and laser beam propagation from airborne platforms are degraded by dynamic aberrations due to air flow around the aircraft, aero-mechanical distortions and jitter, and free atmospheric turbulence. For certain applications, like dim-object imaging, free-space optical communications, and laser weapons, adaptive optics (AO) is necessary to compensate for the aberrations in real time. Aero-optical flow is a particularly interesting source of aberrations whose flowing structures can be exploited by adaptive and predictive AO controllers, thereby realizing significant performance gains. We analyze dynamic aero-optical wavefronts to determine the pointing angles at which predictive wavefront control is more effective than conventional, fixed-gain, linear-filter control. It was found that properties of the spatial decompositions and temporal statistics of the wavefronts are directly traceable to specific features in the air flow. Furthermore, the aero-optical wavefront aberrations at the side- and aft-looking angles were the most severe, but they also benefited the most from predictive AO.
Brain activity in predictive sensorimotor control for landings: an EEG pilot study.
Baumeister, J; von Detten, S; van Niekerk, S-M; Schubert, M; Ageberg, E; Louw, Q A
2013-12-01
Landing from a jump is related to predictive sensorimotor control. Frontal, central and parietal brain areas are known to play a role in this process based on online sensory feedback. This can be measured by EEG. However, there is only limited knowledge about brain activity during predictive preparation for drop landings (DL). The purpose is to demonstrate changes in brain activity in preparation for DL in different conditions. After resting, 10 athletes performed a series of DLs and were asked to concentrate on the landing preparation for 10 s before an auditory signal required them to drop land from a 30 cm platform. This task was executed before and after a standardized fatigue protocol. EEG spectral power was calculated during DL preparation. Frontal Theta power was increased during preparation compared to rest. Parietal Alpha-2 power demonstrated higher values in preparation after fatigue condition while lower limb kinematics remained unchanged. Cortical activity in frontal and parietal brain areas is sensitive for predictive sensorimotor control of drop landings. Frontal Theta power demonstrates an increase and is related to higher attentional control. In a fatigued condition the parietal Alpha-2 power increase might be related to a deactivation in the somatosensory brain areas.
Does Sense of Control Predict Depression Among Individuals After Psychiatric Hospital Discharge?
Kim, Yoo Jung; Fusco, Rachel A
2015-11-01
Sense of control is known to be related to depression. Yet, few studies have examined the role of sense of control as related to depression for discharged psychiatric patients. In this study the longitudinal relationship between sense of control and depressive mood was examined using the MacArthur Violence Risk Assessment Study, a 6-wave, 1-year study of 948 ethnically diverse postdischarge psychiatric patients. Sense of control was decomposed into 2 components (i.e., a time-invariant as well as a time-varying component) and so as to examine which component of sense of control would more accurately explain this relationship. Results demonstrated that time-varying sense of control significantly predicted changes in depressive mood during the transition to community environment. Time-invariant sense of control, however, was not significantly related to changes in depressive mood. Findings of this study hold important implications for intervention practice with people before or after psychiatric discharge, including the need for incorporation of therapeutic and psychoeducational efforts that bolster sense of control.
Predictive functional control for active queue management in congested TCP/IP networks.
Bigdeli, N; Haeri, M
2009-01-01
Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.
Flatness Control Using Roll Coolant Based on Predicted Flatness Variation in Cold Rolling Mills
NASA Astrophysics Data System (ADS)
Dohmae, Yukihiro; Okamura, Yoshihide
Flatness control for cold rolling mills is one of the important technologies for improving of product quality and productivity. In particular, poor flatness leads to strip tearing in the extreme case and, moreover, it significantly reduces productivity. Therefore, various flatness control system has been developed. The main actuators for flatness control are classified into two types; one is mechanical equipment such as roll bender, the other is roll coolant, which controls thermal expansion of roll. Flatness variation such as center buckle or edge wave is mainly controlled by mechanical actuator which has high response characteristics. On another front, flatness variation of local zone can be controlled by roll coolant although one's response is lower than the response of mechanical actuator. For accomplishing good flatness accuracy in cold rolling mills, it is important to improve the performance of coolant control moreover. In this paper, a new coolant control method based on flatness variation model is described. In proposed method, the state of coolant spray on or off is selected to minimize the flatness deviation by using predicted flatness variation. The effectiveness of developed system has been demonstrated by application in actual plant.
NASA Astrophysics Data System (ADS)
MyoLin, Nay; Rutten, Martine; van de Giesen, Nick
2016-04-01
Flooding is a common natural disaster in the world. Construction of reservoirs, sluice gates, dikes, embankments and sea walls are implemented to minimize loss of life and property in a flood event. Rather than completely relying on large structural measures, non-structural measures such as real time control of a reservoir system can also improve flood prevention and water supply in a river basin. In this paper, we present the optimal operation of a multi-reservoir system by using Model Predictive Control (MPC) and particular attention is focused on flood mitigation of the Sittaung River Basin, Myanmar. The main challenges are non-linearity in the dynamic behavior of the water system and exponential growth of computational complexity with the state and control dimension. To deal with an issue related to non-linearity, we applied simplified internal model based on linearization scheme with a large grid length. For solving curse of dimensionality, we utilize the reduced model in which the states of the system are reduced by considering outflows from uncontrolled catchments as disturbances in the water system. We also address the computational time for real time control by using large time step scheme. Simulation results indicate that this model is able to use for real time control of a reservoir system addressing trade-offs between the multiple objectives.
Gorlin, Eugenia I; Teachman, Bethany A
2015-07-01
The current study brings together two typically distinct lines of research. First, social anxiety is inconsistently associated with behavioral deficits in social performance, and the factors accounting for these deficits remain poorly understood. Second, research on selective processing of threat cues, termed cognitive biases, suggests these biases typically predict negative outcomes, but may sometimes be adaptive, depending on the context. Integrating these research areas, the current study examined whether conscious and/or unconscious threat interference biases (indexed by the unmasked and masked emotional Stroop) can explain unique variance, beyond self-reported anxiety measures, in behavioral avoidance and observer-rated anxious behavior during a public speaking task. Minute of speech and general inhibitory control (indexed by the color-word Stroop) were examined as within-subject and between-subject moderators, respectively. Highly socially anxious participants (N=135) completed the emotional and color-word Stroop blocks prior to completing a 4-minute videotaped speech task, which was later coded for anxious behaviors (e.g., speech dysfluency). Mixed-effects regression analyses revealed that general inhibitory control moderated the relationship between both conscious and unconscious threat interference bias and anxious behavior (though not avoidance), such that lower threat interference predicted higher levels of anxious behavior, but only among those with relatively weaker (versus stronger) inhibitory control. Minute of speech further moderated this relationship for unconscious (but not conscious) social-threat interference, such that lower social-threat interference predicted a steeper increase in anxious behaviors over the course of the speech (but only among those with weaker inhibitory control). Thus, both trait and state differences in inhibitory control resources may influence the behavioral impact of threat biases in social anxiety. PMID:26163713
Constraining monodromy inflation
Peiris, Hiranya V.; Easther, Richard; Flauger, Raphael E-mail: r.easther@auckland.ac.nz
2013-09-01
We use cosmic microwave background (CMB) data from the 9-year WMAP release to derive constraints on monodromy inflation, which is characterized by a linear inflaton potential with a periodic modulation. We identify two possible periodic modulations that significantly improve the fit, lowering χ{sup 2} by approximately 10 and 20. However, standard Bayesian model selection criteria assign roughly equal odds to the modulated potential and the unmodulated case. A modulated inflationary potential can generate substantial primordial non-Gaussianity with a specific and characteristic form. For the best-fit parameters to the WMAP angular power spectrum, the corresponding non-Gaussianity might be detectable in upcoming CMB data, allowing nontrivial consistency checks on the predictions of a modulated inflationary potential.
Changes in predictive motor control in drop-jumps based on uncertainties in task execution.
Leukel, Christian; Taube, Wolfgang; Lorch, Michael; Gollhofer, Albert
2012-02-01
Drop-jumps are controlled by predictive and reactive motor strategies which differ with respect to the utilization of sensory feedback. With reaction, sensory feedback is integrated while performing the task. With prediction, sensory information may be used prior to movement onset. Certainty about upcoming events is important for prediction. The present study aimed at investigating how uncertainties in the task execution affect predictive motor control in drop-jumps. Ten healthy subjects (22±1 years, M±SD) participated. The subjects performed either (i) drop-jumps by knowing that they might had to switch to a landing movement upon an auditory cue, which was sometimes elicited prior to touch-down (uncertainty). In (ii), subjects performed drop-jumps by knowing that there would be no auditory cue and consequently no switch of the movement (certainty). The m. soleus EMG prior to touch-down was higher when subjects knew there would be no auditory cue compared to when subjects performed the same task but switching from drop-jump to landing was possible (uncertainty). The EMG was reversed in the late concentric phase, meaning that it was higher in the high uncertainty task. The results of the present study showed that the muscular activity was predictively adjusted according to uncertainties in task execution. It is argued that tendomuscular stiffness was the variable responsible for the adjustment of muscular activity. The required tendomuscular stiffness was higher in drop-jumps than in landings. Consequently, when it was not certain whether to jump or to land, muscular activity and therefore tendomuscular stiffness was reduced. PMID:21757248
Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram
2015-07-29
Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under different levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.
Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots
NASA Astrophysics Data System (ADS)
Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.
Duckworth, Angela Lee; Tsukayama, Eli; May, Henry
2010-01-01
The predictive validity of personality for important life outcomes is well established, but conventional longitudinal analyses cannot rule out the possibility that unmeasured third-variable confounds fully account for the observed relationships. Longitudinal hierarchical linear models (HLM) with time-varying covariates allow each subject to serve as his or her own control, thus eliminating between-individual confounds. HLM also allows the directionality of the causal relationship to be tested by reversing time-lagged predictor and outcome variables. We illustrate these techniques through a series of models that demonstrate that within-individual changes in self-control over time predict subsequent changes in GPA but not vice-versa. The evidence supporting a causal role for self-control was not moderated by IQ, gender, ethnicity, or income. Further analyses rule out one time-varying confound: self-esteem. The analytic approach taken in this study provides the strongest evidence to date for the causal role of self-control in determining achievement. PMID:20976121
Cognitive Control Predicts Use of Model-Based Reinforcement-Learning
Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.
2015-01-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791
GOBF-ARMA based model predictive control for an ideal reactive distillation column.
Seban, Lalu; Kirubakaran, V; Roy, B K; Radhakrishnan, T K
2015-11-01
This paper discusses the control of an ideal reactive distillation column (RDC) using model predictive control (MPC) based on a combination of deterministic generalized orthonormal basis filter (GOBF) and stochastic autoregressive moving average (ARMA) models. Reactive distillation (RD) integrates reaction and distillation in a single process resulting in process and energy integration promoting green chemistry principles. Improved selectivity of products, increased conversion, better utilization and control of reaction heat, scope for difficult separations and the avoidance of azeotropes are some of the advantages that reactive distillation offers over conventional technique of distillation column after reactor. The introduction of an in situ separation in the reaction zone leads to complex interactions between vapor-liquid equilibrium, mass transfer rates, diffusion and chemical kinetics. RD with its high order and nonlinear dynamics, and multiple steady states is a good candidate for testing and verification of new control schemes. Here a combination of GOBF-ARMA models is used to catch and represent the dynamics of the RDC. This GOBF-ARMA model is then used to design an MPC scheme for the control of product purity of RDC under different operating constraints and conditions. The performance of proposed modeling and control using GOBF-ARMA based MPC is simulated and analyzed. The proposed controller is found to perform satisfactorily for reference tracking and disturbance rejection in RDC.
Winter, David G
2010-12-01
Several decades of research have established that implicit achievement motivation (n Achievement) is associated with success in business, particularly in entrepreneurial or sales roles. However, several political psychology studies have shown that achievement motivation is not associated with success in politics; rather, implicit power motivation often predicts political success. Having versus lacking control may be a key difference between business and politics. Case studies suggest that achievement-motivated U.S. presidents and other world leaders often become frustrated and thereby fail because of lack of control, whereas power-motivated presidents develop ways to work with this inherent feature of politics. A reevaluation of previous research suggests that, in fact, relationships between achievement motivation and business success only occur when control is high. The theme of control is also prominent in the development of achievement motivation. Cross-national data are also consistent with this analysis: In democratic industrialized countries, national levels of achievement motivation are associated with strong executive control. In countries with low opportunity for education (thus fewer opportunities to develop a sense of personal control), achievement motivation is associated with internal violence. Many of these manifestations of frustrated achievement motivation in politics resemble authoritarianism. This conclusion is tested by data from a longitudinal study of 113 male college students, showing that high initial achievement motivation combined with frustrated desires for control is related to increases in authoritarianism (F-scale scores) during the college years. Implications for the psychology of leadership and practical politics are discussed.
NASA Astrophysics Data System (ADS)
Jassmann, U.; Dickler, S.; Zierath, J.; Hakenberg, M.; Abel, D.
2016-09-01
This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to a baseline controller, using a classic control scheme, which currently operates the wind turbine. All simulations are carried out with a detailed multibody simulation turbine model implemented in alaska/Wind. The performance of the two different controllers is compared using a 50-year Extreme Operation Gust event, since it is one of the main design drivers for the wind turbine considered in this work. The implemented MPC is able to level electrical output power and reduce mechanical loads at the same time. Without de-rating the achieved control results, a move-blocking strategy is utilized and allowed to reduce the computational burden of the MPC by more than 50% compared to a baseline MPC implementation. This even allows to run the MPC on a state of the art Programmable Logic Controller.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.; Meguid, S. A.
2016-07-01
This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.
ERIC Educational Resources Information Center
Infurna, Frank J.; Ram, Nilam; Gerstorf, Denis
2013-01-01
Perceived control plays an important role for health across adulthood and old age. However, little is known about the factors that account for such associations and whether changes in control (or control trajectory) uniquely predict major health outcomes over and above mean levels of control. Using data from the nationwide Americans' Changing…
Wu, Julie M.; Takahashi, Diana L; Ingram, Donald K.; Mattison, Julie A.; Roth, George; Ottinger, Mary Ann; Zelinski, Mary B.
2010-01-01
Controlled ovarian stimulation (COS) is an alternative to natural breeding in nonhuman primates; however, these protocols are costly with no guarantee of success. Toward the objective of predicting COS outcome in rhesus monkeys, the current study evaluated three clinically used ovarian reserve tests (ORTs): day 3 (d3) follicle-stimulating hormone (FSH) with d3 inhibin B (INHB), the clomiphene citrate challenge test (CCCT), and the exogenous FSH Ovarian Reserve Test (EFORT). A COS was also performed and response was classified as either successful (COS+) or unsuccessful (COS−) and retrospectively compared to ORT predictions. FSH and INHB were assessed for best hormonal index in conjunction with the aforementioned tests. INHB was consistently more accurate than FSH in all ORTs used. Overall, a modified version of the CCCT using INHB values yielded the best percentage of correct predictions. This is the first report of ORT evaluation in rhesus monkeys and may provide a useful diagnostic test prior to costly follicle stimulations, as well as predicting the onset of menopause. PMID:20336797
Can Self-Prediction Overcome Barriers to Hepatitis B Vaccination? A Randomized Controlled Trial
Cox, Anthony D.; Cox, Dena; Cyrier, Rosalie; Graham-Dotson, Yolanda; Zimet, Gregory D.
2011-01-01
Objective Hepatitis B virus (HBV) infection remains a serious public health problem, due in part to low vaccination rates among high-risk adults, many of whom decline vaccination because of barriers such as perceived inconvenience or discomfort. This study evaluates the efficacy of a self-prediction intervention to increase HBV vaccination rates among high-risk adults. Method Randomized controlled trial of 1175 adults recruited from three STD clinics in the United States over 28 months. Participants completed an audio-computer-assisted self-interview (A-CASI), which presented information about HBV infection and vaccination, and measured relevant beliefs, behaviors and demographics. Half of participants were assigned randomly to a "self-prediction" intervention, asking them to predict their future acceptance of HBV vaccination. The main outcome measure was subsequent vaccination behavior. Other measures included perceived barriers to HBV vaccination, measured prior to the intervention. Results There was a significant interaction between the intervention and vaccination barriers, indicating the effect of the intervention differed depending on perceived vaccination barriers. Among high-barriers patients, the intervention significantly increased vaccination acceptance. Among low-barrier patients, the intervention did not influence vaccination acceptance. Conclusions The self-prediction intervention significantly increased vaccination acceptance among "high-barriers" patients, who typically have very low vaccination rates. This brief intervention could be a useful tool in increasing vaccine uptake among high-barriers patients. PMID:21875205
Prediction of forces and moments for hypersonic flight vehicle control effectors
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Long, Lyle N.; Pagano, Peter J.
1991-01-01
Developing methods of predicting flight control forces and moments for hypersonic vehicles, included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicate the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was proposed in which a better understanding is sought for the reasons of the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. To obtain this additional understanding, a more careful study of the results obtained relative to the methods used was undertaken. In addition, where appropriate and necessary, a more complete modeling of the flow was performed using well proven methods of computational fluid dynamics. As a result, assessments will be made which are more quantitative than those of phase 1 regarding the uncertainty involved in the prediction of the aerodynamic derivatives. In addition, with improved understanding, it is anticipated that improvements resulting in better accuracy will be made to the simple force and moment prediction.
Lowe, Michael R.; Arigo, Danielle; Butryn, Meghan L.; Gilbert, Jennifer R; Sarwer, David; Stice, Eric
2016-01-01
Objective The subjective feeling of loss of control (LOC) over eating is common among eating disordered individuals and has predicted weight gain in past research. Restrained eating and negative affect are risk factors for binge eating (which involves LOC), but intense feelings of pleasure derived from palatable foods might also predict the emergence or intensification of LOC eating. The Power of Food Scale (PFS; Lowe et al., 2009) assesses preoccupation with the pleasure derived from palatable food. Method The current sample (n = 294) comprised female college freshmen at risk for weight gain. LOC was assessed using an abbreviated version of the Eating Disorders Examination interview. LOC was assessed at baseline, 6 weeks and 6, 12 and 24 months follow-ups. Results Among those exhibiting LOC eating at baseline, (and controlling for baseline depression, restrained eating and body image dissatisfaction), those scoring higher on the PFS at baseline showed a smaller reduction in LOC frequency over time relative to those scoring lower. Using the same covariates, the PFS predicted the first emergence of LOC over two years among those showing no LOC at baseline. Conclusions These results suggest that powerful hedonic attraction to palatable foods may represent a risk factor for the maintenance of LOC in those initially experiencing it and the emergence of LOC eating in those who are not. An enhanced ability to identify individuals at increased risk of developing or maintaining LOC eating could be useful in prevention programs. PMID:26690638
A Prediction Method of TV Camera Image for Space Manual-control Rendezvous and Docking
NASA Astrophysics Data System (ADS)
Zhen, Huang; Qing, Yang; Wenrui, Wu
Space manual-control rendezvous and docking (RVD) is a key technology for accomplishing the RVD mission in manned space engineering, especially when automatic control system is out of work. The pilot on chase spacecraft manipulates the hand-stick by the image of target spacecraft captured by TV camera. From the TV image, the relative position and attitude of chase and target spacecrafts can be shown. Therefore, the size, the position, the brightness and the shadow of the target on TV camera are key to guarantee the success of manual-control RVD. A method of predicting the on-orbit TV camera image at different relative positions and light conditions during the process of RVD is discussed. Firstly, the basic principle of capturing the image of cross drone on target spacecraft by TV camera is analyzed theoretically, based which the strategy of manual-control RVD is discussed in detail. Secondly, the relationship between the displayed size or position and the real relative distance of chase and target spacecrafts is presented, the brightness and reflection by the target spacecraft at different light conditions are decribed, the shadow on cross drone caused by the chase or target spacecraft is analyzed. Thirdly, a prediction method of on-orbit TV camera images at certain orbit and light condition is provided, and the characteristics of TV camera image during the RVD is analyzed. Finally, the size, the position, the brightness and the shadow of target spacecraft on TV camera image at typical orbit is simulated. The result, by comparing the simulated images with the real images captured by the TV camera on Shenzhou manned spaceship , shows that the prediction method is reasonable
Pourjafari, Ebrahim; Mojallali, Hamed
2011-04-01
Voltage stability is one of the most challenging concerns that power utilities are confronted with, and this paper proposes a voltage control scheme based on Model Predictive Control (MPC) to overcome this kind of instability. Voltage instability has a close relation with the adequacy of reactive power and the response of Under Load Tap Changers (ULTCs) to the voltage drop after the occurrence of a contingency. Therefore, the proposed method utilizes reactive power injection and tap changing to avoid voltage collapse. Considering discrete nature of the changes in the tap ratio and also in the reactive power injected by capacitor banks, the search area for the optimizer of MPC will be an integer area; consequently, a modified discrete multi-valued Particle Swarm Optimization (PSO) is considered to perform this optimization. Simulation results of applying the proposed control scheme to a 4-bus system confirm its capability to prevent voltage collapse. PMID:21251650
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles
NASA Astrophysics Data System (ADS)
Gao, Yiqi; Gray, Andrew; Tseng, H. Eric; Borrelli, Francesco
2014-06-01
This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.
Model Predictive Control-based Optimal Coordination of Distributed Energy Resources
Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.
2013-04-03
Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.
Model Predictive Control-based Optimal Coordination of Distributed Energy Resources
Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.
2013-01-07
Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Constrained evolution of nanocrystallites
NASA Astrophysics Data System (ADS)
Degawa, M.; Thürmer, K.; Williams, E. D.
2006-10-01
Deviations from the universal predictions of shape-preserving structure evolution have been investigated in the context of realistic physical boundary conditions for supported nanoscale crystallites. Structural evolution was simulated using the continuum step model with volume conservation, variable interface free energy, and incorporating analytical solutions for equilibrium and metastable crystallite shapes. Early stages of evolution following a simulated temperature drop are consistent with the kinetics of shape-preserving evolution, e.g., not limited by the constant volume constraint. Later stages of decay show a distinct slow down, with an empirically-determined exponential form. The time constant of the slow final evolution increases linearly with the length scale of the crystallite, and also increases monotonically with interface adhesion strength. Under normal evolution, where the interface area between the crystallite and substrate is constant or increasing, the evolution progresses through the metastable states accessible to the volume. If a decreasing interface area can be induced, an alternative progression ending much closer to equilibrium is possible. The late-stage slow down provides additional kinetic information that allows the nonuniqueness of early-stage modeling to be resolved. The slow down observed in the late stages of relaxation of Pb crystallites has been fit, with a unique determination of the relative values of the terrace diffusion constant and step attachment constant.
An English language interface for constrained domains
NASA Technical Reports Server (NTRS)
Page, Brenda J.
1989-01-01
The Multi-Satellite Operations Control Center (MSOCC) Jargon Interpreter (MJI) demonstrates an English language interface for a constrained domain. A constrained domain is defined as one with a small and well delineated set of actions and objects. The set of actions chosen for the MJI is from the domain of MSOCC Applications Executive (MAE) Systems Test and Operations Language (STOL) directives and contains directives for signing a cathode ray tube (CRT) on or off, calling up or clearing a display page, starting or stopping a procedure, and controlling history recording. The set of objects chosen consists of CRTs, display pages, STOL procedures, and history files. Translation from English sentences to STOL directives is done in two phases. In the first phase, an augmented transition net (ATN) parser and dictionary are used for determining grammatically correct parsings of input sentences. In the second phase, grammatically typed sentences are submitted to a forward-chaining rule-based system for interpretation and translation into equivalent MAE STOL directives. Tests of the MJI show that it is able to translate individual clearly stated sentences into the subset of directives selected for the prototype. This approach to an English language interface may be used for similarly constrained situations by modifying the MJI's dictionary and rules to reflect the change of domain.
Viani, B E
2001-04-11
Representative, simplified geothermal rock-fluid systems are investigated with a modeling approach to estimate how rock water interactions affect coupled properties related to mechanical stability and permeability improvement through fracturing. First, geochemical modeling is used to determine the evolution of fluid chemistry at temperatures up to 300 C when fluids are in contact with representative rocks of continental origin. Then, a kinetic crack growth model for quartz is used to predict growth rate for subcritical cracks in acidic and basic environments. The predicted growth rate is highly sensitive to temperature and pH in the ranges tested. At present, the model is limited to situations in which quartz controls the mechanical process of interest, such as well bore stability in silica cemented rocks and the opening of quartz filled veins to enhance permeability.
High-order distortion control using a computational prediction method for device overlay
NASA Astrophysics Data System (ADS)
Kang, Young-Seog; Affentauschegg, Cedric; Mulkens, Jan; Kim, Jang-Sun; Shin, Ju-Hee; Kim, Young-Ha; Nam, Young-Sun; Choi, Young-Sin; Ha, Hunhwan; Lee, Dong-Han; Lee, Jae-il; Rizvi, Umar; Geh, Bernd; van der Heijden, Rob; Baselmans, Jan; Kwon, Oh-Sung
2016-04-01
As a result of the continuously shrinking features of the integrated circuit, the overlay budget requirements have become very demanding. Historically, overlay has been performed using metrology targets for process control, and most overlay enhancements were achieved by hardware improvements. However, this is no longer sufficient, and we need to consider additional solutions for overlay improvements in process variation using computational methods. In this paper, we present the limitations of third-order intrafield distortion corrections based on standard overlay metrology and propose an improved method which includes a prediction of the device overlay and corrects the lens aberration fingerprint based on this prediction. For a DRAM use case, we present a computational approach that calculates the overlay of the device pattern using lens aberrations as an additional input, next to the target-based overlay measurement result. Supporting experimental data are presented that demonstrate a significant reduction of the intrafield overlay fingerprint.
Evaluation of Transport and Dispersion Models: A Controlled Comparison of HPAC and NARAC Predictions
Warner, S; Heagy, J F; Platt, N; Larson, D; Sugiyama, G; Nasstrom, J S; Foster, K T; Bradley, S; Bieberbach, G
2001-05-01
During fiscal year 2000, a series of studies in support of the Defense Threat Reduction Agency (DTRA) was begun. The goal of these studies is to improve the verification, validation, and accreditation (VV&A) of hazard prediction and assessment models and capabilities. These studies are part of a larger joint VV&A collaborative effort that DTRA and the Department of Energy (DOE), via the Lawrence Livermore National Laboratory (LLNL), are conducting. This joint effort includes comparisons of the LLNL and DTRA transport and dispersion (T&D) modeling systems, NARAC and HPAC, respectively. The purpose of this work is to compare, in a systematic way, HPAC and NARAC model predictions for a set of controlled hypothetical release scenarios. Only ''model-versus-model'' comparisons are addressed in this work. Model-to-field trial comparisons for HPAC and NARAC have been addressed in a recent companion study, in support of the same joint VV&A effort.
Pole-placement Predictive Functional Control for over-damped systems with real poles.
Rossiter, J A; Haber, R; Zabet, K
2016-03-01
This paper gives new insight and design proposals for Predictive Functional Control (PFC) algorithms. Common practice and indeed a requirement of PFC is to select a coincidence horizon greater than one for high-order systems and for the link between the design parameters and the desired dynamic to be weak. Here the proposal is to use parallel first-order models to form an independent prediction model and show that with these it is possible both to use a coincidence horizon of one and moreover to obtain precisely the desired closed-loop dynamics. It is shown through analysis that the use of a coincidence horizon of one greatly simplifies coding, tuning, constraint handling and implementation. The paper derives the key results for high-order and non-minimum phase processes and also demonstrates the flexibility and potential industrial utility of the proposal.
Pole-placement Predictive Functional Control for over-damped systems with real poles.
Rossiter, J A; Haber, R; Zabet, K
2016-03-01
This paper gives new insight and design proposals for Predictive Functional Control (PFC) algorithms. Common practice and indeed a requirement of PFC is to select a coincidence horizon greater than one for high-order systems and for the link between the design parameters and the desired dynamic to be weak. Here the proposal is to use parallel first-order models to form an independent prediction model and show that with these it is possible both to use a coincidence horizon of one and moreover to obtain precisely the desired closed-loop dynamics. It is shown through analysis that the use of a coincidence horizon of one greatly simplifies coding, tuning, constraint handling and implementation. The paper derives the key results for high-order and non-minimum phase processes and also demonstrates the flexibility and potential industrial utility of the proposal. PMID:26723844
Power and Performance Management in Nonlinear Virtualized Computing Systems via Predictive Control
Wen, Chengjian; Mu, Yifen
2015-01-01
The problem of power and performance management captures growing research interest in both academic and industrial field. Virtulization, as an advanced technology to conserve energy, has become basic architecture for most data centers. Accordingly, more sophisticated and finer control are desired in virtualized computing systems, where multiple types of control actions exist as well as time delay effect, which make it complicated to formulate and solve the problem. Furthermore, because of improvement on chips and reduction of idle power, power consumption in modern machines shows significant nonlinearity, making linear power models(which is commonly adopted in previous work) no longer suitable. To deal with this, we build a discrete system state model, in which all control actions and time delay effect are included by state transition and performance and power can be defined on each state. Then, we design the predictive controller, via which the quadratic cost function integrating performance and power can be dynamically optimized. Experiment results show the effectiveness of the controller. By choosing a moderate weight, a good balance can be achieved between performance and power: 99.76% requirements can be dealt with and power consumption can be saved by 33% comparing to the case with open loop controller. PMID:26225769
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; Chen, Guo; He, Xing
2016-02-01
This paper proposes a generalized Hopfield network for solving general constrained convex optimization problems. First, the existence and the uniqueness of solutions to the generalized Hopfield network in the Filippov sense are proved. Then, the Lie derivative is introduced to analyze the stability of the network using a differential inclusion. The optimality of the solution to the nonsmooth constrained optimization problems is shown to be guaranteed by the enhanced Fritz John conditions. The convergence rate of the generalized Hopfield network can be estimated by the second-order derivative of the energy function. The effectiveness of the proposed network is evaluated on several typical nonsmooth optimization problems and used to solve the hierarchical and distributed model predictive control four-tank benchmark.
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
Models of basal ganglia and cerebellum for sensorimotor integration and predictive control
NASA Astrophysics Data System (ADS)
Jabri, Marwan A.; Huang, Jerry; Coenen, Olivier J. D.; Sejnowski, Terrence J.
2000-10-01
This paper presents a sensorimotor architecture integrating computational models of a cerebellum and a basal ganglia and operating on a microrobot. The computational models enable a microrobot to learn to track a moving object and anticipate future positions using a CCD camera. The architecture features pre-processing modules for coordinate transformation and instantaneous orientation extraction. Learning of motor control is implemented using predictive Hebbian reinforcement-learning algorithm in the basal ganglia model. Learning of sensory predictions makes use of a combination of long-term depression (LTD) and long-term potentiation (LTP) adaptation rules within the cerebellum model. The basal ganglia model uses the visual inputs to develop sensorimotor mapping for motor control, while the cerebellum module uses robot orientation and world- coordinate transformed inputs to predict the location of the moving object in a robot centered coordinate system. We propose several hypotheses about the functional role of cell populations in the cerebellum and argue that mossy fiber projections to the deep cerebellar nucleus (DCN) could play a coordinate transformation role and act as gain fields. We propose that such transformation could be learnt early in the brain development stages and could be guided by the activity of the climbing fibers. Proprioceptor mossy fibers projecting to the DCN and providing robot orientation with respect to a reference system could be involved in this case. Other mossy fibers carrying visual sensory input provide visual patterns to the granule cells. The combined activities of the granule and the Purkinje cells store spatial representations of the target patterns. The combinations of mossy and Purkinje projections to the DCN provide a prediction of the location of the moving target taking into consideration the robot orientation. Results of lesion simulations based on our model show degradations similar to those reported in cerebellar lesion
Nonparametric Hammerstein model based model predictive control for heart rate regulation.
Su, Steven W; Huang, Shoudong; Wang, Lu; Celler, Branko G; Savkin, Andrey V; Guo, Ying; Cheng, Teddy
2007-01-01
This paper proposed a novel nonparametric model based model predictive control approach for the regulation of heart rate during treadmill exercise. As the model structure of human cardiovascular system is often hard to determine, nonparametric modelling is a more realistic manner to describe complex behaviours of cardiovascular system. This paper presents a new nonparametric Hammerstein model identification approach for heart rate response modelling. Based on the pseudo-random binary sequence experiment data, we decouple the identification of linear dynamic part and input nonlinearity of the Hammerstein system. Correlation analysis is applied to acquire step response of linear dynamic component. Support Vector Regression is adopted to obtain a nonparametric description of the inverse of input static nonlinearity that is utilized to form an approximate linear model of the Hammerstein system. Based on the established model, a model predictive controller under predefined speed and acceleration constraints is designed to achieve safer treadmill exercise. Simulation results show that the proposed control algorithm can achieve optimal heart rate tracking performance under predefined constraints.
Walsh, Kate; Messman-Moore, Terri; Zerubavel, Noga; Chandley, Rachel B.; DeNardi, Kathleen A.; Walker, Dave P.
2013-01-01
Objectives Although numerous studies have documented linkages between childhood sexual abuse (CSA) and later sexual revictimization, mechanisms underlying revictimization, particularly assaults occurring in the context of substance use, are not well-understood. Consistent with Traumagenic Dynamics theory, the present study tested a path model positing that lowered perceptions of sexual control resulting from CSA may be associated with increased sex-related alcohol expectancies and heightened likelihood of risky sexual behavior, which in turn, may predict adult substance-related rape. Methods Participants were 546 female college students who completed anonymous surveys regarding CSA and adult rape, perceptions of sexual control, sex-related alcohol expectancies, and likelihood of engaging in risky sexual behavior. Results The data fit the hypothesized model well and all hypothesized path coefficients were significant and in the expected directions. As expected, sex-related alcohol expectancies and likelihood of risky sexual behavior only predicted substance-related rape, not forcible rape. Conclusions Findings suggested that low perceived sexual control stemming from CSA is associated with increased sex-related alcohol expectancies and a higher likelihood of engaging in sexual behavior in the context of alcohol use. In turn these proximal risk factors heighten vulnerability to substance-related rape. Programs which aim to reduce risk for substance-related rape could be improved by addressing expectancies and motivations for risky sexual behavior in the context of substance use. Implications and future directions are discussed. PMID:23312991
Low Vitamin D Levels Do Not Predict Hyperglycemia in Elderly Endurance Athletes (but in Controls)
Nistler, Sonja; Batmyagmar, Delgerdalai; Ponocny-Seliger, Elisabeth; Perkmann, Thomas; Scherzer, Thomas M.; Kundi, Michael; Endler, Georg; Ratzinger, Franz; Pilger, Alexander; Wagner, Oswald F.; Winker, Robert
2016-01-01
Background and Aim Recent studies revealed a link between hypovitaminosis D3 and the risk for hyperglycemia. Further mechanistic and interventional investigations suggested a common reason for both conditions rather than a causal relationship. Exposure to sunlight is the most relevant source of vitamin D3 (25(OH)D), whereas adipose tissue is able to store relevant amounts of the lipophilic vitamin. Since running/bicycling leads to increased out-door time and alters physiological response mechanisms, it can be hypothesized that the correlation between hypovitaminosis D3 and hyperglycemia might be disturbed in outdoor athletes. Methods 47 elderly marathoners/bicyclists and 47 age/sex matched controls were studied in a longitudinal setting at baseline and after three years. HbA1c as a surrogate for (pre-)diabetic states was quantified via HPLC, 25(OH)D levels were measured by means of chemiluminescent assays. Physical performance was assessed by ergometry. Results When adjusted for seasonal variations, 25(OH)D was significantly higher in athletes than in controls. 25(OH)D levels inversely correlated with triglycerides in both groups, whereas only in controls an association between high BMI or low physical performance with hypovitaminosis D3 had been found. Likewise, the presence of hypovitaminosis D3 at baseline successfully predicted hyperglycemia at the follow up examinations within the control group (AUC = 0.85, 95% CI [0.74, 0.96], p < .001, statistically independent from BMI), but not in athletes. Conclusion Our data suggest that mechanisms of HbA1c elevation might differ between athletes and controls. Thus, intense physical activity must be taken into account as a potential pre-analytic confounder when it is aimed to predict metabolic risk by vitamin D3 levels. PMID:27304888
Tops, Mattie; Boksem, Maarten A. S.; Quirin, Markus; IJzerman, Hans; Koole, Sander L.
2013-01-01
In the present paper, we will apply the predictive and reactive control systems (PARCS) theory as a framework that integrates competing theories of neural substrates of awareness by describing the “default mode network” (DMN) and anterior insula (AI) as parts of two different behavioral and homeostatic control systems. The DMN, a network that becomes active at rest when there is no external stimulation or task to perform, has been implicated in self-reflective awareness and prospection. By contrast, the AI is associated with awareness and task-related attention. This has led to competing theories stressing the role of the DMN in self-awareness vs. the role of interoceptive and emotional information integration in the AI in awareness of the emotional moment. In PARCS, the respective functions of the DMN and AI in a specific control system explains their association with different qualities of awareness, and how mental states can shift from one state (e.g., prospective self-reflection) to the other (e.g., awareness of the emotional moment) depending on the relative dominance of control systems. These shifts between reactive and predictive control are part of processes that enable the intake of novel information, integration of this novel information within existing knowledge structures, and the creation of a continuous personal context in which novel information can be integrated and understood. As such, PARCS can explain key characteristics of mental states, such as their temporal and spatial focus (e.g., a focus on the here and now vs. the future; a first person vs. a third person perspective). PARCS further relates mental states to brain states and functions, such as activation of the DMN or hemispheric asymmetry in frontal cortical functions. Together, PARCS deepens the understanding of a broad range of mental states, including mindfulness, mind wandering, rumination, autobiographical memory, imagery, and the experience of self. PMID:24904455
Labus, Jennifer S.; Van Horn, John D.; Gupta, Arpana; Alaverdyan, Mher; Torgerson, Carinna; Ashe-McNalley, Cody; Irimia, Andrei; Hong, Jui-Yang; Naliboff, Bruce; Tillisch, Kirsten; Mayer, Emeran A.
2015-01-01
Irritable bowel syndrome (IBS) is the most common chronic visceral pain disorder. The pathophysiology of IBS is incompletely understood, however evidence strongly suggests dysregulation of the brain-gut axis. The aim of this study was to apply multivariate pattern analysis to identify an IBS-related morphometric brain signature which could serve as a central biological marker and provide new mechanistic insights into the pathophysiology of IBS. Parcellation of 165 cortical and subcortical regions was performed using Freesurfer and the Destrieux and Harvard-Oxford atlases. Volume, mean curvature, surface area and cortical thickness were calculated for each region. Sparse partial least squares-discriminant analysis was applied to develop a diagnostic model using a training set of 160 females (80 healthy controls, 80 IBS). Predictive accuracy was assessed in an age matched holdout test set of 52 females (26 health controls, 26 IBS). A two-component classification algorithm comprised of the morphometry of 1) primary somato-sensory and motor regions, and 2) multimodal network regions, explained 36% of the variance. Overall predictive accuracy of the classification algorithm was 70%. Small effect size associations were observed between the somatosensory and motor signature and non-gastrointestinal somatic symptoms. The findings demonstrate the predictive accuracy of a classification algorithm based solely on regional brain morphometry is not sufficient but they do provide support for the utility of multivariate pattern analysis for identifying meaningful neurobiological markers in IBS. Perspective This article presents the development, optimization, and testing of a classification algorithm for discriminating female IBS patients from healthy controls using only brain morphometry data. The results provide support for utility of multivariate pattern analysis for identifying meaningful neurobiological markers in IBS. PMID:25906347
Prediction and Control of Slip-Free Rotation States in Sphere Assemblies.
Stäger, D V; Araújo, N A M; Herrmann, H J
2016-06-24
We study fixed assemblies of touching spheres that can individually rotate. From any initial state, sliding friction drives an assembly toward a slip-free rotation state. For bipartite assemblies, which have only even loops, this state has at least four degrees of freedom. For exactly four degrees of freedom, we analytically predict the final state, which we prove to be independent of the strength of sliding friction, from an arbitrary initial one. With a tabletop experiment, we show how to impose any slip-free rotation state by only controlling two spheres, regardless of the total number.
Numerical prediction of energy consumption in buildings with controlled interior temperature
Jarošová, P.; Št’astník, S.
2015-03-10
New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.
Applications of aero-acoustics to wind turbine noise prediction and control
NASA Astrophysics Data System (ADS)
Lowson, Martin V.
1993-01-01
Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance.
Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism.
Duan, Chun-Gang; Jaswal, S S; Tsymbal, E Y
2006-07-28
An unexplored physical mechanism which produces a magnetoelectric effect in ferroelectric-ferromagnetic multilayers is studied based on first-principles calculations. Its origin is a change in bonding at the ferroelectric-ferromagnet interface that alters the interface magnetization when the electric polarization reverses. Using Fe/BaTiO3 multilayers as a representative model, we show a sizable difference in magnetic moments of Fe and Ti atoms at the two interfaces dissimilar by the orientation of the local electric dipole moments. The predicted magnetoelectric effect opens a new direction to control magnetic properties of thin-film layered structures by electric fields. PMID:16907608
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
NASA Astrophysics Data System (ADS)
Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes
2015-01-01
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
Prediction and control of vortex-dominated and vortex-wake flows
NASA Technical Reports Server (NTRS)
Kandil, Osama
1993-01-01
This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.
A swarm intelligence-based tuning method for the Sliding Mode Generalized Predictive Control.
Oliveira, J B; Boaventura-Cunha, J; Moura Oliveira, P B; Freire, H
2014-09-01
This work presents an automatic tuning method for the discontinuous component of the Sliding Mode Generalized Predictive Controller (SMGPC) subject to constraints. The strategy employs Particle Swarm Optimization (PSO) to minimize a second aggregated cost function. The continuous component is obtained by the standard procedure, by Quadratic Programming (QP), thus yielding an online dual optimization scheme. Simulations and performance indexes for common process models in industry, such as nonminimum phase and time delayed systems, result in a better performance, improving robustness and tracking accuracy.
Folding of Small Proteins Using Constrained Molecular Dynamics
Balaraman, Gouthaman S.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan
2011-01-01
The focus of this paper is to examine whether conformational search using constrained molecular dynamics (MD) method is more enhanced and enriched towards “native-like” structures compared to all-atom MD for the protein folding as a model problem. Constrained MD methods provide an alternate MD tool for protein structure prediction and structure refinement. It is computationally expensive to perform all-atom simulations of protein folding because the processes occur on a timescale of microseconds. Compared to the all-atom MD simulation, constrained MD methods have the advantage that stable dynamics can be achieved for larger time steps and the number of degrees of freedom is an order of magnitude smaller, leading to a decrease in computational cost. We have developed a generalized constrained MD method that allows the user to “freeze and thaw” torsional degrees of freedom as fit for the problem studied. We have used this method to perform all-torsion constrained MD in implicit solvent coupled with the replica exchange method to study folding of small proteins with various secondary structural motifs such as, α-helix (polyalanine, WALP16), β-turn (1E0Q), and a mixed motif protein (Trp-cage). We demonstrate that constrained MD replica exchange method exhibits a wider conformational search than all-atom MD with increased enrichment of near native structures. “Hierarchical” constrained MD simulations, where the partially formed helical regions in the initial stretch of the all-torsion folding simulation trajectory of Trp-cage were frozen, showed a better sampling of near native structures than all-torsion constrained MD simulations. This is in agreement with the zipping-and-assembly folding model put forth by Dill and coworkers for folding proteins. The use of hierarchical “freeze and thaw” clustering schemes in constrained MD simulation can be used to sample conformations that contribute significantly to folding of proteins. PMID:21591767
On prediction of longitudinal attitude of planing craft based on controllable hydrofoils
NASA Astrophysics Data System (ADS)
Ling, Hongjie; Wang, Zhidong; Wu, Na
2013-09-01
The purpose of this research study was to examine the attitude response of a planing craft under the controllable hydrofoils. Firstly, a non-linear longitudinal attitude model was established. In the mathematical model, effects of wind loads were considered. Both the wetted length and windward area varied in different navigation conditions. Secondly, control strategies for hydrofoils were specified. Using the above strategies, the heave and trim of the planing craft was adjusted by controllable hydrofoils. Finally, a simulation program was developed to predict the longitudinal attitudes of the planing craft with wind loads. A series of simulations were performed and effects of control strategies on longitudinal attitudes were analyzed. The results show that under effects of wind loads, heave of fixed hydrofoils planing craft decreased by 6.3%, and pitch increased by 8.6% when the main engine power was constant. Heave decreased by less than 1% and trim angle decreased by 1.7% as a result of using variable attack angle hydrofoils; however, amplitude changes of heave and pitch were less than 1% under the control of changeable attack angle hydrofoils and longitudinal attitude.
Arrieta-Camacho, Juan José; Biegler, Lorenz T
2005-12-01
Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit. PMID:16510409