Sample records for constrains light acclimation

  1. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars.

    PubMed

    Matzner, Steven L; Rettedal, David D; Harmon, Derek A; Beukelman, MacKenzie R

    2014-08-01

    Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions.

    PubMed

    Rapacz, Marcin; Wolanin, Barbara; Hura, Katarzyna; Tyrka, Miroslaw

    2008-04-01

    Cold acclimation modifies the balance of the energy absorbed and metabolized in the dark processes of photosynthesis, which may affect the expression of cold-regulated (COR) genes. At the same time, a gradual acclimation to the relatively high light conditions is observed, thereby minimizing the potential for photo-oxidative damage. As a result, the resistance to photoinhibition in the cold has often been identified as a trait closely related to freezing tolerance. Using four barley genotypes that differentially express both traits, the effect of cold acclimation on freezing tolerance and high-light tolerance was studied together with the expression of COR14b, one of the best-characterized barley COR genes. Plants were cold acclimated for 2 weeks at 2 degrees C. Freezing tolerance was studied by means of electrolyte leakage. Changes in photosynthetic apparatus and high-light tolerance were monitored by means of chlorophyll fluorescence. Accumulation of COR14b and some proteins important in photosynthetic acclimation to cold were studied with western analysis. COR14b transcript accumulation during cold acclimation was assessed with real-time PCR. Cold acclimation increased both freezing tolerance and high-light tolerance, especially when plants were treated with high light after non-lethal freezing. In all plants, cold acclimation triggered the increase in photosynthetic capacity during high-light treatment. In two plants that were characterized by higher high-light tolerance but lower freezing tolerance, higher accumulation of COR14b transcript and protein was observed after 7 d and 14 d of cold acclimation, while a higher transient induction of COR14b expression was observed in freezing-tolerant plants during the first day of cold acclimation. High-light tolerant plants were also characterized with a higher level of PsbS accumulation and more efficient dissipation of excess light energy. Accumulation of COR14b in barley seems to be important for resistance to combined freezing and high-light tolerance, but not for freezing tolerance per se.

  3. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress

    PubMed Central

    Schumann, Tobias; Paul, Suman; Melzer, Michael; Dörmann, Peter; Jahns, Peter

    2017-01-01

    Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m−2 s−1; NL: 100 μmol photons m−2 s−1; HL: 500 μmol photons m−2 s−1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities. PMID:28515734

  4. Elevated Ambient Light and Temperature Constrain Light Perception in Arctic Krill

    NASA Astrophysics Data System (ADS)

    Cohen, J.; Jørgen, B.; Moline, M. A.; Johnsen, G.

    2016-02-01

    Krill play an important role in polar ecosystems as grazers on phytoplankton and microzooplankton, as well as in the subsequent transfer of this energy to higher trophic levels including fish, birds, and marine mammals. In the Barents Sea ecosystem, krill are a particularly important food source sustaining the region's extensive fisheries production. Climate variability over the past half-century, including advection of warmer North Atlantic water and boreal euphausiid taxa, has impacted both krill and fish populations in the Barents Sea, as well as dependencies between them. To better understand these dependencies in the context of climate warming, sea ice loss, and increased winter/spring light levels, we examined temperature- and light-acclimation effects on the visual physiology of krill, which utilize vision for both capturing prey and avoiding predators. Here we show that both elevated temperature and light acclimation lead to changes in visual function in krill Thysanoessa inermis collected from Kongsfjord (Svalbard) in late winter. We found that krill eyes were faster, but less sensitive, in warmer and brighter conditions. Predicting the ecological implications of such physiological shifts is challenging. When coupled with models of the underwater light field and visual perception, these findings suggest that krill in the Barents Sea may be more effective at evading fish predators under future climate scenarios with increased North Atlantic water influence. However, shoaling of krill during the daytime phase of their diel vertical migration could oppose this and favor visual predation on krill by fish.

  5. Photoacclimation in a tropical population of Cladophora glomerata (L.) Kützing 1843 (Chlorophyta) from southeastern Brazil.

    PubMed

    Bautista, A I N; Necchi-Júnior, O

    2008-02-01

    Photoacclimation of photosynthesis was investigated in a tropical population of C. glomerata (São Paulo State, southeastern Brazil, 20 degrees 48' 24" S and 49 degrees 22' 24" W) by chlorophyll fluorescence parameters and chlorophyll a content. Plants were acclimated to two levels of irradiance: low (65 +/- 5 micromol.m(-2).s(-1)) and high (300 +/- 10 micromol.m(-2).s(-1)) and exposed short-term (4 days) and long-term (28 days) under a light-dark cycle of 12:12 hours. Photosynthesis-irradiance (PI) curves revealed distinct strategies of photoacclimation. In long-term exposure, plants acclimated by altering the photosynthetic units (PSU) number and keeping fixed the PSU size, revealed by increased rates of maximum photosynthesis (Pmax), lower photosynthetic efficiency (alpha) and higher values of the saturation parameter (Ik) under high irradiance. The short-term acclimation strategy consisted of changing the PSU size, with a fixed number of PSUs, as revealed by similar Pmax but higher alpha and lower Ik under low irradiance. Chlorophyll a contents followed the general pattern reported in green algae of higher concentrations under lower irradiance. Dark/light induction curves revealed consistently higher values of potential quantum yield under low irradiance. Initial and final values showed a higher recovery capacity in the short (84.4-90.6%) term exposure than in the long-term case (81.4-81.5%). ETR (electron transport rate) and NPQ (non-photochemical quenching) values were consistently higher under low irradiance. ETR showed a continuous and steady increase along the light exposure period in the short and long-term experiments, whereas NPQ values revealed a rapid increase after 15 seconds of light exposure, kept a slightly increasing trend and stabilized in most treatments. Lower photosynthetic performance (ETR) and recovery capacity of potential quantum yield were observed, particularly in long-term exposure, suggesting that this population is constrained by the typical high light environment of tropical regions.

  6. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2015-04-01

    Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.

  7. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria.

    PubMed

    Montgomery, Beronda L

    2016-07-01

    Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Acclimation responses to high light by Guazuma ulmifolia Lam. (Malvaceae) leaves at different stages of development.

    PubMed

    Calzavara, A K; Rocha, J S; Lourenço, G; Sanada, K; Medri, C; Bianchini, E; Pimenta, J A; Stolf-Moreira, R; Oliveira, H C

    2017-09-01

    The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants.

    PubMed

    Dietzel, Lars; Bräutigam, Katharina; Pfannschmidt, Thomas

    2008-03-01

    In dense plant populations, individuals shade each other resulting in a low-light habitat that is enriched in far-red light. This light quality gradient decreases the efficiency of the photosynthetic light reaction as a result of imbalanced excitation of the two photosystems. Plants counteract such conditions by performing acclimation reactions. Two major mechanisms are known to assure efficient photosynthesis: state transitions, which act on a short-term timescale; and a long-term response, which enables the plant to re-adjust photosystem stoichiometry in favour of the rate-limiting photosystem. Both processes start with the perception of the imbalanced photosystem excitation via reduction/oxidation (redox) signals from the photosynthetic electron transport chain. Recent data in Arabidopsis indicate that initialization of the molecular processes in both cases involve the activity of the thylakoid membrane-associated kinase, STN7. Thus, redox-controlled phosphorylation events may not only adjust photosystem antenna structure but may also affect plastid, as well as nuclear, gene expression. Both state transitions and the long-term response have been described mainly in molecular terms, while the physiological relevance concerning plant survival and reproduction has been poorly investigated. Recent studies have shed more light on this topic. Here, we give an overview on the long-term response, its physiological effects, possible mechanisms and its relationship to state transitions as well as to nonphotochemical quenching, another important short-term mechanism that mediates high-light acclimation. Special emphasis is given to the functional roles and potential interactions between the different light acclimation strategies. A working model displays the various responses as an integrated molecular system that helps plants to acclimate to the changing light environment.

  10. Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees.

    PubMed

    Ishii, Hiroaki T; Jennings, Gregory M; Sillett, Stephen C; Koch, George W

    2008-07-01

    We studied changes in morphological and physiological characteristics of leaves and shoots along a height gradient in Sequoia sempervirens, the tallest tree species on Earth, to investigate whether morphological and physiological acclimation to the vertical light gradient was constrained by hydrostatic limitation in the upper crown. Bulk leaf water potential (Psi) decreased linearly and light availability increased exponentially with increasing height in the crown. During the wet season, Psi was lower in the outer than inner crown. C isotope composition of leaves (delta(13)C) increased with increasing height indicating greater photosynthetic water use efficiency in the upper crown. Leaf and shoot morphology changed continuously with height. In contrast, their relationships with light availability were discontinuous: morphological characteristics did not correspond to increasing light availability above 55-85 m. Mass-based chlorophyll concentration (chl) decreased with increasing height and increasing light availability. In contrast, area-based chl remained constant or increased with increasing height. Mass-based maximum rate of net photosynthesis (P (max)) decreased with increasing height, whereas area-based P (max) reached maximum at 78.4 m and decreased with increasing height thereafter. Mass-based P (max) increased with increasing shoot mass per area (SMA), whereas area-based P (max) was not correlated with SMA in the upper crown. Our results suggest that hydrostatic limitation of morphological development constrains exploitation of light in the upper crown and contributes to reduced photosynthetic rates and, ultimately, reduced height growth at the tops of tall S. sempervirens trees.

  11. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  12. Light acclimation, retrograde signalling, cell death and immune defences in plants.

    PubMed

    Karpiński, Stanisław; Szechyńska-Hebda, Magdalena; Wituszyńska, Weronika; Burdiak, Paweł

    2013-04-01

    This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA). © 2012 Blackwell Publishing Ltd.

  13. Long- and short-term photoacclimation in epipsammon from non-tidal coastal shallows compared to epipelon from intertidal mudflat

    NASA Astrophysics Data System (ADS)

    Pniewski, Filip F.; Richard, Pierre; Latała, Adam; Blanchard, Gerard

    2018-06-01

    Long- and short-term photoacclimation and their interaction were determined in two types of microphytobenthos assemblages, i.e. epipelon from an intertidal mudflat and epipsammon from non-tidal sandy coastal shallows collected during summer and autumn months. Microphytobenthos photophysiology was assessed from steady-state light curve (SSLC) and rapid light-response curves (RLC) of variable chlorophyll fluorescence. The epipelon was low light acclimated, whereas in the epipsammon high light acclimation was observed. The epipelon turned out to be more susceptible to high light and in autumn a clear down turn in the relative electron transport rates was recorded. Long-term photoacclimation strongly affected both microphytobenthos types' short-term light responses. The epipelon acclimated to high ambient light intensities through the decreased light absorption and energy dissipation. The epipsammon, on the other hand, developed physiological flexibility allowing efficient use of the absorbed light and thus providing protection against higher irradiance.

  14. High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment

    Treesearch

    Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn

    2012-01-01

    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...

  15. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516).

    PubMed

    McKew, Boyd A; Davey, Phillip; Finch, Stewart J; Hopkins, Jason; Lefebvre, Stephane C; Metodiev, Metodi V; Oxborough, Kevin; Raines, Christine A; Lawson, Tracy; Geider, Richard J

    2013-10-01

    Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    PubMed Central

    Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.

    2013-01-01

    Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089

  18. Influence of the dark/light rhythm on the effects of UV radiation in the eyestalk of the crab Neohelice granulata.

    PubMed

    Vargas, Marcelo Alves; Geish, Marcio Alberto; Maciel, Fabio Everton; Cruz, Bruno Pinto; Filgueira, Daza de Moraes Vaz Batista; Ferreira, Gabrielle de Jesus; Nery, Luiz Eduardo Maia; Allodi, Silvana

    2010-04-01

    Crustaceans are interesting models to study the effects of ultraviolet (UV) radiation, and many species may be used as biomarkers for aquatic contamination of UV radiation reaching the surface of the Earth. Here, we investigated cell damage in the visual system of crabs Neohelice granulata that were acclimated to either 12L:12D, constant light, or constant dark, and were exposed to UVA or UVB at 12:00h (noon). The production of reactive oxygen species (ROS), antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase activity, and pigment dispersion in the eye were evaluated. No significant differences from the three groups of controls (animals acclimated to 12L:12D, or in constant light, or not exposed to UV radiation) were observed in animals acclimated to 12L:12D, however, crabs acclimated to constant light and exposed to UV radiation for 30min showed a significant increase in ROS concentration, catalase activity, and LPO damage, but a decrease in ACAP compared with the controls. Crabs acclimated to constant darkness and exposed to UV for 30min showed a significantly increased ROS concentration and LPO damage, but the ACAP and catalase activity did not differ from the controls (animals kept in the dark while the experimental group was being exposed to UV radiation). Pigment dispersion in the pigment cells of eyes of animals acclimated to constant light was also observed. The results indicate that UVA and UVB alter specific oxidative parameters; however, the cell damage is more evident in animals deviated from the normal dark/light rhythm.

  19. Photosynthetic acclimation of WS and WS-gpt2 in Arabidopsis thaliana under fluctuating natural light condition

    NASA Astrophysics Data System (ADS)

    Pa'ee, Furzani; Johnson, Giles

    2017-10-01

    Photoacclimation is a process by which photosynthetic capacity is regulated in response to environmental adjustments in terms of light regime. Photoacclimation is essential in determining the photosynthetic capacity to optimize light use and to avoid potentially damaging effects. Previous work in our laboratory has identified a gene, gpt2 (At1g61800) that is essential for plants to acclimate to an increase and decrease of growth irradiance, separately. To investigate the photoacclimation ability towards fluctuating natural light condition in Arabidopsis thaliana, photosynthetic capacity was measured in plants of the accession Wassileskija (WS) and in plants lacking expression of the gene At1g61800 (WS-gpt2). The experiment was carried out over a time span from early Autumn to early Spring season in 2010-2011 and 2011-2012. The seedlings were grown in an unheated greenhouse in Manchester, UK without supplementary lighting. Gas exchange measurements and chlorophyll content estimation were performed on WS and WS-gpt2 and it showed that both sets of plants were able to acclimate to fluctuating natural light condition. Therefore, it is suggested that the mechanisms of acclimation in a separate growth light condition is mechanistically distinct than the mechanism under fluctuating natural light condition.

  20. Light acclimation strategies change from summer green to spring ephemeral as wild-leek plants age.

    PubMed

    Dion, Pierre-Paul; Brisson, Jacques; Fontaine, Bastien; Lapointe, Line

    2016-05-01

    Spring-ephemeral forest-herbs emerge early to take advantage of the high-light conditions preceding canopy closure; they complete their life cycle in a few weeks, then senesce as the tree canopy closes. Summer greens acclimate their leaves to shade and thus manage to maintain a net carbon gain throughout summer. Differences in phenology among life stages within a species have been reported in tree saplings, whose leaf activity may extend beyond the period of shade conditions caused by mature trees. Similar phenological acclimation has seldom been studied in forest herbs. We compared wild-leek bulb growth and leaf phenology among plants from seedling to maturity and from under 4 to 60% natural light availability. We also compared leaf chlorophyll content and chl a/b ratio among seedlings and adult plants in a natural population as an indicator of photosynthetic capacity and acclimation to light environment. Overall, younger plants senesced later than mature ones. Increasing light availability delayed senescence in mature plants, while hastening seedling senescence. In natural populations, only seedlings acclimated to the natural reduction in light availability through time. Wild-leek seedlings exhibit a summer-green phenology, whereas mature plants behave as true spring ephemerals. Growth appears to be more source-limited in seedlings than in mature plants. This modulation of phenological strategy, if confirmed in other species, would require a review of the current classification of species as either spring ephemerals, summer greens, wintergreens, or evergreens. © 2016 Botanical Society of America.

  1. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen[C][W

    PubMed Central

    Ramel, Fanny; Ksas, Brigitte; Akkari, Elsy; Mialoundama, Alexis S.; Monnet, Fabien; Krieger-Liszkay, Anja; Ravanat, Jean-Luc; Mueller, Martin J.; Bouvier, Florence; Havaux, Michel

    2013-01-01

    Singlet oxygen (1O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, 1O2-induced transcriptomic changes result in acclimation to 1O2. Here, using a chlorophyll b–less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of 1O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to 1O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing 1O2 formation, indicating acclimation to 1O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in 1O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2. PMID:23590883

  2. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    NASA Astrophysics Data System (ADS)

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  3. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.

    PubMed

    Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki

    2017-10-01

    Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The Acclimation of Phaeodactylum tricornutum to Blue and Red Light Does Not Influence the Photosynthetic Light Reaction but Strongly Disturbs the Carbon Allocation Pattern

    PubMed Central

    Jungandreas, Anne; Schellenberger Costa, Benjamin; Jakob, Torsten; von Bergen, Martin; Baumann, Sven; Wilhelm, Christian

    2014-01-01

    Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning. PMID:25111046

  5. Light-controlled motility in prokaryotes and the problem of directional light perception

    PubMed Central

    Wilde, Annegret

    2017-01-01

    Abstract The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. PMID:29077840

  6. Light-controlled motility in prokaryotes and the problem of directional light perception.

    PubMed

    Wilde, Annegret; Mullineaux, Conrad W

    2017-11-01

    The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. © FEMS 2017.

  7. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    PubMed Central

    Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605

  8. Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems.

    PubMed

    Ferroni, Lorenzo; Suorsa, Marjaana; Aro, Eva-Mari; Baldisserotto, Costanza; Pancaldi, Simonetta

    2016-07-01

    Vascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginella martensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods. From L to H plants, thylakoid architecture was rearranged from (pseudo)lamellar to predominantly granal, the PSII : PSI ratio changed in favour of PSI, and the photochemical capacity increased. However, regulation of light harvesting did not occur through variations in the amount of free LHCII, but rather resulted from the flexibility of the association of free LHCII with PSII and PSI. In lycophytes, the free interspersed LHCII serves a fixed proportion of reaction centres, either PSII or PSI, and the regulation of PSI-LHCII(-PSII) megacomplexes is an integral part of long-term acclimation. Free LHCII ensures photoprotection of PSII, allows regulated use of PSI as an energy quencher, and can also quench endangered PSI. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.

    PubMed

    Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara

    2017-11-01

    This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.

  10. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.

    PubMed

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2017-04-01

    The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H 2 -producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. PROTON GRADIENT REGULATION5 Is Essential for Proper Acclimation of Arabidopsis Photosystem I to Naturally and Artificially Fluctuating Light Conditions[W

    PubMed Central

    Suorsa, Marjaana; Järvi, Sari; Grieco, Michele; Nurmi, Markus; Pietrzykowska, Malgorzata; Rantala, Marjaana; Kangasjärvi, Saijaliisa; Paakkarinen, Virpi; Tikkanen, Mikko; Jansson, Stefan; Aro, Eva-Mari

    2012-01-01

    In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)–dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection. PMID:22822205

  12. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light.

    PubMed

    Mann, Marcus; Serif, Manuel; Jakob, Torsten; Kroth, Peter G; Wilhelm, Christian

    2017-10-01

    Aureochromes are blue light receptors specifically found in photosynthetic Stramenopiles (algae). Four different Aureochromes have been identified in the marine diatom Phaeodactylum tricornutum (PtAUREO 1a, 1b, 1c, and 2). Since blue light is necessary for high light acclimation in diatoms, it has been hypothesized that Aureochromes might play an important role in the light acclimation capacity of diatoms. This hypothesis was supported by an RNAi knockdown line of PtAUREO1a, which showed a phenotype different from wild type cells when grown in either blue or red light. Here, we show for the first time the phenotype and the photoacclimation reaction of TALEN-mediated knockout mutants of PtAUREO1a and PtAUREO1b, clearly proving the necessity of Aureochromes for light acclimation under blue light. However, both mutants do also show specific differences in their respective phenotypes. Hence, PtAUREO1a and 1b are not functionally redundant in photoacclimation to blue light, and their specific contribution needs to be clarified further. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.

    PubMed

    Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K

    2017-07-01

    Understanding of the extent of acclimation of light-saturated net photosynthesis (A n ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (T growth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO 2 response curves of A n were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (V cmax ) and electron transport (J max ) at each treatment's respective T growth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO 2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and T growth , A n at current atmospheric CO 2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing T growth . Similarly, area-based rates of V cmax at a measurement T of 25 °C (V cmax 25 ) linearly declined with increasing T growth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained V cmax and A n for leaves developed at higher T growth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for T growth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of T growth -mediated declines in V cmax 25 on A n , complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of V cmax 25 . © 2017 John Wiley & Sons Ltd.

  14. Systematic identification of light-regulated cold-responsive proteome in a model cyanobacterium.

    PubMed

    Chen, Weiyang; Fang, Longfa; Huang, Xiahe; Ge, Haitao; Wang, Jinlong; Wang, Xiaorong; Zhang, Yuanya; Sui, Na; Xu, Wu; Wang, Yingchun

    2018-05-15

    Differential expression of cold-responsive proteins is necessary for cyanobacteria to acclimate to cold stress frequently occurring in their natural habitats. Accumulating evidence indicates that cold-induced expression of certain proteins is dependent on light illumination, but a systematic identification of light-dependent and/or light-independent cold-responsive proteins in cyanobacteria is still lacking. Herein, we comprehensively identified cold-responsive proteins in a model cyanobacterium Synechocystis sp. PCC 6803 (Hereafter Synechocystis) that was cold-stressed in light or in dark. In total, 72 proteins were identified as cold-responsive, including 19 and 17 proteins whose cold-responsiveness are light-dependent and light-independent, respectively. Bioinformatic analysis revealed that outer membrane proteins, proteins involved in translation, and proteins involved in divergent types of stress responses were highly enriched in the cold-responsive proteins. Moreover, a protein network responsible for nitrogen assimilation and amino acid biosynthesis, transcription, and translation were upregulated in response to the cold stress. The network contains both light-dependent and light-independent cold-responsive proteins, probably for fine tuning its activity to endow Synechocystis the flexibility necessary for cold adaptation in their natural habitats, where days and nights are alternating. Together, our results should serve as an important resource for future study toward understanding the mechanism of cold acclimation in cyanobacteria. Photosynthetic cyanobacteria need to acclimate to frequently occurring abiotic stresses such as cold in their natural habitats, and the acclimation process has to be coordinated with photosynthesis, the light-dependent process that provides carbon and energy for propagation of cyanobacteria. It is conceivable that cold-induced differential protein expression can also be regulated by light. Hence it is important to systematically identify cold responsive proteins that are regulated or not regulated by light to better understand the mechanism of cold acclimation in cyanobacteria. In this manuscript, we identified a network involved in protein synthesis that were upregulated by cold. The network contains both light-dependent and light-independent cold-inducible proteins, presumably for fine tuning the activity of the network in natural habitats of cyanobacteria where days and nights are alternating. This finding underscores the significance of proteome reprograming toward enhancing protein synthesis in cold adaptation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.; Curtis, P.

    2016-12-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in four co-dominant species (Acer rubrum, Fagus grandifolia, Pinus strobus and Quercus rubra) at different heights in plots with similar leaf area index (LAI) but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaves of F. grandifolia, Q. rubra, and P. strobus shifted towards sun-acclimation phenotypes with increasing canopy complexity while leaves of A. rubrum became more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further acclimation by increasing Narea and reducing Chlmass as LMA increased, while P. strobus showed no change in Narea and Chlmass with increasing LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.

  16. Natural Genetic Variation for Acclimation of Photosynthetic Light Use Efficiency to Growth Irradiance in Arabidopsis1[OPEN

    PubMed Central

    Harbinson, Jeremy

    2015-01-01

    Plants are known to be able to acclimate their photosynthesis to the level of irradiance. Here, we present the analysis of natural genetic variation for photosynthetic light use efficiency (ΦPSII) in response to five light environments among 12 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions. We measured the acclimation of ΦPSII to constant growth irradiances of four different levels (100, 200, 400, and 600 µmol m−2 s−1) by imaging chlorophyll fluorescence after 24 d of growth and compared these results with acclimation of ΦPSII to a step-wise change in irradiance where the growth irradiance was increased from 100 to 600 µmol m−2 s−1 after 24 d of growth. Genotypic variation for ΦPSII is shown by calculating heritability for the short-term ΦPSII response to different irradiance levels as well as for the relation of ΦPSII measured at light saturation (a measure of photosynthetic capacity) to growth irradiance level and for the kinetics of the response to a step-wise increase in irradiance from 100 to 600 µmol m−2 s−1. A genome-wide association study for ΦPSII measured 1 h after a step-wise increase in irradiance identified several new candidate genes controlling this trait. In conclusion, the different photosynthetic responses to a changing light environment displayed by different Arabidopsis accessions are due to genetic differences, and we have identified candidate genes for the photosynthetic response to an irradiance change. The genetic variation for photosynthetic acclimation to irradiance found in this study will allow future identification and analysis of the causal genes for the regulation of ΦPSII in plants. PMID:25670817

  17. Divergence of water balance mechanisms and acclimation potential in body color morphs of Drosophila ananassae.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal; Lambhod, Chanderkala; Singh, Divya

    2014-01-01

    Drosophila ananassae is a desiccation sensitive species, but the physiological basis of its abundance in the drier subtropical areas is largely unknown. We tested the hypothesis whether body color morphs of D. ananassae differ in the mechanistic basis of water conservation as well as desiccation acclimation potential, consistent with their distribution under dry or wet habitats. We observed reduced rate of water loss consistent with the greater desiccation potential of dark morph as compared with light morph, despite lack of quantitative differences in cuticular lipid mass between them. Dark morph evidenced greater wet and dry mass (∼1.17-fold) as well as higher hemolymph content (∼1.70-fold) and (∼17%) dehydration tolerance to sustain longer survival under desiccation stress (LT50 17.5 hr) as compared with light morph (LT50 4.3 hr). We found significant differences in the storage of energy metabolites in the body color morphs of D. ananassae, that is, carbohydrate content was significantly higher (∼0.18 mg/mg dry mass) in the dark morph as compared to light morph, but greater (∼0.05 mg/mg dry mass) body lipid content was evident in the light morph. Under desiccation stress, dark and light morphs utilized mainly carbohydrates but also lipids to a lesser extent. However, the rate of utilization of energy metabolites did not vary between dark and light morphs. Further, the dark morph consumed higher energy content derived from carbohydrates under desiccation stress as compared with the light morph. Finally, we found contrasting patterns of acclimation to desiccation stress in the two body color morphs, that is, increase in desiccation survival (4.7 hr), as well as in dehydration tolerance (∼6%) due to acclimation of the dark morph but no such effects were observed in the light morph. Thus, divergence in water balance mechanisms as well as acclimation potential reflects evolved physiological adaptations of the dark morph under drier but of the light morph to wet climatic conditions. © 2013 Wiley Periodicals, Inc.

  18. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana

    PubMed Central

    Leuenberger, Michelle; Morris, Jonathan M.; Chan, Arnold M.; Leonelli, Lauriebeth

    2017-01-01

    Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (∆pH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed on WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ. PMID:28652334

  19. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration.

    PubMed

    Way, Danielle A; Yamori, Wataru

    2014-02-01

    While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.

  20. Photosynthetic and stomatal acclimation to elevated CO{sub 2} depends on soil type in Quercus prinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, J.A.

    1995-06-01

    Quercus prinus (L.) seedlings grown outdoors at ambient and elevated (ambient + 350 ppm) CO{sub 2} with a fertile soil had no photosynthetic acclimation to elevated CO{sub 2} and no stomatal response to growth or measurement CO{sub 2}. In contrast, seedlings grown with soil collected from a Q. prinus stand had photosynthetic and stomatal acclimation, and stomatal conductance was sensitive to measurement CO{sub 2}. In plants grown with the native soil, light-saturated stomatal conductance measured at the growth CO{sub 2} was reduced by 54% at elevated CO{sub 2}, compared to the short-term reduction of 36%. Photosynthetic acclimation in plants grownmore » with the native soil reduced the stimulation of light-saturated photosynthesis at elevated CO{sub 2} from a factor of 1.9 to a factor of 1.3. In contrast to the dependence of photosynthetic and stomatal acclimation on soil type, the response of leaf respiration to elevated CO{sub 2} was the same for both soils. Respiration of leaves was reduced in the elevated CO{sub 2} treatment by 41 % on a leaf area basis. However, this effect was immediately reversible by altering the measurement CO{sub 2}, indicating that no acclimation of respiration occurred.« less

  1. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f.

    PubMed

    Majumder, Erica L-W; Wolf, Benjamin M; Liu, Haijun; Berg, R Howard; Timlin, Jerilyn A; Chen, Min; Blankenship, Robert E

    2017-11-01

    Far-Red Light (FRL) acclimation is a process that has been observed in cyanobacteria and algae that can grow solely on light above 700 nm. The acclimation to FRL results in rearrangement and synthesis of new pigments and pigment-protein complexes. In this study, cyanobacteria containing chlorophyll f, Synechococcus sp. PCC 7335 and Halomicronema hongdechloris, were imaged as live cells with confocal microscopy. H. hongdechloris was further studied with hyperspectral confocal fluorescence microscopy (HCFM) and freeze-substituted thin-section transmission electron microscopy (TEM). Under FRL, phycocyanin-containing complexes and chlorophyll-containing complexes were determined to be physically separated and the synthesis of red-form phycobilisome and Chl f was increased. The timing of these responses was observed. The heterogeneity and eco-physiological response of the cells was noted. Additionally, a gliding motility for H. hongdechloris is reported.

  2. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuenberger, Michelle; Morris, Jonathan M.; Chan, Arnold M.

    It is known that photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (ΔpH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed onmore » WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ.« less

  3. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana

    DOE PAGES

    Leuenberger, Michelle; Morris, Jonathan M.; Chan, Arnold M.; ...

    2017-06-26

    It is known that photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (ΔpH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed onmore » WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ.« less

  4. Non-photochemical quenching in epipsammic and epipelic microalgal assemblages from two marine ecosystems

    NASA Astrophysics Data System (ADS)

    Pniewski, Filip F.; Richard, Pierre; Latała, Adam; Blanchard, Gerard

    2017-03-01

    This work presents differences in the non-photochemical quenching of chlorophyll fluorescence (NPQ) formation and its further dark relaxation between two microphytobenthos types, i.e. epipelon from Aiguillon Bay on the Atlantic coast and epipsammon from Puck Bay in the Baltic Sea. NPQ was characterized by the induction kinetics and light-response curves subsequently compared to the light-response curves of PSII relative electron transport rate (rETR), measured on assemblages collected in summer (July/August) and autumn (October/November). Both assemblages differed in species composition. Epipelon was exclusively composed of motile bi-raphid diatoms, while in epipsammon next to small-sized diatoms species other taxonomic groups such as green algae, euglenophytes and blue-green algae were also present. The study confirmed that epipelon was low light acclimated, while epipsammon showed features of high light acclimation. In both assemblage types a clear seasonal shift in photoprotection capacity was observed. Higher NPQ values were always observed in summer. In epipelon, the maximum NPQ (NPQmax) inferred from the NPQ light-response curves reached the value above 11; in epipsammon, NPQmax was up to the value of 4. The NPQ induction kinetics together with the light stress-recovery analysis suggested the presence of different photoprotective mechanisms in the studied microphytobenthos communities. In epipsammon photoprotection was assumed to be mostly dependent on the activity of the xanthophyll cycle, while in epipelon other processes also contributed to the overall photoprotection. Neither epipelon nor epipsammon showed compelling signs of photoinhibition. By comparing the NPQ and rETR light-response curves it was shown that in high light acclimated epipsammon NPQ promptly responded to changes in light conditions. A weak relationship between NPQ development and photochemistry emphasized the importance of behavioural photoprotection in low light acclimated epipelon. Overall, both assemblage types developed different, yet effective, photoprotection strategies and the main differences resulted from their taxonomic composition and photoacclimation status.

  5. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    PubMed

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Fristedt, Rikard; Dinc, Emine

    2016-01-01

    Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability. PMID:27637747

  7. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    PubMed

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Light-dependent leaf trait variation in 43 tropical dry forest tree species.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans

    2007-04-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.

  9. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future

    PubMed Central

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-01-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. PMID:25232133

  10. Physiological plasticity increases resilience of ectothermic animals to climate change

    NASA Astrophysics Data System (ADS)

    Seebacher, Frank; White, Craig R.; Franklin, Craig E.

    2015-01-01

    Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.

  11. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings.

    PubMed

    Cheesman, Alexander W; Winter, Klaus

    2013-09-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.

  12. Physiological responses of the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae) to variations in light and water supply.

    PubMed

    Haslam, Richard; Borland, Anne; Maxwell, Kate; Griffiths, Howard

    2003-06-01

    In an effort to understand the mechanisms that sustain rootless atmospheric plants, the modulation of Crassulacean acid metabolism (CAM) in response to variations in irradiance and water supply was investigated in the epiphyte Tillandsia usneoides. Plants were acclimated to three light regimes, i.e. high, intermediate and low, with integrated photon flux densities (PFD) of 14.40, 8.64 and 4.32 mol m-2 d-1 equivalent to an instantaneous PFD of 200, 100, and 50 mumol m-2 s-1, respectively. Daily watering was then withdrawn from half of the plants at each PFD for 7 d prior to sampling. In response to the three PFD treatments, chlorophyll content increased in plants acclimated to lower irradiances. Light response curves using non-invasive measurements of chlorophyll fluorescence demonstrated that photosystem II efficiency (phi PSII) was maintained in high PFD acclimated plants, as they exhibited a larger capacity for non-photochemical dissipation (NPQ) of excess light energy than low PFD acclimated plants. Net CO2 uptake increased in response to higher PFD, reflecting enhanced carboxylation capacity in terms of phosphoenolpyruvate carboxylase (PEPc) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities. After water was withdrawn, nocturnal net CO2 uptake and accumulated levels of acidity declined in all PFD treatments, concomitant with increased respiratory recycling of malate. Examining the strategies employed by epiphytes such as T. usneodies to tolerate extreme light and water regimes has demonstrated the importance of physiological mechanisms that allow flexible carboxylation capacity and continued carbon cycling to maintain photosynthetic integrity.

  13. Recreating the shading effects of ship wake induced turbidity to test acclimation responses in the seagrass Thalassia hemprichii

    NASA Astrophysics Data System (ADS)

    Browne, Nicola K.; Yaakub, Siti Maryam; Tay, Jason K. L.; Todd, Peter A.

    2017-12-01

    Elevated sediment delivery and resuspension in coastal waters from human activities such as shipping can have detrimental effects on seagrass health by limiting light penetration. Managing seagrasses requires knowledge of their light acclamatory abilities so guidelines for coastal activities (e.g. ship movements) that influence sediment dynamics can be created. Guidelines typically focus on ensuring that seagrasses are able to meet their minimal light requirements (MLR). MLRs can be achieved by different light regimes, but it remains unknown whether a chronically low yet stable light regime is less or more detrimental than a highly variable regime with periods of extreme low to no light. To test this, we compared the physiological and morphological responses of Thalassia hemprichii among three light regimes: an open control (30-40% ambient light), a shaded control with (11-15% ambient light), and a fluctuating shade (4-30% ambient light). The MLR for the T. hemprichii we studied was lower (4-10% ambient light) than previous reports (mean = 18%) illustrating enhanced light acclimation in Singapore's chronically turbid waters. Seagrass shoots in the shaded control, however, exhibited significantly more morphological stress symptoms, with reduced shoot growth and lower below ground biomass. These data suggest that for seagrass exposed to periods of acute light stress, energetic costs associated with photo-acclimation to more variable light regimes can be offset if the plant can meet its daily light requirements during periods of high light. Management of seagrass beds should incorporate regular light monitoring and move towards an adaptive feedback-based approach to ensure the long-term viability of these vulnerable ecosystems.

  14. Efficient high light acclimation involves rapid processes at multiple mechanistic levels.

    PubMed

    Dietz, Karl-Josef

    2015-05-01

    Like no other chemical or physical parameter, the natural light environment of plants changes with high speed and jumps of enormous intensity. To cope with this variability, photosynthetic organisms have evolved sensing and response mechanisms that allow efficient acclimation. Most signals originate from the chloroplast itself. In addition to very fast photochemical regulation, intensive molecular communication is realized within the photosynthesizing cell, optimizing the acclimation process. Current research has opened up new perspectives on plausible but mostly unexpected complexity in signalling events, crosstalk, and process adjustments. Within seconds and minutes, redox states, levels of reactive oxygen species, metabolites, and hormones change and transmit information to the cytosol, modifying metabolic activity, gene expression, translation activity, and alternative splicing events. Signalling pathways on an intermediate time scale of several minutes to a few hours pave the way for long-term acclimation. Thereby, a new steady state of the transcriptome, proteome, and metabolism is realized within rather short time periods irrespective of the previous acclimation history to shade or sun conditions. This review provides a time line of events during six hours in the 'stressful' life of a plant. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    PubMed

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  16. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    PubMed

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  17. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum

    PubMed Central

    Khanal, Nityananda; Bray, Geoffrey E.; Grisnich, Anna; Moffatt, Barbara A.; Gray, Gordon R.

    2017-01-01

    Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing capacity, while Yukon showed greater growth plasticity to irradiance. Both of these Eutrema accessions are able to photosynthetically acclimate but do so by different mechanisms. The Shandong accessions demonstrate a stable response, favouring energy partitioning to photochemistry while the Yukon accession shows a more rapid response with partitioning to other (non-photochemical) strategies. PMID:28792470

  18. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-07

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis.

    PubMed

    Yaakub, Siti M; Chen, Eugene; Bouma, Tjeerd J; Erftemeijer, Paul L A; Todd, Peter A

    2014-06-30

    Seagrasses have substantial capacity to survive long periods of light reduction, but how acclimation to chronic low light environments may influence their ability to cope with additional stress is poorly understood. This study examines the effect of temporal light reduction by adding two levels of shading to Halophila ovalis plants in two meadows with different light histories, one characterized by a low light (turbid) environment and the other by a relatively high light (clear) environment. Additional shading resulted in complete mortality for both shading treatments at the turbid site while the clear site showed a pattern of decreased shoot density and increased photochemical efficiency (Fv/Fm) with increased shading. These contrasting results for the same species in two different locations indicate that acclimation to chronic low light regimes can affect seagrass resilience and highlights the importance of light history in determining the outcome of exposure to further (short-term) stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  1. Physiological and morphological responses of pine and willow saplings to post-fire salvage logging

    NASA Astrophysics Data System (ADS)

    Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.

    2015-12-01

    With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.

  2. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    PubMed Central

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; Allen, Doug K.

    2014-01-01

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. We performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m-2s−1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol⋅m−2⋅s−1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). This study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches. PMID:25368168

  3. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    PubMed

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  4. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus.

    PubMed

    Camejo, Daymi; Martí, María del C; Nicolás, Emilio; Alarcón, Juan J; Jiménez, Ana; Sevilla, Francisca

    2007-11-01

    Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to dark treatment plus heat shock. The activity of Fe-SOD isoenzymes was most enhanced in heat-acclimated plants but was unaltered in the plants that received the dark treatment. Total CuZn-SOD activity was reduced in all treatments. Darkness had an inhibitory effect on the Mn-SOD isoenzyme activity, which was compensated by the effect of a rise in air temperature to 35 degrees C. These results show that the heat tolerance of tomatoplants may be increased by the previous imposition of a moderately high temperature and could be related with the thermal stability in the photochemical reactions and a readjustment of V(cmax) and J(max). Some isoenzymes, such as the Fe-SODs, may also play a role in the development of heat-shock tolerance through heat acclimation. In fact, the pattern found for these isoenzymes in heat-acclimated Amalia plants was similar to that previously described in other heat-tolerant tomato genotypes.

  5. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions

    PubMed Central

    Joubert, Chandré; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2016-01-01

    Light quantity and quality modulate grapevine development and influence berry metabolic processes. Here we studied light as an information signal for developing and ripening grape berries. A Vitis vinifera Sauvignon Blanc field experiment was used to identify the impacts of UVB on core metabolic processes in the berries under both high light (HL) and low light (LL) microclimates. The primary objective was therefore to identify UVB-specific responses on berry processes and metabolites and distinguish them from those responses elicited by variations in light incidence. Canopy manipulation at the bunch zone via early leaf removal, combined with UVB-excluding acrylic sheets installed over the bunch zones resulted in four bunch microclimates: (1) HL (control); (2) LL (control); (3) HL with UVB attenuation and (4) LL with UVB attenuation. Metabolite profiles of three berry developmental stages showed predictable changes to known UV-responsive compound classes in a typical UV acclimation (versus UV damage) response. Interestingly, the berries employed carotenoids and the associated xanthophyll cycles to acclimate to UV exposure and the berry responses differed between HL and LL conditions, particularly in the developmental stages where berries are still photosynthetically active. The developmental stage of the berries was an important factor to consider in interpreting the data. The green berries responded to the different exposure and/or UVB attenuation signals with metabolites that indicate that the berries actively managed its metabolism in relation to the exposure levels, displaying metabolic plasticity in the photosynthesis-related metabolites. Core processes such as photosynthesis, photo-inhibition and acclimation were maintained by differentially modulating metabolites under the four treatments. Ripe berries also responded metabolically to the light quality and quantity, but mostly formed compounds (volatiles and polyphenols) that have direct antioxidant and/or “sunscreening” abilities. The data presented for the green berries and those for the ripe berries conform to what is known for UVB and/or light stress in young, active leaves and older, senescing tissues respectively and provide scope for further evaluation of the sink/source status of fruits in relation to photosignalling and/or stress management. PMID:27375645

  6. Worldwide variation in within-canopy photosynthetic acclimation: differences in temporal and environmental controls among plant functional types

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo; Keenan, Trevor

    2017-04-01

    Major light gradients, characteristically 10- to 50-fold, constitute the most prominent feature of plant canopies. These gradients drive within-canopy variation in foliage structural, chemical and physiological traits. As a key acclimation response to variation in light availability, foliage photosynthetic capacity per area (Aarea) increases with increasing light availability within the canopy, maximizing whole canopy photosynthesis. Recently, a worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types was constructed and within-canopy variation in photosynthetic acclimation was characterized (Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. The New Phytologist 205: 973-993). However, the understanding of how within-canopy photosynthetic gradients vary during the growing season and in response to site and stand characteristics is still limited. Here we analyzed temporal, environmental and site (nutrient availability, stand density, ambient CO2 concentration, water availability) sources of variation in within-canopy photosynthetic acclimation in different plant functional types. Variation in key structural (leaf dry mass per unit area, MA), chemical (nitrogen content per dry mass, NM, and area, NA) and physiological (photosynthetic nitrogen use efficiency, EN) photosynthetic capacity per dry mass, Amass and area, Aarea) was examined. The analysis demonstrates major, typically 1.5-2-fold, time-, environment and site-dependent modifications in within-canopy variation in foliage photosynthetic capacity. However, the magnitude and direction of temporal and environmental variations in plasticity significantly varied among functional types. Species with longer leaf life span and low rates of canopy expansion or flush-type canopy formation had lower within canopy plasticity during the growing season and in response to environmental and site modifications than species with high rates of canopy expansion and leaf turnover. The fast canopy-expanding species that grow in highly dynamic light environments, actively modified Aarea by nitrogen reallocation among and partitioning within leaves. In contrast, species with low rate of leaf turnover generally exhibited a passive acclimation response with variation in Aarea primarily determined by light-dependent modifications in leaf structure during leaf growth. Due to limited reacclimation capacity in species with low leaf turnover, within-canopy variation in Aarea decreased with increasing leaf age in these species. Furthermore, the plasticity responded less to modifications in environmental and site characteristics than in species with faster leaf turnover. This analysis concludes that the rate of leaf turnover is the key trait determining the temporal variation and environmental responses of canopy photosynthetic acclimation.

  7. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    DOE PAGES

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; ...

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO 2 and estimated fluxes throughoutmore » leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m $-$2s $-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m $-$2∙s $-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO 2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.« less

  8. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice.

    PubMed

    Ashkenazi, Lilach; Haim, Abraham

    2012-11-15

    Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.

  9. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.

  10. Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish.

    PubMed

    Wilson, Robbie S; Condon, Catriona H L; Johnston, Ian A

    2007-11-29

    The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived female G. holbrooki to avoid forced-coercive matings following acclimation to either 18 or 30 degrees C for six weeks (12h light:12h dark photoperiod). Thermal acclimation of burst and sustained swimming performance was also assessed, as these traits are likely to underlie their ability to avoid forced matings. There was no influence of thermal acclimation on the burst swimming performance of female G. holbrooki over the range 18-30 degrees C; however, sustained swimming performance was significantly lower in the warm- than the cool-acclimation group. For mating behaviour, we tested the hypothesis that acclimation would enhance the ability of female G. holbrooki to avoid forced matings at their host acclimation temperature relative to females acclimated to another environment. However, our hypothesis was not supported. The rate of copulations was almost three times greater for females acclimated to 30 degrees C than 18 degrees C when tested at 30 degrees C, indicating that they possess the ability to alter their avoidance behaviour to 'allow' more copulations in some environments. Coupled with previous studies, female G. holbrooki appear to have greater control on the outcome of coercive mating attempts than previously considered and can alter their propensity to receive forced matings following thermal acclimation. The significance of this change in female mating-avoidance behaviours with thermal acclimation remains to be explored.

  11. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  12. Artificial light at night alters trophic interactions of intertidal invertebrates.

    PubMed

    Underwood, Charlotte N; Davies, Thomas W; Queirós, Ana M

    2017-07-01

    Despite being globally widespread in coastal regions, the impacts of light pollution on intertidal ecosystems has received little attention. Intertidal species exhibit many night-time-dependent ecological strategies, including feeding, reproduction, orientation and predator avoidance, which are likely negatively affected by shifting light regimes, as has been observed in terrestrial and aquatic taxa. Coastal lighting may shape intertidal communities through its influence on the nocturnal foraging activity of dogwhelks (Nucella lapillus), a widespread predatory mollusc that structures biodiversity in temperate rocky shores. In the laboratory, we investigated whether the basal and foraging activity of this predator was affected by exposure to night-time lighting both in the presence and absence of olfactory predator cues (Carcinus maenas, common shore crab). Assessments of dogwhelks' behavioural responses to night-time white LED lighting were performed on individuals that had been acclimated to night-time white LED lighting conditions for 16 days and individuals that had not previously been exposed to artificial light at night. Dogwhelks acclimated to night-time lighting exhibited natural refuge-seeking behaviour less often compared to control animals, but were more likely to respond to and handle prey irrespective of whether olfactory predator cues were present. These responses suggest night-time lighting likely increased the energetic demand of dogwhelks through stress, encouraging foraging whenever food was available, regardless of potential danger. Contrastingly, whelks not acclimated under night-time lighting were more likely to respond to the presence of prey under artificial light at night when olfactory predator cues were present, indicating an opportunistic shift towards the use of visual instead of olfactory cues in risk evaluation. These results demonstrate that artificial night-time lighting influences the behaviour of intertidal fauna such that the balance of interspecific interactions involved in community structuring may be affected. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  13. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content.

    PubMed

    Mishanin, Vladimir I; Trubitsin, Boris V; Patsaeva, Svetlana V; Ptushenko, Vasily V; Solovchenko, Alexei E; Tikhonov, Alexander N

    2017-09-01

    In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50-125 µmol photons m -2  s -1 ) or high light (HL, 875-1000 µmol photons m -2  s -1 ) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740 ). We also compared the light-induced oxidation of P 700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin + Antheraxantin + Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.

  14. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.

    PubMed

    Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark G

    2016-10-01

    Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair  + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Integration of Genome-Scale Modeling and Transcript Profiling Reveals Metabolic Pathways Underlying Light and Temperature Acclimation in Arabidopsis[C][W

    PubMed Central

    Töpfer, Nadine; Caldana, Camila; Grimbs, Sergio; Willmitzer, Lothar; Fernie, Alisdair R.; Nikoloski, Zoran

    2013-01-01

    Understanding metabolic acclimation of plants to challenging environmental conditions is essential for dissecting the role of metabolic pathways in growth and survival. As stresses involve simultaneous physiological alterations across all levels of cellular organization, a comprehensive characterization of the role of metabolic pathways in acclimation necessitates integration of genome-scale models with high-throughput data. Here, we present an integrative optimization-based approach, which, by coupling a plant metabolic network model and transcriptomics data, can predict the metabolic pathways affected in a single, carefully controlled experiment. Moreover, we propose three optimization-based indices that characterize different aspects of metabolic pathway behavior in the context of the entire metabolic network. We demonstrate that the proposed approach and indices facilitate quantitative comparisons and characterization of the plant metabolic response under eight different light and/or temperature conditions. The predictions of the metabolic functions involved in metabolic acclimation of Arabidopsis thaliana to the changing conditions are in line with experimental evidence and result in a hypothesis about the role of homocysteine-to-Cys interconversion and Asn biosynthesis. The approach can also be used to reveal the role of particular metabolic pathways in other scenarios, while taking into consideration the entirety of characterized plant metabolism. PMID:23613196

  16. Photosynthetic Light Response of Bottomland Oak Seedlings Raised Under Partial Sunlight

    Treesearch

    Emile S. Gardiner

    2002-01-01

    Seedlings of cherrybark oak (Quercus pagoda Rafinesque), Nuttall oak (Quercus nuttallii Palmer) and overcup oak (Quercus lyrata Walter) were grown under two light levels, partial (20 percent) or full sunlight, to study physiological acclimation of leaves to low light availability. Shifts in leaf morphology were...

  17. Growth responses and accumulation of soluble sugars in Inga marginata Wild. (Fabaceae) subjected to flooding under contrasting light conditions.

    PubMed

    Bender, B; Capellesso, E S; Lottici, M E; Sentkovski, J; Mielniczki-Pereira, A A; Rosa, L M G; Sausen, T L

    2017-01-01

    Flood events in riparian forests of southern Brazil, can be characterized as unpredictable and of low magnitude with an average duration of less than 15 days. Inga marginata is an evergreen tree which grows in Southeast South America on a wide range of environments, including riparian forests. In this paper, the interactive effects of the light environment and soil flooding on morphological parameters of I. marginata were examined. Seedlings were acclimated in two contrasting light conditions: sun or shade for 30 days. Sun and shade plants were subjected to soil flooding for two periods; five or 15 days. After 5 days, the interaction between flooding and light did not affect growth, chlorophyll content and dry mass or the root-shoot ratio. After 15 days, flooded plants from the sunny treatment had a lower shoot dry mass compared to control sun plants and flooded plants from the shaded treatment. Moreover, the higher dry mass observed for shade plants compared to sun plants, following flooding, can also be directly associated with a higher content of soluble sugars. Shade plants of I. marginata showed a greater acclimation to soil waterlogging. This acclimation appears to be associated with a larger accumulation of soluble sugars compared to non-flooded plants. The responses observed on the shade plants appear to be decisive to indicate the use of I. marginata in degraded areas.

  18. Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta

    PubMed Central

    Lichtenberg, Mads; Larkum, Anthony W. D.; Kühl, Michael

    2016-01-01

    Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters. PMID:26955372

  19. Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta.

    PubMed

    Lichtenberg, Mads; Larkum, Anthony W D; Kühl, Michael

    2016-01-01

    Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.

  20. Thioredoxins Play a Crucial Role in Dynamic Acclimation of Photosynthesis in Fluctuating Light.

    PubMed

    Thormählen, Ina; Zupok, Arkadiusz; Rescher, Josephin; Leger, Jochen; Weissenberger, Stefan; Groysman, Julia; Orwat, Anne; Chatel-Innocenti, Gilles; Issakidis-Bourguet, Emmanuelle; Armbruster, Ute; Geigenberger, Peter

    2017-01-09

    Sunlight represents the energy source for photosynthesis and plant growth. When growing in the field, plant photosynthesis has to manage strong fluctuations in light intensities. Regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of photosynthetic reactions in the chloroplast. However, direct evidence for a role of this system in regulating dynamic acclimation of photosynthesis in fluctuating conditions is largely lacking. In this report we show that the ferredoxin-dependent Trxs m1 and m2 as well as the NADPH-dependent NTRC are both indispensable for photosynthetic acclimation in fluctuating light intensities. Arabidopsis mutants with combined deficiency in Trxs m1 and m2 show wild-type growth and photosynthesis under constant light condition, while photosynthetic parameters are strongly modified in rapidly alternating high and low light. Two independent trxm1m2 mutants show lower photosynthetic efficiency in high light, but surprisingly significantly higher photosynthetic efficiency in low light. Our data suggest that a main target of Trx m1 and m2 is the NADP-malate dehydrogenase involved in export of excess reductive power from the chloroplast. The decreased photosynthetic efficiency in the high-light peaks may thus be explained by a reduced capacity of the trxm1m2 mutants in the rapid light activation of this enzyme. In the ntrc mutant, dynamic responses of non-photochemical quenching of excitation energy and plastoquinone reduction state both were strongly attenuated in fluctuating light intensities, leading to a massive decrease in PSII quantum efficiency and a specific decrease in plant growth under these conditions. This is likely due to the decreased ability of the ntrc mutant to control the stromal NADP(H) redox poise. Taken together, our results indicate that NTRC is indispensable in ensuring the full range of dynamic responses of photosynthesis to optimize photosynthesis and maintain growth in fluctuating light, while Trxs m1 and m2 are indispensable for full activation of photosynthesis in the high-light periods but negatively affect photosynthetic efficiency in the low-light periods of fluctuating light. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  1. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components.

    PubMed

    Aasamaa, Krõõt; Aphalo, Pedro José

    2017-02-01

    Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster.

    PubMed

    Aggarwal, Dau Dayal; Ranga, Poonam; Kalra, Bhawna; Parkash, Ravi; Rashkovetsky, Eugenia; Bantis, Leonidas E

    2013-09-01

    We tested the hypothesis whether developmental acclimation at ecologically relevant humidity regimes (40% and 75% RH) affects desiccation resistance of pre-adults (3rd instar larvae) and adults of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Additionally, we untangled whether drought (40% RH) acclimation affects cold-tolerance in the adults of D. melanogaster. We observed that low humidity (40% RH) acclimated individuals survived significantly longer (1.6-fold) under lethal levels of desiccation stress (0-5% RH) than their counter-replicates acclimated at 75% RH. In contrast to a faster duration of development of 1st and 2nd instar larvae, 3rd instar larvae showed a delayed development at 40% RH as compared to their counterparts grown at 75% RH. Rearing to low humidity conferred an increase in bulk water, hemolymph content and dehydration tolerance, consistent with increase in desiccation resistance for replicates grown at 40% as compared to their counterparts at 75% RH. Further, we found a trade-off between the levels of carbohydrates and body lipid reserves at 40% and 75% RH. Higher levels of carbohydrates sustained longer survival under desiccation stress for individuals developed at 40% RH than their congeners at 75% RH. However, the rate of carbohydrate utilization did not differ between the individuals reared at these contrasting humidity regimes. Interestingly, our results of accelerated failure time (AFT) models showed substantial decreased death rates at a series of low temperatures (0, -2, or -4°C) for replicates acclimated at 40% RH as compared to their counter-parts at 75% RH. Therefore, our findings indicate that development to low humidity conditions constrained on multiple physiological mechanisms of water-balance, and conferred cross-tolerance towards desiccation and cold stress in D. melanogaster. Finally, we suggest that the ability of generalist Drosophila species to tolerate fluctuations in humidity might aid in their existence and abundance under expected changes in moisture level in course of global climate change. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  4. Evaluation of Infrasound and Strobe Lights for Eliciting Avoidance Behavior in Juvenile Salmon and Char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert P.; Neitzel, Duane A.; Amidan, Brett G.

    2001-12-01

    Laboratory tests were conducted using juvenile chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, and rainbow trout O. mykiss to determine specific behavior responses to infrasound (< 20 Hz) and flashing strobe lights. The objective of these tests was to determine if juvenile salmonids could be deterred from entrainment at water diversion structures. Caged fish were acclimated in a static test tank and their behavior was recorded using low light cameras. Species-specific behavior was characterized by measuring movements of the fish within the cage and by observing startle and habituation responses. Wild chinook salmon (40-45 mm TL) and hatchery rearedmore » chinook salmon (45-50 mm TL) exhibited avoidance responses when initially exposed to a 10-Hz volume displacement source of infrasound. Rainbow and eastern brook trout (25-100 mm TL) did not respond with avoidance or other behaviors to infrasound. Evidence of habituation to the infrasound source was evident for chinook salmon during repeated exposures. Wild and hatchery chinook displayed a higher proportion of movement during the initial exposures to infrasound when the acclimation period in the test tank was 2-3 h as compared to a 12-15 h acclimation period. A flashing strobe light produced consistent movement in wild chinook salmon (60% of the tests), hatchery reared chinook salmon (50%), and rainbow trout (80%). No measurable responses were observed for brook trout. Results indicate that consistent, repeatable responses can be elicited from some fish using high-intensity strobe lights under a controlled laboratory testing. The species specific behaviors observed in these experiments might be used to predict how fish might react to low-frequency sound and strobe lights in a screening facility.« less

  5. PHOTOINHIBITION OF PSII IN EMILIANIA HUXLEYI (HAPTOPHYTA) UNDER HIGH LIGHT STRESS: THE ROLES OF PHOTOACCLIMATION, PHOTOPROTECTION, AND PHOTOREPAIR(1).

    PubMed

    Ragni, Maria; Airs, Ruth L; Leonardos, Nikos; Geider, Richard J

    2008-06-01

    The response of the coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler to acute exposure to high photon flux densities (PFD) was examined in terms of PSII photoinhibition, photoprotection, and photorepair. The time and light dependencies of these processes were characterized as a function of the photoacclimation state of the alga. Low-light (LL) acclimated cells displayed a higher degree of photoinhibition, measured as decline in Fv /Fm , than high-light (HL) acclimated cells. However, HL cultures were more susceptible to photodamage but also more capable of compensating for it by performing a faster repair cycle. The relation between gross photoinhibition (observed in the presence of an inhibitor of repair) and PFD to which the algae were exposed deviated from linearity at high PFD, which calls into question the universality of current concepts of photoinhibition in mechanistic models. The light dependence of the de-epoxidation state (DPS) of the xanthophyll cycle (XC) pigments on the timescale of hours was the same in cells acclimated to LL and HL. However, HL cells were more efficient in realizing nonphotochemical quenching (NPQ) on short timescales, most likely due to a larger XC pool. LL cells displayed an increase in the PSII effective cross-section (σPSII ) as a result of photoinhibition, which was observed also in HL cells when net photoinhibition was induced by blocking the D1 repair cycle. The link between σPSII and photoinhibition suggests that the population of PSII reaction centers (RCIIs) of E. huxleyi shares a common antenna, according to a "lake" organization of the light-harvesting complex. © 2008 Phycological Society of America.

  6. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation1[OPEN

    PubMed Central

    Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica

    2016-01-01

    Distinct ROS signaling pathways initiated by singlet oxygen (1O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the 1O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of 1O2 using the conditional flu mutant. A qPCR time course of 1O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent 1O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. PMID:27288360

  7. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation.

    PubMed

    Carmody, Melanie; Crisp, Peter A; d'Alessandro, Stefano; Ganguly, Diep; Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica; Pogson, Barry J

    2016-07-01

    Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments

    PubMed Central

    2017-01-01

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair. PMID:28874535

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostoni, Marco; Lucker, Ben F.; Smith, Matthew A. Y.

    Phycobilisomes (PBSs) are pigment-rich super-complexes required for efficient harvest and transfer of light energy to photosynthetic reaction centers of cyanobacteria. The model cyanobacterium Fremyella diplosiphon is able to adjust PBS pigmentation and size in response to the prevailing light spectrum through a process called complementary chromatic acclimation to optimize spectral light absorption, concomitantly optimizing photosynthesis and growth. We explored the fitness costs versus advantages of modulating antennae size and composition under sinusoidal continuous and fluctuating light conditions in F. diplosiphon by comparing growth of wild-type (WT) cells with a mutant strain deficient in PBSs in both monoculture and polyculture conditions.more » Comparative analyses of WT and the PBS-deficient FdCh1 strain under continuous vs. fluctuating sinusoidal light suggest a potential fitness advantage for maintaining PBSs in WT cells during continuous light and a fitness cost during transitions to and acclimation under fluctuating light. Here, we explored the physiological changes correlated with the observed differential growth to understand the dynamics and biochemical bases of comparative fitness of distinct strains under defined growth conditions. Wild-type F. diplosiphon appears to accumulate longer PBS rods and exhibits higher oxidative stress under fluctuating light conditions than continuous sinusoidal light, which may impact responses and the fitness of cells that do not adapt to rapid changes in external light.« less

  10. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments.

    PubMed

    Liu, Jun; Last, Robert L

    2017-09-19

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530 ) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2 -and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.

  11. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries

    PubMed Central

    du Plessis, Kari; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2017-01-01

    An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening. PMID:28775728

  12. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries.

    PubMed

    du Plessis, Kari; Young, Philip R; Eyéghé-Bickong, Hans A; Vivier, Melané A

    2017-01-01

    An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.

  13. Simultaneous inactivation of sigma factors B and D interferes with light acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed

    Pollari, Maija; Ruotsalainen, Virpi; Rantamäki, Susanne; Tyystjärvi, Esa; Tyystjärvi, Taina

    2009-06-01

    In cyanobacteria, gene expression is regulated mainly at the level of transcription initiation, which is mediated by the RNA polymerase holoenzyme. The RNA polymerase core is catalytically active, while the sigma factor recognizes promoter sequences. Group 2 sigma factors are similar to the principal sigma factor but are nonessential. Group 2 sigma factors SigB and SigD are structurally the most similar sigma factors in Synechocystis sp. strain PCC 6803. Under standard growth conditions, simultaneous inactivation of sigB and sigD genes did not affect the growth, but the photosynthesis and growth of the DeltasigBD strain were slower than in the control strain at double light intensity. Light-saturated electron transfer rates and the fluorescence and thermoluminescence measurements showed that photosynthetic light reactions are fully functional in the DeltasigBD strain, but absorption and 77 K emission spectra measurements suggest that the light-harvesting system of the DeltasigBD strain does not acclimate normally to higher light intensity. Furthermore, the DeltasigBD strain is more sensitive to photoinhibition under bright light because impaired upregulation of psbA genes leads to insufficient PSII repair.

  14. RATE OF ACCLIMATION OF THE CAPACITY FOR ISOPRENE EMISSION IN RESPONSE TO LIGHT AND TEMPERATURE

    EPA Science Inventory

    Isoprene emission from plants accounts for nearly half of all non-methane hydrocarbons entering the atmosphere. Light and temperature regulate the instantaneous rate of isoprene emission, but there is increasing evidence that they also affect the capacity for isoprene emission (i...

  15. Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas1[OPEN

    PubMed Central

    Uhmeyer, Andreas

    2017-01-01

    In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished light tolerance. We analyzed the modulation of mitochondrial and chlororespiration during the acclimation of stm6 and the MOC1-complemented strain to excess light. Although light stress stimulated mitochondrial respiration via the energy-conserving cytochrome c pathway in both strains, the mutant was unable to fine-tune the expression and activity of oxidative phosphorylation complex I in excess light, which was accompanied by an increased mitochondrial respiration via the alternative oxidase pathway. Furthermore, stm6 failed to fully activate chlororespiration and cyclic electron flow due to a more oxidized state of the chloroplast stroma, which is caused by an increased mitochondrial electron sink capacity. Increased susceptibility to photoinhibition of PSII in stm6 demonstrates that the MOC1-dependent modulation of mitochondrial respiration helps control the stromal redox poise as a crucial part of high-light acclimation in C. reinhardtii. PMID:28500267

  16. Competition-based phenotyping reveals a fitness cost for maintaining phycobilisomes under fluctuating light in the cyanobacterium Fremyella diplosiphon

    DOE PAGES

    Agostoni, Marco; Lucker, Ben F.; Smith, Matthew A. Y.; ...

    2016-02-21

    Phycobilisomes (PBSs) are pigment-rich super-complexes required for efficient harvest and transfer of light energy to photosynthetic reaction centers of cyanobacteria. The model cyanobacterium Fremyella diplosiphon is able to adjust PBS pigmentation and size in response to the prevailing light spectrum through a process called complementary chromatic acclimation to optimize spectral light absorption, concomitantly optimizing photosynthesis and growth. We explored the fitness costs versus advantages of modulating antennae size and composition under sinusoidal continuous and fluctuating light conditions in F. diplosiphon by comparing growth of wild-type (WT) cells with a mutant strain deficient in PBSs in both monoculture and polyculture conditions.more » Comparative analyses of WT and the PBS-deficient FdCh1 strain under continuous vs. fluctuating sinusoidal light suggest a potential fitness advantage for maintaining PBSs in WT cells during continuous light and a fitness cost during transitions to and acclimation under fluctuating light. Here, we explored the physiological changes correlated with the observed differential growth to understand the dynamics and biochemical bases of comparative fitness of distinct strains under defined growth conditions. Wild-type F. diplosiphon appears to accumulate longer PBS rods and exhibits higher oxidative stress under fluctuating light conditions than continuous sinusoidal light, which may impact responses and the fitness of cells that do not adapt to rapid changes in external light.« less

  17. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance

    PubMed Central

    Karpinska, Barbara; Zhang, Kaiming; Rasool, Brwa; Pastok, Daria; Morris, Jenny; Verrall, Susan R.; Hedley, Pete E.

    2017-01-01

    Abstract The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild‐type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m−2 s−1] and high [high light (HL); 1600 μmol m−2 s−1] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL‐grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub‐sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state. PMID:28369975

  18. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    PubMed

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes.

    PubMed

    Wong, Shau-Lian; Chen, Chung-Wei; Huang, Hsien-Wen; Weng, Jen-Hsien

    2012-05-01

    We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation capability.

  20. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Treesearch

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  1. Regulatory mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis).

    PubMed

    Stager, Maria; Swanson, David L; Cheviron, Zachary A

    2015-03-01

    Small temperate birds reversibly modify their aerobic performance to maintain thermoregulatory homeostasis under seasonally changing environmental conditions and these physiological adjustments may be attributable to changes in the expression of genes in the underlying regulatory networks. Here, we report the results of an experimental procedure designed to gain insight into the fundamental mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis). We combined genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance from juncos exposed to four 6-week acclimation treatments that varied in temperature (cold, 3°C; warm, 24°C) and photoperiod (short day, 8 h light:16 h dark; long day, 16 h light:8 h dark). Cold-acclimated birds increased thermogenic capacity compared with warm-acclimated birds, and this enhanced performance was associated with upregulation of genes involved in muscle hypertrophy, angiogenesis, and lipid transport and oxidation, as well as with catabolic enzyme activities. These physiological changes occurred over ecologically relevant timescales, suggesting that birds make regulatory adjustments to interacting, hierarchical pathways in order to seasonally enhance thermogenic capacity. © 2015. Published by The Company of Biologists Ltd.

  2. Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes.

    PubMed

    Xing, Tao; Gao, Kunshan; Beardall, John

    2015-01-01

    Microalgae are capable of acclimating to changes in light and ultraviolet radiation (UVR, 280-400 nm). However, little is known about how the ecologically important coccolithophore Emiliania huxleyi responds to UVR when acclimated to different light regimes. Here, we grew E. huxleyi under indoor constant light or fluctuating sunlight with or without UVR, and investigated its growth, photosynthetic performance and pigmentation. Under the indoor constant light regime, the specific growth rate (μ) was highest, while fluctuating outdoor solar radiation significantly decreased the growth rate. Addition of UVR further decreased the growth rate. The repair rate of photosystem II (PSII), as reflected in changes in PSII quantum yield, showed an inverse correlation with growth rate. Cells grown under the indoor constant light regime exhibited the lowest repair rate, while cells from the outdoor fluctuating light regimes significantly increased their repair rate. Addition of UVR increased both the repair rate and intracellular UV-absorbing compounds. This increased repair capability, at the cost of decreased growth rate, persisted after the cells were transferred back to the indoor again, suggesting an enhanced allocation of energy and resources for repair of photosynthetic machinery damage by solar UVR which persisted for a period after transfer from solar UVR. © 2014 The American Society of Photobiology.

  3. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light.

    PubMed

    Tian, Yonglan; Sacharz, Joanna; Ware, Maxwell A; Zhang, Huayong; Ruban, Alexander V

    2017-07-10

    This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Response of Southern Ocean Phytoplankton Communities to Trace Metal (including Iron) and Light Availability

    NASA Astrophysics Data System (ADS)

    Fietz, S.; Roychoudhury, A. N.; Thomalla, S.; Mtshali, T. N.; Philibert, R.; Van Horsten, N.; Loock, J. C.; Cloete, R.

    2016-02-01

    Phytoplankton primary productivity depends on macro- and micronutrient availability and in turn plays a key role in the marine biogeochemical cycles. The role of iron in regulating phytoplankton primary production and thus biogeochemical cycles in the Southern Ocean has been widely recognized; however, it also became obvious that iron is not the sole factor limiting primary production in the Southern Ocean and that light, for instance, might aggravate or relief trace nutrient limitation. We conducted a suite of ship-board incubation experiments in austral summer 2013/14, 2014/15 and winter 2015 to shed light on the complex interplay between trace metal and light limitation. We observed a strong difference in acclimation and photophysiological response depending on the environmental conditions of the in-situ communities prior to the experiment. The differences in acclimation and photophysiological responses resulted in different growth and macronutrient uptake rates. Revisited stations did, however, not always show the same responses. At at least one station we will link the incubation experiments to the in-situ vertical profiles of trace metals, macronutrients and primary productivity.

  5. Micro-topographic hydrologic variability due to vegetation acclimation under climate change

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2012-12-01

    Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.

  6. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.

    PubMed

    Costa E Silva, F; Shvaleva, A; Broetto, F; Ortuño, M F; Rodrigues, M L; Almeida, M H; Chaves, M M; Pereira, J S

    2009-01-01

    We tested the hypothesis that Eucalyptus globulus Labill. genotypes that are more resistant to dry environments might also exhibit higher cold tolerances than drought-sensitive plants. The effect of low temperatures was evaluated in acclimated and unacclimated ramets of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of E. globulus. We studied the plants' response via leaf gas exchanges, leaf water and osmotic potentials, concentrations of soluble sugars, several antioxidant enzymes and leaf electrolyte leakage. Progressively lowering air temperatures (from 24/16 to 10/-2 degrees C, day/night) led to acclimation of both clones. Acclimated ramets exhibited higher photosynthetic rates, stomatal conductances and lower membrane relative injuries when compared to unacclimated ramets. Moreover, low temperatures led to significant increases of soluble sugars and antioxidant enzymes activity (glutathione reductase, ascorbate peroxidase and superoxide dismutases) of both clones in comparison to plants grown at control temperature (24/16 degrees C). On the other hand, none of the clones, either acclimated or not, exhibited signs of photoinhibition under low temperatures and moderate light. The main differences in the responses to low temperatures between the two clones resulted mainly from differences in carbon metabolism, including a higher accumulation of soluble sugars in the drought-resistant clone CN5 as well as a higher capacity for osmotic regulation, as compared to the drought-sensitive clone ST51. Although membrane injury data suggested that both clones had the same inherent freezing tolerance before and after cold acclimation, the results also support the hypothesis that the drought-resistant clone had a greater cold tolerance at intermediate levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a short period can allow a clone to maintain an undamaged leaf surface area along sudden frost events, increasing growth capacity. Moreover, it can enhance survival chances in frost-prone sites expanding the plantation range with more adaptive clones.

  7. Physiological acclimation of the green tidal alga Ulva prolifera to a fast-changing environment.

    PubMed

    Wu, Hailong; Gao, Guang; Zhong, Zhihai; Li, Xinshu; Xu, Juntian

    2018-06-01

    To aid early warning and prevent the outbreak of green tides in the Yellow Sea, both the growth and photosynthetic performance of Ulva prolifera were studied after culture in different temperatures (18, 22, and 26 °C) and light intensities (44, 160, and 280 μmol m -2 ·s -1 ). Furthermore, their instantaneous net photosynthetic performance (INPP) was studied to determine the resulting environmental acclimation. The relative growth rates of U. prolifera significantly decreased in response to increasing temperature, while they increased with increasing light intensity. Culture at higher light intensities significantly increased INPP, while higher temperatures decreased the INPP. Culture at lower temperatures lowered INPP, while increased growth temperature increased the effect. These results suggest that high temperatures during the cold season inhibited U. prolifera growth. However, low temperatures during the warm season increase biomass and may cause a large-scale green tide. These results help to understand the correlation between U. prolifera blooms and extreme weather. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis.

    PubMed

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton; Li, Yuanguang; Han, Danxiang

    2016-10-01

    The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high-value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark-grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L(-1)  day(-1) ) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark-grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high-light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L(-1)  day(-1) by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark-grown cells under photo-induction conditions. Biotechnol. Bioeng. 2016;113: 2088-2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  9. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis

    PubMed Central

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton

    2016-01-01

    ABSTRACT The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L−1 day−1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L−1 day−1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:27563850

  10. Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultrafast Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Hans C.; McClure, Ryan S.; Hill, Eric A.

    ABSTRACT Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacteriumSynechococcussp. strain PCC 7002 (Synechococcus7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (~2.5-h doubling time). Ultrafast growth ofSynechococcus7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signaturesmore » were observed under any of the tested experimental conditions. Finally, the ultrafast growth inSynechococcus7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration. IMPORTANCEEfficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated putative biological principles that allow unicellular cyanobacteria to achieve ultrahigh growth rates through photophysiological acclimation and effective management of cellular resource under different growth regimes.« less

  11. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    PubMed

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (<1 mm) respiration in a sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacIntyre, H.L.; Geider, R.J.; McKay, R.M.

    Net phytoplankton (>20 {mu}m) comprised 51 {plus_minus} 9% of the total chlorophyll (Chl) in a Skeletonema costatum-dominated spring bloom in Delaware Bay. The net phytoplankton had low C:N and high protein:carbohydrate ratios, indicating that their growth was nutrient-replete. Their photosynthetic responses were characterized by low specific absorption, low light-limited and light-saturated rates of photosynthesis, and high quantum yields, indicative of acclimation to low irradiance and internal self-shading. High fucoxanthin: Chl ratios also indicated low light acclimation, but high photoprotective xanthophyll: Chl ratios suggested a high capacity for photoprotective energy dissipation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) could be activated and deactivated in responsemore » to changes in irradiance and was fully activated at the surface of the water column and fully deactivated in aphotic deep water. Maximum Rubisco activity was correlated with Rubisco content and bulk protein content of the phytoplankton and with light-saturated rates of photosynthesis measured in short (<20-min) incubations. Long (60-min) incubations caused a decrease in the light-saturated rate of photosynthesis, possibly because of feedback limitation. While feedback limitation is unlikely to occur in the water column it should be considered when estimating productivity in well-mixed waters from fixed light-depth incubations. 90 refs., 7 figs., 2 tabs.« less

  13. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation1[CC-BY

    PubMed Central

    2017-01-01

    The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field. PMID:28184008

  14. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis

    PubMed Central

    Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław

    2015-01-01

    Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress. PMID:25654166

  15. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2005-01-01

    Cloudy days cause an abrupt reduction in daily photosynthetic photon flux (PPF), but we have a poor understanding of how plants acclimate to this change. We used a unique lo-chamber, steady-state, gas-exchange system to continuously measure daily photosynthesis and night respiration of populations of a starch accumulator [tomato (Lycopersicone scukntum Mill. cv. Micro-Tina)] and a sucrose accumulator [lettuce (Latuca sativa L ev. Grand Rapids)] over 42 days. AI1 measurements were done at elevated CO2, (1200micr-/mol) avoid any CO2 limitations and included both shoots and roots. We integrated photosynthesis and respiration measurements separately to determine daily net carbon gain and carbon use efficiency (CUE) as the ratio of daily net C gain to total day-time C fixed over the 42-day period. After 16 to 20 days of growth in constant PPF, plants in some chambers were subjected to an abrupt PPF reduction to simulate shade or a series of cloudy days. The immediate effect and the long term acclimation rate w'ere assessed from canopy quantum yield and carbon use efficiency. The effect of shade on carbon use efficiency and acclimation was much slower than predicted by widely used growth models. It took 12 days for tomato populations to recover their original CUE and lettuce CUE never completely acclimated. Tomatoes, the starch accumulator, acclimated to low light more rapidly than lettuce, the sucrose accumulator. Plant growth models should be modified to include the photosynthesis/respiration imbalance and resulting inefficiency of carbon gain associated with changing PIT conditions on cloudy days.

  16. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce.

    PubMed

    Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran

    2018-02-01

    Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.

  17. Acclimation of Foliar Respiration and Photosynthesis in Response to Experimental Warming in a Temperate Steppe in Northern China

    PubMed Central

    Chi, Yonggang; Xu, Ming; Shen, Ruichang; Yang, Qingpeng; Huang, Bingru; Wan, Shiqiang

    2013-01-01

    Background Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. Methodology/Principal Findings A field manipulative experiment was conducted to elevate foliar temperature (T leaf) by 2.07°C in a temperate steppe in northern China. R d/T leaf curves (responses of dark respiration to T leaf), A n/T leaf curves (responses of light-saturated net CO2 assimilation rates to T leaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (A g) to T leaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of R d to 6-year experimental warming was found. However, A n had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of R d was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. Conclusions/Significance Warming decreased the temperature sensitivity (Q 10) of the response of R d/A g ratio to T leaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions. PMID:23457574

  18. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    NASA Astrophysics Data System (ADS)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  19. Forest trees filter chronic wind-signals to acclimate to high winds.

    PubMed

    Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem

    2016-05-01

    Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Maintenance of pre-existing DNA methylation states through recurring excess-light stress.

    PubMed

    Ganguly, Diep R; Crisp, Peter A; Eichten, Steven R; Pogson, Barry J

    2018-04-29

    The capacity for plant stress priming and memory and the notion of this being underpinned by DNA methylation-mediated memory is an appealing hypothesis for which there is mixed evidence. We previously established a lack of drought-induced methylome variation in Arabidopsis thaliana (Arabidopsis); however, this was tied to only minor observations of physiological memory. There are numerous independent observations demonstrating that photoprotective mechanisms, induced by excess-light stress, can lead to robust programmable changes in newly developing leaf tissues. Although key signalling molecules and transcription factors are known to promote this priming signal, an untested question is the potential involvement of chromatin marks towards the maintenance of light stress acclimation, or memory. Thus, we systematically tested our previous hypothesis of a stress-resistant methylome using a recurring excess-light stress, then analysing new, emerging, and existing tissues. The DNA methylome showed negligible stress-associated variation, with the vast majority attributable to stochastic differences. Yet, photoacclimation was evident through enhanced photosystem II performance in exposed tissues, and nonphotochemical quenching and fluorescence decline ratio showed evidence of mitotic transmission. Thus, we have observed physiological acclimation in new and emerging tissues in the absence of substantive DNA methylome changes. © 2018 John Wiley & Sons Ltd.

  1. Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.).

    PubMed

    Pfündel, Erhard E; Latouche, Gwendal; Meister, Armin; Cerovic, Zoran G

    2018-01-27

    Low light (LL) and high light (HL)-acclimated plants of A. thaliana were exposed to blue (BB) or red (RR) light or to a mixture of blue and red light (BR) of incrementally increasing intensities. The light response of photosystem II was measured by pulse amplitude-modulated chlorophyll fluorescence and that of photosystem I by near infrared difference spectroscopy. The LL but not HL leaves exhibited blue light-specific responses which were assigned to relocation of chloroplasts from the dark to the light-avoidance arrangement. Blue light (BB and BR) decreased the minimum fluorescence ([Formula: see text]) more than RR light. This extra reduction of the [Formula: see text] was stronger than theoretically predicted for [Formula: see text] quenching by energy dissipation but actual measurement and theory agreed in RR treatments. The extra [Formula: see text] reduction was assigned to decreased light absorption of chloroplasts in the avoidance position. A maximum reduction of 30% was calculated. Increasing intensities of blue light affected the fluorescence parameters NPQ and q P to a lesser degree than red light. After correcting for the optical effects of chloroplast relocation, the NPQ responded similarly to blue and red light. The same correction method diminished the color-specific variations in q P but did not abolish it; thus strongly indicating the presence of another blue light effect which also moderates excitation pressure in PSII but cannot be ascribed to absorption variations. Only after RR exposure, a post-illumination overshoot of [Formula: see text] and fast oxidation of PSI electron acceptors occurred, thus, suggesting an electron flow from stromal reductants to the plastoquinone pool.

  2. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals.

    PubMed

    Novák, Aliz; Boldizsár, Ákos; Ádám, Éva; Kozma-Bognár, László; Majláth, Imre; Båga, Monica; Tóth, Balázs; Chibbar, Ravindra; Galiba, Gábor

    2016-03-01

    C-repeat binding factor 14 (CBF14) is a plant transcription factor that regulates a set of cold-induced genes, contributing to enhanced frost tolerance during cold acclimation. Many CBF genes are induced by cool temperatures and regulated by day length and light quality, which affect the amount of accumulated freezing tolerance. Here we show that a low red to far-red ratio in white light enhances CBF14 expression and increases frost tolerance at 15°C in winter Triticum aesitivum and Hordeum vulgare genotypes, but not in T. monococcum (einkorn), which has a relatively low freezing tolerance. Low red to far-red ratio enhances the expression of PHYA in all three species, but induces PHYB expression only in einkorn. Based on our results, a model is proposed to illustrate the supposed positive effect of phytochrome A and the negative influence of phytochrome B on the enhancement of freezing tolerance in cereals in response to spectral changes of incident light. CBF-regulon, barley, cereals, cold acclimation, freezing tolerance, light regulation, low red/far-red ratio, phytochrome, wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  4. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    PubMed Central

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S.; Agusti, Susana; Duarte, Carlos M.; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change. PMID:26630025

  5. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming.

    PubMed

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S; Agusti, Susana; Duarte, Carlos M; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia-Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16-30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius' model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  6. Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted.

    PubMed

    McKew, Boyd A; Lefebvre, Stephane C; Achterberg, Eric P; Metodieva, Gergana; Raines, Christine A; Metodiev, Metodi V; Geider, Richard J

    2013-10-01

    Optimality principles are often applied in theoretical studies of microalgal ecophysiology to predict changes in allocation of resources to different metabolic pathways, and optimal acclimation is likely to involve changes in the proteome, which typically accounts for > 50% of cellular nitrogen (N). We tested the hypothesis that acclimation of the microalga Emiliania huxleyi CCMP 1516 to suboptimal vs supraoptimal light involves large changes in the proteome as cells rebalance the capacities to absorb light, fix CO2 , perform biosynthesis and resist photooxidative stress. Emiliania huxleyi was grown in nutrient-replete continuous culture at 30 (LL) and 1000 μmol photons m(-2) s(-1) (HL), and changes in the proteome were assessed by LC-MS/MS shotgun proteomics. Changes were most evident in proteins involved in the light reactions of photosynthesis; the relative abundance of photosystem I (PSI) and PSII proteins was 70% greater in LL, light-harvesting fucoxanthin-chlorophyll proteins (Lhcfs) were up to 500% greater in LL and photoprotective LI818 proteins were 300% greater in HL. The marked changes in the abundances of Lhcfs and LI818s, together with the limited plasticity in the bulk of the E. huxleyi proteome, probably reflect evolutionary pressures to provide energy to maintain metabolic capabilities in stochastic light environments encountered by this species in nature. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Phycoerythrin-specific bilin lyase–isomerase controls blue-green chromatic acclimation in marine Synechococcus

    PubMed Central

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A.; Hammad, Loubna A.; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M.; Kehoe, David M.

    2012-01-01

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as “type IV chromatic acclimation” (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications. PMID:23161909

  8. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology

    PubMed Central

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.

    2014-01-01

    Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829

  9. Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology.

    PubMed

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P

    2014-01-01

    Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122-130 µmol m(-2) s(-1). Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work.

  10. Overwintering of herbaceous plants in a changing climate. Still more questions than answers.

    PubMed

    Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte

    2014-08-01

    The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of 'chromatic adaptation' in diatoms.

    PubMed

    Mouget, Jean-Luc; Rosa, Philippe; Tremblin, Gérard

    2004-07-19

    The marine diatom Haslea ostrearia was cultured under light of different qualities, white (WL), blue (BL), green (GL), yellow (YL), red (RL), and far-red (FRL) and at two irradiance levels, low and high (20 and 100 micromolphotonsm(-2)s(-1), respectively). The effects of the different light regimes were studied on growth, pigment content, and photosynthesis, estimated by the modulated fluorescence of chlorophyll, as relative electron transport rate (rETR). For all the light qualities studied, growth rates were higher at high irradiance. Compared to the corresponding WL controls, growth was higher in BL and lower in YL at low irradiance, and lower in YL and GL at high irradiance. Except for YL, almost all the pigment contents of the cells were lower at high irradiance. At low irradiance, cell pigment contents (chlorophyll a and c, fucoxanthin) and pigment ratios (in function of chlorophyll a) were lower in YL, RL, and FRL. Whatever the irradiance level, the maximum PSII quantum efficiency (F(v)/F(m) remained almost constant for WL, BL, and GL. Other fluorescence parameters (photochemical quenching, rETR(max), and alpha, the maximum light utilization coefficient) were lower in GL, YL, RL, and FRL, at low irradiance. Although not statistically significant, BL caused an increase in these fluorescence parameters. These findings are interpreted as evidence that inverse chromatic acclimation occurs in diatoms.

  12. Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures

    PubMed Central

    Gholami, Pardis; Kline, David I.; DuPont, Christopher L.; Dickson, Andrew G.; Mendola, Dominick; Martz, Todd; Allen, Andrew E.; Mitchell, B. Greg

    2018-01-01

    The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics. PMID:29920568

  13. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I.

    PubMed

    Campos, Huitziméngari; Trejo, Carlos; Peña-Valdivia, Cecilia B; García-Nava, Rodolfo; Conde-Martínez, F Víctor; Cruz-Ortega, Ma Del Rocío

    2014-10-01

    Agave salmiana Otto ex Salm-Dyck, a crassulacean acid metabolism plant that is adapted to water-limited environments, has great potential for bioenergy production. However, drought stress decreases the requirement for light energy, and if the amount of incident light exceeds energy consumption, the photosynthetic apparatus can be injured, thereby limiting plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of A. salmiana seedlings. The leaf relative water content and leaf water potential decreased to 39.6 % and -1.1 MPa, respectively, over 115 days of water withholding and recovered after re-watering. Drought caused a direct effect on photosystem II (PSII) photochemistry in light-acclimated leaves, as indicated by a decrease in the photosynthetic electron transport rate. Additionally, down-regulation of photochemical activity occurred mainly through the inactivation of PSII reaction centres and an increased thermal dissipation capacity of the leaves. Prompt fluorescence kinetics also showed a larger pool of terminal electron acceptors in photosystem I (PSI) as well as an increase in some JIP-test parameters compared to controls, reflecting an enhanced efficiency and specific fluxes for electron transport from the plastoquinone pool to the PSI terminal acceptors. All the above parameters showed similar levels after re-watering. These results suggest that the thermal dissipation of excess energy and the increased energy conservation from photons absorbed by PSII to the reduction of PSI end acceptors may be an important acclimation mechanism to protect the photosynthetic apparatus from over-excitation in Agave plants.

  14. Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts.

    PubMed

    Dietzel, Lars; Gläßer, Christine; Liebers, Monique; Hiekel, Stefan; Courtois, Florence; Czarnecki, Olaf; Schlicke, Hagen; Zubo, Yan; Börner, Thomas; Mayer, Klaus; Grimm, Bernhard; Pfannschmidt, Thomas

    2015-08-01

    Natural illumination conditions are highly variable and because of their sessile life style, plants are forced to acclimate to them at the cellular and molecular level. Changes in light intensity or quality induce changes in the reduction/oxidation (redox) state of the photosynthetic electron chain that acts as a trigger for compensatory acclimation responses comprising functional and structural adjustments of photosynthesis and metabolism. Such responses include redox-controlled changes in plant gene expression in the nucleus and organelles. Here we describe a strategy for the identification of early redox-regulated genes (ERGs) in the nucleus of the model organism Arabidopsis thaliana that respond significantly 30 or 60 min after the generation of a reduction signal in the photosynthetic electron transport chain. By comparing the response of wild-type plants with that of the acclimation mutant stn7, we could specifically identify ERGs. The results reveal a significant impact of chloroplast redox signals on distinct nuclear gene groups including genes for the mitochondrial electron transport chain, tetrapyrrole biosynthesis, carbohydrate metabolism, and signaling lipid synthesis. These expression profiles are clearly different from those observed in response to the reduction of photosynthetic electron transport by high light treatments. Thus, the ERGs identified are unique to redox imbalances in photosynthetic electron transport and were then used for analyzing potential redox-responsive cis-elements, trans-factors, and chromosomal regulatory hot spots. The data identify a novel redox-responsive element and indicate extensive redox control at transcriptional and chromosomal levels that point to an unprecedented impact of redox signals on epigenetic processes. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  15. Proteome Analysis Reveals Extensive Light Stress-Response Reprogramming in the Seagrass Zostera muelleri (Alismatales, Zosteraceae) Metabolism

    PubMed Central

    Kumar, Manoj; Padula, Matthew P.; Davey, Peter; Pernice, Mathieu; Jiang, Zhijian; Sablok, Gaurav; Contreras-Porcia, Loretto; Ralph, Peter J.

    2017-01-01

    Seagrasses are marine ecosystem engineers that are currently declining in abundance at an alarming rate due to both natural and anthropogenic disturbances in ecological niches. Despite reports on the morphological and physiological adaptations of seagrasses to extreme environments, little is known of the molecular mechanisms underlying photo-acclimation, and/or tolerance in these marine plants. This study applies the two-dimensional isoelectric focusing (2D-IEF) proteomics approach to identify photo-acclimation/tolerance proteins in the marine seagrass Zostera muelleri. For this, Z. muelleri was exposed for 10 days in laboratory mesocosms to saturating (control, 200 μmol photons m−2 s−1), super-saturating (SSL, 600 μmol photons m−2 s−1), and limited light (LL, 20 μmol photons m−2 s−1) irradiance conditions. Using LC-MS/MS analysis, 93 and 40 protein spots were differentially regulated under SSL and LL conditions, respectively, when compared to the control. In contrast to the LL condition, Z. muelleri robustly tolerated super-saturation light than control conditions, evidenced by their higher relative maximum electron transport rate and minimum saturating irradiance values. Proteomic analyses revealed up-regulation and/or appearances of proteins belonging to the Calvin-Benson and Krebs cycle, glycolysis, the glycine cleavage system of photorespiration, and the antioxidant system. These proteins, together with those from the inter-connected glutamate-proline-GABA pathway, shaped Z. muelleri photosynthesis and growth under SSL conditions. In contrast, the LL condition negatively impacted the metabolic activities of Z. muelleri by down-regulating key metabolic enzymes for photosynthesis and the metabolism of carbohydrates and amino acids, which is consistent with the observation with lower photosynthetic performance under LL condition. This study provides novel insights into the underlying molecular photo-acclimation mechanisms in Z. muelleri, in addition to identifying protein-based biomarkers that could be used as early indicators to detect acute/chronic light stress in seagrasses to monitor seagrass health. PMID:28144245

  16. Proteome Analysis Reveals Extensive Light Stress-Response Reprogramming in the Seagrass Zostera muelleri (Alismatales, Zosteraceae) Metabolism.

    PubMed

    Kumar, Manoj; Padula, Matthew P; Davey, Peter; Pernice, Mathieu; Jiang, Zhijian; Sablok, Gaurav; Contreras-Porcia, Loretto; Ralph, Peter J

    2016-01-01

    Seagrasses are marine ecosystem engineers that are currently declining in abundance at an alarming rate due to both natural and anthropogenic disturbances in ecological niches. Despite reports on the morphological and physiological adaptations of seagrasses to extreme environments, little is known of the molecular mechanisms underlying photo-acclimation, and/or tolerance in these marine plants. This study applies the two-dimensional isoelectric focusing (2D-IEF) proteomics approach to identify photo-acclimation/tolerance proteins in the marine seagrass Zostera muelleri . For this, Z. muelleri was exposed for 10 days in laboratory mesocosms to saturating (control, 200 μmol photons m -2 s -1 ), super-saturating (SSL, 600 μmol photons m -2 s -1 ), and limited light (LL, 20 μmol photons m -2 s -1 ) irradiance conditions. Using LC-MS/MS analysis, 93 and 40 protein spots were differentially regulated under SSL and LL conditions, respectively, when compared to the control. In contrast to the LL condition, Z. muelleri robustly tolerated super-saturation light than control conditions, evidenced by their higher relative maximum electron transport rate and minimum saturating irradiance values. Proteomic analyses revealed up-regulation and/or appearances of proteins belonging to the Calvin-Benson and Krebs cycle, glycolysis, the glycine cleavage system of photorespiration, and the antioxidant system. These proteins, together with those from the inter-connected glutamate-proline-GABA pathway, shaped Z. muelleri photosynthesis and growth under SSL conditions. In contrast, the LL condition negatively impacted the metabolic activities of Z. muelleri by down-regulating key metabolic enzymes for photosynthesis and the metabolism of carbohydrates and amino acids, which is consistent with the observation with lower photosynthetic performance under LL condition. This study provides novel insights into the underlying molecular photo-acclimation mechanisms in Z. muelleri , in addition to identifying protein-based biomarkers that could be used as early indicators to detect acute/chronic light stress in seagrasses to monitor seagrass health.

  17. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light.

    PubMed

    Ho, Ming-Yang; Gan, Fei; Shen, Gaozhong; Bryant, Donald A

    2017-02-01

    Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.

  18. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  19. Rapid photosynthetic acclimation of Shorea johorensis seedlings after logging disturbance in Central Kalimantan.

    PubMed

    Clearwater, M J; Susilawaty, R; Effendi, R; van Gardingen, P R

    1999-12-01

    This study examined the photosynthetic acclimation of pre-existing Shorea johorensis (Dipterocarpaceae) seedlings to the change in conditions that occurs at the time of logging in Central Kalimantan, Indonesia. The hypothesis was that the seedlings would be unable to acclimate beyond partially open conditions after canopy disturbance caused by logging, therefore limiting the potential for regeneration in the most open areas. Bleaching and reductions in the predawn ratio of variable to maximum fluorescence (F v /F m ) indicated chronic photoinhibition and damage to the previously shade-adapted leaves of seedlings in an area logged 2 weeks earlier. The majority of seedlings in partially open and open environments of an area logged 3 months earlier were already growing fast. Leaves that had developed in the new environment showed only small reductions in predawn F v /F m and large increases in the light saturated rate of photosynthesis (A max ) per unit area when compared to shaded seedlings. Leaves in the most open environments had higher but more variable nitrogen concentrations, A max per unit area and A max per unit mass when compared to seedlings in partially open environments. Increases in dark respiration were disproportionately large compared to increases in A max , and may have been the result of increased investment in photoprotective mechanisms. The response of stomatal conductance to the vapour pressure deficit and leaf temperature was examined, but it suggested only a 10% reduction in daily leaf level carbon gain in open environments. The ratio of leaf area to fine root mass was highest in shade-suppressed and newly exposed seedlings, suggesting a potential hydraulic limitation to transpiration during acclimation. However, rainfall during this period was high and leaf water potentials did not differ between disturbed and undisturbed environments. S. johorensis seedlings were capable of significant acclimation to conditions more extreme than partial canopy opening. Low seedling density after logging during the wet season cannot be explained by a limited potential for photosynthetic acclimation.

  20. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    PubMed

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.

  1. Temperature-Induced Remodeling of the Photosynthetic Machinery Tunes Photosynthesis in the Thermophilic Alga Cyanidioschyzon merolae1

    PubMed Central

    Nikolova, Denitsa; Weber, Dieter; Scholz, Martin

    2017-01-01

    The thermophilic alga C. merolae thrives in extreme environments (low pH and temperature between 40°C and 56°C). In this study, we investigated the acclimation process of the alga to a colder temperature (25°C). A long-term cell growth experiment revealed an extensive remodeling of the photosynthetic apparatus in the first 250 h of acclimation, which was followed by cell growth to an even higher density than the control (grown at 42°C) cell density. Once the cells were shifted to the lower temperature, the proteins of the light-harvesting antenna were greatly down-regulated and the phycobilisome composition was altered. The amount of PSI and PSII subunits was also decreased, but the chlorophyll to photosystems ratio remained unchanged. The 25°C cells possessed a less efficient photon-to-oxygen conversion rate and require a 2.5 times higher light intensity to reach maximum photosynthetic efficiency. With respect to chlorophyll, however, the photosynthetic oxygen evolution rate of the 25°C culture was 2 times higher than the control. Quantitative proteomics revealed that acclimation requires, besides remodeling of the photosynthetic apparatus, also adjustment of the machinery for protein folding, degradation, and homeostasis. In summary, these remodeling processes tuned photosynthesis according to the demands placed on the system and revealed the capability of C. merolae to grow under a broad range of temperatures. PMID:28270628

  2. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata.

    PubMed

    Sleight, Victoria A; Peck, Lloyd S; Dyrynda, Elisabeth A; Smith, Valerie J; Clark, Melody S

    2018-05-12

    Acclimation, via phenotypic flexibility, is a potential means for a fast response to climate change. Understanding the molecular mechanisms underpinning phenotypic flexibility can provide a fine-scale cellular understanding of how organisms acclimate. In the last 30 years, Mya truncata populations around the UK have faced an average increase in sea surface temperature of 0.7 °C and further warming of between 1.5 and 4 °C, in all marine regions adjacent to the UK, is predicted by the end of the century. Hence, data are required on the ability of M. truncata to acclimate to physiological stresses, and most notably, chronic increases in temperature. Animals in the present study were exposed to chronic heat-stress for 2 months prior to shell damage and subsequently, only 3, out of 20 damaged individuals, were able to repair their shells within 2 weeks. Differentially expressed genes (between control and damaged animals) were functionally enriched with processes relating to cellular stress, the immune response and biomineralisation. Comparative transcriptomics highlighted genes, and more broadly molecular mechanisms, that are likely to be pivotal in this lack of acclimation. This study demonstrates that discovery-led transcriptomic profiling of animals during stress-response experiments can shed light on the complexity of biological processes and changes within organisms that can be more difficult to detect at higher levels of biological organisation.

  3. Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua).

    PubMed

    Leo, Elettra; Kunz, Kristina L; Schmidt, Matthias; Storch, Daniela; Pörtner, Hans-O; Mark, Felix C

    2017-01-01

    Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish. In this study we investigated the metabolic background of performance through analyses of cardiac mitochondrial function in response to control and elevated water temperatures and P CO 2 of two gadoid fish species, Polar cod ( Boreogadus saida ), an endemic Arctic species, and Atlantic cod ( Gadus morhua ), which is a temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We studied their responses to the above-mentioned drivers and their acclimation potential through analysing the cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present (400μatm) and year 2100 (1170μatm) levels of CO 2 . OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at 400μatm and 1170μatm of CO 2 , while incubation at 8 °C evoked increased proton leak resulting in decreased ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased with temperature without compromising the ATP production efficiency, whereas the combination of high temperature and high P CO 2 depressed OXPHOS and ATP production efficiency. Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient to elevated temperature; however, this resilience was constrained by high P CO 2 . In line with its lower habitat temperature and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.

  4. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    PubMed Central

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  5. Cutaneous vasoregulation during short- and long-term aerial acclimation in the amphibious mangrove rivulus, Kryptolebias marmoratus.

    PubMed

    Cooper, C A; Litwiller, S L; Murrant, C L; Wright, P A

    2012-03-01

    The mangrove rivulus (Kryptolebias marmoratus) is an amphibious fish and evidence suggests that the cutaneous surface is the primary site of gas exchange during emersion. The aim of this study was to determine whether cutaneous blood vessels were regulated in the caudal fin during the initial transition from water to aerial exposure, and after 10 days of aerial acclimation. Acute changes (first 3 min following emersion) in the cutaneous vessels diameter were measured in real-time on live fish using light microscopy. The data show that under control conditions, only arterioles in the caudal fin were vasoactive. During the first 20s of aerial acclimation the arterioles significantly constricted (-2.1 ± 0.4 μm), which was followed immediately by a relaxation (from 40 to 180 s). This vasoconstriction was eliminated with the addition of phentolamine (50 μmoll(-1)), which indicates that the vasoconstriction was mediated by α-adrenoreceptors. Longer-term changes in the cutaneous surface vasculature were determined using fluorescent immunohistochemistry and antibodies for the endothelial marker, CD31. Fish aerially acclimated for 10 days exhibited significantly higher levels of endothelial fluorescence in the caudal fin when compared to control fish in water, indicating endothelial cell production (i.e. angiogenesis). These data combined show that for every emersion episode, there is an initial α-adrenergic mediated vasoconstriction, which is most likely, a stress response. This is then followed by a long-term acclimation involving an upregulation in endothelial cell production, which would subsequently enhance blood perfusion to the cutaneous surface and potentially increase the capacity for gas exchange with the external environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    PubMed

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  7. Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation.

    PubMed

    Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng

    2017-01-15

    Ocean acidification is likely to have profound impacts on marine bivalves, especially on their early life stages. Therefore, it is imperative to know whether and to what extent bivalves will be able to acclimate or adapt to an acidifying ocean over multiple generations. Here, we show that reduced seawater pH projected for the end of this century (i.e., pH7.7) led to a significant decrease of shell production of newly settled juvenile Manila clams, Ruditapes philippinarum. However, juveniles from parents exposed to low pH grew significantly faster than those from parents grown at ambient pH, exhibiting a rapid transgenerational acclimation to an acidic environment. The sodium composition of the shells may shed new light on the mechanisms responsible for beneficial transgenerational acclimation. Irrespective of parental exposure, the amount of Na incorporated into shells increased with decreasing pH, implying active removal of excessive protons through the Na + /H + exchanger which is known to depend on the Na + gradient actively built up by the Na + /K + -ATPase as a driving force. However, the shells with a prior history of transgenerational exposure to low pH recorded significantly lower amounts of Na than those with no history of acidic exposure. It therefore seems very likely that the clams may implement less costly and more ATP-efficient ion regulatory mechanisms to maintain pH homeostasis in the calcifying fluid following transgenerational acclimation. Our results suggest that marine bivalves may have a greater capacity to acclimate or adapt to ocean acidification by the end of this century than currently understood. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria.

    PubMed

    Hirose, Yuu; Misawa, Naomi; Yonekawa, Chinatsu; Nagao, Nobuyoshi; Watanabe, Mai; Ikeuchi, Masahiko; Eki, Toshihiko

    2017-08-01

    Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  9. Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals.

    PubMed

    Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara

    2014-09-01

    Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.

  10. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    PubMed Central

    Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.

    2014-01-01

    Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Conclusions Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. PMID:24782436

  11. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star'.

    PubMed

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-06-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200 µmol m(-2)  s(-1) at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv /Fm was in the range of 0.52-0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in 'Purple Star', while 'Vivien' had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non-regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in 'Vivien' disappeared when ΦNO was included in the thermal dissipation. © 2014 Scandinavian Plant Physiology Society.

  12. Light History Influences the Response of the Marine Cyanobacterium Synechococcus sp. WH7803 to Oxidative Stress1[W][OA

    PubMed Central

    Blot, Nicolas; Mella-Flores, Daniella; Six, Christophe; Le Corguillé, Gildas; Boutte, Christophe; Peyrat, Anne; Monnier, Annabelle; Ratin, Morgane; Gourvil, Priscillia; Campbell, Douglas A.; Garczarek, Laurence

    2011-01-01

    Marine Synechococcus undergo a wide range of environmental stressors, especially high and variable irradiance, which may induce oxidative stress through the generation of reactive oxygen species (ROS). While light and ROS could act synergistically on the impairment of photosynthesis, inducing photodamage and inhibiting photosystem II repair, acclimation to high irradiance is also thought to confer resistance to other stressors. To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the photophysiological and transcriptomic responses of Synechococcus sp. WH7803 acclimated to low light (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H2O2) or methylviologen. While photosynthetic activity was much more affected in HL than in LL cells, only HL cells were able to recover growth and photosynthesis after the addition of 25 μm H2O2. Depending upon light conditions and H2O2 concentration, the latter oxidizing agent induced photosystem II inactivation through both direct damage to the reaction centers and inhibition of its repair cycle. Although the global transcriptome response appeared similar in LL and HL cells, some processes were specifically induced in HL cells that seemingly helped them withstand oxidative stress, including enhancement of photoprotection and ROS detoxification, repair of ROS-driven damage, and regulation of redox state. Detection of putative LexA binding sites allowed the identification of the putative LexA regulon, which was down-regulated in HL compared with LL cells but up-regulated by oxidative stress under both growth irradiances. PMID:21670225

  13. A common thermal niche among geographically diverse populations of the widely distributed tree species Eucalyptus tereticornis: No evidence for adaptation to climate-of-origin.

    PubMed

    Drake, John E; Vårhammar, Angelica; Kumarathunge, Dushan; Medlyn, Belinda E; Pfautsch, Sebastian; Reich, Peter B; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2017-12-01

    Impacts of climate warming depend on the degree to which plants are constrained by adaptation to their climate-of-origin or exhibit broad climatic suitability. We grew cool-origin, central and warm-origin provenances of Eucalyptus tereticornis in an array of common temperature environments from 18 to 35.5°C to determine if this widely distributed tree species consists of geographically contrasting provenances with differentiated and narrow thermal niches, or if provenances share a common thermal niche. The temperature responses of photosynthesis, respiration, and growth were equivalent across the three provenances, reflecting a common thermal niche despite a 2,200 km geographic distance and 13°C difference in mean annual temperature at seed origin. The temperature dependence of growth was primarily mediated by changes in leaf area per unit plant mass, photosynthesis, and whole-plant respiration. Thermal acclimation of leaf, stem, and root respiration moderated the increase in respiration with temperature, but acclimation was constrained at high temperatures. We conclude that this species consists of provenances that are not differentiated in their thermal responses, thus rejecting our hypothesis of adaptation to climate-of-origin and suggesting a shared thermal niche. In addition, growth declines with warming above the temperature optima were driven by reductions in whole-plant leaf area and increased respiratory carbon losses. The impacts of climate warming will nonetheless vary across the geographic range of this and other such species, depending primarily on each provenance's climate position on the temperature response curves for photosynthesis, respiration, and growth. © 2017 John Wiley & Sons Ltd.

  14. Multi-Level Light Capture Control in Plants and Green Algae.

    PubMed

    Wobbe, Lutz; Bassi, Roberto; Kruse, Olaf

    2016-01-01

    Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparative life history and physiology of two understory Neotropical herbs.

    PubMed

    Mulkey, Stephen S; Smith, Alan P; Wright, S Joseph

    1991-10-01

    Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO 2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are durable, long-lived and have lower water loss, permitting persistence long after gap closure.

  16. Dynamics of short-term acclimation to UV radiation in marine diatoms.

    PubMed

    Fouqueray, Manuela; Mouget, Jean-Luc; Morant-Manceau, Annick; Tremblin, Gérard

    2007-11-12

    In order to investigate the dynamics of the acclimation of marine diatoms to ultraviolet radiation (UVR), Amphora coffeaeformis, Odontella aurita and Skeletonema costatum were exposed for 5 h per day to a combination of UVA and UVB (UVBR/UVAR ratio 4.5%) with a total UVR daily dose of 110 kJ m(-2), which is equivalent to that observed in the natural environment. This treatment was applied in the middle of the photoperiod and was repeated on five successive days. During the UVR treatment, chlorophyll fluorescence parameters were monitored, damage and repair constants were calculated from effective quantum yield values (phi(PSII)), and rapid light curves (electron transport rate versus irradiance curves using short light steps of different intensity) were plotted to determine the maximum relative electron transport rate (rETR(max)) and maximum light use efficiency (alpha). In all species the growth rate was lower than control from day 1-3, but increased thereafter, except for S. costatum. The cellular chlorophyll a content increased significantly with repeated daily exposure to UVR for A. coffeaeformis only. In all species, the fluorescence parameters (F(m), the maximum fluorescence level measured in the dark, phi(PSII), rETR(max) and alpha) decreased during UVR exposure, in contrast to F(0) (the minimum fluorescence level measured in the dark). The response to UVR stress was species-specific. S. costatum was very sensitive, and failed to survive for more than three days, whereas A. coffeaeformis and O. aurita were able to acclimate to UVR stress. These two species used different strategies. In A. coffeaeformis, the repair constant was lower than the damage constant, but phi(PSII) values returned to baseline values at the beginning of each experimental day, indicating that an effective active recovery process occurred after stress. In O. aurita, the repair processes took place during the stress, and could account for the UVR tolerance of this species.

  17. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana.

    PubMed

    Jia, Ting; Ito, Hisashi; Tanaka, Ayumi

    2016-11-01

    The photosystem I/II ratio increased when antenna size was enlarged by transient induction of CAO in chlorophyll b -less mutants, thus indicating simultaneous regulation of antenna size and photosystem I/II stoichiometry. Regulation of antenna size and photosystem I/II stoichiometry is an indispensable strategy for plants to acclimate to changes to light environments. When plants grown in high-light conditions are transferred to low-light conditions, the peripheral antennae of photosystems are enlarged. A change in the photosystem I/II ratio is also observed under the same light conditions. However, our knowledge of the correlation between antenna size modulation and variation in photosystem I/II stoichiometry remains limited. In this study, chlorophyll a oxygenase was transiently induced in Arabidopsis thaliana chlorophyll b-less mutants, ch1-1, to alter the antenna size without changing environmental conditions. In addition to the accumulation of chlorophyll b, the levels of the peripheral antenna complexes of both photosystems gradually increased, and these were assembled to the core antenna of both photosystems. However, the antenna size of photosystem II was greater than that of photosystem I. Immunoblot analysis of core antenna proteins showed that the number of photosystem I increased, but not that of photosystem II, resulting in an increase in the photosystem I/II ratio. These results clearly indicate that antenna size adjustment was coupled with changes in photosystem I/II stoichiometry. Based on these results, the physiological importance of simultaneous regulation of antenna size and photosystem I/II stoichiometry is discussed in relation to acclimation to light conditions.

  18. Heat resistance throughout ontogeny: body size constrains thermal tolerance.

    PubMed

    Klockmann, Michael; Günter, Franziska; Fischer, Klaus

    2017-02-01

    Heat tolerance is a trait of paramount ecological importance and may determine a species' ability to cope with ongoing climate change. Although critical thermal limits have consequently received substantial attention in recent years, their potential variation throughout ontogeny remained largely neglected. We investigate whether such neglect may bias conclusions regarding a species' sensitivity to climate change. Using a tropical butterfly, we found that developmental stages clearly differed in heat tolerance. It was highest in pupae followed by larvae, adults and finally eggs and hatchlings. Strikingly, most of the variation found in thermal tolerance was explained by differences in body mass, which may thus impose a severe constraint on adaptive variation in stress tolerance. Furthermore, temperature acclimation was beneficial by increasing heat knock-down time and therefore immediate survival under heat stress, but it affected reproduction negatively. Extreme temperatures strongly reduced survival and subsequent reproductive success even in our highly plastic model organism, exemplifying the potentially dramatic impact of extreme weather events on biodiversity. We argue that predictions regarding a species' fate under changing environmental conditions should consider variation in thermal tolerance throughout ontogeny, variation in body mass and acclimation responses as important predictors of stress tolerance. © 2016 John Wiley & Sons Ltd.

  19. Environmental modulation of metabolic allometry in ornate rainbowfish Rhadinocentrus ornatus.

    PubMed

    Vaca, H Fabian; White, Craig R

    2010-02-23

    The nature of the relationship between the metabolic rate (MR) and body mass (M) of animals has been the source of controversy for over seven decades, with much of the focus on the value of the scaling exponent b, where MR is proportional to M(b). While it is well known that MR does not generally scale isometrically (i.e. b is seldom equal to 1), the value of b remains the subject of heated debate. In the present study, we examine the influence of an ecologically relevant abiotic variable, pH, on the metabolic allometry of an Australian freshwater fish, Rhadinocentrus ornatus. We show that the value of b is lower for rainbowfish acclimated to acidic (pH 5.0) conditions compared to rainbowfish acclimated to alkaline conditions (pH 8.5), but that acute exposure to altered pH does not alter the value of b. This significant effect of an abiotic variable on metabolic allometry supports a growing body of evidence that there is no universal value of b and demonstrates that experimental manipulations of metabolic allometry represent powerful, and as yet underused, tools to understand the factors that constrain and influence the allometry of metabolic rate.

  20. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities.

    PubMed

    Kreslavski, Vladimir; Tatarinzev, Nikolai; Shabnova, Nadezhda; Semenova, Galina; Kosobryukhov, Anatoli

    2008-10-09

    The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 degrees C for 20 min and to temperature 42 degrees C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 degrees C for 72h. The net photosynthetic rates (P(N)) and the fluorescence ratios F(v)/F(m) were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 degrees C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO(2) assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 degrees C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.

  1. Interdisciplinary Applications of Autonomous Observation Systems

    DTIC Science & Technology

    2008-01-01

    analytical capabilities for describing the distributions and activities of marine microbes in relation to their physical, chemical and optical environment in...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY...a sensitive indicator of physiology (light acclimation status) and also a key parameter in models of primary productivity. We are now continuing

  2. Effects of light acclimation on photosynthesis, growth, and biomass allocation in america chestnut seedlings

    Treesearch

    G. Geoff Wang; William L. Bauerle; Bryan T. Mudder

    2006-01-01

    American chestnut [Castanea dentate(Marshall) Borkh.] was a widely distributed tree species in the Eastern U.S., comprising an estimated 25 percent of native eastern hardwood forests. Chestnut blight eradicated American chestnut from the forest canopy by the 1950s, and now it only persists as understory sprouts. However, blight-resistant hybrids with...

  3. Teaching about photosynthesis with simple equipment: analysis of light-induced changes in fluorescence and reflectance of plant leaves.

    PubMed

    Björn, Lars Olof; Li, Shaoshan

    2013-10-01

    Solar energy absorbed by plants results in either reflection or absorption. The latter results in photosynthesis, fluorescence, or heat. Measurements of fluorescence changes have been used for monitoring processes associated with photosynthesis. A simple method to follow changes in leaf fluorescence and leaf reflectance associated with nonphotochemical quenching and light acclimation of leaves is described. The main equipment needed consists of a green-light emitting laser pointer, a digital camera, and a personal computer equipped with the camera acquisition software and the programs ImageJ and Excel. Otherwise, only commonly available cheap materials are required.

  4. Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea

    NASA Astrophysics Data System (ADS)

    Ziegler, Maren; Roder, Cornelia M.; Büchel, Claudia; Voolstra, Christian R.

    2014-12-01

    Many coral species display changing distribution patterns across coral reef depths. While changes in the underwater light field and the ability to associate with different photosynthetic symbionts of the genus Symbiodinium explain some of the variation, the limits to physiological plasticity are unknown for most corals. In the central Red Sea, colonies of the branching coral Pocillopora verrucosa are most abundant in shallow high light environments and become less abundant in water depths below 10 m. To further understand what determines this narrow distribution, we conducted a cross-depths transplant experiment looking at physiological plasticity and acclimation in regard to depth. Colonies from 5, 10, and 20 m were collected, transplanted to all depths, and re-investigated after 30 and 210 d. All coral colonies transplanted downward from shallow to deep water displayed an increase in photosynthetic light-harvesting pigments, which resulted in higher photosynthetic efficiency. Shallow-water specimens transplanted to deeper water showed a significant decrease in total protein content after 30 and 210 d under low light conditions compared to specimens transplanted to shallow and medium depths. Stable isotope data suggest that heterotrophic input of carbon was not increased under low light, and consequently, decreasing protein levels were symptomatic of decreasing photosynthetic rates that could not be compensated for through higher light-harvesting efficiency. Our results provide insights into the physiological plasticity of P. verrucosa in changing light regimes and explain the observed depth distribution pattern. Despite its high abundance in shallow reef waters, P. verrucosa possesses limited heterotrophic acclimation potential, i.e., the ability to support its mainly photoautotrophic diet through heterotrophic feeding. We conclude that P. verrucosa might be a species vulnerable to sudden changes in underwater light fields resulting from processes such as increased turbidity caused by coastal development along the Saudi Arabian Red Sea coast.

  5. Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study.

    PubMed

    Dattolo, E; Ruocco, M; Brunet, C; Lorenti, M; Lauritano, C; D'Esposito, D; De Luca, P; Sanges, R; Mazzuca, S; Procaccini, G

    2014-10-01

    Here we investigated mechanisms underlying the acclimation to light in the marine angiosperm Posidonia oceanica, along its bathymetric distribution (at -5 m and -25 m), combining molecular and photo-physiological approaches. Analyses were performed during two seasons, summer and autumn, in a meadow located in the Island of Ischia (Gulf of Naples, Italy), where a genetic distinction between plants growing above and below the summer thermocline was previously revealed. At molecular level, analyses carried out using cDNA-microarray and RT-qPCR, revealed the up-regulation of genes involved in photoacclimation (RuBisCO, ferredoxin, chlorophyll binding proteins), and photoprotection (antioxidant enzymes, xanthophyll-cycle related genes, tocopherol biosynthesis) in the upper stand of the meadow, indicating that shallow plants are under stressful light conditions. However, the lack of photo-damage, indicates the successful activation of defense mechanisms. This conclusion is also supported by several responses at physiological level as the lower antenna size, the higher number of reaction centers and the higher xanthophyll cycle pigment pool, which are common plant responses to high-light adaptation/acclimation. Deep plants, despite the lower available light, seem to be not light-limited, thanks to some shade-adaptation strategies (e.g. higher antenna size, lower Ek values). Furthermore, also at the molecular level there were no signs of stress response, indicating that, although the lower energy available, low-light environments are more favorable for P. oceanica growth. Globally, results of whole transcriptome analysis displayed two distinct gene expression signatures related to depth distribution, reflecting the different light-adaptation strategies adopted by P. oceanica along the depth gradient. This observation, also taking into account the genetic disjunction of clones along the bathymetry, might have important implications for micro-evolutionary processes happening at meadow scale. Further investigations in controlled conditions must be performed to respond to these questions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.

    PubMed

    Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi

    2013-02-01

    We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.

  7. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    PubMed

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Chronic warm exposure impairs growth performance and reduces thermal safety margins in the common triplefin fish (Forsterygion lapillum).

    PubMed

    McArley, Tristan J; Hickey, Anthony J R; Herbert, Neill A

    2017-10-01

    Intertidal fish species face gradual chronic changes in temperature and greater extremes of acute thermal exposure through climate-induced warming. As sea temperatures rise, it has been proposed that whole-animal performance will be impaired through oxygen and capacity limited thermal tolerance [OCLTT; reduced aerobic metabolic scope (MS)] and, on acute exposure to high temperatures, thermal safety margins may be reduced because of constrained acclimation capacity of upper thermal limits. Using the New Zealand triplefin fish ( Forsterygion lapillum ), this study addressed how performance in terms of growth and metabolism (MS) and upper thermal tolerance limits would be affected by chronic exposure to elevated temperature. Growth was measured in fish acclimated (12 weeks) to present and predicted future temperatures and metabolic rates were then determined in fish at acclimation temperatures and with acute thermal ramping. In agreement with the OCLTT hypothesis, chronic exposure to elevated temperature significantly reduced growth performance and MS. However, despite the prospect of impaired growth performance under warmer future summertime conditions, an annual growth model revealed that elevated temperatures may only shift the timing of high growth potential and not the overall annual growth rate. While the upper thermal tolerance (i.e. critical thermal maxima) increased with exposure to warmer temperatures and was associated with depressed metabolic rates during acute thermal ramping, upper thermal tolerance did not differ between present and predicted future summertime temperatures. This suggests that warming may progressively decrease thermal safety margins for hardy generalist species and could limit the available habitat range of intertidal populations. © 2017. Published by The Company of Biologists Ltd.

  9. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits

    PubMed Central

    Pintor, Anna F. V.; Schwarzkopf, Lin; Krockenberger, Andrew K.

    2016-01-01

    Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species’ physiological capacities and may consequently be of limited value. PMID:26990769

  10. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits.

    PubMed

    Pintor, Anna F V; Schwarzkopf, Lin; Krockenberger, Andrew K

    2016-01-01

    Species' tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species' physiological capacities and may consequently be of limited value.

  11. Phototrophic microbes form endolithic biofilms in ikaite tufa columns (SW Greenland).

    PubMed

    Trampe, Erik; Castenholz, Richard W; Larsen, Jens E N; Kühl, Michael

    2017-11-01

    Marine tufa-columns, formed by the hydrated carbonate mineral ikaite, present a unique alkaline microbial habitat only found in Ikka Fjord (SW-Greenland). The outermost parts of the ikaite columns exhibit a multitude of physico-chemical gradients, and the porous ikaite is colonized by endolithic phototrophic biofilms serving as a substrate for grazing epifauna, where scraping by sea urchins affects overall column-topography. We present a detailed study of the optical microenvironment, spatial organization, and photosynthetic activity of endolithic phototrophs within the porous ikaite crystal matrix. Cyanobacteria and diatoms formed distinctly coloured zones and were closely associated with ikaite-crystals via excretion of exopolymers. Scalar-irradiance measurements showed strong attenuation of visible light (400-700 nm), where only ∼1% of incident irradiance remained at 20 mm depth. Transmission spectra showed in vivo absorption signatures of diatom and cyanobacterial photopigments, which were confirmed by HPLC-analysis. Variable-chlorophyll-fluorescence-imaging showed active photosynthesis with high-light acclimation in the outer diatom layer, and low-light acclimation in the underlying cyanobacterial part. Phototrophs in ikaite thus thrive in polymer-bound endolithic biofilms in a complex gradient microhabitat experiencing constant slow percolation of highly alkaline phosphate-enriched spring water mixing with cold seawater at the tufa-column-apex. We discuss the potential role of these biofilms in ikaite column formation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Light acclimation of photosynthesis in two closely related firs (Abies pinsapo Boiss. and Abies alba Mill.): the role of leaf anatomy and mesophyll conductance to CO2

    PubMed Central

    Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Flexas, Jaume; Galmés, Jeroni; Niinemets, Ülo; Gil-Pelegrín, Eustaquio

    2016-01-01

    Leaves growing in the forest understory usually present a decreased mesophyll conductance (gm) and photosynthetic capacity. The role of leaf anatomy in determining the variability in gm among species is known, but there is a lack of information on how the acclimation of gm to shade conditions is driven by changes in leaf anatomy. Within this context, we demonstrated that Abies pinsapo Boiss. experienced profound modifications in needle anatomy to drastic changes in light availability that ultimately led to differential photosynthetic performance between trees grown in the open field and in the forest understory. In contrast to A. pinsapo, its congeneric Abies alba Mill. did not show differences either in needle anatomy or in photosynthetic parameters between trees grown in the open field and in the forest understory. The increased gm values found in trees of A. pinsapo grown in the open field can be explained by occurrence of stomata at both needle sides (amphistomatous needles), increased chloroplast surface area exposed to intercellular airspace, decreased cell wall thickness and, especially, decreased chloroplast thickness. To the best of our knowledge, the role of such drastic changes in ultrastructural needle anatomy in explaining the response of gm to the light environment has not been demonstrated in field conditions. PMID:26543153

  13. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis.

    PubMed

    Jayasundara, Nishad; Somero, George N

    2013-06-01

    An insufficient supply of oxygen under thermal stress is thought to define thermal optima and tolerance limits in teleost fish. When under thermal stress, cardiac function plays a crucial role in sustaining adequate oxygen supply for respiring tissues. Thus, adaptive phenotypic plasticity of cardiac performance may be critical for modifying thermal limits during temperature acclimation. Here we investigated effects of temperature acclimation on oxygen consumption, cardiac function and blood oxygen carrying capacity of a eurythermal goby fish, Gillichthys mirabilis, acclimated to 9, 19 and 26°C for 4 weeks. Acclimation did not alter resting metabolic rates or heart rates; no compensation of rates was observed at acclimation temperatures. However, under an acute heat ramp, warm-acclimated fish exhibited greater heat tolerance (CTmax=33.3, 37.1 and 38.9°C for 9°C-, 19°C- and 26°C-acclimated fish, respectively) and higher cardiac arrhythmia temperatures compared with 9°C-acclimated fish. Heart rates measured under an acute heat stress every week during 28 days of acclimation suggested that both maximum heart rates and temperature at onset of maximum heart rates changed over time with acclimation. Hemoglobin levels increased with acclimation temperature, from 35 g l(-1) in 9°C-acclimated fish to 60-80 g l(-1) in 19°C- and 26°C-acclimated fish. Oxygen consumption rates during recovery from acute heat stress showed post-stress elevation in 26°C-acclimated fish. These data, coupled with elevated resting metabolic rates and heart rates at warm temperatures, suggest a high energetic cost associated with warm acclimation in G. mirabilis. Furthermore, acclimatory capacity appears to be optimized at 19°C, a temperature shown by behavioral studies to be close to the species' preferred temperature.

  14. Does Long-Term Elevation of CO2 Concentration Increase Photosynthesis in Forest Floor Vegetation? (Indiana Strawberry in a Maryland Forest).

    PubMed

    Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.

    1997-05-01

    As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.

  15. Does long-term elevation of CO{sub 2} concentration increase photosynthesis in forest floor vegetation? Indiana strawberry in a Maryland forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, C.P.; Long, S.P.; Drake, B.G.

    1997-05-01

    As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less

  16. Constitutive changes in pigment concentrations: implications for estimating isoprene emissions using the photochemical reflectance index.

    PubMed

    Harris, Angela; Owen, Susan Margaret; Sleep, Darren; Pereira, Maria da Glória Dos Santos

    2015-08-06

    The photochemical reflectance index (PRI), through its relationship with light use efficiency (LUE) and xanthophyll cycle activity, has recently been shown to hold potential for tracking isoprene emissions from vegetation. However, both PRI and isoprene emissions can also be influenced by changes in carotenoid pigment concentrations. Xanthophyll cycle activity and changes in carotenoid concentrations operate over different timescales, but the importance of constitutive changes in pigment concentrations for accurately estimating isoprene emissions using PRI is unknown. To clarify the physiological mechanisms behind the PRI-isoprene relationship, the light environment of potted Salix viminalis (osier willow) trees was modified to induce acclimation in photosynthetic rates, phytopigments, isoprene emissions and PRI. Acclimation resulted in differences in pigment concentrations, isoprene emissions and PRI. Constitutive changes in carotenoid concentration were significantly correlated with both isoprene emissions and PRI, suggesting that the relationship between PRI and isoprene emissions is significantly influenced by constitutive pigment changes. Consequently knowledge regarding how isoprene emissions are affected by both longer term changes in total carotenoid concentrations and shorter term dynamic adjustments of LUE is required to facilitate interpretation of PRI for monitoring isoprene emissions. © 2015 Scandinavian Plant Physiology Society.

  17. Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef.

    PubMed

    Fine, Maoz; Meroz-Fine, Efrat; Hoegh-Guldberg, Ove

    2005-01-01

    Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

  18. Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules

    DOEpatents

    Grossman, Mark W.; George, William A.; Pai, Robert Y.

    1985-01-01

    A technique for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support.

  19. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae).

    PubMed

    Khan, J R; Iftikar, F I; Herbert, N A; Gnaiger, Erich; Hickey, A J R

    2014-12-01

    Oxygen demand generally increases in ectotherms as temperature rises in order to sustain oxidative phosphorylation by mitochondria. The thermal plasticity of ectotherm metabolism, such as that of fishes, dictates a species survival and is of importance to understand within an era of warming climates. Within this study the whole animal O2 consumption rate of a common New Zealand intertidal triplefin fish, Forsterygion lapillum, was investigated at different acclimation temperatures (15, 18, 21, 24 or 25 °C) as a commonly used indicator of metabolic performance. In addition, the mitochondria within permeabilised skeletal muscle fibres of fish acclimated to a moderate temperature (18 °C Cool acclimation group-CA) and a warm temperature (24 °C. Warm acclimation group-WA) were also tested at 18, 24 and 25 °C in different states of coupling and with different substrates. These two levels of analysis were carried out to test whether any peak in whole animal metabolism reflected the respiratory performance of mitochondria from skeletal muscle representing the bulk of metabolic tissue. While standard metabolic rate (SMR- an indicator of total maintenance metabolism) and maximal metabolic rate ([Formula: see text]O2 max) both generally increased with temperature, aerobic metabolic scope (AMS) was maximal at 24 °C, giving the impression that whole animal (metabolic) performance was optimised at a surprisingly high temperature. Mitochondrial oxygen flux also increased with increasing assay temperature but WA fish showed a lowered response to temperature in high flux states, such as those of oxidative phosphorylation and in chemically uncoupled states of respiration. The thermal stability of mitochondria from WA fish was also noticeably greater than CA fish at 25 °C. However, the predicted contribution of respirational flux to ATP synthesis remained the same in both groups and WA fish showed higher anaerobic activity as a result of high muscle lactate loads in both rested and exhausted states. CA fish had a comparably lower level of resting lactate and took 30 % longer to fatigue than WA fish. Despite some apparent acclimation capacity of skeletal muscle mitochondria, the ATP synthesis capacity of this species is constrained at high temperatures, and that a greater fraction of metabolism in skeletal muscle appears to be supported anaerobically at higher temperatures. The AMS peak at 24 °C does not therefore represent utilisation efficiency of oxygen but, rather, the temperature where scope for oxygen flow is greatest.  

  20. Hypoxic acclimation leads to metabolic compensation after reoxygenation in Atlantic salmon yolk-sac alevins.

    PubMed

    Polymeropoulos, Elias T; Elliott, Nicholas G; Frappell, Peter B

    2017-11-01

    Hypoxia is common in aquatic environments and has substantial effects on development, metabolism and survival of aquatic organisms. To understand the physiological effects of hypoxia and its dependence on temperature, metabolic rate ( [Formula: see text] ) and cardiorespiratory function were studied in response to acute hypoxia (21→5kPa) at different measurement temperatures (T a ; 4, 8 and 12°C) in Salmo salar alevins that were incubated under normoxic conditions (P O 2 =21kPa) or following hypoxic acclimation (P O 2 =10kPa) as well as two different temperatures (4°C or 8°C). Hypoxic acclimation lead to a developmental delay manifested through slower yolk absorption. The general response to acute hypoxia was metabolic depression (~60%). Hypoxia acclimated alevins had higher [Formula: see text] s when measured in normoxia than alevins acclimated to normoxia. [Formula: see text] s were elevated to the same degree (~30% per 4°C change) irrespective of T a . Under severe, acute hypoxia (~5kPa) and irrespective of T a or acclimation, [Formula: see text] s were similar between most groups. This suggests that despite different acclimation regimes, O 2 transport was limited to the same degree. While cardiorespiratory function (heart-, ventilation rate) was unchanged in response to acute hypoxia after normoxic acclimation, hypoxic acclimation led to cardiorespiratory changes predominantly in severe hypoxia, indicating earlier onset and plasticity of cardiorespiratory control mechanisms. Although [Formula: see text] in normoxia was higher after hypoxic acclimation, at the respective acclimation P O 2 , [Formula: see text] was similar in normoxia and hypoxia acclimated alevins. This is indicative of metabolic compensation to an intrinsic [Formula: see text] at the acclimation condition in hypoxia-acclimated alevins after re-exposure to normoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals.

    PubMed

    Bay, Rachael A; Palumbi, Stephen R

    2015-05-15

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29-33 °C), mimicking local heat stress conditions. Within 7-11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29-33 °C) exhibited a muted stress response--the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals

    PubMed Central

    Bay, Rachael A.; Palumbi, Stephen R.

    2015-01-01

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29–33 °C), mimicking local heat stress conditions. Within 7–11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29–33 °C) exhibited a muted stress response—the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. PMID:25979751

  3. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.

    PubMed

    Giovagnetti, Vasco; Ruban, Alexander V

    2017-03-01

    When grown under intermittent light (IL), the pennate diatom Phaeodactylum tricornutum forms 'super' non-photochemical fluorescence quenching (NPQ) in response to excess light. The current model of diatom NPQ mechanism involves two quenching sites, one of which detaches from photosystem II reaction centres (RCIIs) and aggregates into oligomeric complexes. Here we addressed how antenna reorganisation controls NPQ kinetics in P. tricornutum cells grown under continuous light (CL) and IL. Overall, IL acclimation induced: (i) reorganisation of chloroplasts, containing greater pigment pools without a strongly enhanced operation of the xanthophyll cycle, and (ii) 'super NPQ' causing a remarkable reduction of the chlorophyll excited state lifetime at Fm'. Regardless of different levels of NPQ formed in both culture conditions, its dark recovery was rapid and similar fractions of their antenna uncoupled (~50%). Although antenna detachment relieved excitation pressure, it provided a minor protective contribution equivalent to NPQ~1, while the largest NPQ was 4.4±0.2 (CL) and 13±0.8 (IL). The PSII cross-section decrease took place only at relatively low NPQ values, beyond which the cross-section remained constant whilst NPQ continued to rise. This finding suggests that the energy trapping efficiency of diatom antenna quenchers cannot over-compete that of RCIIs, similarly to what has been observed on higher plants. We conclude that such 'economic photoprotection' operates to flexibly adjust the overall efficiency of diatom light harvesting. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    PubMed Central

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082

  5. Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules

    DOEpatents

    Grossman, M.W.; George, W.A.; Pai, R.Y.

    1985-08-13

    A technique is disclosed for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support. 6 figs.

  6. Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design

    PubMed Central

    McWilliams, Scott R.; Karasov, William H.

    2014-01-01

    Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at −29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1–2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration. PMID:24718764

  7. Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design.

    PubMed

    McWilliams, Scott R; Karasov, William H

    2014-05-22

    Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at -29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1-2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration.

  8. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares).

    PubMed

    Lilly, Laura E; Bonaventura, Joseph; Lipnick, Michael S; Block, Barbara A

    2015-03-01

    Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.

    PubMed

    Xu, Wei; Dang, Wei; Geng, Jun; Lu, Hong-Liang

    2015-10-01

    The thermal acclimatory capacity of a particular species may determine its resilience to environmental change. Evaluating the physiological acclimatory responses of economically important species is useful for determining their optimal culture conditions. Here, juvenile Chinese three-keeled pond turtles (Mauremys reevesii) were acclimated to one of three different temperatures (17, 25 or 33°C) for four weeks to assess the effects of thermal acclimation on some physiological traits. Thermal acclimation significantly affected thermal resistance, but not thermal preference, of juvenile M. reevesii. Turtles acclimated to 17°C were less resistant to high temperatures than those acclimated to 25°C and 33°C. However, turtles increased resistance to low temperatures with decreasing acclimation temperature. The acclimation response ratio of the critical thermal minimum (CTMin) was lower than that of the critical thermal maximum (CTMax) for acclimation temperatures between 17 and 25°C, but slightly higher between 25 and 33°C. The thermal resistance range (i.e., the difference between CTMax and CTMin) was widest in turtles acclimated to the intermediate temperature (25°C), and narrowest in those acclimated to low temperature (17°C). The standard metabolic rate increased as body temperature and acclimation temperature increased, and the temperature quotient (Q10) between acclimation temperatures 17 and 25°C was higher than the Q10 between 25 and 33°C. Our results suggest that juvenile M. reevesii may have a greater resistance under mild thermal conditions resembling natural environments, and better physiological performance at relatively warm temperatures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Large-scale brain networks in the awake, truly resting marmoset monkey.

    PubMed

    Belcher, Annabelle M; Yen, Cecil C; Stepp, Haley; Gu, Hong; Lu, Hanbing; Yang, Yihong; Silva, Afonso C; Stein, Elliot A

    2013-10-16

    Resting-state functional MRI is a powerful tool that is increasingly used as a noninvasive method for investigating whole-brain circuitry and holds great potential as a possible diagnostic for disease. Despite this potential, few resting-state studies have used animal models (of which nonhuman primates represent our best opportunity of understanding complex human neuropsychiatric disease), and no work has characterized networks in awake, truly resting animals. Here we present results from a small New World monkey that allows for the characterization of resting-state networks in the awake state. Six adult common marmosets (Callithrix jacchus) were acclimated to light, comfortable restraint using individualized helmets. Following behavioral training, resting BOLD data were acquired during eight consecutive 10 min scans for each conscious subject. Group independent component analysis revealed 12 brain networks that overlap substantially with known anatomically constrained circuits seen in the awake human. Specifically, we found eight sensory and "lower-order" networks (four visual, two somatomotor, one cerebellar, and one caudate-putamen network), and four "higher-order" association networks (one default mode-like network, one orbitofrontal, one frontopolar, and one network resembling the human salience network). In addition to their functional relevance, these network patterns bear great correspondence to those previously described in awake humans. This first-of-its-kind report in an awake New World nonhuman primate provides a platform for mechanistic neurobiological examination for existing disease models established in the marmoset.

  11. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    PubMed

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.

  13. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.

    PubMed

    Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H

    2012-06-01

    Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.

  14. Resting Energy Expenditure of Rats Acclimated to Hyper-Gravity

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moran, Megan M.; Oyama, Jiro; Schwenke, David; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    To determine the influence of body mass and age on resting energy expenditure (EE) following acclimation to hyper-gravity, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured to calculate resting energy expenditure (EE), in male rats, ages 40 to 400 days, acclimated to 1.23 or 4.1 G for a minimum of two weeks. Animals were maintained on a centrifuge to produce the hyper-gravity environment. Measurements were made over three hours in hyper-gravity during the period when the lights were on, the inactive period of rats. In rats matched for body mass (approximately 400 g) hyper-gravity increased VO2 by 18% and VCO2 by 27% compared to controls, resulting in an increase in RER, 0.80 to 0.87. There were increases in resting EE with an increase in gravity. This increase was greater when the mass of the rat was larger. Rating EE for 400g animals were increased from 47 +/- 1 kcal/kg/day at 1 G, to 57 +/- 1.5 and 5.8 +/- 2.2 kcal/kg/day at 2,3 and 4.1 G, respectively. There was no difference between the two hyper-gravity environments. When differences in age of the animals were accounted for, the increase in resting EE adjusted for body mass was increased by over 36% in older animals due to exposure to hyper-gravity. Acclimation to hyper-gravity increases the resting EE of rats, dependent upon body mass and age, and appears to alter substrate metabolism. Increasing the level of hyper-gravity, from 2.3 to 4.1 G, produced no further changes raising questions as to a dose effect of gravity level on resting metabolism.

  15. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  16. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles.

    PubMed

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E; Mazzuca, Silvia; Serra, Ilia A; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  17. The penalty of a long, hot summer. Photosynthetic acclimation to high CO2 and continuous light in "living fossil" conifers.

    PubMed

    Osborne, Colin P; Beerling, David J

    2003-10-01

    Deciduous forests covered the ice-free polar regions 280 to 40 million years ago under warm "greenhouse" climates and high atmospheric pCO2. Their deciduous habit is frequently interpreted as an adaptation for minimizing carbon losses during winter, but experiments with "living fossils" in a simulated warm polar environment refute this explanation. Measured carbon losses through leaf abscission of deciduous trees are significantly greater than losses through winter respiration in evergreens, yet annual rates of primary productivity are similar in all species. Here, we investigate mechanisms underlying this apparent paradox by measuring the seasonal patterns of leaf photosynthesis (A) under pCO2 enrichment in the same trees. During spring, A increased significantly in coastal redwood (Sequoia sempervirens), dawn redwood (Metasequoia glyptostroboides), and swamp cypress (Taxodium distichum) at an elevated pCO2 of 80 Pa compared with controls at 40 Pa. However, strong acclimation in Rubisco carboxylation capacity (Vc,max) completely offset the CO2 response of A in all species by the end of 6 weeks of continuous illumination in the simulated polar summer. Further measurements demonstrated the temporary nature of acclimation, with increases in Vc,max during autumn restoring the CO2 sensitivity of A. Contrary to expectations, the acclimation of Vc,max was not always accompanied by accumulation of leaf carbohydrates, but was associated with a decline in leaf nitrogen in summer, suggesting an alteration of the balance in plant sources and sinks for carbon and nitrogen. Preliminary calculations using A indicated that winter carbon losses through deciduous leaf abscission and respiration were recovered by 10 to 25 d of canopy carbon fixation during summer, thereby explaining the productivity paradox.

  18. The Penalty of a Long, Hot Summer. Photosynthetic Acclimation to High CO2 and Continuous Light in “Living Fossil” Conifers1

    PubMed Central

    Osborne, Colin P.; Beerling, David J.

    2003-01-01

    Deciduous forests covered the ice-free polar regions 280 to 40 million years ago under warm “greenhouse” climates and high atmospheric pCO2. Their deciduous habit is frequently interpreted as an adaptation for minimizing carbon losses during winter, but experiments with “living fossils” in a simulated warm polar environment refute this explanation. Measured carbon losses through leaf abscission of deciduous trees are significantly greater than losses through winter respiration in evergreens, yet annual rates of primary productivity are similar in all species. Here, we investigate mechanisms underlying this apparent paradox by measuring the seasonal patterns of leaf photosynthesis (A) under pCO2 enrichment in the same trees. During spring, A increased significantly in coastal redwood (Sequoia sempervirens), dawn redwood (Metasequoia glyptostroboides), and swamp cypress (Taxodium distichum) at an elevated pCO2 of 80 Pa compared with controls at 40 Pa. However, strong acclimation in Rubisco carboxylation capacity (Vc,max) completely offset the CO2 response of A in all species by the end of 6 weeks of continuous illumination in the simulated polar summer. Further measurements demonstrated the temporary nature of acclimation, with increases in Vc,max during autumn restoring the CO2 sensitivity of A. Contrary to expectations, the acclimation of Vc,max was not always accompanied by accumulation of leaf carbohydrates, but was associated with a decline in leaf nitrogen in summer, suggesting an alteration of the balance in plant sources and sinks for carbon and nitrogen. Preliminary calculations using A indicated that winter carbon losses through deciduous leaf abscission and respiration were recovered by 10 to 25 d of canopy carbon fixation during summer, thereby explaining the productivity paradox. PMID:12972654

  19. Improving Models of Photosynthetic Thermal Acclimation: Which Parameters are Most Important and How Many Should Be Modified?

    NASA Astrophysics Data System (ADS)

    Stinziano, J. R.; Way, D.; Bauerle, W.

    2017-12-01

    Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e. photosynthetic capacity measured at 25 °C), however the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve predictions of a spatially explicit canopy carbon flux model, MAESTRA, for eddy covariance data from a loblolly pine forest. We show that: 1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes; 2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; 3) acclimation of enzyme activation energies should be restricted to the temperature ranges of the data from which the equations are derived; and 4) model performance is strongly affected by the choice of deactivation energy. We suggest that a renewed effort be made into understanding the thermal acclimation of enzyme activation and deactivation energies across broad temperature ranges to better understand the mechanisms underlying thermal photosynthetic acclimation.

  20. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate.

    PubMed

    Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-06-01

    The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101

    PubMed Central

    Davey, Phillip A.; Lawson, Tracy; Geider, Richard J.

    2018-01-01

    Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth’s surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium’s productivity and growth and have major implications for its role in ocean C and N cycles. PMID:29641568

  2. No effects of acclimation to heat on immune and hormonal responses to passive heating in healthy volunteers

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Sugenoya, Junichi; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko

    2012-01-01

    Heat acclimation results in whole body-adaptations that increase heat tolerance, and might also result in changed immune responses. We hypothesized that, after heat acclimation, tumor necrosis factor alpha, interleukin 6 and the lymphocyte count would be altered. Heat acclimation was induced in 6 healthy men by 100 min of heat exposure for 9 days. Heat exposure consisted of (1) 10 min of immersion up to chest-level in water at 42°C and (2) 90 min of passive heating by a warm blanket to maintain tympanic temperature at 37.5°C. The climatic chamber was maintained at 40°C and a relative humidity of 50%. Blood samples were analyzed before and after heat acclimation for natural killer (NK) cell activity, counts of lymphocytes B and T, before and after heat acclimation for peripheral blood morphology, interleukin 6, tumor necrosis factor alpha, and cortisol. A Japanese version of the profile of mood states questionnaire was also administered before and after acclimation. The concentrations of white blood cells, lymphocytes B and T, cortisol, interleukin 6, tumor necrosis factor alpha and NK cell activity showed no significant differences between pre- and post-acclimation, but there was a significantly lower platelet count after acclimation and, with the profile of mood states questionnaire, there was a significant rise in anger after acclimation. It is concluded that heat acclimation by passive heating does not induce alterations in immune or endocrine responses.

  3. A comparison of the effects of two methods of acclimation of aerobic biodegradability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, H.M.

    1993-11-01

    The acclimation or adaptation of microorganisms to organic chemicals is an important factor influencing both the rate and the extent of biodegradation. In this study two acclimation procedures were evaluated in terms of their effectiveness in enhancing biodegradation, their relative ease of use in the laboratory, and the implications for biodegradability testing. In the single-flask procedure, microorganisms were acclimated for 2 to 7 d in a single acclimation flask at constant or increasing concentrations of the test chemical without transfer of microorganisms. In the second procedure, the enrichment procedure, microorganisms were acclimated in a series of flasks over a 21-dmore » period by making adaptive transfers to increasing concentrations of the test chemical. Acclimated microorganisms from each procedure were used as the source of inoculum for subsequent biodegradation tests in which carbon dioxide evolution was measured. Six chemicals were tested: quinoline, p-nitrophenol, N-methylaniline, N,N-dimethylaniline, acrylonitrile, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate. Microorganisms acclimated in the single-flask procedure were much more effective than those acclimated in the enrichment procedure in degrading the test chemicals. The single-flask procedure is more convenient to use, and it permits monitoring of the time needed for acclimation. The results from these studies have implications for the methodology used in biodegradation test systems and suggest caution before adopting a multiple-flask, enrichment acclimation procedure before the performance of standardized tests for aerobic biodegradability.« less

  4. Heat- and humidity-induced plastic changes in body lipids and starvation resistance in the tropical fly Zaprionus indianus during wet and dry seasons.

    PubMed

    Girish, T N; Pradeep, B E; Parkash, Ravi

    2018-05-04

    Insects in tropical wet or dry seasons are likely to cope with starvation stress through plastic changes (developmental as well as adult acclimation) in energy metabolites. Control and experimental groups of Zaprionus indianus flies were reared under wet or dry conditions, but adults were acclimated at different thermal or humidity conditions. Adult flies of the control group were acclimated at 27°C and low (50%) or high (60%) relative humidity (RH). For experimental groups, adult flies were acclimated at 32°C for 1 to 6 days and under low (40%) or high (70%) RH. For humidity acclimation, adult flies were acclimated at 27°C but under low (40%) or high (70%) RH for 1 to 6 days. Plastic changes in experimental groups as compared with the control group (developmental as well as adult acclimation) revealed significant accumulation of body lipids owing to thermal or humidity acclimation of wet season flies, but low humidity acclimation did not change the level of body lipids in dry season flies. Starvation resistance and body lipids were higher in the males of dry season flies but in the females of wet season flies. Adults acclimated under different thermal or humidity conditions exhibited changes in the rate of utilization of body lipids, carbohydrates and proteins. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity; and a reduction in fecundity under starvation. Thus, thermal or humidity acclimation of adults revealed plastic changes in energy metabolites to support starvation resistance of wet or dry season flies. © 2018. Published by The Company of Biologists Ltd.

  5. Seedlings of subtropical rainforest species from similar successional guild show different photosynthetic and morphological responses to varying light levels.

    PubMed

    Lestari, D Puji; Nichols, J Doland

    2017-02-01

    Restoration using rainforest species in Australia and elsewhere has been limited to a small number of widely known species, mainly pioneer or early successional species, Using the presumed successional status as a guideline for species selection in reforestation should be taken with a caveat since a species' capacity to adjust to light gradients is not easily predicted. This study examined the photosynthetic and growth responses of four Australian subtropical rainforest species in the context of using late successional species in restoration programs. Since the selected species [Sloanea australis ((Benth.) F. Muell.), Cinnamomum oliveri (F. M. Bailey),Caldcluvia paniculosa ((F. Muell.) Hoogland) and Geissois benthamiana (F. Muell.)] are considered late-successional species, this study also discussed the possibility of separating these species according to their acclimation level towards light gradients. Seedlings of four species were grown under four light treatments using neutral density shade cloth (5, 33, 64 and 80% irradiance) during summer November 2014 to February 2015. All species demonstrated a narrow range of photosynthetic acclimation to different light levels, experienced photoinhibition and photodamage in 80% irradiance and allocated more biomass to leaves in 5% irradiance, supporting their classification as late successional species. Cinnamomum oliveri was the only species able to utilize higher irradiance, with a higher light saturated rate of photosynthesis than the other species. Canonical analysis of principal coordinates revealed that the degree of plasticity of each species in response to contrasting irradiance levels varied. This analysis separated the species into three light tolerance classes: obligate shade-adapted species (S. australis and G. benthamiana), high light-adapted species (C. paniculosa) and the generalist (C. oliveri). Overall, this study suggests that the four species can be planted and will grow well under 33-64% irradiance since either lower or higher irradiance inhibits growth, and additionally that C. paniculosa and C. oliveri can be possibly planted in early phase of restoration planting with other early-successional species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation.

    PubMed

    Schwimmer, Hagit; Metzer, Avishag; Pilosof, Yonit; Szyf, Moshe; Machnes, Ziv M; Fares, Fuad; Harel, Orna; Haim, Abraham

    2014-02-01

    Light-at-night (LAN) is a worldwide problem co-distributed with breast cancer prevalence. We hypothesized that exposure to LAN is coincided with a decreased melatonin (MLT) secretion level, followed by epigenetic modifications and resulted in higher breast cancer tumors growth-rate. Accordingly, we studied the effect of LAN exposure and exogenous MLT on breast cancer tumors growth-rate. 4T1 cells were inoculated into BALB/c short day-acclimated mice, resulting in tumors growth. Growth rates were followed under various light exposures and global DNA methylations were measured. Results demonstrated the positive effect of LAN on tumors growth-rate, reversed by MLT through global DNA methylation.

  7. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  8. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings.

    PubMed Central

    Anderson, M. D.; Prasad, T. K.; Stewart, C. R.

    1995-01-01

    The response of antioxidants to acclimation and chilling in various tissues of dark-grown maize (Zea mays L.) seedlings was examined in relation to chilling tolerance and protection from chilling-induced oxidative stress. Chilling caused an accumulation of H2O2 in both the coleoptile + leaf and the mesocotyl (but not roots), and acclimation prevented this accumulation. None of the antioxidant enzymes were significantly affected by acclimation or chilling in the coleoptile + leaf or root. However, elevated levels of glutathione in acclimated seedlings may contribute to an enhanced ability to scavenge H2O2 in the coleoptile + leaf. In the mesocotyl (visibly most susceptible to chilling), catalase3 was elevated in acclimated seedlings and may represent the first line of defense from mitochondria-generated H2O2. Nine of the most prominent peroxidase isozymes were induced by acclimation, two of which were located in the cell wall, suggesting a role in lignification. Lignin content was elevated in mesocotyls of acclimated seedlings, likely improving the mechanical strength of the mesocotyl. One cytosolic glutathione reductase isozyme was greatly decreased in acclimated seedlings, whereas two others were elevated, possibly resulting in improved effectiveness of the enzyme at low temperature. When taken together, these responses to acclimation illustrate the potential ways in which chilling tolerance may be improved in preemergent maize seedlings. PMID:12228666

  9. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    PubMed

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation.

    PubMed

    Le, Mai Q; Pagter, Majken; Hincha, Dirk K

    2015-01-01

    During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.

  11. Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants

    PubMed Central

    Bazihizina, Nadia; Taiti, Cosimo; Marti, Lucia; Rodrigo-Moreno, Ana; Spinelli, Francesco; Giordano, Cristiana; Caparrotta, Stefania; Gori, Massimo; Azzarello, Elisa; Mancuso, Stefano

    2014-01-01

    Evidence suggests that heavy-metal tolerance can be induced in plants following pre-treatment with non-toxic metal concentrations, but the results are still controversial. In the present study, tobacco plants were exposed to increasing Zn2+ concentrations (up to 250 and/or 500 μM ZnSO4) with or without a 1-week acclimation period with 30 μM ZnSO4. Elevated Zn2+ was highly toxic for plants, and after 3 weeks of treatments there was a marked (≥50%) decline in plant growth in non-acclimated plants. Plant acclimation, on the other hand, increased plant dry mass and leaf area up to 1.6-fold compared with non-acclimated ones. In non-acclimated plants, the addition of 250 μM ZnSO4 led to transient membrane depolarization and stomatal closure within 24h from the addition of the stress; by contrast, the acclimation process was associated with an improved stomatal regulation and a superior ability to maintain a negative root membrane potential, with values on average 37% more negative compared with non-acclimated plants. The different response at the plasma-membrane level between acclimated and non-acclimated plants was associated with an enhanced vacuolar Zn2+ sequestration and up to 2-fold higher expression of the tobacco orthologue of the Arabidopsis thaliana MTP1 gene. Thus, the acclimation process elicited specific detoxification mechanisms in roots that enhanced Zn2+ compartmentalization in vacuoles, thereby improving root membrane functionality and stomatal regulation in leaves following elevated Zn2+ stress. PMID:24928985

  12. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    PubMed

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  13. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  14. Deconditioning-induced exercise responses as influenced by heat acclimation

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1979-01-01

    A study to determine the effect of heat acclimation and physical training in temperate conditions on changes in exercise tolerance following water-immersion deconditioning is presented. Five young men were tested on a bicycle ergometer before and after heat acclimation and after water immersion. The subjects and the experimental procedure, heat acclimation and exercise training, water immersion, and exercise tolerance are discussed. Heat acclimation resulted in the usual decreases in exercise heart rate and rectal temperature and an increase in sweat rate. Water immersion resulted in substantial diuresis despite water consumed. The results show that heat acclimation provides an effective method of preventing the adverse effects of water-immersion deconditioning on exercise tolerance.

  15. Acclimation to low level exposure of copper in Bufo arenarum embryos: linkage of effects to tissue residues.

    PubMed

    Herkovits, Jorge; Pérez-Coll, Cristina Silvia

    2007-06-01

    The acclimation possibilities to copper in Bufo arenarum embryos was evaluated by means of three different low level copper exposure conditions during 14 days. By the end of the acclimation period the copper content in control embryos was 1.04 +/- 0.09 microg g(-1) (wet weight) while in all the acclimated embryos a reduction of about 25% of copper was found. Thus copper content could be considered as a biomarker of low level exposure conditions. Batches of 10 embryos (by triplicate) from each acclimation condition were challenged with three different toxic concentrations of copper. As a general pattern, the acclimation protocol to copper exerted a transient beneficial effect on the survival of the Bufo arenarum embryos. The acclimation phenomenon could be related to the selection of pollution tolerant organisms within an adaptive process and therefore the persistence of information within an ecological system following a toxicological stressor.

  16. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    USGS Publications Warehouse

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  17. Changes in ABA and gene expression in cold-acclimated sugar maple.

    PubMed

    Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R

    1997-01-01

    To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.

  18. Synthesizing trait correlations and functional relationships across multiple scales: A Hierarchical Bayes approach

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. N.; Cowdery, E.; Dietze, M.

    2016-12-01

    Recent syntheses of global trait databases have revealed that although the functional diversity among plant species is immense, this diversity is constrained by trade-offs between plant strategies. However, the use of among-trait and trait-environment correlations at the global scale for both qualitative ecological inference and land surface modeling has several important caveats. An alternative approach is to preserve the existing PFT-based model structure while using statistical analyses to account for uncertainty and variability in model parameters. In this study, we used a hierarchical Bayesian model of foliar traits in the TRY database to test the following hypotheses: (1) Leveraging the covariance between foliar traits will significantly constrain our uncertainty in their distributions; and (2) Among-trait covariance patterns are significantly different among and within PFTs, reflecting differences in trade-offs associated with biome-level evolution, site-level community assembly, and individual-level ecophysiological acclimation. We found that among-trait covariance significantly constrained estimates of trait means, and the additional information provided by across-PFT covariance led to more constraint still, especially for traits and PFTs with low sample sizes. We also found that among-trait correlations were highly variable among PFTs, and were generally inconsistent with correlations within PFTs. The hierarchical multivariate framework developed in our study can readily be enhanced with additional levels of hierarchy to account for geographic, species, and individual-level variability.

  19. Benefits of thermal acclimation in a tropical aquatic ectotherm, the Arafura filesnake, Acrochordus arafurae.

    PubMed

    Bruton, Melissa J; Cramp, Rebecca L; Franklin, Craig E

    2012-05-01

    The presumption that organisms benefit from thermal acclimation has been widely debated in the literature. The ability to thermally acclimate to offset temperature effects on physiological function is prevalent in ectotherms that are unable to thermoregulate year-round to maintain performance. In this study we examined the physiological and behavioural consequences of long-term exposure to different water temperatures in the aquatic snake Acrochordus arafurae. We hypothesised that long dives would benefit this species by reducing the likelihood of avian predation. To achieve longer dives at high temperatures, we predicted that thermal acclimation of A. arafurae would reduce metabolic rate and increase use of aquatic respiration. Acrochordus arafurae were held at 24 or 32°C for 3 months before dive duration and physiological factors were assessed (at both 24 and 32°C). Although filesnakes demonstrated thermal acclimation of metabolic rate, use of aquatic respiration was thermally independent and did not acclimate. Mean dive duration did not differ between the acclimation groups at either temperature; however, warm-acclimated animals increased maximum and modal dive duration, demonstrating a longer dive duration capacity. Our study established that A. arafurae is capable of thermal acclimation and this confers a benefit to the diving abilities of this snake.

  20. Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance.

    PubMed

    Condon, Catriona H; Chenoweth, Stephen F; Wilson, Robbie S

    2010-11-01

    Organisms adjust to seasonal variability in the environment by responding to cues that indicate environmental change. As most studies of seasonal phenotypic plasticity test only the effect of a single environmental cue, how animals may integrate information from multiple cues to fine-tune plastic responses remains largely unknown. We examined the interaction between correlated (seasonally matching) and conflicting (seasonally opposite) temperature and photoperiod cues on the acclimation of performance traits in male zebrafish, Danio rerio. We acclimated fish for 8 weeks and then tested the change in thermal dependence of maximum burst swimming and feeding rate between 8 and 38°C. We predicted that correlated environmental cues should induce a greater acclimation response than uncorrelated cues. However, we found that only temperature was important for the seasonal acclimation of performance traits in zebrafish. Thermal acclimation shifted the thermal performance curve of both traits. For maximum burst swimming, performance increased for each group near the acclimation temperature and reduced in environments that were far from their acclimation temperature. The feeding rate of cold-acclimated zebrafish was reduced across the test temperature range compared with that of warm-acclimated fish. Our study is the first that has found no effect of the covariation between temperature and photoperiod acclimation cues on locomotor performance in fishes. Our results support the intuitive idea that photoperiod may be a less important seasonal cue for animals living at lower latitudes.

  1. Effects of prolonged acclimation to cold on the extra--and intracellular acid-base status in the land snail Helix lucorum (L.).

    PubMed

    Staikou, A; Stiakakis, M; Michaelidis, B

    2001-01-01

    The aim of this study was to examine the effect of prolonged acclimation to cold on the acid-base status of extra- and intracellular fluids in the land snail Helix lucorum. For this purpose, acid-base parameters in the hemolymph and tissues were determined. In addition, the buffer values of hemolymph and tissues were determined in order to examine whether they change in the snails during acclimation to cold. According to the results presented, there is an inverse pH-temperature relationship in the hemolymph within the first day of acclimation, which is consistent with alphastat regulation. The Pco2 decreased, and pH in the hemolymph (pH(e)) increased by 0.32 U within the first day of acclimation to cold, which corresponds to a change of 0.013 U degrees C(-1). After the first day of acclimation, Pco2 increased in the hemolymph, resulting in a significant drop in pH(e) by 90 d of acclimation to cold. Acclimation of snails to low temperatures did not change the buffer value of the hemolymph. Also, intracellular pH (pH(i)) and intracellular buffer values remained stable during acclimation to cold for prolonged periods. The latter results in conjunction with those obtained by the in vitro determination of the passive component of intracellular fluids indicate an active regulation of pH(i) in H. lucorum during acclimation to cold.

  2. Comparative transcriptome analysis on the alteration of gene expression in ayu (Plecoglossus altivelis) larvae associated with salinity change.

    PubMed

    Lu, Xin-Jiang; Zhang, Hao; Yang, Guan-Jun; Li, Ming-Yun; Chen, Jiong

    2016-05-18

    Ayu (Plecoglossus altivelis) fish, which are an amphidromous species distributed in East Asia, live in brackish water (BW) during their larval stage and in fresh water (FW) during their adult stage. In this study, we found that FW-acclimated ayu larvae exhibited a slower growth ratio compared with that of BW-acclimated larvae. However, the mechanism underlying FW acclimation on growth suppression is poorly known. We employed transcriptome analysis to investigate the differential gene expression of FW acclimation by RNA sequencing. We identified 158 upregulated and 139 downregulated transcripts in FW-acclimated ayu larvae compared with that in BW-acclimated larvae. As determined by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway mapping, functional annotation of the genes covered diverse biological functions and processes, and included neuroendocrinology, osmotic regulation, energy metabolism, and the cytoskeleton. Transcriptional expression of several differentially expressed genes in response to FW acclimation was further confirmed by real-time quantitative PCR. In accordance with transcriptome analysis, iodothyronine deiodinase (ID), pro-opiomelanocortin (POMC), betaine-homocysteine S-methyltransferase 1(BHMT), fructose-bisphosphate aldolase B (aldolase B), tyrosine aminotransferase (TAT), and Na(+)-K(+) ATPase (NKA) were upregulated after FW acclimation. Furthermore, the mRNA expressions of b-type natriuretic peptide (BNP) and transgelin were downregulated after FW acclimation. Our data indicate that FW acclimation reduced the growth rate of ayu larvae, which might result from the expression alteration of genes related to endocrine hormones, energy metabolism, and direct osmoregulation.

  3. Do mitochondrial properties explain intraspecific variation in thermal tolerance?

    PubMed

    Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M

    2009-02-01

    As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.

  4. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

    PubMed

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and acidification. The observed adjustments of electron transport system complexes with a higher flux through CI under warming and acidification suggest a metabolic acclimation potential of the sub-Antarctic L. squamifrons, but only limited acclimation capacities for N. rossii.

  5. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).

    PubMed

    Lachenicht, M W; Clusella-Trullas, S; Boardman, L; Le Roux, C; Terblanche, J S

    2010-07-01

    The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 degrees C above and below optimum growth temperature of 29 degrees C (i.e. 25, 29, 33 degrees C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13min with acclimation at 33-25 degrees C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 degrees C: 18.25, 29 degrees C: 18.07, 33 degrees C: 25.5min). Thermal optima for running speed were higher (39.4-40.6 degrees C) than those for jumping performance (25.6-30.9 degrees C). Acclimation temperature affected jumping distance but not running speed (general linear model, p=0.0075) although maximum performance (U(MAX)) and optimum temperature (T(OPT)) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of T(OPT), U(MAX) and the temperature breadth (T(BR)) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 degrees C vs. 20-30% at 25 and 29 degrees C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Leaf Respiratory Acclimation: Magnitude of Acclimation to the Long-term Warming in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Jung, C. G.; Peng, F.; Luo, Y.

    2016-12-01

    Plant respiration has a positive response with temperature; hence, the plant under warmer climate makes plant releases more CO2. However, plant leaf can acclimate to the warmer climate so that plant leaf respiratory acclimation contributes less positive feedback between climate warming and ecosystem CO2 release. In order to examine the feedback between ecosystem and evolution of carbon dioxide due to global warming, we conducted the experiment of warming and clipping as mimicking grazing effect in a tall grass prairie in central Oklahoma, US since November 1999. The warming plot's air and soil temperature show 1.1 °C and 2.3 °C higher than ambient, respectively. Since our experiment has been over 16 years, the plot's species compositions and plant richness have changed so far. Most species composition events occurred at the clipping plot; therefore, we selected the plants within unclipped plots to see whether plants that exposed long-term warming, play a role of thermal acclimation and how those major plant species across experimental site possess difference magnitude of acclimation. We have investigated five species, one legume, one forb, and three of C4 grass: Illinois bundle (Desmanthus illinoensis, C3), stiff goldenrod (Solidago rigida, C3), King Ranch bluestem (Bothriochloa ischaemum, C4), Indian grass (Sorghastrum nutans, C4), and Little bluestem (Schizachyrium scoparium, C4). Data has collected from May as the first month of growing season in our field site in 2016. In our results, measurements in +2 °C warming show strong acclimation across the species (185% ±41% s.e.m. among species). The strongest acclimation occurred by stiff goldenrod (309%). The lowest acclimation rate is 51% in Illinois bundle, as well as the partial acclimation. The other three C4 grass species have 188% acclimation rate (±37% s.e.m. among species). Whether different plant species have a different capability of acclimation or respond through different way as shown various magnitudes, our results provide strong evidence for plant leaf thermal acclimation and its actual degree in the experimental warmed tall grass prairie. Further analysis will distinguish the plant species into the different type of acclimation; furthermore, our results can contribute a precise prediction of terrestrial feedback.

  7. Plant acclimation impacts carbon allocation to isoprene emissions: evidence from past to future CO2 levels

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert

    2016-04-01

    Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (weeks) via acclimation in photosynthetic biochemistry. In order to understand the effects of CO2-induced climate change on carbon allocation in plants it is therefore important to quantify how isoprene biosynthesis and emissions are effected by both short-term responses and long-term acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. In addition to environmental conditions, this imbalance is determined by the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (V cmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 levels representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. Plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters V cmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. This CO2 effect is most pronounced going from glacial to present CO2. In the short term, an increase in CO2 stimulates photosynthesis through an increase in Ci and marginally decreases isoprene production owing to an increase in the electron demand for carbon fixation. In the long-term, acclimation to rising CO2 leads to down regulation of both Jmax and V cmax, which modulates the stimulating effect of rising CO2 on photosynthesis. Specifically the down-regulation of Jmax reduces isoprene emissions at this time scale, whereas the down-regulation of V cmax has a marginal effect according to the LES-model. Our results highlight that biochemical acclimation to rising CO2 influences the allocation of carbon to isoprene biosynthesis. References Harrison, S. P. et al: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197(1), 49-57, 2013. Morfopoulos, C. et al: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2, New Phytol., 203(1), 125-139, 2014.

  8. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    PubMed

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation.

    PubMed

    Fan, Jianhua; Zheng, Lvhong

    2017-09-01

    Salt stress has been proven very effective in enhancing the lipid content among many photoautotrophically grown microalgae species including marine and freshwater algae. Nevertheless, its effect on heterotrophic grown cells and lipid accumulation is scarcely known. This study sought to demonstrate a new train of thought for cost-effective biofuels production by heterotrophic culture of Chlamydomonas reinhardtii coupling with subsequent salt and light stress. NaCl treatments (25-200 mM) gradually suppressed the cell growth. After one day's acclimation, the cells restored slow growth with light supplement (200 μmol/m2/s) in low salt concentration (0-50 mM). However, high concentration of NaCl (200 mM) dose caused permanent damage, with over 47% cells death after 3 days treatment. The highest lipid content of 35.8% and lipid productivity of 28.6 mg/L/d were achieved by 50 mM NaCl stress and light treatment upon heterotrophic grown cells. Cells lost their green pigmentation and became yellowish under 100-200 mM NaCl conditions, whereas cells grown in 0-50 mM NaCl retained their dark-green pigmentation. Variable-to-maximum fluorescence ratio (Fv/Fm) and non-photochemical quenching (NPQ) value were markedly influenced under salt and light stress, indicating that severe inhibition of photosynthetic ability was occurred. Moreover, we further demonstrated the dynamic changes of cell growth and lipid accumulation would potentially be caused by the increase of intracellular redox state. To our knowledge, this study is the first instance in which C. reinhardtii was applied to oil accumulation by using combination of heterotrophic culture and multiple stress, and opened up a new territory for the further development of microalgae-based biofuels production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Molecular and Photosynthetic Responses to Prolonged Darkness and Subsequent Acclimation to Re-Illumination in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Nymark, Marianne; Valle, Kristin C.; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Bones, Atle M.; Brembu, Tore

    2013-01-01

    Photosynthetic diatoms that live suspended throughout the water column will constantly be swept up and down by vertical mixing. When returned to the photic zone after experiencing longer periods in darkness, mechanisms exist that enable the diatoms both to survive sudden light exposure and immediately utilize the available energy in photosynthesis and growth. We have investigated both the response to prolonged darkness and the re-acclimation to moderate intensity white irradiance (E = 100 µmol m−2 s−1) in the diatom Phaeodactylum tricornutum, using an integrated approach involving global transcriptional profiling, pigment analyses, imaging and photo-physiological measurements. The responses were studied during continuous white light, after 48 h of dark treatment and after 0.5 h, 6 h, and 24 h of re-exposure to the initial irradiance. The analyses resulted in several intriguing findings. Dark treatment of the cells led to 1) significantly decreased nuclear transcriptional activity, 2) distinct intracellular changes, 3) fixed ratios of the light-harvesting pigments despite a decrease in the total cell pigment pool, and 4) only a minor drop in photosynthetic efficiency (ΦPSII_max). Re-introduction of the cells to the initial light conditions revealed 5) distinct expression profiles for nuclear genes involved in photosynthesis and those involved in photoprotection, 6) rapid rise in photosynthetic parameters (α and rETRmax) within 0.5 h of re-exposure to light despite a very modest de novo synthesis of photosynthetic compounds, and 7) increasingly efficient resonance energy transfer from fucoxanthin chlorophyll a/c-binding protein complexes to photosystem II reaction centers during the first 0.5 h, supporting the observations stated in 6). In summary, the results show that despite extensive transcriptional, metabolic and intracellular changes, the ability of cells to perform photosynthesis was kept intact during the length of the experiment. We conclude that P. tricornutum maintains a functional photosynthetic apparatus during dark periods that enables prompt recovery upon re-illumination. PMID:23520530

  11. Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna.

    PubMed

    Tietze, S M; Gerald, G W

    2016-05-01

    Salinity preference and responses to predatory chemical cues were examined both separately and simultaneously in freshwater (FW) and saltwater (SW)-acclimated sailfin mollies Poecilia latipinna, a euryhaline species. It was hypothesized that P. latipinna would prefer FW over SW, move away from chemical cues from a crayfish predator, and favour predator avoidance over osmoregulation when presented with both demands. Both FW and SW-acclimated P. latipinna preferred FW and actively avoided predator cues. When presented with FW plus predator cues v. SW with no cues, P. latipinna were more often found in FW plus predator cues. These results raise questions pertaining to the potential osmoregulatory stress of salinity transitions in euryhaline fishes relative to the potential fitness benefits and whether euryhalinity is utilized for predator avoidance. This study sheds light on the potential benefits and consequences of being salt tolerant or intolerant and complicates the understanding of the selection pressures that have favoured the different osmoregulatory mechanisms among fishes. © 2016 The Fisheries Society of the British Isles.

  12. Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna

    PubMed Central

    TIETZE, S. M.; GERALD, G. W.

    2016-01-01

    Salinity preference and responses to predatory chemical cues were examined both separately and simultaneously in freshwater (FW) and saltwater (SW)-acclimated sailfin mollies Poecilia latipinna, a euryhaline species. It was hypothesized that P. latipinna would prefer FW over SW, move away from chemical cues from a crayfish predator, and favour predator avoidance over osmoregulation when presented with both demands. Both FW and SW-acclimated P. latipinna preferred FW and actively avoided predator cues. When presented with FW plus predator cues v. SW with no cues, P. latipinna were more often found in FW plus predator cues. These results raise questions pertaining to the potential osmoregulatory stress of salinity transitions in euryhaline fishes relative to the potential fitness benefits and whether euryhalinity is utilized for predator avoidance. This study sheds light on the potential benefits and consequences of being salt tolerant or intolerant and complicates the understanding of the selection pressures that have favoured the different osmoregulatory mechanisms among fishes. PMID:27001481

  13. Underwater photosynthesis of submerged plants - recent advances and methods.

    PubMed

    Pedersen, Ole; Colmer, Timothy D; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence.

  14. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    PubMed Central

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  15. Grape Berry Acclimation to Excessive Solar Irradiance Leads to Repartitioning between Major Flavonoid Groups.

    PubMed

    Reshef, N; Agam, N; Fait, A

    2018-04-11

    Warm viticulture regions are associated with inferior wines, resulting from the interaction between microclimate and fruit biochemistry. Solar irradiance triggers biosynthetic processes in the fruit and dominates its thermal balance. Therefore, deciphering its impact on fruit metabolism is pivotal to develop strategies for fruit protection and ameliorate its quality traits. Here, we modified light quality and intensity in the fruit-zone and integrated micrometeorology with grape and wine metabolomics, allowing a complete assessment, from field to bottle. We analyzed the dynamics of fruit's adaptation to altered conditions during ripening and constructed temporal-based metabolic networks. Micrometeorological modifications shifted the balance between the major flavonoids, associating increased solar exposure with lower levels of anthocyanins and flavan-3-ols, and higher flavonols. Differences were fixed from 2 weeks postveraison until harvest, suggesting a controlled acclimation response rather than external modulation. Differences in grape composition manifested in the wine and resulted in higher color intensity and improved wine hue under partial shading.

  16. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; Khazraeenia, Soheila; Yerushalmi, Gil Y; Donini, Andrew; Li, Natalia G; Sinclair, Brent J

    2018-02-01

    Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na + -K + ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Acclimation to Low Level Exposure of Copper in Bufo arenarum Embryos: Linkage of Effects to Tissue Residues

    PubMed Central

    Herkovits, Jorge; Pérez-Coll, Cristina Silvia

    2007-01-01

    The acclimation possibilities to copper in Bufo arenarum embryos was evaluated by means of three different low level copper exposure conditions during 14 days. By the end of the acclimation period the copper content in control embryos was 1.04 ± 0.09 μg.g−1 (wet weight) while in all the acclimated embryos a reduction of about 25% of copper was found. Thus copper content could be considered as a biomarker of low level exposure conditions. Batches of 10 embryos (by triplicate) from each acclimation condition were challenged with three different toxic concentrations of copper. As a general pattern, the acclimation protocol to copper exerted a transient beneficial effect on the survival of the Bufo arenarum embryos. The acclimation phenomenon could be related to the selection of pollution tolerant organisms within an adaptive process and therefore the persistence of information within an ecological system following a toxicological stressor. PMID:17617681

  18. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress.

    PubMed

    Cuvelier, Marie L; Guo, Jian; Ortiz, Alejandra C; van Baren, Marijke J; Tariq, Muhammad Akram; Partensky, Frédéric; Worden, Alexandra Z

    2017-01-01

    Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in the HL treatment. NIRFU's domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.

  19. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress

    DOE PAGES

    Cuvelier, Marie L.; Guo, Jian; Ortiz, Alejandra C.; ...

    2017-03-09

    Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similarmore » diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m -2 s -1 supplied in the HL treatment. NIRFU's domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Lastly, our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.« less

  20. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuvelier, Marie L.; Guo, Jian; Ortiz, Alejandra C.

    Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similarmore » diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m -2 s -1 supplied in the HL treatment. NIRFU's domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Lastly, our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.« less

  1. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  2. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  3. Testing the Einstein's equivalence principle with polarized gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zou, Yuan-Chuan; Zhang, Yue-Yang; Liao, Bin; Lei, Wei-Hua

    2017-07-01

    The Einstein's equivalence principle can be tested by using parametrized post-Newtonian parameters, of which the parameter γ has been constrained by comparing the arrival times of photons with different energies. It has been constrained by a variety of astronomical transient events, such as gamma-ray bursts (GRBs), fast radio bursts as well as pulses of pulsars, with the most stringent constraint of Δγ ≲ 10-15. In this Letter, we consider the arrival times of lights with different circular polarization. For a linearly polarized light, it is the combination of two circularly polarized lights. If the arrival time difference between the two circularly polarized lights is too large, their combination may lose the linear polarization. We constrain the value of Δγp < 1.6 × 10-27 by the measurement of the polarization of GRB 110721A, which is the most stringent constraint ever achieved.

  4. Feeding behavior and temperature and light tolerance of Mysis relicta in the laboratory

    USGS Publications Warehouse

    DeGraeve, G.M.; Reynolds, James B.

    1975-01-01

    Live specimens of Mysis relicta from Lake Michigan were held for one year in the laboratory to determine feeding behavior and tolerance to light and temperature. Mysids fed by moving with rapid, horizontal jerking motions toward food as it settled toward the bottom and by swimming slowly, upside down, to gather particles floating on the surface. Scavenging was common. Mysids tolerated considerably higher temperatures than previously reported. Temperature increases (from 5 C) of 1 C per day and 1 C per minute resulted in TLm values of 20.5 C and 20.4 C, respectively. Mortality increased rapidly at temperatures above 13 C. The upper lethal limit for mysids acclimated to 5 C was about 22 C. Survival under continuous, high light intensity (32 foot-candles) was considerably higher than previously reported. Low water temperature (5 C) may have increased light tolerance.

  5. The glutathione-dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis.

    PubMed

    Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L

    2013-02-01

    Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Exercise-heat acclimation in young and older trained cyclists.

    PubMed

    Best, Stuart; Thompson, Martin; Caillaud, Corinne; Holvik, Liv; Fatseas, George; Tammam, Amr

    2014-11-01

    The purpose of this study was to investigate the effect of age on the capacity to acclimatise to exercise-heat stress. This study hypothesised that age would not affect body temperature and heat loss effector responses to short-term exercise-heat acclimation in trained subjects. Seven young subjects (19-32 years) were matched with 7 older subjects (50-63 years). Subjects were highly trained but not specifically heat acclimated when they exercised for 60 min at 70%VO2max in hot-dry (35 °C, 40%RH) and thermoneutral (20 °C, 40%RH) conditions, pre and post 6 days of exercise-heat acclimation (70%VO2max, 35 °C, 40%RH). Rectal temperature (Tr), skin temperature (Tsk), heart rate (HR), cutaneous vascular conductance (CVC) and whole body sweat loss (Msw) were measured during each testing session and Tr and HR were measured during each acclimation session. Tr, Tsk, %HRmax, CVC and Msw were similar across age groups both pre and post heat acclimation. Following heat acclimation relative decreases and increases in Tr and Msw, respectively, were similar in both subject groups. There was a significant reduction in heart rate (%HRmax) and increase in final CVC following the acclimation programme in the young group (all p < 0.05) but not the older group. When comparing young and older well trained adults we found age affected the cardiovascular adaptation but not body temperature or whole body sweat loss to exercise-heat acclimation. These data suggest age does not affect the capacity to acclimatise to exercise-heat stress in highly trained adults undergoing short-term heat acclimation. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle.

    PubMed

    Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L

    2016-06-01

    Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    PubMed

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  9. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater

    USGS Publications Warehouse

    Christensen, A.K.; Hiroi, J.; Schultz, E.T.; McCormick, S.D.

    2012-01-01

    The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5p.p.t.) or seawater (35.0p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141mmoll -1 vs 134mmoll -1), but the hematocrit remained unchanged. In seawateracclimated individuals, branchial Na +/K +-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA subunit and a Na+/K+/2Cl- cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na + resistance, hence facilitating Na+ extrusion in hypo-osmoregulating juvenile alewives after seaward migration. ?? 2012. Published by The Company of Biologists Ltd.

  10. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  11. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).

    PubMed

    Vo, Pacific; Gridi-Papp, Marcos

    2017-05-01

    Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5°C. Pre-metamorphic tadpoles hardened by 1.18°C, while metamorphic tadpoles hardened by 0.36°C. When raised at 21°C, tadpoles acclimated expanding their cold tolerance by 1.3°C in relation to larvae raised at 28°C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Combined effects of temperature acclimation and cadmium exposure on mitochondrial function in eastern oysters Crassostrea virginica gmelin (Bivalvia: Ostreidae).

    PubMed

    Cherkasov, Anton S; Ringwood, Amy H; Sokolova, Inna M

    2006-09-01

    Cadmium and temperature have strong impacts on the metabolic physiology of aquatic organisms. To analyze the combined impact of these two stressors on aerobic capacity, effects of Cd exposure (50 microg/L) on mitochondrial function were studied in oysters (Crassostrea virginica) acclimated to 12 and 20 degrees C in winter and to 20 and 28 degrees C in fall. Cadmium exposure had different effects on mitochondrial bioenergetics of oysters depending on the acclimation temperature. In oysters acclimated to 12 degrees C, Cd exposure resulted in elevated intrinsic rates of mitochondrial oxidation, whereas at 28 degrees C, a rapid and pronounced decrease of mitochondrial oxidative capacity was found in Cd-exposed oysters. At the intermediate acclimation temperature (20 degrees C), effects of Cd exposure on intrinsic rates of mitochondrial oxidation were negligible. Degree of coupling significantly decreased in mitochondria from 28 degrees C-acclimated oysters but not in that from 12 degrees C- or 20 degrees C-acclimated oysters. Acclimation at elevated temperatures also increased sensitivity of oyster mitochondria to extramitochondrial Cd. Variation in mitochondrial membrane potential explained 41% of the observed variation in mitochondrial adenosine triphosphate synthesis and proton leak between different acclimation groups of oysters. Temperature-dependent sensitivity of metabolic physiology to Cd has significant implications for toxicity testing and for extrapolation of laboratory studies to field populations of aquatic poikilotherms, indicating the importance of taking into account the thermal regime of the environment.

  13. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  14. Resting energy expenditure of rats acclimated to hypergravity

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moran, Megan M.; Oyama, Jiro

    2002-01-01

    BACKGROUND: The use of centrifugation at 1 G has been advocated as a control condition during spaceflight and as a countermeasure to compensate for the adverse effects of spaceflight. Rodents are the primary animal model for the study of the effects of spaceflight and will be used in the evaluation of centrifugation as a countermeasure and means of control at 1 G during flight. HYPOTHESIS: The present study was designed to assess whether resting energy expenditure (EER) of male rats was increased in relation to the magnitude of the level of gravity to which the animals were exposed. The influence of body mass and age on resting energy expenditure (EER) of male rats (n = 42, age 40-400 d) was determined following 2 wk of acclimation to 1, 2.3, or 4.1 G. Hypergravity environments were created by centrifugation. Measurements were made at the gravity level to which the animal was acclimated and during the lights-on period. RESULTS: In rats matched for body mass (approximately 400 g), mean O2 consumption and CO2 production were higher (18% and 27%, respectively) in the 2.3- and 4.1 -G groups than controls. Mean respiratory exchange ratio (RER) increased from 0.80 to 0.87. EER was increased from 47 +/- 0.1 kcal x d(-1) at 1 G, to 57 +/- 1.5 and 58 +/- 2.2 kcal x d(-1) at 2.3 and 4.1 G, respectively. There was no difference in EER between the hypergravity groups. When age differences were considered, EER (kcal x kg(-1) x d(-1)) with increased gravity was 40% higher than at 1 G. The increase in EER was not proportional over gravity levels. CONCLUSION: Acclimation of rats to hypergravity increases their EER, dependent on body mass and age, and may alter substrate metabolism. The increase in EER was not related to the level of gravity increase.

  15. Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine.

    PubMed

    Cecconi, Daniela; Milli, Alberto; Rinalducci, Sara; Zolla, Lello; Zapparoli, Giacomo

    2009-09-01

    Cultures of Oenococcus oeni, the most important malolactic bacterium, are used to induce malolactic fermentation in wine. Survival assays in two different wines confirmed that cells acclimated for 24 h in half-strength wine-like medium (acclimation medium) enhanced the malolactic performances. To investigate the effect of the pre-incubation phase on cell physiology, a proteomic study was carried out. Total protein extracts of acclimated and non-acclimated cell cultures (control) were analyzed by 2-D-PAGE. A total of 20 out of approximately 400 spots varied significantly. All the spots were identified by MS analysis and most of them were proteins involved in metabolism, transcription/translation processes and stress response. The results revealed the different physiological status between non-acclimated and acclimated cells explaining, in part, their different behavior in wine. Regulation of stress proteins such as heat and cold shock proteins was involved. Moreover, the availability of sugars and amino acids (even if at low concentration) in acclimation medium determined a modulation of energy metabolism enhancing the resistance to stressful conditions (as those that cells find in wine when inoculated). Finally, this proteomic study increased knowledge concerning the physiological changes in freeze-dried culture occurring with pre-inoculation procedures.

  16. Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

    PubMed

    Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru

    2015-09-01

    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.

    PubMed

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-05-23

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001. Copyright © 2014, Wakao et al.

  18. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.

    PubMed

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei; Angelidaki, Irini; Zhang, Yifeng

    2017-07-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before moving into MECs, respectively. Subsequently, CSFE was used as feedstock in all the three MECs. The maximum hydrogen yield with the anode pre-acclimated with butyrate (5.21±0.24L H 2 /L CSFE) was higher than that pre-acclimated with acetate (4.22±0.19L H 2 /L CSFE) and CSFE (4.55±0.14L H 2 /L CSFE). The current density (480±11A/m 3 ) and hydrogen production rate (4.52±0.13m 3 /m 3 /d) with the anode pre-acclimated with butyrate were also higher that another two reactors. These results demonstrated that the anode biofilm pre-acclimated with butyrate has significant advantages in CSFE treatment and could improve the performance of hydrogen production in MEC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  20. Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment.

    PubMed

    Park, Younghyun; Cho, Hyunwoo; Yu, Jaechul; Min, Booki; Kim, Hong Suck; Kim, Byung Goon; Lee, Taeho

    2017-06-01

    Microbial community structures and performance of air-cathode microbial fuel cells (MFCs) inoculated with activated sludge from domestic wastewater were investigated to evaluate the effects of three substrate pre-acclimation strategies: 1, serial pre-acclimation with acetate and glucose before supplying domestic wastewater; 2, one step pre-acclimation with acetate before supplying domestic wastewater; and 3, direct supply of domestic wastewater without any pre-acclimation. Strategy 1 showed much higher current generation (1.4mA) and Coulombic efficiency (33.5%) than strategies 2 (0.7mA and 9.4%) and 3 (0.9mA and 10.3%). Pyrosequencing showed that microbial communities were significantly affected by pre-acclimation strategy. Although Proteobacteria was the dominant phylum with all strategies, Actinobacteria was abundant when MFCs were pre-acclimated with glucose after acetate. Not only anode-respiring bacteria (ARB) in the genus Geobacter but also non-ARB belonging to the family Anaerolinaceae seemed to play important roles in air-cathode MFCs to produce electricity from domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    NASA Astrophysics Data System (ADS)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  2. Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Polin, Marco; Arrieta, Jorge; Barreira, Ana; Chioccioli, Maurizio; Tuval, Idan

    Phototaxis is an important reaction to light displayed by a wide range of motile microorganisms, from bacteria to ciliates. Flagellated eukaryotic microalgae in particular, like the model organism Chlamydomonas reinhardtii, steer either towards or away from light by a rapid and precisely timed modulation of their flagellar activity. Cell steering, however, is only the beginning of a much longer process which ultimately allows cells to determine their light exposure history. This process is not well understood. Here we present a first quantitative study of the long timescale phototactic motility of Chlamydomonas at both single cell and population levels. Our results reveal that the phototactic strategy adopted by these microorganisms leads to an efficient exposure to light, and that the phototactic response is modulated over typical timescales of tens of sec- onds. The adaptation dynamics for phototaxis and chlorophyll fluorescence show a striking quantitative agreement, suggesting that photosynthesis controls quantitatively how cells navigate a light field.

  3. Preliminary acclimation strategies for successful startup in conventional biofilters.

    PubMed

    Elías, Ana; Barona, Astrid; Gallastegi, Gorka; Rojo, Naiara; Gurtubay, Luis; Ibarra-Berastegi, Gabriel

    2010-08-01

    The question of how to obtain the best inocula for conventional biofilters arises when an acclimation/adaptation procedure is to be applied. Bearing in mind that no standardized procedure for acclimating inocula exists, certain preliminary strategies for obtaining an active inoculum from wastewater treatment sludge are proposed in this work. Toluene was the contaminant to be degraded. Concerning the prior separation of sludge phases, no obvious advantage was found in separating the supernatant phase of the sludge before acclimation. As far as a continuous or discontinuous acclimation mode is concerned, the latter is recommended for rapidly obtaining acclimated sludge samples by operating the system for no longer than 1 month. The continuous mode rendered similar degradation rates, although it required longer operating time. Nevertheless, the great advantage of the continuous system lay in the absence of daily maintenance and the ready availability of the activated sample.

  4. Physiological responses of horses to a treadmill simulated speed and endurance test in high heat and humidity before and after humid heat acclimation.

    PubMed

    Marlin, D J; Scott, C M; Schroter, R C; Harris, R C; Harris, P A; Roberts, C A; Mills, P C

    1999-01-01

    To investigate whether horses were able to acclimate to conditions of high temperature and humidity, 5 horses of different breeds were trained for 80 min on 15 consecutive days on a treadmill at 30 degrees C and 80%RH. Training consisted of a combination of long duration low-intensity exercise, medium duration medium intensity exercise and short duration high intensity exercise. Between training sessions the horses were maintained at 11+/-3 degrees C and 74+/-2%RH. Before (PRE-ACC) and after acclimation (POST-ACC) the horses undertook a simulated Competition Exercise Test (CET), designed to represent the Speed and Endurance Test of a 3-day event, at 30 degrees C/80%RH. Maximal oxygen uptake (VO2PEAK) was not changed following acclimation (PRE-ACC 141+/-8 ml/min/kg bwt vs. POST-ACC 145+/-9 ml/min/kg bwt [STPD], P>0.05). Following acclimation, 4 of the 5 horses were able to complete a significantly greater amount of Phase D in the CET (PRE-ACC 6.3+/-0.3 min vs. POST-ACC 7.3+/-0.3 min, P<0.05; target time = 8 min). Resting body temperatures (pulmonary artery [TPA], rectal [TREC] and tail-skin [TTSK] temperatures) were all significantly lower following acclimation. During exercise, metabolic heat production (M) and heat dissipation (HD), for the same exercise duration, were both significantly lower following acclimation (P<0.05), although heat storage (HS) was significantly higher (P<0.05). The higher heat storage following acclimation was associated with a lower TTSK for a given TPA and a decreased total fluid loss (% bodyweight, P<0.05). Plasma volume was not changed following acclimation. The relationship of sweating rate (SR) to TPA or TTSK on either the neck or the gluteal region was not significantly altered by acclimation, although the onset of sweating occurred at a lower TPA or TTSK following acclimation (P<0.05). The horses in the present study showed a number of physiological adaptations to a period of 15 days of exposure to high heat and humidity consistent with a humid heat acclimation response. These changes were mostly similar to those reported to occur in man and other species and were consistent with thermal acclimation and an increased thermotolerance, leading to an improved exercise tolerance. It is concluded that a 15 day period of acclimation is beneficial for horses from cooler and or drier climates, that have to compete in hot humid conditions and that this may redress, to some extent, the decrement in exercise tolerance seen in nonacclimated horses and reduce the risk of heat related disorders, such as heat exhaustion.

  5. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    PubMed

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  6. Effect of UV radiation on habitat selection by Girella laevifrons and Graus nigra (Kyphosidae).

    PubMed

    Pulgar, J; Lagos, P; Maturana, D; Valdés, M; Aldana, M; Pulgar, V M

    2015-02-01

    The effect of UV radiation on habitat use of two species of intertidal fishes that inhabit the same pools but exhibit different activity levels and diets was measured: the highly active omnivorous Girella laevifrons and the cryptic carnivorous Graus nigra. Individuals of each species were acclimated to a tank divided in three sections with different illumination; no light (NL), ultraviolet light (UV) and white light (WL), and the time spent and number of visits to each section were recorded. Although both species preferred the NL section, G. laevifrons spent more time in UV and less time in WL compared with G. nigra; G. laevifrons also displayed higher number of visits to UV, suggesting a different tendency in space use in response to UV exposure in intertidal fishes. © 2015 The Fisheries Society of the British Isles.

  7. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  8. Thermal plasticity of diving behavior, aquatic respiration, and locomotor performance in the Mary River turtle Elusor macrurus.

    PubMed

    Clark, Natalie J; Gordos, Matthew A; Franklin, Craig E

    2008-01-01

    Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.

  9. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  10. Cold acclimation and cognitive performance: A review.

    PubMed

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Seebacher, Frank

    2013-09-15

    Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the role of TH in modulating SERCA1 expression during cold exposure may have predisposed it to regulate endothermic thermogenesis.

  12. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species

    PubMed Central

    Zhou, Shuang-Xi; Medlyn, Belinda E.; Prentice, Iain Colin

    2016-01-01

    Background and Aims Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Methods Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent ‘drying-down’, continuing until stomata were closed. Key Results Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (Vcmax′) and maximum electron transport rate (Jmax′). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in Vcmax′ and Jmax′; however, after 4 months, Vcmax′ and Jmax′ had recovered. Species differed in their degree of Vcmax′ acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the Vcmax′ and ‘true’ Vcmax (accounting for mesophyll conductance) declined most steeply during drying-down. Conclusions The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V′cmax reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V′cmax reduction was mitigated; (3) xeric species showed a greater degree of V′cmax acclimation; and (4) photosynthetic acclimation involves hydraulic adjustments to reduce water loss while maintaining photosynthesis. PMID:26493470

  13. Ecophysiological responses of two herbaceous species to prescribed burning, alone or in combination with overstory thinning.

    PubMed

    Huang, Jianjun; Boerner, Ralph E J; Rebbeck, Joanne

    2007-05-01

    The oak-rich deciduous forests of the central Appalachian Mountains of eastern North America have changed significantly since the onset of effective fire suppression early in the 20th century. Those changes have resulted in progressively decreasing light and nutrient supplies to herbaceous perennial understory species. Application of ecological restoration treatments such as reintroduction of frequent dormant-season fire and overstory thinning to pre-suppression density often increase light, soil temperature and moisture, and short-term nutrient availability to pre-suppression levels. To persist in this environment, perennial understory herbs must be able to acclimate phenotypically to the very different resource supply combinations present with and without fire suppression. As part of a larger study of the response of the long-lived herbaceous perennials Desmodium nudiflorum and Panicum boscii to ecosystem restoration treatments in Ohio mixed-oak forests, this study examined the ecophysiological effects of prescribed burning (B) and the combination of burning and thinning (T + B) in mixed-oak forests in southern Ohio. Control (C) plants had significantly lower maximum photosynthetic rate (A(max)) than those in the treated plots. The enhancement of A(max) averaged 26.7% and 52.7% in the B and T + B treatments, respectively. Plants from the T + B plots had higher quantum yield, stomatal conductance, and photosynthetic nutrient use efficiency than B and C plants. B plants had greater intrinsic water use efficiency (WUE) than plants in the C or T + B treatments. Light saturation point (LSP), light compensation point (LCP), and "dark" respiration (DR) did not differ among treatments. Photosynthetic parameters did vary significantly between the species, but no significant treatment × species interactions were detected. Our results support the hypothesis that prescribed burning, especially when combined with overstory thinning, in these perennial herbs can result in phenotypic acclimation characterized by enhanced photosynthetic performance.

  14. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.

    PubMed

    Müller, Sara M; Wang, Shanshan; Telman, Wilena; Liebthal, Michael; Schnitzer, Helena; Viehhauser, Andrea; Sticht, Carsten; Delatorre, Carolina; Wirtz, Markus; Hell, Rüdiger; Dietz, Karl-Josef

    2017-09-01

    The integration of redox- and reactive oxygen species-dependent signaling and metabolic activities is fundamental to plant acclimation to biotic and abiotic stresses. Previous data suggest the existence of a dynamically interacting module in the chloroplast stroma consisting of cyclophilin 20-3 (Cyp20-3), O-acetylserine(thiol)lyase B (OASTL-B), 2-cysteine peroxiredoxins A/B (2-CysPrx) and serine acetyltransferase 2;1 (SERAT2;1). The functionality of this COPS module is influenced by redox stimuli and oxophytodienoic acid (OPDA), which is the precursor for jasmonic acid. The concept of an integrating function of these proteins in stress signaling was challenged by combining transcriptome and biochemical analyses in Arabidopsis mutants devoid of oastlB, serat2;1, cyp20-3 and 2-cysprxA/B, and wild-type (WT). Leaf transcriptomes were analyzed 6 h after transfer to light intensity 10-fold in excess of growth light or under growth light. The survey of KEGG-based gene ontology groups showed common upregulation of translation- and protein homeostasis-associated transcripts under control conditions in all mutants compared with WT. The results revealed that the interference of the module was accompanied with disturbance of carbohydrate, sulfur and nitrogen metabolism, and also citric acid cycle intermediates. Apart from common regulation, specific responses at the transcriptome and metabolite level linked Cyp20-3 to cell wall-bound carbohydrates and oxylipin signaling, and 2-CysPrx to photosynthesis, sugar and amino acid metabolism. Deletion of either OASTL-B or SERAT2;1 frequently induced antagonistic changes in biochemical or molecular features. Enhanced sensitivity of mutant seedlings to OPDA and leaf discs to NaHS-administration confirmed the presumed functional interference of the COPS module in redox and oxylipin signaling. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. [Effects of 2-chlorophenol-acclimation on microbial community structure in anaerobic granular sludge].

    PubMed

    Huang, Ai-Qun; Dai, Ya-Lei; Chen, Ling; Chen, Hao; Zhang, Wen

    2008-03-01

    The microbial community structure in 2-chlorophenol-acclimated anaerobic granular sludge and inoculating sludge were analyzed by 16S rDNA-based approach. Total DNA was extracted directly from the inoculating sludge and 2-CP-acclimated anaerobic sludge, and then amplified by polymerase chain reaction (PCR) technique with the specific primer pair ARC21F/ARC958R for Archaea and 31F/907R for Acidobacteria respectively. The positive PCR products were cloned and sequenced. The sequences analysis shows that there exist common Archaea in both sludge, including Methanothrix soehngenii, Methanosaeta concilii and uncultured euryarchaeote etc. Some special Archaea appear in the 2-CP-acclimated sludge, such as Methanobacterium aarhusense, Methanobacterium curvum and Methanobacterium beijingense etc. Others originally existed in the inoculating sludge disappear after acclimation. Common Acidobacteria are found in both sludge, including uncultured bacterium, uncultured Acidobacterium and unknown Actinomycete (MC 9). Some special microbes originally existed in the inoculating sludge, such as Desulfotomaculum sp. 176, uncultured Deltaproteobacterium n8d and uncultured hydrocarbon seep bacterium etc. disappear after acclimation, and uncultured Holophaga/Acidobacterium, uncultured Acidobacteria bacterium and unidentified Acidobacterium are found after 2-CP-acclimation.

  16. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  17. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.

    PubMed

    Rome, Lawrence C

    2007-11-29

    There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10 degrees C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10 degrees C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds. Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10 degrees C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10 degrees C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.

  18. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.

    PubMed

    Slot, Martijn; Rey-Sánchez, Camilo; Gerber, Stefan; Lichstein, Jeremy W; Winter, Klaus; Kitajima, Kaoru

    2014-09-01

    Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25 ) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5-3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S-24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no-acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle. © 2014 John Wiley & Sons Ltd.

  19. Effects of acclimation on poststocking dispersal and physiological condition of age-1 pallid sturgeon

    USGS Publications Warehouse

    Oldenburg, E.W.; Guy, C.S.; Cureton, E.S.; Webb, M.A.H.; Gardner, W.M.

    2011-01-01

    The objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 hatchery-reared pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and controls had no acclimation (reared under traditional conservation propagation protocol). During both years, fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach as compared to control fish. In 2006, pallid sturgeon dispersed similarly among treatments and the number of fish remaining in the Missouri River reach was similar among all treatments. Differences in poststocking dispersal between years were related to fin curl which was present in all fish in 2005 and only 26% in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments. However, acclimation to flow (i.e., exercise conditioning) prevented fat accumulation from rupturing hepatocytes. Acclimation conditions used in this study did not benefit pallid sturgeon unless physiological maladies were present. Overriding all treatment effects was stocking location; thus, natural resource agencies need to consider stocking location carefully to reduce poststocking dispersal. ?? 2011 Blackwell Verlag, Berlin.

  20. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.

    PubMed

    Teigen, Laura E; Orczewska, Julieanna I; McLaughlin, Jessica; O'Brien, Kristin M

    2015-10-01

    Molecular chaperones [heat shock proteins (HSPs)] increase in response to rapid changes in temperatures, but long-term acclimation to cold temperature may also warrant elevations in HSPs. In fishes, cold acclimation increases mitochondrial density and oxidative stress in some tissues, which may increase demand for HSPs. We hypothesized that levels of HSPs, as well as sirtuins (SIRTs), NAD-dependent deacetylases that mediate changes in metabolism and responses to oxidative stress (including increases in HSPs), would increase during cold acclimation of threespine stickleback (Gasterosteus aculeatus). Transcript levels of hsp70, hsc70, hsp60 and hsp90-α, sirts1-4, as well as protein levels of HSP60, HSP90 and HSC70 were quantified in liver and pectoral adductor muscle of stickleback during cold acclimation from 20 °C to 8 °C. In liver, cold acclimation stimulated a transient increase in mRNA levels of hsp60 and hsc70. Transcript levels of sirt1 and sirt2 also increased in response to cold acclimation and remained elevated. In pectoral muscle, mRNA levels of hsp60, hsp90-α, hsc70 and sirt1 all transiently increased in response to cold acclimation, while levels of sirts2-4 remained constant or declined. Similar to transcript levels, protein levels of HSC70 increased in both liver and pectoral muscle. Levels of HSP90 also increased in liver after 4 weeks at 8 °C. HSP60 remained unchanged in both tissues, as did HSP90 in pectoral muscle. Our results indicate that while both HSPs and SIRTs increase in response to cold acclimation in stickleback, the response is tissue and isoform specific, likely reflecting differences in metabolism and oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Improving sneaky-sex in a low oxygen environment: reproductive and physiological responses of male mosquito fish to chronic hypoxia.

    PubMed

    Carter, Alecia J; Wilson, Robbie S

    2006-12-01

    Few studies have examined the adaptive significance of reversible acclimation responses. The aerobic performance and mating behaviour of the sexually coercive male eastern mosquito fish (Gambusia holbrooki) offers an excellent model system for testing the benefits of reversible acclimation responses to mating success. We exposed male mosquito fish to normoxic or hypoxic conditions for 4 weeks and tested their maximum sustained swimming performance and their ability to obtain coercive matings under both normoxic and hypoxic conditions. We predicted that hypoxia-acclimated males would possess greater swimming and mating performance in hypoxic conditions than normoxic-acclimated males, and vice versa when tested in normoxia. Supporting our predictions, we found the sustained swimming performance of male mosquito fish was greater in a hypoxic environment following long-term exposure to low partial pressures of oxygen. However, the benefits of acclimation responses to mating performance were dependent on whether they were tested in the presence or absence of male-male competition. In a non-competitive environment, male mosquito fish acclimated to hypoxic conditions spent a greater amount of time following females and obtained more copulations than normoxic-acclimated males when tested in low partial pressures of oxygen. When males were competed against each other for copulations, we found no influence of long-term exposure to different partial pressures of oxygen on mating behaviour. Thus, despite improvements in the aerobic capacity of male mosquito fish following long-term acclimation to hypoxic conditions, these benefits did not always manifest themselves in improved mating performance. This study represents one of the first experimental tests of the benefits of reversible acclimation responses, and indicates that the ecological significance of physiological plasticity may be more complicated than previously imagined.

  2. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    PubMed

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  3. Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    PubMed Central

    Koštál, Vladimír; Korbelová, Jaroslava; Rozsypal, Jan; Zahradníčková, Helena; Cimlová, Jana; Tomčala, Aleš; Šimek, Petr

    2011-01-01

    Background Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately −5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. Principal Findings We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt50) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. Conclusion Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring. PMID:21957472

  4. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. © 2015 The Fisheries Society of the British Isles.

  5. Boreal and temperate trees show strong acclimation of respiration to warming.

    PubMed

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  6. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions.

    PubMed

    Cvetkovic, Jelena; Müller, Klaus; Baier, Margarete

    2017-03-09

    Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.

  7. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, T.E.; Horwitz, B.A.

    1987-02-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposuremore » induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.« less

  8. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    PubMed

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.

  9. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.

    PubMed

    Terblanche, John S; Clusella-Trullas, Susana; Chown, Steven L

    2010-09-01

    Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C, suggesting conservation of water during DGE bursts. Overall, this suggests water conservation is a priority for S. spretus exposed to longer-term temperature variation, rather than elevation of SMR in response to low temperature acclimation, as might be expected from a beetle living in a relatively warm, low rainfall summer region. These results are significant for understanding the evolution of gas exchange patterns and trade-offs between metabolic rate and water balance in insects and other terrestrial arthropods.

  10. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  11. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon.

    PubMed

    Singh, Shailendra P; Montgomery, Beronda L

    2014-07-01

    Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA-associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red-/green-responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE-dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE-dependent regulation of cellular morphology. © 2014 John Wiley & Sons Ltd.

  12. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  13. Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...

  14. Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics.

    PubMed

    Sentis, Arnaud; Morisson, Julie; Boukal, David S

    2015-09-01

    Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran-dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food-chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm-acclimated larvae have a higher maximum predation rate than cold-acclimated ones, and (3) long-term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food-web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food-web stability. © 2015 John Wiley & Sons Ltd.

  15. Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities.

    PubMed

    Mayer, Boris F; Ali-Benali, Mohamed Ali; Demone, Jordan; Bertrand, Annick; Charron, Jean-Benoit

    2015-11-01

    Little is known about the capacity of Cannabis sativa to cold-acclimate and develop freezing tolerance. This study investigates the cold acclimation (CA) capacity of nine C. sativa varieties and the underlying genetic and epigenetic responses. The varieties were divided into three groups based on their contrasting CA capacities by comparing the survival of non-acclimated and cold-acclimated plants in whole-plant freeze tests. In response to the CA treatment, all varieties accumulated soluble sugars but only the varieties with superior capacity for CA could maintain higher levels throughout the treatment. In addition, the varieties that acclimated most efficiently accumulated higher transcript levels of cold-regulated (COR) genes and genes involved in de novo DNA methylation while displaying locus- and variety-specific changes in the levels of H3K9ac, H3K27me3 and methylcytosine (MeC) during CA. Furthermore, these hardy C. sativa varieties displayed significant increases in MeC levels at COR gene loci when deacclimated, suggesting a role for locus-specific DNA methylation in deacclimation. This study uncovers the molecular mechanisms underlying CA in C. sativa and reveals higher levels of complexity regarding how genetic, epigenetic and environmental factors intertwine. © 2014 Scandinavian Plant Physiology Society.

  16. Transgenerational acclimation of fishes to climate change and ocean acidification.

    PubMed

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  17. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls

    PubMed Central

    Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2018-01-01

    Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, the declining characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis, and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area was primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. PMID:25158785

  18. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  19. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J

    2017-05-08

    Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the cold by 1) decreasing primary urine production via reduced expression of carbonic anhydrase and V-ATPase in the Malpighian tubules and 2) by increasing Na + (and therefore water) reabsorption across the hindgut via increase in Na + -K + ATPase expression. Cold acclimation may reduce chilling injury by remodeling and stabilizing the hindgut epithelial cytoskeleton and cell-to-cell junctions, and by increasing the expression of genes involved in DNA repair, detoxification, and protein chaperones.

  20. Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2

    PubMed Central

    2012-01-01

    Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2. PMID:23075125

  1. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status.

    PubMed

    Giloh, M; Shinder, D; Yahav, S

    2012-01-01

    Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.

  2. Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: effects of acclimation and mixed cultures, and their removal ability.

    PubMed

    Chalifour, Annie; LeBlanc, André; Sleno, Lekha; Juneau, Philippe

    2016-12-01

    Atrazine is an herbicide frequently detected in watercourses that can affect the phytoplankton community, thus impacting the whole food chain. This study aims, firstly, to measure the sensitivity of monocultures of the green alga Scenedemus obliquus and toxic and non-toxic strains of the cyanobacteria Microcystis aeruginosa before, during and after a 30-day acclimation period to 0.1 µM of atrazine. Secondly, the sensitivity of S. obliquus and M. aeruginosa to atrazine in mixed cultures was evaluated. Finally, the ability of these strains to remove atrazine from the media was measured. We demonstrated that both strains of M. aeruginosa had higher growth rate-based EC 50 values than S. obliquus when exposed to atrazine, even though their photosynthesis-based EC 50 values were lower. After being exposed to 0.1 µM of atrazine for 1 month, only the photosynthesis-based EC 50 of S. obliquus increased significantly. In mixed cultures, the growth rate of the non-toxic strain of M. aeruginosa was higher than S. obliquus at high concentrations of atrazine, resulting in a ratio of M. aeruginosa to total cell count of 0.6. This lower sensitivity might be related to the higher growth rate of cyanobacteria at low light intensity. Finally, a negligible fraction of atrazine was removed from the culture media by S. obliquus or M. aeruginosa over 6 days. These results bring new insights on the acclimation of some phytoplankton species to atrazine and its effect on the competition between S. obliquus and M. aeruginosa in mixed cultures.

  3. The molecular and biochemical basis of nonshivering thermogenesis in an African endemic mammal, Elephantulus myurus.

    PubMed

    Mzilikazi, Nomakwezi; Jastroch, Martin; Meyer, Carola W; Klingenspor, Martin

    2007-11-01

    Uncoupling protein 1 (UCP1) mediated nonshivering thermogenesis (NST) in brown adipose tissue (BAT) is an important avenue of thermoregulatory heat production in many mammalian species. Until recently, UCP1 was thought to occur exclusively in eutherians. In the light of the recent finding that UCP1 is already present in fish, it is of interest to investigate when UCP1 gained a thermogenic function in the vertebrate lineage. We elucidated the basis of NST in the rock elephant shrew, Elephantulus myurus (Afrotheria: Macroscelidea). We sequenced Ucp1 and detected Ucp1 mRNA and protein restricted to brown fat deposits. We found that cytochrome c oxidase activity was highest in these deposits when compared with liver and skeletal muscle. Consistent with a thermogenic function of UCP1 isolated BAT mitochondria showed increased state 4 respiration in the cold, as well as palmitate-induced, GDP-sensitive proton conductance, which was absent in liver mitochondria. On the whole animal level, evidence of thermogenic function was further corroborated by an increased metabolic response to norepinephrine (NE) injection. Cold acclimation (18 degrees C) led to an increased basal metabolic rate relative to warm acclimation (28 degrees C) in E. myurus, but there was no evidence of additional recruitment of NE-induced NST capacity in response to cold acclimation. In summary, we showed that BAT and functional UCP1 are already present in a member of the Afrotheria, but the seasonal regulation and adaptive value of NST in Afrotherians remain to be elucidated.

  4. Footprints of the sun: memory of UV and light stress in plants

    PubMed Central

    Müller-Xing, Ralf; Xing, Qian; Goodrich, Justin

    2014-01-01

    Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as “plant memory.” There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory. PMID:25278950

  5. The chloroplast thylakoid membrane system is a molecular conveyor belt.

    PubMed

    Critchley, C

    1988-10-01

    Light drives photosynthesis, but paradoxically light is also the most variable environmental factor influencing photosynthesis both qualitatively and quantitatively. The photosynthetic apparatus of higher plants is adaptable in the extreme, as exemplified by its capacity for acclimation to very bright sunny or deeply shaded conditions. It can also respond to rapid changes in light such as sunflecks. In this paper I offer a model that i) explains the thylakoid membrane organisation into grana stacks and stroma lamellae, ii) proposes a role for rapid D1 protein turnover and LHCII phosphorylation, and iii) suggests a mechanism for photoinhibition. I argue that the photosynthetic membrane system is dynamic in three dimensions, so much so that, in the light, it is in constant motion and operates in a manner somewhat analogous to a conveyor belt. D1 protein degradation is proposed to be the motor that drives this system. Photoinhibition is suggested to be due to the arrest of D1 protein turnover.

  6. Short Duration Heat Acclimation in Australian Football Players

    PubMed Central

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac-]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key points Some minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat. The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season. Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise. PMID:26957934

  7. Short Duration Heat Acclimation in Australian Football Players.

    PubMed

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise.

  8. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy.

    PubMed

    D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena

    2016-05-01

    Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.

  9. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).

    PubMed

    Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino

    2017-06-30

    Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the acclimated tolerant lines. This set of candidate genes implicated in the response to frost in lentil represents an useful base for deeper and more detailed investigations into this important agronomic trait in future.

  10. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males.

    PubMed

    Hom, Lindsay L; Lee, Elaine Choung-Hee; Apicella, Jenna M; Wallace, Sean D; Emmanuel, Holly; Klau, Jennifer F; Poh, Paula Y S; Marzano, Stefania; Armstrong, Lawrence E; Casa, Douglas J; Maresh, Carl M

    2012-01-01

    The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.

  11. Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio).

    PubMed

    Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-09-01

    Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine.

    PubMed

    Pillans, Richard D; Good, Jonathan P; Anderson, W Gary; Hazon, Neil; Franklin, Craig E

    2005-01-01

    This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l(-1) kg(-1)) were acclimated to SW (980-1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na(+), Cl(-), K(+), Mg(2+), Ca(2+), urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na(+)/K(+)-ATPase activity. Na(+)/K(+)-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na(+)/K(+)-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na(+)/K(+)-ATPase activity was 5.6+/-0.8 and 9.2+/-0.6 mmol Pi mg(-1) protein h(-1), respectively. Na(+)/K(+)-ATPase activity in the kidney of FW and SW acclimated animals was 8.4+/-1.1 and 3.3+/-1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.

  13. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species.

    PubMed

    Zhou, Shuang-Xi; Medlyn, Belinda E; Prentice, Iain Colin

    2016-01-01

    Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent 'drying-down', continuing until stomata were closed. Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (V'(cmax)) and maximum electron transport rate (J'(max)). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in V'(cmax) and J'(max); however, after 4 months, V'(cmax) and J'(max) had recovered. Species differed in their degree of V'(cmax) acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the V'(cmax) and 'true' V(cmax) (accounting for mesophyll conductance) declined most steeply during drying-down. The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V'(cmax) reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V'(cmax) reduction was mitigated; (3) xeric species showed a greater degree of V'(cmax) acclimation; and (4) photosynthetic acclimation involves hydraulic adjustments to reduce water loss while maintaining photosynthesis. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Global Transcriptome Analysis Reveals Acclimation-Primed Processes Involved in the Acquisition of Desiccation Tolerance in Boea hygrometrica.

    PubMed

    Zhu, Yan; Wang, Bo; Phillips, Jonathan; Zhang, Zhen-Nan; Du, Hong; Xu, Tao; Huang, Lian-Cheng; Zhang, Xiao-Fei; Xu, Guang-Hui; Li, Wen-Long; Wang, Zhi; Wang, Ling; Liu, Yong-Xiu; Deng, Xin

    2015-07-01

    Boea hygrometrica resurrection plants require a period of acclimation by slow soil-drying in order to survive a subsequent period of rapid desiccation. The molecular basis of this observation was investigated by comparing gene expression profiles under different degrees of water deprivation. Transcripts were clustered according to the expression profiles in plants that were air-dried (rapid desiccation), soil-dried (gradual desiccation), rehydrated (acclimated) and air-dried after acclimation. Although phenotypically indistinguishable, it was shown by principal component analysis that the gene expression profiles in rehydrated, acclimated plants resemble those of desiccated plants more closely than those of hydrated acclimated plants. Enrichment analysis based on gene ontology was performed to deconvolute the processes that accompanied desiccation tolerance. Transcripts associated with autophagy and α-tocopherol accumulation were found to be activated in both air-dried, acclimated plants and soil-dried non-acclimated plants. Furthermore, transcripts associated with biosynthesis of ascorbic acid, cell wall catabolism, chaperone-assisted protein folding, respiration and macromolecule catabolism were activated and maintained during soil-drying and rehydration. Based on these findings, we hypothesize that activation of these processes leads to the establishment of an optimal physiological and cellular state that enables tolerance during rapid air-drying. Our study provides a novel insight into the transcriptional regulation of critical priming responses to enable survival following rapid dehydration in B. hygrometrica. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Similarities in temperature-dependent gene expression plasticity across timescales in threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Schulte, Patricia M

    2018-04-14

    Phenotypic plasticity occurs at a variety of timescales, but little is known about the degree to which plastic responses at different timescales are associated with similar underlying molecular processes, which is critical for assessing the effects of plasticity on evolutionary trajectories. To address this issue, we identified differential gene expression in response to developmental temperature in the muscle transcriptome of adult threespine stickleback (Gasterosteus aculeatus) exposed to 12, 18 and 24°C until hatch and then held at 18°C for 9 months and compared these results to differential gene expression in response to adult thermal acclimation in stickleback developed at 18°C and then acclimated to 5 and 25°C as adults. Adult thermal acclimation affected the expression of 7,940 and 7,015 genes in response to cold and warm acclimation, respectively, and 4,851 of these genes responded in both treatments. In contrast, the expression of only 33 and 29 genes was affected by cold and warm development, respectively. The majority of the genes affected by developmental temperature were also affected by adult acclimation temperature. Many genes that were differentially expressed as a result of adult acclimation were associated with previously identified temperature-dependent effects on DNA methylation patterns, suggesting a role of epigenetic mechanisms in regulating gene expression plasticity during acclimation. Taken together, these results demonstrate similarities between the persistent effects of developmental plasticity on gene expression and the effects of adult thermal acclimation, emphasizing the potential for mechanistic links between plasticity acting at these different life stages. © 2018 John Wiley & Sons Ltd.

  16. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.

    PubMed

    Costanzo, Jon P; Baker, Patrick J; Dinkelacker, Stephen A; Lee, Richard E

    2003-02-01

    Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this change is incompletely understood. We report that the crystallization temperature (T(c)) of recently hatched (summer) turtles acclimated to 22 degrees C and reared on a substratum of vermiculite or nesting soil was approximately 5 degrees C higher than the T(c) determined for turtles acclimated to 4 degrees C and tested in winter. This increase in supercooling capacity coincided with elimination of substratum (and, in fewer cases, eggshell) that the hatchlings had ingested; however, this association was not necessarily causal because turtles reared on a paper-covered substratum did not ingest exogenous matter but nevertheless showed a similar increase in supercooling capacity. Our results for turtles reared on paper revealed that seasonal development of supercooling capacity fundamentally requires elimination of ice-nucleating agents (INA) of endogenous origin: summer turtles, but not winter turtles, produced feces (perhaps derived from residual yolk) that expressed ice-nucleating activity. Ingestion of vermiculite or eggshell, which had modest ice-nucleating activity, had no effect on the T(c), whereas ingestion of nesting soil, which contained two classes of potent INA, markedly reduced the supercooling capacity of summer turtles. This effect persisted long after the turtles had purged their guts of soil particles, because the T(c) of winter turtles reared on nesting soil (mean +/- S.E.M.=-11.6+/-1.4 degrees C) was approximately 6 degrees C higher than the T(c) of winter turtles reared on vermiculite or paper. Experiments in which winter turtles were fed INA commonly found in nesting soil showed that water-soluble, organic agents can remain fully active for at least one month. Such INA may account for the limited supercooling capacity (T(c) approximately -7.5 degrees C) we found in turtles overwintering in natural nests and may therefore pose a formidable challenge to the winter survival of hatchling C. picta.

  17. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    USGS Publications Warehouse

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  18. Sugar-mediated acclimation: the importance of sucrose metabolism in meristems.

    PubMed

    Carpentier, Sebastien Christian; Vertommen, Annelies; Swennen, Rony; Witters, Erwin; Fortes, Claudia; Souza, Manoel T; Panis, Bart

    2010-10-01

    We have designed an in vitro experimental setup to study the role of sucrose in sugar-mediated acclimation of banana meristems using established highly proliferating meristem cultures. It is a first step toward the systems biology of a meristem and the understanding of how it can survive severe abiotic stress. Using the 2D-DIGE proteomic approach and a meristem-specific EST library, we describe the long-term acclimation response of banana meristems (after 2, 4, 8, and 14 days) and analyze the role of sucrose in this acclimation by setting up a control, a sorbitol, and a sucrose acclimation treatment over time. Sucrose synthase is the dominant enzyme for sucrose breakdown in meristem tissue, which is most likely related to its lower energy consumption. Metabolizing sucrose is of paramount importance to survive, but the uptake of sugar and its metabolism also drive respiration, which may result in limited oxygen levels. According to our data, a successful acclimation is correlated to an initial efficient uptake of sucrose and subsequently a reduced breakdown of sucrose and an induction of fermentation likely by a lack of oxygen.

  19. Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae).

    PubMed

    Matsukura, Keiichiro; Tsumuki, Hisaaki; Izumi, Yohei; Wada, Takashi

    2009-08-01

    Cold hardiness of the freshwater apple snail, Pomacea canaliculata, varies seasonally. We investigated lethal factors and physiological changes arising from exposure of P. canaliculata to low temperatures. Snails did not survive freezing. The supercooling point of cold-acclimated (cold tolerant) snails (-6.6+/-0.8 degrees C) did not differ significantly from that of non-acclimated ones (-7.1+/-1.5 degrees C) under laboratory conditions. Furthermore, snails died even under more moderately low temperatures approaching 0 degrees C. These results indicate that indirect chilling injury is a factor in the death of P. canaliculata at low temperatures. Regardless of whether the snails were acclimated to low temperatures, all of the dead, and even some of the snails still alive at 0 degrees C, had injured mantles, indicating that the mantle may be the organ most susceptible to the effects of low temperatures. The concentration of glucose in the posterior chamber of the kidney and concentration of glycerol in the digestive gland were significantly higher in cold-acclimated snails than in non-acclimated ones, suggesting carbohydrate metabolic pathways are altered in snails during cold acclimation.

  20. [Thermal tolerance of some marine copepods].

    PubMed

    Liao, Yi-Bo; Chen, Quan-Zhen; Zeng, Jiang-Ning; Xu, Xiao-Qun; Shou, Lu; Liu, Jing-Jing; Jiang, Zhi-Bing; Zheng, Ping

    2008-02-01

    By using experimental ecological methods, the 24 hours semi-lethal temperature (24 h LT50) of typical copepods living in the coastal area of East China Sea was determined to elucidate the effects of thermal discharge from power station on the coastal ecosystem. The results indicated that different copepods at same natural acclimated temperature and specific copepod at different initial acclimated temperature had different thermal tolerance capability. The 24h LT50 of Calanus sinicus and Sinocalanus tenellus at natural acclimated temperature 13.5 degrees C was 26.9 degrees C and 25.4 degrees C, of Acartiella sinensis and Corycaeus affinis at natural acclimated temperature 14.2 degrees C was 26.7 degrees C and 30.5 degrees C, and of Centropages dorsispinatus, Paracalanus crassirostris, Acartia spinicauda and Euterpina acutifrons at natural acclimated temperature 28.0 degrees C was 34.0 degrees C, 34.3 degrees C, 35.7 degrees C and 36.0 degrees C, respectively. The 24h LT50 of S. tenellus at natural acclimated temperature 13.5 degrees C and 23.5 degrees C was 25.4 degrees C and 33.0 degrees C, respectively.

  1. The Effects of Simulated Live-release Walleye Tournaments on Survival and Blood Chemistry

    USGS Publications Warehouse

    Loomis, John H.; Schramm, Harold L.; Vondracek, Bruce C.; Gerard, Patrick D.; Chizinski, Christopher J.

    2013-01-01

    We examined the effects of acclimation water temperature,live-well (LW) water temperature,and LW dissolved oxygen (DO) concentration on survival of adult WalleyesSander vitreus subjected to simulated tournament conditions (angling,LW confinement,and weigh-in procedures) under controlled laboratory conditions. We tested three acclimation temperatures (12,18,and 24°C),and three LW temperature differentials (ΔT = −4,0,and +4°C) were tested at each acclimation temperature. Survival was monitored after 8 h of LW confinement and during a 5-d retention period in 1,700-L tanks. None of the Walleyes that were acclimated to 24°C and subjected to simulated tournament procedures survived the 5-d retention period; for fish subjected only to simulated angling at 24°C,survival during the 5-d retention period was 29%. Five-day survival was generally over 70% at acclimation temperatures of 12°C and 18°C,and we observed a significant interaction between acclimation temperature and ΔT; survival was greatest in LWs at −4°C ΔT for fish acclimated to 18°C and in LWs at +4°C ΔT for fish acclimated to 12°C. Best survival of Walleyes subjected to the stress of angling and tournament procedures was obtained at temperatures 6–8°C below the optimum temperature for adult Walleyes (i.e.,optimum = 20–22°C). Five-day survival exceeded 70% when LW DO was 5 or 12–15 mg/L (at an acclimation and LW temperature of 18°C),but survival was 0% when DO was 2 mg/L. Anglers may increase survival of Walleyes through careful manipulation of LW temperature and DO when ambient temperature is at or below 18°C,but high mortality of angled and LW-retained Walleyes should be expected when ambient water temperatures are 24°C or greater.

  2. Effects of simulated angler capture and live-release tournaments on walleye survival

    USGS Publications Warehouse

    Loomis, John H.; Schramm, Harold L.; Vondracek, Bruce C.; Gerard, Patrick D.; Chizinski, Christopher J.

    2015-01-01

    We examined the effects of acclimation water temperature,live-well (LW) water temperature,and LW dissolved oxygen (DO) concentration on survival of adult WalleyesSander vitreus subjected to simulated tournament conditions (angling,LW confinement,and weigh-in procedures) under controlled laboratory conditions. We tested three acclimation temperatures (12,18,and 24°C),and three LW temperature differentials (ΔT = −4,0,and +4°C) were tested at each acclimation temperature. Survival was monitored after 8 h of LW confinement and during a 5-d retention period in 1,700-L tanks. None of the Walleyes that were acclimated to 24°C and subjected to simulated tournament procedures survived the 5-d retention period; for fish subjected only to simulated angling at 24°C,survival during the 5-d retention period was 29%. Five-day survival was generally over 70% at acclimation temperatures of 12°C and 18°C,and we observed a significant interaction between acclimation temperature and ΔT; survival was greatest in LWs at −4°C ΔT for fish acclimated to 18°C and in LWs at +4°C ΔT for fish acclimated to 12°C. Best survival of Walleyes subjected to the stress of angling and tournament procedures was obtained at temperatures 6–8°C below the optimum temperature for adult Walleyes (i.e.,optimum = 20–22°C). Five-day survival exceeded 70% when LW DO was 5 or 12–15 mg/L (at an acclimation and LW temperature of 18°C),but survival was 0% when DO was 2 mg/L. Anglers may increase survival of Walleyes through careful manipulation of LW temperature and DO when ambient temperature is at or below 18°C,but high mortality of angled and LW-retained Walleyes should be expected when ambient water temperatures are 24°C or greater.

  3. The Effect of Acclimation to Sublethal Temperature on Subsequent Susceptibility of Sitophilus zeamais Mostchulsky (Coleoptera: Curculionidae) to High Temperatures

    PubMed Central

    Lü, Jianhua; Zhang, Huina

    2016-01-01

    Heat treatment is a popular alternative to synthetic pesticides in disinfesting food-processing facilities and empty grain storages. Sitophilus zeamais Mostchulsky is one of the most cosmopolitan and destructive insects found in empty grain storage facilities and processing facilities. The effect of acclimation in S. zeamais adults to sublethal high temperature on their subsequent susceptibility to high temperatures was investigated. S. zeamais adults were acclimated to 36°C for 0 (as a control), 1, 3, and 5 h, and then were exposed at 43, 47, 51, and 55°C for different time intervals respectively. Acclimation to sublethal high temperature significantly reduced subsequent susceptibility of S. zeamais adults to lethal high temperatures of 43, 47, 51, and 55°C, although the mortality of S. zeamais adults significantly increased with increasing exposure time at lethal high temperatures. The mortality of S. zeamais adults with 1, 3, and 5 h of acclimation to 36°C was significantly lower than that of S. zeamais adults without acclimation when exposed to the same lethal high temperatures. The present results suggest that the whole facility should be heated to target lethal high temperature as soon as possible, avoiding decreasing the control effectiveness of heat treatment due to the acclimation in stored product insects to sublethal temperature. PMID:27462906

  4. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.).

    PubMed

    Bertrand, Annick; Bipfubusa, Marie; Claessens, Annie; Rocher, Solen; Castonguay, Yves

    2017-11-01

    Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance.

    PubMed

    LaBarge, Nicole; Yilmazel, Yasemin Dilsad; Hong, Pei-Ying; Logan, Bruce E

    2017-02-01

    Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P>0.4) for GAC acclimated to hydrogen (22±9.3nmolcm -3 d -1 ), methanol (25±9.7nmolcm -3 d -1 ), and a volatile fatty acid (VFA) mix (22±11nmolcm -3 d -1 ). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13±4.1nmolcm -3 d -1 ), and MECs without GAC had the lowest rates (0.7±0.8nmolcm -3 d -1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls.

    PubMed

    Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2015-04-01

    Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. © 2014 John Wiley & Sons Ltd.

  7. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  8. Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines.

    PubMed

    Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D

    2007-08-01

    Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.

  9. Induction of DREB2A pathway with repression of E2F, Jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation specific freeze resistant wheat crown

    USDA-ARS?s Scientific Manuscript database

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...

  10. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia.

    PubMed

    Shrivastava, Jyotsna; Sinha, Amit Kumar; Datta, Surjya Narayan; Blust, Ronny; De Boeck, Gudrun

    2016-11-01

    We tested whether exposing fish to low ammonia concentrations induced acclimation processes and helped fish to tolerate subsequent (sub)lethal ammonia exposure by activating ammonia excretory pathways. Common carp (Cyprinus carpio) were pre-exposed to 0.27mM ammonia (∼10% 96h LC 50 ) for 3, 7 and 14days. Thereafter, each of these pre-exposed and parallel naïve groups were exposed to 1.35mM high environmental ammonia (HEA, ∼50% 96h LC 50 ) for 12h and 48h to assess the occurrence of ammonia acclimation based on sub-lethal end-points, and to lethal ammonia concentrations (2.7mM, 96h LC 50 ) in order to assess improved survival time. Results show that fish pre-exposed to ammonia for 3 and 7days had a longer survival time than the ammonia naïve fish. However, this effect disappeared after prolonged (14days) pre-exposure. Ammonia excretion rate (J amm ) was strongly inhibited (or even reversed) in the unacclimated groups during HEA. On the contrary, after 3days the pre-exposure fish maintained J amm while after 7days these pre-acclimated fish were able to increase J amm efficiently. Again, this effect disappeared after 14days of pre-acclimation. The efficient ammonia efflux in pre-acclimated fish was associated with the up-regulation of branchial mRNA expression of ammonia transporters and exchangers. Pre-exposure with ammonia for 3-7days stimulated an increment in the transcript level of gill Rhcg-a and Rhcg-b mRNA relative to the naïve control group and the up-regulation of these two Rhcg homologs was reinforced during subsequent HEA exposure. No effect of pre-exposure was noted for Rhbg. Relative to unacclimated fish, the transcript level of Na + /H + exchangers (NHE-3) was raised in 3-7days pre-acclimated fish and remained higher during the subsequent HEA exposure while gill H + -ATPase activities and mRNA levels were not affected by pre-acclimation episodes. Likewise, ammonia pre-acclimated fish with or without HEA exposure displayed pronounced up-regulation in Na + /K + -ATPase activity and mRNA expression relative to the corresponding ammonia naïve groups. Overall, these data suggest that ammonia acclimation was evident for both lethal and the sub-lethal endpoints through priming mechanisms in ammonia excretory transcriptional processes, but these acclimation effects were transient and disappeared after prolonged pre-exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis1

    PubMed Central

    Zhang, Zhengjing; Li, Yuanya

    2016-01-01

    The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305

  12. Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.

    1972-01-01

    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

  13. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice

    PubMed Central

    Lui, Mikaela A.; Mahalingam, Sajeni; Patel, Paras; Connaty, Alex D.; Ivy, Catherine M.; Cheviron, Zachary A.; Storz, Jay F.; McClelland, Grant B.

    2015-01-01

    The hypoxic and cold environment at high altitudes requires that small mammals sustain high rates of O2 transport for exercise and thermogenesis while facing a diminished O2 availability. We used laboratory-born and -raised deer mice (Peromyscus maniculatus) from highland and lowland populations to determine the interactive effects of ancestry and hypoxia acclimation on exercise performance. Maximal O2 consumption (V̇o2max) during exercise in hypoxia increased after hypoxia acclimation (equivalent to the hypoxia at ∼4,300 m elevation for 6–8 wk) and was consistently greater in highlanders than in lowlanders. V̇o2max during exercise in normoxia was not affected by ancestry or acclimation. Highlanders also had consistently greater capillarity, oxidative fiber density, and maximal activities of oxidative enzymes (cytochrome c oxidase and citrate synthase) in the gastrocnemius muscle, lower lactate dehydrogenase activity in the gastrocnemius, and greater cytochrome c oxidase activity in the diaphragm. Hypoxia acclimation did not affect any of these muscle traits. The unique gastrocnemius phenotype of highlanders was associated with higher mRNA and protein abundances of peroxisome proliferator-activated receptor γ (PPARγ). Vascular endothelial growth factor (VEGFA) transcript abundance was lower in highlanders, and hypoxia acclimation reduced the expression of numerous genes that regulate angiogenesis and energy metabolism, in contrast to the observed population differences in muscle phenotype. Lowlanders exhibited greater increases in blood hemoglobin content, hematocrit, and wet lung mass (but not dry lung mass) than highlanders after hypoxia acclimation. Genotypic adaptation to high altitude, therefore, improves exercise performance in hypoxia by mechanisms that are at least partially distinct from those underlying hypoxia acclimation. PMID:25695288

  14. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans

    PubMed Central

    Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro

    2015-01-01

    Abstract Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070

  15. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.

    PubMed

    Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik

    2017-05-01

    Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.

  16. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    PubMed

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    PubMed

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Changes in mixed-function oxidase system in the perfused liver of the cold-acclimated rat

    NASA Astrophysics Data System (ADS)

    Takano, T.; Miyazaki, Y.; Motohashi, Y.; Yamada, K.

    1986-09-01

    Changes in the hepatic cytochrome P-450-dependent drug-metabolizing system were studied in perfused livers obtained from cold-acclimated male Wistar rats after 30 days of cold exposure (4‡C) when using hexobarbital as a substrate. In fasted animals the cold-acclimated rats showed higher levels of hexobarbital metabolic rates compared to control rats, but there was no significant difference in fed animals. The maximum rates of hexobarbital metabolism produced by xylitol perfusion were also significantly higher in the perfused liver of cold-acclimated rats. It was concluded that the function of the cytochrome P-450 system for hexobarbital in cold-acclimated rats changed due to both an increase in the activity of the cytochrome P-450 system and to changes in regulation of the cytochrome P-450 system by the supply of reducing equivalents.

  19. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  20. Norepinephrine turnover in heart and spleen of 7-, 22-, and 34 C-acclimated hamsters

    NASA Technical Reports Server (NTRS)

    Jones, S. B.; Musacchia, X. J.

    1976-01-01

    The relationship of norepinephrine (NE) concentration and endogenous turnover rates in both myocardial and spleen tissues in the golden hamster is examined as a function of chronic exposure to either high or low ambient temperatures. Changes in myocardial and spleen NE turnover values are discussed in terms of functional alterations in sympathetic nerve activity and the importance of such changes in temperature acclimation. It is found that acclimation of hamsters to 7 C for 7-10 weeks results in decreased myocardial NE concentration and an apparent increase in myocardial NE turnover. In contrast, exposure to 34 C for 6-8 weeks results in increased myocardial NE concentration and an apparent decrease in NE turnover in both myocardial and spleen tissues. The implication of altered NE synthesis is that sympathetic nerve activity is reduced with heat acclimation and is enhanced with cold acclimation.

  1. Mechanisms of thermal acclimation to exercise and heat

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Pandolf, K. B.; Roberts, M. F.; Stolwijk, J. A. J.

    1974-01-01

    By plotting local sweating rate from a given area against the central sweating drive (which is analogous to esophageal temperature, when mean skin temperature is constant), it is possible to determine the characteristic gain constant of that area as well as its point of zero central drive. An increase in the gain constant as a result of acclimation would indicate an increased sensitivity of the sweating mechanism per unit of central sweating drive, i.e., enhanced peripheral sensitivity. A displacement of the point of zero central drive as a result of acclimation would indicate that central mechanisms are responsible for the heightened sweating response. The study was undertaken to provide information about whether central or peripheral physiological mechanisms provide for increased sweating capabilities during acclimation, and about whether the increased sweating capabilities in heat acclimation and physical training are provided for by the same mechanisms.

  2. Will photosynthetic capacity of aspen trees acclimate after long term exposure to elevated CO2 and O3?

    Treesearch

    Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Katre Kets; Johanna Riikonen; Anu Sober; Lisa Rouse; David F. Karnosky

    2010-01-01

    Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site...

  3. Fever: exchange of shivering by nonshivering pyrogenesis in cold-acclimated guinea pigs.

    PubMed

    Blatteis, C M

    1976-01-01

    The pyrogenic response of adult, unanesthetized guinea pigs to 2 mug/kg iv of Salmonella enteritidis endotoxin was measured at 27 and 7 degrees C ambient temperatures, both before and after an 8-wk exposure to 7 degrees C. There were no significant differences between the onset, maximum height, and total duration of the fevers produced before and after cold acclimation in both thermal environments. However, in 27 degrees C, before cold acclimation, fever production was associated with vigorous shivering activity; two temperature maxima typically developed. After cold acclimation, visible shivering was not detectable during pyrogenesis; moreover, only a single maximum occurred, culminating during the interval between the two rises previously. In 7 degrees C, shivering occurred in both the non-cold- and cold-acclimated endotoxin-treated guinea pigs, but the increase in oxygen consumption was significantly greater in the latter. These results indicated, therefore, that nonshivering (NST) replaces shivering thermogenesis (ST) in a thermoneutral, while ST is added onto NST in a cold, environment in cold-acclimated guinea pigs in supplying the necessary heat for fever production, and that these effects involve alterations in the character of the febrile course.

  4. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  5. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial?

    PubMed

    Gibbs, A G; Louie, A K; Ayala, J A

    1998-01-01

    The desert fruit fly Drosophila mojavensis experiences environmental conditions of high temperature and low humidity. To understand the physiological mechanisms allowing these small insects to survive in such stressful conditions, we studied the effects of thermal acclimation on cuticular lipids and rates of water loss of adult D. mojavensis. Mean hydrocarbon chain length increased at higher temperatures, but cuticular lipid melting temperature (Tm) did not. Lipid quantity doubled in the first 14 days of adult life, but was unaffected by acclimation temperature. Despite these changes in cuticular properties, organismal rates of water loss were unaffected by either acclimation temperature or age. Owing to the smaller body size of warm-acclimated flies, D. mojavensis reared for 14 days at 33 degrees C lost water more rapidly on a mass-specific basis than flies acclimated to 25 degrees C or 17 degrees C. Thus, apparently adaptive changes in cuticular lipids do not necessarily result in reduced rates of water loss. Avoidance of high temperatures and desiccating conditions is more likely to contribute to survival in nature than changes in water balance mediated by surface lipids.

  6. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation.

    PubMed

    Martz, Françoise; Sutinen, Marja-Liisa; Kiviniemi, Sari; Palta, Jiwan P

    2006-06-01

    It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation in an extremely winter hardy tree species under natural conditions, lending support to the hypothesis that FA-regulated PM H+-ATPase activity is involved in the cellular response underlying cold acclimation and de-acclimation.

  7. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    Taddei, Lucilla; Stella, Giulio Rocco; Rogato, Alessandra; Bailleul, Benjamin; Fortunato, Antonio Emidio; Annunziata, Rossella; Sanges, Remo; Thaler, Michael; Lepetit, Bernard; Lavaud, Johann; Jaubert, Marianne; Finazzi, Giovanni; Bouly, Jean-Pierre; Falciatore, Angela

    2016-01-01

    Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments. PMID:27225826

  8. Light-induced motility of thermophilic Synechococcus isolates from Octopus Spring, Yellowstone National Park.

    PubMed

    Ramsing, N B; Ferris, M J; Ward, D M

    1997-06-01

    This study demonstrates light-induced motility of two thermophilic Synechococcus isolates that are morphologically similar but that belong to different cyanobacterial lineages. Both isolates migrated away from densely inoculated streaks to form fingerlike projections extending toward or away from the light source, depending on the light intensity. However, the two isolates seemed to prefer widely different light conditions. The behavior of each isolate was controlled by several factors, including temperature, preacclimation of inocula, acclimation during the experiment, and strain-specific genetic preferences for different light conditions (adaptation). Time-lapse microscopy confirmed that these projections were formed by actively gliding cells and were not simply the outcome of directional cell division. The observed motility rates of individual cells of 0.1 to 0.3 micrometers s-1 agreed well with the distance traversed by the projections, 0.3 to 0.5 mm h-1, suggesting that most cells in each projection are travelling in the same direction. The finding of motility among two phylogenetically unaffiliated unicellular cyanobacteria suggests that this trait may be widespread among this group. If so, this would have important implications for experiments on colonization, succession, diel positioning, and photosynthetic activity in hot spring mats dominated by Synechococcus-like cyanobacteria.

  9. Influence of acclimation to sublethal temperature on heat tolerance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed to 50°C.

    PubMed

    Lü, Jianhua; Liu, Shuli

    2017-01-01

    Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is a serious pest of stored agricultural products and one of the most common insects found in grain storage and food processing facilities. Heat treatment has been revisited to control stored-product insects as a potential alternative to methyl bromide for disinfesting mills and food-processing facilities. The influence of acclimation of T. castaneum adults, pupae, larvae, and eggs to sublethal temperatures of 36, and 42°C on their subsequent susceptibility to lethal temperature of 50°C was respectively investigated. The acclimation of T. castaneum eggs, larvae, pupae, and adults to 36, and 42°C significantly decreased their subsequent susceptibility to lethal high temperature of 50°C. The influence of acclimation to 42°C was significantly greater than that of acclimation to 36°C. The most influential acclimation times at 42°C for mortality of T. castaneum eggs, larvae, pupae, and adults were 15, 5, 5, and 5 h, respectively, and their corresponding mortality were 41.24, 5.59, 20.19, and 4.48%, compared to 100% mortality of T. castaneum eggs, larvae, pupae, and adults without acclimation when exposed to 50°C for 35 min, respectively. The present results have important implications for developing successful heat treatment protocols to control T. castaneum, improving disinfestation effectiveness of heat treatment and understanding insect response to high temperatures.

  10. Contributions of PIP(2)-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves.

    PubMed

    Liu, Hong-Tao; Huang, Wei-Dong; Pan, Qiu-Hong; Weng, Fang-Hua; Zhan, Ji-Cheng; Liu, Yan; Wan, Si-Bao; Liu, Yan-Yan

    2006-03-01

    The relationship between the accumulation in endogenous free salicylic acid (SA) induced by heat acclimation (37 degrees C) and the activity of PIP(2)-phospholipase C (PIP(2)-PLC; EC 3.1.4.3) in the plasma membrane fraction was investigated in pea (Pisum sativum L.) leaves. We focused our attention on the hypothesis that positive SA signals induced by heat acclimation may be relayed by PIP(2)-PLC. Heat acclimation induced an abrupt elevation of free SA preceding the activation of PLC toward PIP(2). Immunoblotting indicated a molecular mass with 66.5kDa PLC plays key role in the development of thermotolerance in pea leaves. In addition, some characterizations of PLC toward PIP(2) isolated from pea leaves with two-phase purification containing calcium concentration, pH and a protein concentration were also studied. Neomycin sulfate, a well-known PIP(2)-PLC inhibitor, was employed to access the involvement of PIP(2)-PLC in the acquisition of heat acclimation induced-thermotolerance. We were able to identify a PIP(2)-PLC, which was similar to a conventional PIP(2)-PLC in higher plants, from pea leaves suggesting that PIP(2)-PLC was involved in the signal pathway that leads to the acquisition of heat acclimation induced-thermotolerance. On the basis of these results, we conclude that the involvement of free SA may function as the upstream event in the stimulation of PIP(2)-PLC in response to heat acclimation treatment.

  11. Effect of heat acclimation on sitting orthostatic tolerance in the heat after 48 and 96 hour bed rest in men

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Matter, M., Jr.

    1995-01-01

    The purpose of this pilot study was to investigate sitting orthostatic tolerance and determine potentially adverse signs and symptoms that would incapacitate subjects in a hot environment (Gemini reentry cabin temperature profile) after 48 hr and 96 hr of horizontal bed rest (BR), which simulated microgravity deconditioning. Six college men (23-29 yr) were allocated into two groups: heat acclimated (three subjects: No. 1- control, No. 2- 48 hr BR, and No. 3- 96 hr BR) and nonheat acclimated (three subjects: No. 4- control, No. 5- 48 hr BR, and No. 6- 96 hr BR). After BR they sat in an ambient temperature of 57 C (135 F) for 30 min which then was decreased to 49 C (120 F) for up to 480 min. Tolerance time in the heat with seated orthostatic stress was 480 min (subject No. 1) and 180 min (subject No. 4) in the two ambulatory men, but was reduced to 22-150 min in the four bed-rested men irrespective of their heat acclimation status. Although heat acclimation appeared to enhance tolerance and attenuate accompanying physiological responses, as well as ameliorate the frequency and intensity of adverse signs and symptoms at termination of exposure, tolerance was reduced in the bed-rest deconditioned subjects regardless of their acclimation level. Thus, these few collective findings do not indicate an unequivocal positive effect of acute heat acclimation on sitting orthostatic tolerance in acute bed-rest deconditioned subjects.

  12. Osmotic versus adrenergic control of ion transport by ionocytes of Fundulus heteroclitus in the cold.

    PubMed

    Tait, Janet C; Mercer, Evan W; Gerber, Lucie; Robertson, George N; Marshall, William S

    2017-01-01

    In eurythermic vertebrates, acclimation to the cold may produce changes in physiological control systems. We hypothesize that relatively direct osmosensitive control will operate better than adrenergic receptor mediated control of ion transport in cold vs. warm conditions. Fish were acclimated to full strength seawater (SW) at 21°C and 5°C for four weeks, gill samples and blood were taken and opercular epithelia mounted in Ussing style chambers. Short-circuit current (I sc ) at 21°C and 5°C (measured at acclimation temperature), was significantly inhibited by the α 2 -adrenergic agonist clonidine but the ED 50 dose was significantly higher in cold conditions (93.8±16.4nM) than in warm epithelia (47.8±8.1nM) and the maximum inhibition was significantly lower in cold (-66.1±2.2%) vs. warm conditions (-85.6±1.3%), indicating lower sensitivity in the cold. β-Adrenergic responses were unchanged. Hypotonic inhibition of I sc , was higher in warm acclimated (-95%), compared to cold acclimated fish (-75%), while hypertonic stimulations were the same, indicating equal responsiveness to hyperosmotic stimuli. Plasma osmolality was significantly elevated in cold acclimated fish and, by TEM, gill ionocytes from cold acclimated fish had significantly shorter mitochondria. These data are consistent with a shift in these eurythermic animals from complex adrenergic control to relatively simple biomechanical osmotic control of ion secretion in the cold. Copyright © 2016. Published by Elsevier Inc.

  13. Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge.

    PubMed

    Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao

    2018-03-01

    Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  15. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice

    PubMed Central

    Lau, Daphne S.; Connaty, Alex D.; Mahalingam, Sajeni; Wall, Nastashya; Cheviron, Zachary A.; Storz, Jay F.; Scott, Graham R.

    2017-01-01

    The low O2 experienced at high altitude is a significant challenge to effective aerobic locomotion, as it requires sustained tissue O2 delivery in addition to the appropriate allocation of metabolic substrates. Here, we tested whether high- and low-altitude deer mice (Peromyscus maniculatus) have evolved different acclimation responses to hypoxia with respect to muscle metabolism and fuel use during submaximal exercise. Using F1 generation high- and low-altitude deer mice that were born and raised in common conditions, we assessed 1) fuel use during exercise, 2) metabolic enzyme activities, and 3) gene expression for key transporters and enzymes in the gastrocnemius. After hypoxia acclimation, highland mice showed a significant increase in carbohydrate oxidation and higher relative reliance on this fuel during exercise at 75% maximal O2 consumption. Compared with lowland mice, highland mice had consistently higher activities of oxidative and fatty acid oxidation enzymes in the gastrocnemius. In contrast, only after hypoxia acclimation did activities of hexokinase increase significantly in the muscle of highland mice to levels greater than lowland mice. Highland mice also responded to acclimation with increases in muscle gene expression for hexokinase 1 and 2 genes, whereas both populations increased mRNA expression for glucose transporters. Changes in skeletal muscle with acclimation suggest that highland mice had an increased capacity for the uptake and oxidation of circulatory glucose. Our results demonstrate that highland mice have evolved a distinct mode of hypoxia acclimation that involves an increase in carbohydrate use during exercise. PMID:28077391

  16. Exploring the importance of within-canopy spatial temperature variation on transpiration predictions

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.

    2009-01-01

    Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047

  17. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. © 2015 Scandinavian Plant Physiology Society.

  18. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    USDA-ARS?s Scientific Manuscript database

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  19. Abiotic influences on bicarbonate use in the giant kelp, Macrocystis pyrifera, in the Monterey Bay.

    PubMed

    Drobnitch, Sarah Tepler; Nickols, Kerry; Edwards, Matthew

    2017-02-01

    In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO 2 and bicarbonate (HCO 3 - ) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [DIC]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO 2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub-saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave-exposed versus wave-protected sites. This study contributes a new field-oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae. © 2016 Phycological Society of America.

  20. Constraints on dark matter from intergalactic radiation

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1992-01-01

    Several of the dark matter candidates that have been proposed are believed to be unstable to decay, which would contribute photons to the radiation field between galaxies. The main candidates of this type are light neutrinos and axions, primordial mini-black holes, and a nonzero 'vacuum' energy. All of these can be constrained in nature by observational data on the extragalactic background light and the microwave background radiation. Black holes and the vacuum can be ruled out as significant contributors to the 'missing mass'. Light axions are also unlikely candidates; however, those with extremely small rest energies (the so-called 'invisible' axions) remain feasible. Light neutrinos, like those proposed by Sciama, are marginally viable. In general, we believe that the intergalactic radiation field is an important way of constraining all types of dark matter.

  1. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment.

    PubMed

    Benkov, Michael A; Yatsenko, Anton M; Tikhonov, Alexander N

    2018-06-20

    In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50-125 µmol photons m -2  s -1 (LL) or at 875-1000 µmol photons m -2  s -1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters F v /F m (variable fluorescence) and F 0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in F v /F m and a rise of F 0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of F v /F m versus the treatment temperature (t), demonstrating a decrease in F v /F m at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of F v /F m at lower heating temperatures (t ≥ 25 °C), indicating the "fragility" of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.

  2. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  3. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  4. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  5. Community Structure Analysis and Biodegradation Potential of Aniline-Degrading Bacteria in Biofilters.

    PubMed

    Hou, Luanfeng; Wu, Qingping; Gu, Qihui; Zhou, Qin; Zhang, Jumei

    2018-07-01

    Aniline has aroused general concern owing to its strong toxicity and widespread distribution in water and soil. In the present study, the bacterial community composition before and after aniline acclimation was investigated. High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the structure of the bacterial community during the aniline acclimation period. Bacillus, Lactococcus, and Enterococcus were the dominant bacteria in biologically activated carbon before acclimation. However, the proportions of Pseudomonas, Thermomonas, and Acinetobacter increased significantly and several new bacterial taxa appeared after aniline acclimation, indicating that aniline acclimation had a strong impact on the bacterial community structure of biological activated carbon samples. Strain AN-1 accounted for the highest number of colonies on incubation plates and was identified as Acinetobacter sp. according to phylogenetic analysis of the 16S ribosomal ribonucleic acid gene sequence. Strain AN-1 was able to grow on aniline at pH value 4.0-10.0 and showed high aniline-degrading ability at neutral pH.

  6. Dew-worms in white nights: High latitude light constrains earthworm (Lumbricus terrestris) behaviour at the soil surface

    USDA-ARS?s Scientific Manuscript database

    Soil is an effective barrier to light penetration that limits the direct influence of light on belowground organisms. Variation in aboveground light conditions, however, is important to soil-dwelling animals that are periodically active on the soil surface. A prime example is the earthworm Lumbricus...

  7. Photosynthetic plasticity of populations of Heliotropium curassavicum L. originating from differing thermal regimes.

    PubMed

    Mooney, H A

    1980-01-01

    Plants of the widely distributed species Heliotropium curassavicum L. have a large photosynthetic acclimation potential to temperature. There are, however, some differences among the acclimation potentials of populations occupying dissimilar thermal regimes. Plants of populations originating from a cool maritime climate have a greater acclimation potential than plants of populations originating from a desert habitat, which is characterized by large seasonal changes in temperature.

  8. Limited effectiveness of heat acclimation to soldiers wearing US Army and US Air Force chemical protective clothing. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.K.; Gonzalez, R.R.

    1995-11-01

    Heat acclilmation-induced sweating responses have the potential of reducing heat strain for soldiers wearing chemical protective garment. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. We studied 10 subjects exercising on a treadmill while wearing two different U.S. military chemical protective ensembles. Skin heat flux, skin temperature, core temperature,more » metabolic heat production, and heart rate were measured. We found that the benefit of heat acclimation is strongly dependent on an unimpeded ability of evaporative heat loss from skin areas. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine whether heat acclimation is helpful while protective clothing system. Our data show that when EP is less than 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination.« less

  9. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish

    PubMed Central

    Tian, Fei; Zhao, Kai

    2017-01-01

    Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish. PMID:29045433

  10. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation.

    PubMed

    Maryoung, Lindley A; Blunt, Brian; Tierney, Keith B; Schlenk, Daniel

    2015-04-01

    Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation

    NASA Astrophysics Data System (ADS)

    Welch, Megan J.; Watson, Sue-Ann; Welsh, Justin Q.; McCormick, Mark I.; Munday, Philip L.

    2014-12-01

    Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2 (refs , ). However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 μatm) and high (912 μatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 μatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

  12. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest.

    PubMed

    Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A

    2016-09-01

    Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    PubMed

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.

  15. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    PubMed

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  16. The physiological responses of green sturgeon (Acipenser medirostris) to potential global climate change stressors.

    PubMed

    Sardella, Brian A; Kültz, Dietmar

    2014-01-01

    The green sturgeon (Acipenser medirostris) is an anadromous species with a distinct population segment in the San Francisco Bay-Sacramento River Delta that is currently listed as threatened. Although this species is able to tolerate salinity challenges as soon as 6 mo posthatch, its ability to deal with unpredictable salinity fluctuations remains unknown. Global climate change is predicted to result in large freshwater (FW) flushes through the estuary during winter and greater tidal influence during the summer. We exposed green sturgeon acclimated to 15 (EST) or 24 (BAY) g/L salinity to a rapid FW influx, where salinity was reduced to 0 g/L in 3 h in order to simulate the effect of the "winter" scenario. Both groups survived, enduring a 10% plasma osmolality reduction after 3 h. BAY-acclimated sturgeon upregulated both Na(+), K(+)-ATPase (NKA) activity and caspase 3/7 activity, but no changes were observed in the EST-acclimated fish. In addition, we exposed FW-acclimated sturgeon to a dual 12-h salinity fluctuation cycle (0-24-0 g/L) in order to simulate the effect of greater tidal influence. At 6 h, the sturgeon showed a significant increase in plasma osmolality, and branchial NKA and caspase 3/7 activities were increased, indicating an acclimation response. There was no acclimation at 18 h, and plasma osmolality was higher than the peak observed at 6 h. The second fluctuation elicited an upregulation of the stress proteins ubiquitin and heat shock 70-kDa protein (HSP 70). Sturgeon can acclimate to changes in salinity; however, salinity fluctuations resulted in substantial cellular stress.

  17. Cardiorespiratory upregulation during seawater acclimation in rainbow trout: effects on gastrointestinal perfusion and postprandial responses.

    PubMed

    Brijs, Jeroen; Gräns, Albin; Ekström, Andreas; Olsson, Catharina; Axelsson, Michael; Sandblom, Erik

    2016-05-01

    Increased gastrointestinal blood flow is essential for euryhaline fishes to maintain osmotic homeostasis during the initial phase of a transition from freshwater to seawater. However, the cardiorespiratory responses and hemodynamic changes required for a successful long-term transition to seawater remain largely unknown. In the present study, we simultaneously measured oxygen consumption rate (ṀO2), cardiac output (CO), heart rate (HR), and gastrointestinal blood flow (GBF) in rainbow trout (Oncorhynchus mykiss) acclimated to either freshwater or seawater for at least 6 wk. Seawater-acclimated trout displayed significantly elevated ṀO2 (day: 18%, night: 19%), CO (day: 22%, night: 48%), and GBF (day: 96%, night: 147%), demonstrating that an overall cardiorespiratory upregulation occurs during seawater acclimation. The elevated GBF was achieved via a combination of increased CO, mediated through elevated stroke volume (SV), and a redistribution of blood flow to the gastrointestinal tract. Interestingly, virtually all of the increase in CO of seawater-acclimated trout was directed to the gastrointestinal tract. Although unfed seawater-acclimated trout displayed substantially elevated cardiorespiratory activity, the ingestion of a meal resulted in a similar specific dynamic action (SDA) and postprandial GBF response as in freshwater-acclimated fish. This indicates that the capacity for the transportation of absorbed nutrients, gastrointestinal tissue oxygen delivery, and acid-base regulation is maintained during digestion in seawater. The novel findings presented in this study clearly demonstrate that euryhaline fish upregulate cardiovascular function when in seawater, while retaining sufficient capacity for the metabolic and cardiovascular changes associated with the postprandial response. Copyright © 2016 the American Physiological Society.

  18. Differential effects of cortisol and 11-deoxycorticosterone on ion transport protein mRNA levels in gills of two euryhaline teleosts, Mozambique tilapia (Oreochromis mossambicus) and striped bass (Morone saxatilis).

    PubMed

    Kiilerich, Pia; Tipsmark, Christian K; Borski, Russell J; Madsen, Steffen S

    2011-04-01

    The role of cortisol as the only corticosteroid in fish osmoregulation has recently been challenged with the discovery of a mineralocorticoid-like hormone, 11-deoxycorticosterone (DOC), and necessitates new studies of the endocrinology of osmoregulation in fish. Using an in vitro gill explant incubation approach, DOC-mediated regulation of selected osmoregulatory target genes in the gill was investigated and compared with that of cortisol in two euryhaline teleosts, Mozambique tilapia (Oreochromis mossambicus) and striped bass (Morone saxatilis). The effects were tested in gills from both fresh water (FW)- and seawater (SW)-acclimated fish. Both cortisol and DOC caused an up-regulation of the Na(+),K(+)-ATPase α1 subunit in SW-acclimated tilapia but had no effect in FW-acclimated fish. Cortisol conferred an increase in Na(+),K(+),2Cl(-) cotransporter (NKCC) isoform 1a transcript levels in FW- and SW-acclimated tilapia, whereas DOC had a stimulatory effect only in SW-acclimated fish. Cortisol had no effect on NKCC isoform 1b mRNA levels at both salinities, while DOC stimulated this isoform in SW-acclimated fish. In striped bass, cortisol conferred an up-regulation of Na(+),K(+)-ATPase α1 and NKCC transcript levels in FW- and SW-acclimated fish, whereas DOC resulted in down-regulation of these transcripts in FW-acclimated fish. It was also found that both corticosteroids may rapidly (30 min) alter the mitogen-activated protein kinase signalling pathway in gill, inducing phosphorylation of extracellular signal-regulated kinase 1 (ERK1) and ERK2 in a salinity-dependent manner. The study shows a disparate organisation of corticosteroid signalling mechanisms involved in ion regulation in the two species and adds new evidence to a role of DOC as a mineralocorticoid hormone in teleosts.

  19. Effect of thermal acclimation on organ mass, tissue respiration, and allometry in Leichhardtian river prawns Macrobrachium tolmerum (Riek, 1951).

    PubMed

    Crispin, Taryn S; White, Craig R

    2013-01-01

    Changes to an animal's abiotic environment-and consequent changes in the allometry of metabolic rate in the whole animal and its constituent parts-has considerable potential to reveal important patterns in both intraspecific and interindividual variation of metabolic rates. This study demonstrates that, after 6 wk of thermal acclimation at replicate treatments of 16°, 21°, and 25°C, standard metabolic rate (SMR) scales allometrically in Leichhardtian river prawns Macrobrachium tolmerum ([Formula: see text]) and that the scaling exponent and normalization constant of the relationship between SMR and body mass is not significantly different among acclimation treatments when measured at 21°C. There is, however, significant variation among individuals in whole-animal metabolic rate. We hypothesized that these observations may arise because of changes in the metabolic rate and allometry of metabolic rate or mass of organ tissues within the animal. To investigate this hypothesis, rates of oxygen consumption in a range of tissues (gills, gonads, hepatopancreas, chelae muscle, tail muscle) were measured at 21°C and related to the body mass (M) and whole-animal SMR of individual prawns. We demonstrate that thermal acclimation had no effect on organ and tissue mass, that most organ and tissue (gills, gonads, hepatopancreas) respiration rates do not change with acclimation temperature, and that residual variation in the allometry of M. tolmerum SMR is not explained by differences in organ and tissue mass and respiration rates. These results suggest that body size and ambient temperature may independently affect metabolic rate in this species. Both chelae and tail muscle, however, exhibited a reduction in respiration rate in animals acclimated to 25° relative to those acclimated to 16° and 21°C. This reduction in respiration rates of muscle at higher temperatures is evidence of a tissue-specific acclimation response that was not detectable at the whole-animal level.

  20. Direct and indirect effects of development temperature on adult water balance traits of Eldana saccharina (Lepidoptera: Pyralidae).

    PubMed

    Kleynhans, Elsje; Conlong, Des E; Terblanche, John S

    2014-09-01

    For water balance physiology, prior thermal history may pre-condition individuals to be more sparing in their water consumption at a given temperature upon subsequent exposure, or alternatively, may relax constraints on water economy leading to more frivolous use of water at a later stage. Here we test these two major alternative hypotheses on the adult life stage of Eldana saccharina Walker (Lepidoptera: Pyralidae) by exposing them to different rearing temperatures (acclimation treatments) during immature stage development and comparing adult physiological performance (water loss rates, time to death) and water-balance related traits (body size, water content). Developmental acclimation at 20°C, 25°C or 30°C throughout the larval and pupal stage resulted in significant effects on water balance traits of two-day old adult male and female E. saccharina. In summary, lower developmental acclimation resulted in a 61% increase in water loss rate (range: 0.78mg/h) and a 26% reduction in survival time (6.8h). Initial body water content and initial body mass generally remained similar across male acclimation groups while higher developmental acclimation reduced female body mass significantly. High developmental acclimation resulted in significantly higher (∼23%) body water content at death possibly indicating a better overall ability to withstand desiccating conditions, although there was no difference in time to death compared to the intermediate group. The relationship between time to death and body mass was altered from negative at 25°C and 30°C acclimation, to positive at 20°C acclimation. These results show pervasive effects of rearing temperature on adult physiological performance, with low temperature relaxing what appear to be substantial constraints on water economy at higher temperatures for E. saccharina. Furthermore, they are significant for understanding the recent range expansion of E. saccharina into cooler environments in southern Africa and for management of the species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Unusual aerobic performance at high temperatures in juvenile Chinook salmon, Oncorhynchus tshawytscha

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Baird, Sarah E.; Nguyen, Trinh X.; Cabrera-Stagno, Valentina; Farrell, Anthony P.; Fangue, Nann A.

    2017-01-01

    Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed. PMID:28078086

  2. Precooling With Crushed Ice: As Effective as Heat Acclimation at Improving Cycling Time-Trial Performance in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant; Wallman, Karen; Kent, Georgina

    2018-02-01

    This study compared the effects of precooling (ice ingestion) and heat-acclimation training on cycling time-trial (CTT) performance in the heat. Fifteen male cyclists/triathletes completed two 800-kJ CTTs in the heat, with a 12-d training program in between. Initially, all participants consumed 7 g/kg of water (22°C) in 30 min before completing an 800-kJ CTT in hot, humid conditions (pre-CTT) (35°C, 50% relative humidity [RH]). Participants were then split into 2 groups, with the precooling group (n = 7) training in thermoneutral conditions and then undergoing precooling with ice ingestion (7 g/kg, 1°C) prior to the final CTT (post-CTT) and the heat-acclimation group (n = 8) training in hot conditions (35°C, 50% RH) and consuming water (7 g/kg) prior to post-CTT. After training in both conditions, improvement in CTT time was deemed a likely positive benefit (precooling -166 ± 133 s, heat acclimation -105 ± 62 s), with this result being similar between conditions (d = 0.22, -0.68-1.08 90% confidence interval [CI]). Core temperature for post-CTT was lower in precooling than in heat acclimation from 20 min into the precooling period until the 100-kJ mark of the CTT (d > 0.98). Sweat onset occurred later in precooling (250 ± 100 s) than in heat acclimation (180 ± 80 s) for post-CTT (d = 0.65, -0.30-1.50 90% CI). Thermal sensation was lower at the end of the precooling period prior to post-CTT for the precooling trial than with heat acclimation (d = 1.24, 0.90-1.58 90% CI). Precooling with ice ingestion offers an alternative method of improving endurance-cycling performance in hot conditions if heat acclimation cannot be attained.

  3. Behavioral thermoregulation in Hemigrapsus nudus, the amphibious purple shore crab.

    PubMed

    McGaw, I J

    2003-02-01

    The thermoregulatory behavior of Hemigrapsus nudus, the amphibious purple shore crab, was examined in both aquatic and aerial environments. Crabs warmed and cooled more rapidly in water than in air. Acclimation in water of 16 degrees C (summer temperatures) raised the critical thermal maximum temperature (CTMax); acclimation in water of 10 degrees C (winter temperatures) lowered the critical thermal minimum temperature (CTMin). The changes occurred in both water and air. However, these survival regimes did not reflect the thermal preferences of the animals. In water, the thermal preference of crabs acclimated to 16 degrees C was 14.6 degrees C, and they avoided water warmer than 25.5 degrees C. These values were significantly lower than those of the crabs acclimated to 10 degrees C; these animals demonstrated temperature preferences for water that was 17 degrees C, and they avoided water that was warmer than 26.9 degrees C. This temperature preference was also exhibited in air, where 10 degrees C acclimated crabs exited from under rocks at a temperature that was 3.2 degrees C higher than that at which the 16 degrees C acclimated animals responded. This behavioral pattern was possibly due to a decreased thermal tolerance of 16 degrees C acclimated crabs, related with the molting process. H. nudus was better able to survive prolonged exposure to cold temperatures than to warm temperatures, and there was a trend towards lower exit temperatures with the lower acclimation (10 degrees C) temperature. Using a complex series of behaviors, the crabs were able to precisely control body temperature independent of the medium, by shuttling between air and water. The time spent in either air or water was influenced more strongly by the temperature than by the medium. In the field, this species may experience ranges in temperatures of up to 20 degrees C; however, it is able to utilize thermal microhabitats underneath rocks to maintain its body temperature within fairly narrow limits.

  4. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operations and Maintenance, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2003-03-01

    The Catherine Creek Acclimation Facility (CCAF) received 180,912 smolts from LFH. The size of the fish at delivery was 18.4 fish/lb. Volitional releases started 1 April 2002 with a total of 7,998 PIT-tagged fish (68,948 estimated total fish) migrating from the raceways during the volitional release period. Hourly detections of PIT-tagged fish showed that most of the fish left between 1400 and 2200 hours. The size of the fish remaining just before the forced release was 16.4 fish/lb. The total mortality for the acclimation period was 569 (0.3 %). No significant mortality related to disease was observed. The fish weremore » fed a total of 1,968 lbs of food for the acclimation period. The total number of fish released from the acclimation facility in 2002 was 180,343. The Upper Grande Ronde Acclimation Facility (UGRAF) received 201,958 smolts from LFH. The size of the fish at delivery was 17.4 fish/lb. On 3 March 2002 the water inflow to raceway 4 froze in the early morning hours and the entire raceway was lost. Volitional releases started 1 April 2002 with a total of 682 PIT-tagged fish (68,200 estimated total fish) migrating from the raceways during the volitional release period. Hourly detections of PIT-tagged fish showed that most of the fish left between 1500 and 2200 hours. The size of the fish left in the raceways just before the forced release was 18.3 fish/lb. The total mortality for the acclimation period not including raceway 4 was 402 (0.3 %). No significant mortality related to disease was observed. The fish were fed a total of 568 lbs of food for the acclimation period. The total number of fish released from the acclimation facility in 2002 was 151,444. Maintenance and repair activities were conducted at the acclimation facilities in 2002. Facility maintenance work consisted of snow removal, painting of building, installation of backup water supply system, construction of steps to intake area, improvements to raceway standpipes, removal of gravel from intake area, and complete overhaul of 2 travel trailers. Montgomery-Watson-Harza (MWH) completed construction activities to both acclimation facilities and the Catherine Creek Adult Collection Facility (CCACF) in 2002. Their work included installation of larger intake manifold, new inflow valves on each raceway, new manifold blowout valve, and handrails and grating around raceways and the weir.« less

  5. Action spectra of chlorophyll a biosynthesis in cyanobacteria: dark-operative protochlorophyllide oxidoreductase-deficient mutants.

    PubMed

    Gao, Yang; Xiong, Wei; He, Ming J; Tang, Li; Xiang, Jin Y; Wu, Qing Y

    2009-01-01

    Both light-dependent and light-independent (dark) protochlorophyllide (Pchlide) reductase account for catalyzing the reduction of Pchlide to chlorophyllide during the biosynthesis of Mg-tetrapyrrole pigments in cyanobacteria. To gain more insight into the interaction between the wavelength of the light and these two chlorophyll synthetic pathways in Synechocystis sp. PCC 6803, the spectral effectiveness of the formation of chlorophyll a was investigated during the regreening process in chlL(-) and chlN(-) mutants, which could not synthesize chlorophyll during growth in the dark. The action spectra showed obvious maxima around 450 nm and 650 nm, similar to those of higher plants except that the intensities of two peaks are reversed. The mRNA levels of chlL and chlN and chlorophyll a content under different wavelengths of light in the wild-type strain were also measured. The RT-PCR analysis revealed that the transcripts of chlL and chlN were up-regulated in red light but simultaneously down-regulated in green light which resulted in corresponding changes of the chlorophyll content. This fact indicates that the regulation of dark-operative protochlorophyllide oxidoreductase (DPOR) in the transcriptional level is essential for cyanobacteria to synthesize appropriate chlorophyll for acclimating in various light colour environments.

  6. In High-Light-Acclimated Coffee Plants the Metabolic Machinery Is Adjusted to Avoid Oxidative Stress Rather than to Benefit from Extra Light Enhancement in Photosynthetic Yield

    PubMed Central

    Martins, Samuel C. V.; Araújo, Wagner L.; Tohge, Takayuki; Fernie, Alisdair R.; DaMatta, Fábio M.

    2014-01-01

    Coffee (Coffea arabica L.) has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance. PMID:24733284

  7. Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest.

    PubMed

    Graham, Eric A; Andrade, Jose Luis

    2004-05-01

    Vertical stratification of epiphytes generally has not been reported for dry forests. For two epiphytic Crassulacean acid metabolism bromeliads that segregate vertically, it was hypothesized that different potentials for photoprotection or shade tolerance rather than drought tolerance is responsible for the observed stratification. The light environment, capacity for photoprotection, germination response to light quality, and responses to light and drought were thus examined for Tillandsia brachycaulos and T. elongata. Vertical and light-environment distributions differed for the two species but photoprotection and photodamage did not where they occurred at similar field locations; T. brachycaulos had a higher pigment acclimation to light. Tillandsia brachycaulos had higher acid accumulation under low light as opposed to T. elongata, which responded similarly to all but the highest light treatment. Tillandsia brachycaulos maintained positive total daily net CO(2) uptake through 30 d of drought; T. elongata had a total daily net CO(2) loss after 7 d of drought. The vertical stratification was most likely the result of the sensitivity to drought of T. elongata rather than differences in photoprotection or shade tolerance between the two species. Tillandsia elongata occurs in more exposed locations, which may be advantageous for rainfall interception and dew formation.

  8. Effect of acclimatization on hemocyte functional characteristics of the Pacific oyster (Crassostrea gigas) and carpet shell clam (Ruditapes decussatus).

    PubMed

    Hurtado, Miguel Ángel; da Silva, Patricia Mirella; Le Goïc, Nelly; Palacios, Elena; Soudant, Philippe

    2011-12-01

    Most experimental procedures on molluscs are done after acclimatization of wild animals to lab conditions. Similarly, short-term acclimation is often unavoidable in a field survey when biological analysis cannot be done within the day of sample collection. However, acclimatization can affect the general physiological condition and particularly the immune cell responses of molluscs. Our aim was to study the changes in the hemocyte characteristics of the Pacific oyster Crassostrea gigas and the carpet shell clam Ruditapes decussatus acclimated 1 or 2 days under emersed conditions at 14 ± 1 °C and for 1, 2, 7, or 10 days to flowing seawater conditions (submerged) at 9 ± 1 °C, when compared to hemolymph withdrawn from organisms sampled in the field and immediately analyzed in the laboratory (unacclimated). The hemocyte characteristics assessed by flow cytometry were the total (THC) and differential hemocyte count, percentage of dead cells, phagocytosis, and reactive oxygen species (ROS) production. Dead hemocytes were lower in oysters acclimated both in emersed and submerged conditions (1%-5%) compared to those sampled in the field (7%). Compared to oysters, the percentage of dead hemocytes was lower in clams (0.4% vs. 1.1%) and showed a tendency to decrease during acclimatization in both emersed and submerged conditions. In comparison to organisms not acclimated, the phagocytosis of hemocytes decreased in both oysters and clams acclimated under submerged conditions, but was similar in those acclimated in emersed conditions. The ROS production remained stable in both oysters and clams acclimated in emersed conditions, whereas in submerged conditions ROS production did not change in both the hyalinocytes and granulocytes of oysters, but increased in clams. In oysters, the THC decreased when they were acclimated 1 and 2 days in submerged conditions and was mainly caused by a decrease in granulocytes, but the decrease in THC in oysters acclimated 2 days in emersed conditions was caused by a decrease in hyalinocytes and small agranular cells. In clams, the THC was significantly lower in comparison to those not acclimated, regardless of the conditions of the acclimatization. These findings demonstrate that hemocyte characteristics were differentially affected in both species by the tested conditions of acclimatization. The phagocytosis and ROS production in clams and phagocytosis in oysters were not different in those acclimated for 1 day under both conditions, i.e. emersed and submerged, and those sampled in the field (unacclimated). The THC was significantly affected by acclimatization conditions, so the differences between clams and oysters should be considered in studies where important concentrations of hemocytes are required. The difference in the immune response between both species could be related to their habitat (epifaunal vs. infaunal) and their ability of resilience to manipulation and adaptation to captivity. Our results suggest that functional characteristics of hemocytes should be analyzed in both oysters and clams during the first 1 or 2 days, preferably acclimated under emersed rather than submerged conditions. Copyright © 2011. Published by Elsevier Ltd.

  9. Hypohydration and Heat Acclimation: Plasma Renin and Aldosterone during Exercise,

    DTIC Science & Technology

    1983-01-01

    vasoconstriction in heat-stressed men: role of McGraw-Hill, 1964, p. 419-423. renin - angiotensin system . J. AppL PhysioL: Respirat. Environ. 13. LINDQUIST, E...AL.A137 365 HYPOHYDRATION AND HEAT ACCLIMATION: PLASMA RENIN AND I/ ALDOSTERONE DURING EXERCISE(U) ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE...heat acclimation:plasma renin dependent not only on the mode of exercise but also the and aldosterone during exercise. J. Appl. Physiol.: Respirat

  10. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance

    PubMed Central

    Caldeira, Cecilio F.; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions. PMID:25370944

  11. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts.

    PubMed

    Prazeres, Martina; Roberts, T Edward; Pandolfi, John M

    2017-03-23

    Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.

  12. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert

    2017-04-01

    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2 concentration and marginally decreases isoprene production owing to an increase in the electron demand for carbon fixation. In the long-term, acclimation to rising CO2 growth conditions leads to down regulation of both Jmax and Vcmax, which modulates the stimulating effect of rising CO2 on photosynthesis. This CO2 effect is most pronounced between sub-ambient to present CO2. Our results highlight that the LES-model provides a suitable theoretical framework to model changes in leaf isoprene emissions related to biochemical acclimation to rising CO2. References Harrison, S. P. et al: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197(1), 49-57, 2013. Morfopoulos, C. et al: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2, New Phytol., 203(1), 125-139, 2014.

  13. Refolding of β-Stranded Class I Chitinases of Hippophae rhamnoides Enhances the Antifreeze Activity during Cold Acclimation

    PubMed Central

    Gupta, Ravi; Deswal, Renu

    2014-01-01

    Class I chitinases hydrolyse the β-1,4-linkage of chitin and also acquire antifreeze activity in some of the overwintering plants during cold stress. Two chitinases, HrCHT1a of 31 kDa and HrCHT1b of 34 kDa, were purified from cold acclimated and non-acclimated seabuckthorn seedlings using chitin affinity chromatography. 2-D gels of HrCHT1a and HrCHT1b showed single spots with pIs 7.0 and 4.6 respectively. N-terminal sequence of HrCHT1b matched with the class I chitinase of rice and antifreeze proteins while HrCHT1a could not be sequenced as it was N-terminally blocked. Unlike previous reports, where antifreeze activity of chitinase was cold inducible, our results showed that antifreeze activity is constitutive property of class I chitinase as both HrCHT1a and HrCHT1b isolated even from non-acclimated seedlings, exhibited antifreeze activity. Interestingly, HrCHT1a and HrCHT1b purified from cold acclimated seedlings, exhibited 4 and 2 times higher antifreeze activities than those purified from non-acclimated seedlings, suggesting that antifreeze activity increased during cold acclimation. HrCHT1b exhibited 23–33% higher hydrolytic activity and 2–4 times lower antifreeze activity than HrCHT1a did. HrCHT1b was found to be a glycoprotein; however, its antifreeze activity was independent of glycosylation as even deglycosylated HrCHT1b exhibited antifreeze activity. Circular dichroism (CD) analysis showed that both these chitinases were rich in unusual β-stranded conformation (36–43%) and the content of β-strand increased (∼11%) during cold acclimation. Surprisingly, calcium decreased both the activities of HrCHT1b while in case of HrCHT1a, a decrease in the hydrolytic activity and enhancement in its antifreeze activity was observed. CD results showed that addition of calcium also increased the β-stranded conformation of HrCHT1a and HrCHT1b. This is the first report, which shows that antifreeze activity is constitutive property of class I chitinase and cold acclimation and calcium regulate these activities of chitinases by changing the secondary structure. PMID:24626216

  14. Refolding of β-stranded class I chitinases of Hippophae rhamnoides enhances the antifreeze activity during cold acclimation.

    PubMed

    Gupta, Ravi; Deswal, Renu

    2014-01-01

    Class I chitinases hydrolyse the β-1,4-linkage of chitin and also acquire antifreeze activity in some of the overwintering plants during cold stress. Two chitinases, HrCHT1a of 31 kDa and HrCHT1b of 34 kDa, were purified from cold acclimated and non-acclimated seabuckthorn seedlings using chitin affinity chromatography. 2-D gels of HrCHT1a and HrCHT1b showed single spots with pIs 7.0 and 4.6 respectively. N-terminal sequence of HrCHT1b matched with the class I chitinase of rice and antifreeze proteins while HrCHT1a could not be sequenced as it was N-terminally blocked. Unlike previous reports, where antifreeze activity of chitinase was cold inducible, our results showed that antifreeze activity is constitutive property of class I chitinase as both HrCHT1a and HrCHT1b isolated even from non-acclimated seedlings, exhibited antifreeze activity. Interestingly, HrCHT1a and HrCHT1b purified from cold acclimated seedlings, exhibited 4 and 2 times higher antifreeze activities than those purified from non-acclimated seedlings, suggesting that antifreeze activity increased during cold acclimation. HrCHT1b exhibited 23-33% higher hydrolytic activity and 2-4 times lower antifreeze activity than HrCHT1a did. HrCHT1b was found to be a glycoprotein; however, its antifreeze activity was independent of glycosylation as even deglycosylated HrCHT1b exhibited antifreeze activity. Circular dichroism (CD) analysis showed that both these chitinases were rich in unusual β-stranded conformation (36-43%) and the content of β-strand increased (∼11%) during cold acclimation. Surprisingly, calcium decreased both the activities of HrCHT1b while in case of HrCHT1a, a decrease in the hydrolytic activity and enhancement in its antifreeze activity was observed. CD results showed that addition of calcium also increased the β-stranded conformation of HrCHT1a and HrCHT1b. This is the first report, which shows that antifreeze activity is constitutive property of class I chitinase and cold acclimation and calcium regulate these activities of chitinases by changing the secondary structure.

  15. Interactive effects of ambient acidity and salinity on thyroid function during acidic and post-acidic acclimation of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, M C Subhash; Rejitha, V

    2011-11-01

    The interactive effects of ambient acidity and salinity on thyroid function are less understood in fish particularly in air-breathing fish. We, therefore, examined the thyroid function particularly the osmotic and metabolic competences of freshwater (FW) and salinity-adapted (SA; 20 ppt) air-breathing fish (Anabas testudineus) during acidic and post-acidic acclimation, i.e., during the exposure of fish to either acidified water (pH 4.2 and 5.2) for 48 h or clean water for 96 h after pre-exposure. A substantial rise in plasma T(4) occurred after acidic exposure of both FW and SA fish. Similarly, increased plasma T(3) and T(4) were found in FW fish kept for post-acidic acclimation and these suggest an involvement of THs in short-term acidic and post-acidic acclimation. Water acidification produced significant hyperglycaemia and hyperuremia in FW fish but not in SA fish. The SA fish when kept for post-acclimation, however, produced a significant hypouremia. In both FW and SA fish, gill Na(+), K(+)-ATPase activity decreased but kidney Na(+), K(+)-ATPase activity increased upon acidic acclimation. During post-acidic acclimation, gill Na(+), K(+)-ATPase activity of the FW fish showed a rise while decreasing its activity in the SA fish. Similarly, post-acidic acclimation reduced the Na(+), K(+)-ATPase activity of intestine but elevated its activity in the liver of SA fish. A higher tolerance of the SA fish to water acidification was evident in these fish as they showed tight plasma and tissue mineral status due to the ability of this fish to counteract the ion loss. In contrast, FW fish showed more sensitivity to water acidification as they loose more ions in that medium. The positive correlations of plasma THs with many tested metabolic and hydromineral indices of both FW and SA fish and also with water pH further confirm the involvement of THs in acidic and post-acidic acclimation in these fish. We conclude that thyroid function of this fish is more sensitive to environmental acidity than ambient salinity and salinity interference nullifies the toxic effect of water acidification. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance

    PubMed Central

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Abstract Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165

  17. Changes in heart rate variability during the induction and decay of heat acclimation.

    PubMed

    Flouris, Andreas D; Poirier, Martin P; Bravi, Andrea; Wright-Beatty, Heather E; Herry, Christophe; Seely, Andrew J; Kenny, Glen P

    2014-10-01

    We evaluated the changes in core temperature, heart rate, and heart rate variability (HRV) during the induction and decay of heat acclimation. Ten males (23 ± 3 years; 79.5 ± 3.5 kg; 15.2 ± 4.5 percent body fat; 51.13 ± 4.61 mLO(2)∙kg(-1)∙min(-1) peak oxygen uptake) underwent a 14-day heat acclimation protocol comprising of 90-min cycling at ~50 % peak oxygen uptake at 40 °C and ~20 % relative humidity. Core temperature, heart rate, and 102 HRV measures were recorded during a heat tolerance test conducted at baseline (day 0) and at the end of the induction (day 14) and decay (day 28) phases. Heat acclimation resulted in significantly reduced core temperature [rectal (χ (2) = 1298.14, p < 0.001); esophageal (χ (2) = 1069.88, p < 0.001)] and heart rate (χ (2) = 1230.17, p < 0.001). Following the decay phase, 26, 40, and 60 % of the heat acclimation-induced reductions in rectal temperature, esophageal temperature, and heart rate, respectively, were lost. Heat acclimation was accompanied by profound and broad changes in HRV: at the end of the induction phase, 75 of the 102 variability measures computed were significantly different (p < 0.001), compared to only 47 of the 102 at the end of the decay phase. Heat acclimation is accompanied by reduced core temperature, significant bradycardia, and marked alterations in HRV, which we interpret as being related to vagal dominance. The observed changes in core temperature persist for at least 2 weeks of non-exposure to heat, while the changes in heart rate and HRV decay faster and are only partly evident after 2 weeks of non-exposure to heat.

  18. Effects of heat acclimation on time perception.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Timpmann, Saima; Burk, Andres; Ööpik, Vahur; Allik, Jüri; Kreegipuu, Kairi

    2015-03-01

    Cognitive performance is impaired during prolonged exercise in hot environment compared to temperate conditions. These effects are related to both peripheral markers of heats stress and alterations in CNS functioning. Repeated-exposure to heat stress results in physiological adaptations, and therefore improvement in exercise capacity and cognitive functioning are observed. The objective of the current study was to clarify the factors contributing to time perception under heat stress and examine the effect of heat acclimation. 20 young healthy male subjects completed three exercise tests on a treadmill: H1 (at 60% VO(2)peak until exhaustion at 42°C), N (at 22°C; duration equal to H1) and H2 (walk until exhaustion at 42°C) following a 10-day heat acclimation program. Core temperature (T(C)) and heart rate (HR), ratings of perceived fatigue and exertion were obtained continuously during the exercise, and blood samples of hormones were taken before, during and after the exercise test for estimating the prolactin, growth hormone and cortisol response to acute exercise-heat stress. Interval production task was performed before, during and after the exercise test. Lower rate of rise in core temperature, heart rate, hormone response and subjective ratings indicated that the subjects had successfully acclimated. Before heat acclimation, significant distortions in produced intervals occurred after 60 minutes of exercise relative to pre-trial coefficients, indicating speeded temporal processing. However, this effect was absent after in acclimated subjects. Blood prolactin concentration predicted temporal performance in both conditions. Heat acclimation slows down the increase in physiological measures, and improvement in temporal processing is also evident. The results are explained within the internal clock model in terms of the pacemaker-accumulator functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations

    PubMed Central

    Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.

    2014-01-01

    In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646

  20. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia.

    PubMed

    Patterson, M J; Stocks, J M; Taylor, N A S

    2014-04-01

    This experiment was designed to test the hypothesis that the plasma volume is not selectively defended during exercise- and heat-induced dehydration following humid-heat acclimation. Eight physically active males were heat acclimated (39.8 °C, relative humidity 59.2%) using 17 days of controlled hyperthermia (core temperature: 38.5 °C). Inter-compartmental fluid losses and movements were tracked (radioisotopes and Evans blue dye) during progressive dehydration (cycling) in these same conditions and also during a resting recovery without fluid replacement (28 °C), before (day 1), during (day 8) and after heat acclimation (day 22). On days 8 and 22, there were significant increases in total body water, interstitial fluid and plasma volume (P < 0.05), but the intracellular compartments did not change (P > 0.05). The baseline plasma volume remained expanded throughout: 43.4 [±2.6 (day 1)], 49.1 [±2.4 (day 8); P < 0.05] and 48.9 mL kg(-1) [±3.0 (day 22); P < 0.05]. During progressive dehydration, plasma reductions of 9.0% (±0.9: day 1), 12.4% (±1.6: day 8) and 13.6% (±1.2: day 22) were observed, with day 8 and 22 losses significantly exceeding day 1 (P < 0.05). During recovery, plasma volume restoration commenced, with the intracellular fluid contribution becoming more pronounced as acclimation progressed. It is concluded that the plasma volume was not defended more vigorously following humid-heat acclimation. Indeed, a greater fluid loss may well underlie the mechanisms for enhancing plasma volume recovery when heat acclimation is induced using the controlled-hyperthermia technique. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Background Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3′-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. Results We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. Conclusions The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy. PMID:23531055

  2. A proteomic approach to cold acclimation of Staphylococcus aureus CECT 976 grown at room and human body temperatures.

    PubMed

    Sánchez, B; Cabo, M L; Margolles, A; Herrera, J J R

    2010-11-15

    Staphylococcus aureus is an important pathogenic microorganism that has been associated with serious infection problems in different fields, from food to clinic. In the present study, we have taken into account that the main reservoirs of this microorganism are the human body and some parts of food processing plants, which have normal temperatures of around 37 and 25°C, respectively. It can be expected that S. aureus must acclimate its metabolism to colder temperatures before growing in food matrices. Since temperature abuse for foods occurs at approximately 12°C, it is expected that S. aureus must acclimate its metabolism to colder temperatures before growing in food. For this reason, we have performed a proteomic comparison between exponential- and stationary-phase cultures of S. aureus CECT 976 acclimated to 12°C after growing at 25°C or 37°C. The analysis led to the identification of two different protein patterns associated with cold acclimation, denominated pattern A and pattern B. The first was characteristic of cultures at stationary phase of growth, grown at 25°C and acclimated to 12°C. The second appeared in the rest of experimental cases. Pattern A was distinguished by the presence of glycolytic proteins, whereas pattern B was differentiated by the presence of general stress and regulatory proteins. Pattern A was related through physiological experiments with a cross-resistance to acid pH, whereas pattern B conferred resistance to nisin. This prompted us to conclude that both molecular strategies could be valid, in vivo, for the process of acclimation of S. aureus to cold temperatures. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.

    PubMed

    Strobel, Anneli; Leo, Elettra; Pörtner, Hans O; Mark, Felix C

    2013-09-01

    Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1°C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2. © 2013.

  4. The metabolic, locomotor and sex-dependent effects of elevated temperature on Trinidadian guppies: limited capacity for acclimation.

    PubMed

    Muñoz, Nicolas J; Breckels, Ross D; Neff, Bryan D

    2012-10-01

    Global warming poses a threat to many ectothermic organisms because of the harmful effects that elevated temperatures can have on resting metabolic rate (RMR) and body size. This study evaluated the thermal sensitivity of Trinidadian guppies (Poecilia reticulata) by describing the effects of developmental temperature on mass, burst speed and RMR, and investigated whether these tropical fish can developmentally acclimate to their thermal conditions. These traits were measured following exposure to one of three treatments: 70 days at 23, 25, 28 or 30°C (acclimated groups); 6 h at 23, 28 or 30°C following 70 days at 25°C (unacclimated groups); or 6 h at 25°C following 70 days in another 25°C tank (control group). Body mass was lower in warmer temperatures, particularly amongst females and individuals reared at 30°C. The burst speed of fish acclimated to each temperature did not differ and was marginally higher than that of unacclimated fish, indicative of complete compensation. Conversely, acclimated and unacclimated fish did not differ in their RMR at each temperature. Amongst the acclimated groups, RMR was significantly higher at 30°C, indicating that guppies may become thermally limited at this temperature as a result of less energy being available for growth, reproduction and locomotion. Like other tropical ectotherms, guppies appear to be unable to adjust their RMR through physiological acclimation and may consequently be susceptible to rising temperatures. Also, because larger females have higher fecundity, our data suggest that fecundity will be reduced in a warmer climate, potentially decreasing the viability of guppy populations.

  5. Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria.

    PubMed

    Nyboer, Elizabeth A; Chapman, Lauren J

    2017-10-15

    Increasing water temperatures owing to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch ( Lates niloticus ), a commercially harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CT max ) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CT max increased with acclimation temperature; however, 3-week-acclimated fish had higher overall CT max than acutely exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range; however, acclimated Nile perch had lower AS compared with acutely exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental because of limitations in AS. © 2017. Published by The Company of Biologists Ltd.

  6. Effects of copper, hypoxia and acute temperature shifts on mitochondrial oxidation in rainbow trout (Oncorhynchus mykiss) acclimated to warm temperature.

    PubMed

    Sappal, Ravinder; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-12-01

    Temperature fluctuations, hypoxia and metals pollution frequently occur simultaneously or sequentially in aquatic systems and their interactions may confound interpretation of their biological impacts. With a focus on energy homeostasis, the present study examined how warm acclimation influences the responses and interactions of acute temperature shift, hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11°C; control) and warm (20°C) temperature for 3 weeks followed by exposure to environmentally realistic levels of Cu and hypoxia for 24h. Subsequently, mitochondrial electron transport system (ETS) respiratory activity supported by complexes I-IV (CI-IV), plasma metabolites and condition indices were measured. Warm acclimation reduced fish condition, induced aerobic metabolism and altered the responses of fish to acute temperature shift, hypoxia and Cu. Whereas warm acclimation decelerated the ETS and increased the sensitivity of maximal oxidation rates of the proximal (CI and II) complexes to acute temperature shift, it reduced the thermal sensitivity of state 4 (proton leak). Effects of Cu with and without hypoxia were variable depending on the acclimation status and functional index. Notably, Cu stimulated respiratory activity in the proximal ETS segments, while hypoxia was mostly inhibitory and minimized the stimulatory effect of Cu. The effects of Cu and hypoxia were modified by temperature and showed reciprocal antagonistic interaction on the ETS and plasma metabolites, with modest additive actions limited to CII and IV state 4. Overall, our results indicate that warm acclimation came at a cost of reduced ETS efficiency and increased sensitivity to added stressors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Body size as a latent variable in a structural equation model: thermal acclimation and energetics of the leaf-eared mouse.

    PubMed

    Nespolo, Roberto F; Arim, Matías; Bozinovic, Francisco

    2003-07-01

    Body size is one of the most important determinants of energy metabolism in mammals. However, the usual physiological variables measured to characterize energy metabolism and heat dissipation in endotherms are strongly affected by thermal acclimation, and are also correlated among themselves. In addition to choosing the appropriate measurement of body size, these problems create additional complications when analyzing the relationships among physiological variables such as basal metabolism, non-shivering thermogenesis, thermoregulatory maximum metabolic rate and minimum thermal conductance, body size dependence, and the effect of thermal acclimation on them. We measured these variables in Phyllotis darwini, a murid rodent from central Chile, under conditions of warm and cold acclimation. In addition to standard statistical analyses to determine the effect of thermal acclimation on each variable and the body-mass-controlled correlation among them, we performed a Structural Equation Modeling analysis to evaluate the effects of three different measurements of body size (body mass, m(b); body length, L(b) and foot length, L(f)) on energy metabolism and thermal conductance. We found that thermal acclimation changed the correlation among physiological variables. Only cold-acclimated animals supported our a priori path models, and m(b) appeared to be the best descriptor of body size (compared with L(b) and L(f)) when dealing with energy metabolism and thermal conductance. However, while m(b) appeared to be the strongest determinant of energy metabolism, there was an important and significant contribution of L(b) (but not L(f)) to thermal conductance. This study demonstrates how additional information can be drawn from physiological ecology and general organismal studies by applying Structural Equation Modeling when multiple variables are measured in the same individuals.

  8. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Kunisue, Tatsuya; Kannan, Kurunthachalam; Seebacher, Frank

    2013-03-26

    Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3'-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy.

  9. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae)

    PubMed Central

    Terblanche, John S.; Chown, Steven L.

    2006-01-01

    Summary Recent reviews of the adaptive hypotheses for animal responses to acclimation have highlighted the importance of distinguishing between developmental and adult (non-developmental) phenotypic plasticity. However, little work has been undertaken separating the effects of developmental plasticity from adult acclimation in physiological traits. Therefore, we investigate the relative contributions of these two distinct forms of plasticity to the environmental physiology of adult tsetse flies by exposing developing pupae or adult flies to different temperatures and comparing their responses. We also exposed flies to different temperatures during development and re-exposed them as adults to the same temperatures to investigate possible cumulative effects. Critical thermal maxima were relatively inflexible in response to acclimation temperatures (21, 25, 29 °C) with plasticity type accounting for the majority of the variation (49-67 %, nested ANOVA). By contrast, acclimation had a larger effect on critical thermal minima with treatment temperature accounting for most of the variance (84-92 %). Surprisingly little of the variance in desiccation rate could be explained by plasticity type (30-47 %). The only significant effect of acclimation on standard (resting) metabolic rate of adult flies occurred in response to 21 °C, resulting in treatment temperature, rather than plasticity type, accounting for the majority of the variance (30-76 %). This study demonstrates that the stage at which acclimation takes place has significant, though often different effects on several adult physiological traits in G. pallidipes, and therefore that it is not only important to consider the form of plasticity but also the direction of the response and its significance from a life-history perspective. PMID:16513933

  10. Thermotolerance and heat acclimation may share a common mechanism in humans

    PubMed Central

    Gillum, Trevor; Dokladny, Karol; Bedrick, Edward; Schneider, Suzanne; Moseley, Pope

    2011-01-01

    Thermotolerance and heat acclimation are key adaptation processes that have been hitherto viewed as separate phenomena. Here, we provide evidence that these processes may share a common basis, as both may potentially be governed by the heat shock response. We evaluated the effects of a heat shock response-inhibitor (quercetin; 2,000 mg/day) on established markers of thermotolerance [gastrointestinal barrier permeability, plasma TNF-α, IL-6, and IL-10 concentrations, and leukocyte heat shock protein 70 (HSP70) content]. Heat acclimation reduced body temperatures, heart rate, and physiological strain during exercise/heat stress) in male subjects (n = 8) completing a 7-day heat acclimation protocol. These same subjects completed an identical protocol under placebo supplementation (placebo). Gastrointestinal barrier permeability and TNF-α were increased on the 1st day of exercise/heat stress in quercetin; no differences in these variables were reported in placebo. Exercise HSP70 responses were increased, and plasma cytokines (IL-6, IL-10) were decreased on the 7th day of heat acclimation in placebo; with concomitant reductions in exercise body temperatures, heart rate, and physiological strain. In contrast, gastrointestinal barrier permeability remained elevated, HSP70 was not increased, and IL-6, IL-10, and exercise body temperatures were not reduced on the 7th day of heat acclimation in quercetin. While exercise heart rate and physiological strain were reduced in quercetin, this occurred later in exercise than with placebo. Consistent with the concept that thermotolerance and heat acclimation are related through the heat shock response, repeated exercise/heat stress increases cytoprotective HSP70 and reduces circulating cytokines, contributing to reductions in cellular and systemic markers of heat strain. Exercising under a heat shock response-inhibitor prevents both cellular and systemic heat adaptations. PMID:21613575

  11. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.

    PubMed

    Xu, Heng; Gong, Shufen; Sun, Yuanzi; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-01-01

    Hydrogenotrophic methanogenesis has been proved to be a feasible biological method for biogas upgrading. To improve its performance, the feasibility of typical anaerobic granules as the inoculum was investigated in both batch and continuous experiments. The results from batch experiments showed that glucose-acclimated granules seemed to perform better than granules acclimated to acidified products (AP, i.e. acetate, propionate and ethanol) in in situ biogas upgrading systems and a slightly higher H2 consumption rate (1.5 mmol H2 g VSS(-1) h(-1)) was obtained for glucose-acclimated granules. For AP-acclimated granules, the inhibition on anaerobic digestion and pH increase (up to 9.55±0.16) took place, and the upgrading performance was adversely affected. In contrast, better performance for AP-acclimated granules was observed in ex situ systems, possibly due to their higher hydrogenotrophic methanogenic activities (HMA). Moreover, when gas-liquid mass transfer limitations were alleviated, the upgrading performance was significantly improved (three-fold) for both glucose-acclimated and AP-acclimated granules. The HMA of anaerobic granules could be further enhanced to improve biogas upgrading performance via continuous cultivation with H2/CO2 as the sole substrate. During the three months' cultivation, secondary granulation and microbial population shift were observed, but anaerobic granules still remained intact and their HMA increased from 0.2 to 0.6 g COD g VSS(-1) d(-1). It indicated that the formation of hydrogenotrophic methanogenic granules, a new type of anaerobic granules specialized for high-rate hydrogenotrophic methanogenesis and biogas upgrading, might be possible. Conclusively, anaerobic granules showed great potential for biogas upgrading.

  12. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.

    PubMed

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.

  13. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  14. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    PubMed

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Cardiorespiratory responses in an Antarctic fish suggest limited capacity for thermal acclimation.

    PubMed

    Egginton, Stuart; Campbell, Hamish A

    2016-05-01

    Polar fishes are at high risk from increasing seawater temperatures. Characterising the physiological responses to such changes may both clarify mechanisms that permit life under extreme conditions and identify limitations in the response to continued global warming. We hypothesised that Notothenia coriiceps would show physiological compensation after an acute exposure to 5°C, and following 6 weeks warm acclimation, compared with ambient temperature (0°C). However, initial tachycardia (22.4±2.8 versus 12.8±1.1 min(-1); P<0.01) was not reversed by acclimation (21.0±1.9 min(-1)). Hyperventilation (45.5±3.1 versus 21.4±2.4 breaths min(-1); P<0.001) showed a modest reduction following acclimation (38.0±2.9 min(-1); P<0.05), while resting oxygen consumption (0.52±0.08 mmol kg(-1) h(-1)) was acutely increased at 5°C (1.07±0.10 mmol kg(-1) h(-1); P<0.001) but unchanged with acclimation. Autonomic blockade showed initial responses were mainly of vagal origin, with little subsequent withdrawal or recovery in long-term heart rate variability after 6 weeks. Given the limited cardiorespiratory capacity to withstand sustained warming, effective physiological compensation probably requires a more prolonged acclimation period. © 2016. Published by The Company of Biologists Ltd.

  16. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports.

    PubMed

    Périard, J D; Racinais, S; Sawka, M N

    2015-06-01

    Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Stoichiometric Network Analysis of Cyanobacterial Acclimation to Photosynthesis-Associated Stresses Identifies Heterotrophic Niches

    DOE PAGES

    Beck, Ashley; Bernstein, Hans; Carlson, Ross

    2017-06-19

    Metabolic acclimation to photosynthesis-associated stresses was examined in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass composition, was analyzed using ecological resource allocation theory to predict and interpret metabolic acclimation to irradiance, O 2, and nutrient stresses. Reduced growth efficiency, shifts in photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion patterns were predicted to occur along culturing stress gradients. These predictions were compared with photobioreactor physiological data and previously published transcriptomic data and found to be highly consistent with observations, providing a systems-based rationale for themore » culture phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight into stress acclimation strategies in photoautotrophs and establishes a framework for predicting, designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of controllable parameters.« less

  18. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance.

    PubMed

    Minami, Anzu; Tominaga, Yoko; Furuto, Akari; Kondo, Mariko; Kawamura, Yukio; Uemura, Matsuo

    2015-08-01

    The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Fall field crickets did not acclimate to simulated seasonal changes in temperature.

    PubMed

    Niehaus, Amanda C; Wilson, Robbie S; Storm, Jonathan J; Angilletta, Michael J

    2012-02-01

    In nature, many organisms alter their developmental trajectory in response to environmental variation. However, studies of thermal acclimation have historically involved stable, unrealistic thermal treatments. In our study, we incorporated ecologically relevant treatments to examine the effects of environmental stochasticity on the thermal acclimation of the fall field cricket (Gryllus pennsylvanicus). We raised crickets for 5 weeks at either a constant temperature (25°C) or at one of three thermal regimes mimicking a seasonal decline in temperature (from 25 to 12°C). The latter three treatments differed in their level of thermal stochasticity: crickets experienced either no diel cycle, a predictable diel cycle, or an unpredictable diel cycle. Following these treatments, we measured several traits considered relevant to survival or reproduction, including growth rate, jumping velocity, feeding rate, metabolic rate, and cold tolerance. Contrary to our predictions, the acclimatory responses of crickets were unrelated to the magnitude or type of thermal variation. Furthermore, acclimation of performance was not ubiquitous among traits. We recommend additional studies of acclimation in fluctuating environments to assess the generality of these findings.

  20. Dynamic changes in scope for heart rate and cardiac autonomic control during warm acclimation in rainbow trout.

    PubMed

    Ekström, Andreas; Hellgren, Kim; Gräns, Albin; Pichaud, Nicolas; Sandblom, Erik

    2016-04-15

    Time course studies are critical for understanding regulatory mechanisms and temporal constraints in ectothermic animals acclimating to warmer temperatures. Therefore, we investigated the dynamics of heart rate and its neuro-humoral control in rainbow trout ( ITALIC! Onchorhynchus mykissL.) acclimating to 16°C for 39 days after being acutely warmed from 9°C. Resting heart rate was 39 beats min(-1)at 9°C, and increased significantly when fish were acutely warmed to 16°C ( ITALIC! Q10=1.9), but then declined during acclimation ( ITALIC! Q10=1.2 at day 39), mainly due to increased cholinergic inhibition while the intrinsic heart rate and adrenergic tone were little affected. Maximum heart rate also increased with warming, although a partial modest decrease occurred during the acclimation period. Consequently, heart rate scope exhibited a complex pattern with an initial increase with acute warming, followed by a steep decline and then a subsequent increase, which was primarily explained by cholinergic inhibition of resting heart rate. © 2016. Published by The Company of Biologists Ltd.

  1. How to handle 'poor' foodstuffs: Acclimation of the common cockle (Cerastoderma edule) to detrital diets

    NASA Astrophysics Data System (ADS)

    Arambalza, Udane; Ibarrola, Irrintzi; Navarro, Enrique; Urrutxurtu, Iñaki; Urrutia, Miren B.

    2018-04-01

    As an approach to elucidating the "value" of detritus as a food source for bivalves, we analysed the capability of the common cockle (Cerastoderma edule) to modulate feeding and digestive rates during acclimation to low and high food rations of detrital diets with either low (Juncus maritimus) or high digestibility (Enteromorpha spp.). On acclimation day 3, feeding rates were similar in cockles fed different detrita; however, the absorption rate was higher in cockles fed Enteromorpha spp. With J. maritimus, rising food rations promoted an exponential decrease in absorption efficiency, whereas with Enteromorpha spp., absorption efficiency was only marginally reduced. During acclimation, cockles improved the rate at which both detritus were assimilated by means of increasing ingestion rates while maintaining absorption efficiency. When the time-course of digestive carbohydrase activities was monitored during acclimation to either detritus or phytoplankton (Isochrysis galbana), we found that only phytoplankton promoted the induction of cellulase activity in the digestive glands of cockles. This response in cockles fed phytoplankton promoted an increase in the digestibility of Enteromorpha spp., but had no effect on the digestibility of J. maritimus.

  2. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis

    NASA Astrophysics Data System (ADS)

    Grenchik, M. K.; Donelson, J. M.; Munday, P. L.

    2013-03-01

    Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50-100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.

  3. Influence of ozone on cold acclimation in sugar maple seedlings.

    PubMed

    Bertrand, Annick; Robitaille, Gilles; Nadeau, Paul; Castonguay, Yves

    1999-07-01

    During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.

  4. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    PubMed Central

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T.; Cotter, James David

    2016-01-01

    ABSTRACT Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans. PMID:28349082

  5. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    PubMed

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T; Cotter, James David

    2016-01-01

    Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se . While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.

  6. [Final thermal preference in parthenogenetic females of Daphnia magna Straus (Crustacea: Cladocera) acclimated to various temperatures].

    PubMed

    Verbitskiĭ, V B; Verbitskaia, T I

    2011-01-01

    The final thermal preference (FTP) range in parthenogenetic females of cladoceran Daphnia magna was assessed by "acute" and "chronic" methods. The first method included 4-month acclimation to different temperatures in the range of 14.2 +/- 0.7 to 27.1 +/- 0.3 degrees C; the "chronic" method was characterized by long-term acclimation to +20 degrees C. Two ranges of FTP were found for D. magna, 13.3-15.4 degrees C and 20.2-26.2 degrees C. The thermal preference ofdaphnids and the temperature of acclimation were correspondingly linearly. The range of FTP was independent of the season. The food-searching activity of D. magna rose in April, when the FTP range increased, and the FTP was less pronounced.

  7. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.

    PubMed

    Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho

    2015-06-01

    Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana. © 2014 John Wiley & Sons Ltd.

  8. Rapid accumulation of glutathione during light stress in Arabidopsis.

    PubMed

    Choudhury, Feroza K; Devireddy, Amith R; Azad, Rajeev K; Shulaev, Vladimir; Mittler, Ron

    2018-05-25

    Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or seconds. We previously reported that in response to rapid changes in light intensity (0-60 sec), Arabidopsis thaliana plants mount a large-scale transcriptomic response that includes several different transcripts essential for light stress acclimation. Here, we expand our analysis of the rapid response of Arabidopsis to light stress using a metabolomics approach and identify 111 metabolites that significantly alter in their level during the first 90 sec of light stress exposure. We further show that the levels of free and total glutathione accumulate rapidly during light stress in Arabidopsis and that the accumulation of total glutathione during light stress is associated with an increase in nitric oxide (NO) levels. We further suggest that the increase in precursors for glutathione biosynthesis could be linked to alterations in photorespiration, and that phosphoenolpyruvate could represent a major energy and carbon source for rapid metabolic responses. Taken together, our analysis could be used as an initial road map for the identification of different pathways that could be used to augment the rapid response of plants to abiotic stress. In addition, it highlights the important role of glutathione in these responses.

  9. Quantification of light screening by anthocyanins in leaves of Berberis thunbergii.

    PubMed

    Nichelmann, Lars; Bilger, Wolfgang

    2017-12-01

    Up to 40% of incident light was screened in red Berberis leaves in vivo by anthocyanins, resulting also in up to 40% reduction of light-limited photosynthesis. The biological function of anthocyanins in leaves has been strongly discussed, but the hypothesis of a screening function is favored by most authors. For an evaluation of the function as photoprotective pigments, a quantification of their screening of the mesophyll is important. Here, chlorophyll fluorescence excitation of leaves of a red and a green variety of Berberis thunbergii was used to estimate the extent of screening by anthocyanins at 545 nm and over the whole photosynthetically active wavelength range. Growth at high light (430 µmol m -2  s -1 ) resulted in 90% screening at 545 nm corresponding to 40-50% screening over the whole wavelength range, depending on the light source. The concomitant reduction of photosynthetic quantum yield was of the same size as the calculated reduction of light reaching the chloroplasts. The induction of anthocyanins in the red variety also enhanced the epoxidation state of the violaxanthin cycle under growth conditions, indicating that red leaves were suffering less from excessive irradiance. Pool sizes of violaxanthin cycle carotenoids indicated a shade acclimation of the light harvesting complexes in red leaves. The observed reduction of internal light in anthocyanic leaves has by necessity a photoprotective effect.

  10. On the origin of the slow M-T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses.

    PubMed

    Bernát, Gábor; Steinbach, Gábor; Kaňa, Radek; Govindjee; Misra, Amarendra N; Prašil, Ondřej

    2018-05-01

    The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.

  11. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    PubMed Central

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  12. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    PubMed

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  13. Light dose versus rate of delivery: implications for macroalgal productivity.

    PubMed

    Desmond, Matthew J; Pritchard, Daniel W; Hepburn, Christopher D

    2017-06-01

    The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.

  14. Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Collins, Michelle L. M.; Longeard, Nicolas; Tollerud, Erik

    2018-05-01

    It was recently proposed that the globular cluster system of the very low surface brightness galaxy NGC 1052-DF2 is dynamically very cold, leading to the conclusion that this dwarf galaxy has little or no dark matter. Here, we show that a robust statistical measure of the velocity dispersion of the tracer globular clusters implies a mundane velocity dispersion and a poorly constrained mass-to-light ratio. Models that include the possibility that some of the tracers are field contaminants do not yield a more constraining inference. We derive only a weak constraint on the mass-to-light ratio of the system within the half-light radius (M/{L}V< 6.7 at the 90% confidence level) or within the radius of the furthest tracer (M/{L}V< 8.1 at the 90% confidence level). This limit may imply a mass-to-light ratio on the low end for a dwarf galaxy, but many Local Group dwarf galaxies fall well within this contraint. With this study, we emphasize the need to reliably account for measurement uncertainties and to stay as close as possible to the data when determining dynamical masses from very small data sets of tracers.

  15. Insights from intercomparison of microbial and conventional soil models

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Li, J.; Luo, Y.; Mayes, M. A.; Wang, G.

    2014-12-01

    Changing the structure of soil biogeochemical models to represent coupling between microbial biomass and carbon substrate pools could improve predictions of carbon-climate feedbacks. So-called "microbial models" with this structure make very different predictions from conventional models based on first-order decay of carbon substrate pools. Still, the value of microbial models is uncertain because microbial physiological parameters are poorly constrained and model behaviors have not been fully explored. To address these issues, we developed an approach for inter-comparing microbial and conventional models. We initially focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models at a common reference temperature (20°C): constant CUE (held at 0.31), varied CUE (-0.016°C-1), and 50% acclimated CUE (-0.008°C-1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Compared to the conventional model, all microbial models showed oscillatory behavior in response to perturbations and were much less sensitive to changing inputs. Oscillations were weakest in the most complex model with explicit enzyme pools, suggesting that multi-pool coupling might be a more realistic representation of the soil system. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  16. Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity.

    PubMed

    Díaz, Milagros; de Haro, Virginia; Muñoz, Romualdo; Quiles, María José

    2007-12-01

    Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica.

  17. PHENOTYPIC PLASTICITY INDUCED IN TRANSPLANT EXPERIMENTS IN A MUTUALISTIC ASSOCIATION BETWEEN THE RED ALGA JANIA ADHAERENS (RHODOPHYTA, CORALLINALES) AND THE SPONGE HALICLONA CAERULEA (PORIFERA: HAPLOSCLERIDA): MORPHOLOGICAL RESPONSES OF THE ALGA(1).

    PubMed

    Enríquez, Susana; Ávila, Enrique; Carballo, José Luis

    2009-02-01

    The association between the red macroalga Jania adhaerens J. V. Lamour. and the sponge Haliclona caerulea is the most successful life-form between 2 and 4 m depth in Mazatlán Bay (Mexican Pacific). J. adhaerens colonizes the rocky intertidal area and penetrates into deeper areas only when it lives in association with H. caerulea. The aposymbiotic form of the sponge has not been reported in the bay. To understand the ecological success of this association, we examined the capacity of J. adhaerens to acclimate in Mazatlán Bay using transplant experiments. The transplanted aposymbiotic J. adhaerens did not survive the first 2 weeks; however, J. adhaerens when living in association with H. caerulea, acclimated easily to depth, showing no sign of mortality during the 103 d of the experiment. We conclude that the ability of J. adhaerens to colonize in deeper areas in this hydrodynamic environment may in part rely on the protection provided by the sponge to the algal canopy. Both species contribute to the shape of the associated form. Nevertheless, the morphological variation in the association appears to be dominated by the variation in J. adhaerens canopy to regulate pigment self-shading under light-limited conditions and/or tissue resistance under high hydrodynamics. Consequently, our results are consistent with light as the abiotic controlling factor, which regulates the lower depth distribution of the association in Mazatlán Bay, through limiting the growth rate of J. adhaerens. Hydrodynamics may determine the upper limit of the association by imposing high mass losses. © 2009 Phycological Society of America.

  18. Consistent leaf respiratory response to experimental warming of three North American deciduous trees: a comparison across seasons, years, habitats and sites.

    PubMed

    Wei, Xiaorong; Sendall, Kerrie M; Stefanski, Artur; Zhao, Changming; Hou, Jihua; Rich, Roy L; Montgomery, Rebecca A; Reich, Peter B

    2017-03-01

    Most vascular plants acclimate respiration to changes in ambient temperature, but explicit tests of these responses in field settings are rare, and how acclimation responses vary in space and time is relatively unstudied, hindering our ability to predict respiratory release of carbon under future climatic conditions. We measured temperature response curves of leaf respiration for three deciduous tree species from 2009 to 2012 in a field warming experiment (+3.4 °C above ambient) in both open and understory conditions at two sites in the southern boreal forest in Minnesota, USA. We analyzed the effects of warming on leaf respiration, and how the effects varied among species, times of season (early, middle and late parts of the growing season), sites, habitats (understory, open) and years. We hypothesized that the respiration exponent (Q10) of the short-term temperature response curve and the degree of acclimation would be smaller under conditions where plants were more likely to be substrate limited, such as in the understory or the margins of the growing season. However, in contrast to these predictions, stable Q10 and strong respiratory acclimation were consistently observed. For each species, the Q10 did not vary with experimental warming, nor was its response to warming influenced by time of season, year, site or habitat. Strong leaf respiratory acclimation to warming occurred in each species and was consistent across most sources of variation. Most of the leaf traits studied were not affected by warming, while the Q10-leaf nitrogen and R25-soluble carbohydrate relationships were observed, and shifted with warming, implying that acclimation may be associated with the adjustment in respiratory capacity and its relation to leaf nitrogen and soluble carbohydrate content. Consistent Q10 and acclimation across habitats, sites, times of season and years suggest that modeling of temperature acclimation may be possible with relatively simple functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level.

  20. Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water.

    PubMed

    Tang, Cheng-Hao; Wu, Wen-Yi; Tsai, Shu-Chuan; Yoshinaga, Tatsuki; Lee, Tsung-Han

    2010-08-01

    The milkfish (Chanos chanos) is an economic species in Southeast Asia. In Taiwan, the milkfish are commercially cultured in environments of various salinities. Na(+)/K(+)-ATPase (NKA) is a key enzyme for fish iono- and osmoregulation. When compared with gills, NKA and its potential role were less examined by different approaches in the other osmoregulatory organs (e.g., kidney) of euryhaline teleosts. The objective of this study was to investigate the correlation between osmoregulatory plasticity and renal NKA in this euryhaline species. Muscle water contents (MWC), plasma, and urine osmolality, kidney histology, as well as distribution, expression (mRNA and protein), and specific activity of renal NKA were examined in juvenile milkfish acclimated to fresh water (FW), seawater (SW 35 per thousand), and hypersaline water (HSW 60 per thousand) for at least two weeks before experiments. MWC showed no significant difference among all groups. Plasma osmolality was maintained within the range of physiological homeostasis in milkfish acclimated to different salinities, while, urine osmolality of FW-acclimated fish was evidently lower than SW- and HSW-acclimated individuals. The renal tubules were identified by staining with periodic acid Schiff's reagent and hematoxylin. Moreover, immunohistochemical staining showed that NKA was distributed in the epithelial cells of proximal tubules, distal tubules, and collecting tubules, but not in glomeruli, of milkfish exposed to different ambient salinities. The highest abundance of relative NKA alpha subunit mRNA was found in FW-acclimated milkfish rather than SW- and HSW-acclimated individuals. Furthermore, relative protein amounts of renal NKA alpha and beta subunits as well as NKA-specific activity were also found to be higher in the FW group than SW and the HSW groups. This study integrated diverse levels (i.e., histological distribution, gene, protein, and specific activity) of renal NKA expression and illustrated the potential role of NKA in triggering ion reabsorption in kidneys of the marine euryhaline milkfish when acclimated to a hypotonic FW environment.

  1. Sustained and generalized extracellular fluid expansion following heat acclimation

    PubMed Central

    Patterson, Mark J; Stocks, Jodie M; Taylor, Nigel A S

    2004-01-01

    We measured intra- and extravascular body-fluid compartments in 12 resting males before (day 1; control), during (day 8) and after (day 22) a 3-week, exercise–heat acclimation protocol to investigate plasma volume (PV) changes. Our specific focus was upon the selective nature of the acclimation-induced PV expansion, and the possibility that this expansion could be sustained during prolonged acclimation. Acclimation was induced by cycling in the heat, and involved 16 treatment days (controlled hyperthermia (90 min); core temperature = 38.5°C) and three experimental exposures (40 min rest, 96.9 min (s.d. 9.5 min) cycling), each preceded by a rest day. The environmental conditions were a temperature of 39.8°C (s.d. 0.5°C) and relative humidity of 59.2% (s.d. 0.8%). On days 8 and 22, PV was expanded and maintained relative to control values (day 1: 44.0 ± 1.8; day 8: 48.8 ± 1.7; day 22: 48.8 ± 2.0 ml kg−1; P < 0.05). The extracellular fluid compartment (ECF) was equivalently expanded from control values on days 8 (279.6 ± 14.2versus 318.6 ± 14.3 ml kg−1; n = 8; P < 0.05) and 22 (287.5 ± 10.6 versus 308.4 ± 14.8 ml kg−1; n = 12; P < 0.05). Plasma electrolyte, total protein and albumin concentrations were unaltered following heat acclimation (P > 0.05), although the total plasma content of these constituents was elevated (P < 0.05). The PV and interstitial fluid (ISF) compartments exhibited similar relative expansions on days 8 (15.0 ± 2.2% versus 14.7 ± 4.1%; P > 0.05) and 22 (14.4 ± 3.6%versus 6.4 ± 2.2%; P = 0.10). It is concluded that the acclimation-induced PV expansion can be maintained following prolonged heat acclimation. In addition, this PV expansion was not selective, but represented a ubiquitous expansion of the extracellular compartment. PMID:15218070

  2. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures.

    PubMed

    Dalvi, Rishikesh S; Das, Tilak; Debnath, Dipesh; Yengkokpam, Sona; Baruah, Kartik; Tiwari, Lalchand R; Pal, Asim K

    2017-04-01

    We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26°C), 31, 33 and 36°C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36°C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36°C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36°C, and in brain and muscle at 36°C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33°C or higher temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukowiecki, L.J.; Geloeen, A.; Collet, A.J.

    1986-06-01

    The mechanisms of brown adipocyte proliferation and differentiation during cold acclimation (and/or adaptation to hyperphagia) have been studied by quantitative photonic radioautography. (/sup 3/H)thymidine was injected to warm-acclimated (25/sup 0/C) rats and to animals exposed to 5/sup 0/C for 2 days. Samples of interscapular brown adipose tissue were collected for quantitative analysis of mitotic frequencies at various periods of time (4 h-15 days) after the injection of (/sup 3/H)thymidine, the rats being maintained at the temperatures to which they were initially exposed. It was found that cold exposure for 2 days markedly enhanced mitotic activity in endothelial cells, interstitial cells,more » and brown preadipocytes rather than in fully differentiated brown adipocytes. The total tissue labeling index (percent of labeled nuclei) increased approx.70 times over control values. The authors now report that cellular labeling progressively increased in mature brown adipocytes during cold acclimation, whereas it correspondingly decreased in interstitial cells and brown preadipocytes. This indicates that the sequence of events for cellular differentiation is interstitial cells ..-->.. brown preadipocytes ..-->.. mature brown adipocytes. Remarkable, labeling frequency did not change in endothelial cells during cold acclimation demonstrating that these cells cannot be considered as progenitors of brown adipocytes. It is suggested that brown adipocyte proliferation and differentiation from interstitial cells represent the fundamental phenomena explaining the enhanced capacity of cold-acclimated and/or hyperphagic rats to respond calorigenically to catecholamines.« less

  4. Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions.

    PubMed

    Yang, Jing; Sun, Yan-Yan; An, Hong; Ji, Xiang

    2008-03-01

    We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for approximately 5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35 degrees C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1 degrees C, CTMin from 4.9 to 8.0 degrees C, and CTMax from 42.0 to 44.5 degrees C at the change-over of acclimation temperature from 20 to 35 degrees C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25 degrees C treatment (38.1 degrees C) and narrowest in the 35 degrees C treatment (36.5 degrees C), with the 20 degrees C treatment in between (37.2 degrees C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.

  5. Paradoxical anaerobism in desert pupfish.

    PubMed

    Heuton, Matt; Ayala, Luis; Burg, Chris; Dayton, Kyle; McKenna, Ken; Morante, Aldo; Puentedura, Georgina; Urbina, Natasha; Hillyard, Stanley; Steinberg, Spencer; van Breukelen, Frank

    2015-12-01

    In order to estimate metabolic demands of desert pupfish for conservation purposes, we measured oxygen consumption in fish acclimated to the ecologically relevant temperatures of 28 or 33°C. For these experiments, we used fish derived from a refuge population of Devils Hole pupfish (Cyprinodon diabolis). Measurement of routine oxygen consumption (V̇O2,routine) revealed some 33°C-acclimated fish (10% of 295 assayed fish) periodically exhibited periods of no measurable oxygen consumption despite available ambient oxygen tensions that were above the critical PO2. We call this phenomenon paradoxical anaerobism. The longest observed continuous bout with no oxygen consumption was 149 min, although typical bouts were much shorter. Fish maintained normal posture and ventilation rate (>230 ventilations per minute) during paradoxical anaerobism. Fish rarely demonstrated a compensatory increase in oxygen use following a period of paradoxical anaerobism. In contrast, only one out of 262 sampled fish acclimated at 28°C spontaneously demonstrated paradoxical anaerobism. Muscle lactate concentration was not elevated during periods of paradoxical anaerobism. However, the amount of ethanol released by the 33°C-acclimated fish was 7.3 times greater than that released by the 28°C acclimation group, suggesting ethanol may be used as an alternative end product of anaerobic metabolism. Exposure to exogenous ethanol, in concentrations as low as 0.1%, produced periods of paradoxical anaerobism even in 28°C-acclimated fish. © 2015. Published by The Company of Biologists Ltd.

  6. Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen1

    PubMed Central

    Welling, Annikki; Moritz, Thomas; Palva, E. Tapio; Junttila, Olavi

    2002-01-01

    Temperate zone woody plants cold acclimate in response to both short daylength (SD) and low temperature (LT). We were able to show that these two environmental cues induce cold acclimation independently by comparing the wild type (WT) and the transgenic hybrid aspen (Populus tremula × Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativa) PHYTOCHROME A gene. Line 22 was not able to detect the SD and, consequently, did not stop growing in SD conditions. This resulted in an impaired freezing tolerance development under SD. In contrast, exposure to LT resulted in cold acclimation of line 22 to a degree comparable with the WT. In contrast to the WT, line 22 could not dehydrate the overwintering tissues or induce the production of dehydrins (DHN) under SD conditions. Furthermore, abscisic acid (ABA) content of the buds of line 22 were the same under SD and long daylength, whereas prolonged SD exposure decreased the ABA level in the WT. LT exposure resulted in a rapid accumulation of DHN in both the WT and line 22. Similarly, ABA content increased transiently in both the WT and line 22. Our results indicate that phytochrome A is involved in photoperiodic regulation of ABA and DHN levels, but at LT they are regulated by a different mechanism. Although SD and LT induce cold acclimation independently, ABA and DHN may play important roles in both modes of acclimation. PMID:12177476

  7. Study of factors affecting growth and cold acclimation of Vitis callus cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, L.

    1987-01-01

    In vitro grape tissue culture initiation, growth, and cold acclimation were studied. Factors involved were genotypes, media, plant growth regulators, age, light, temperature, antioxidant, clearing and adsorbing agents, sucrose level, osmotic potential, ABA, chilling and freezing treatments. Murashige and Skoog (MS) medium containing 1 ..mu..M 2,4-d + 0.1 uM Ba, MS containing 1 uM 2,4-D, and woody plant medium containing 1 uM 2,4-D + 0.1 uM BA produced abundant callus tissue for most grape genotypes; either WPM or MS containing 1 uM BA stimulated shoot growth in all the 12 genotypes tested. Adding 1 uM abscisic acid (ABA) to themore » B5 medium with 1 uM 2,4-D and 0.5 uM BA enhanced growth and quality of Chancellor callus. /sup 3/H-ABA was taken up actively by callus tissue at 12 days after subculture, but by 20 d this effect disappeared. When /sup 14/C-sucrose was added to the medium. /sup 14/C level of cells reached a plateau after 48 h; this plateau was higher if ABA was also present in the medium. Cells on media containing ABA were larger in size, lighter in color, and more loosely connected.« less

  8. Chlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation

    PubMed Central

    Jokel, Martina; Kosourov, Sergey; Battchikova, Natalia; Tsygankov, Anatoly A.; Aro, Eva Mari; Allahverdiyeva, Yagut

    2015-01-01

    The flavodiiron proteins (FDPs) are involved in the detoxification of oxidative compounds, such as nitric oxide (NO) or O2 in Archaea and Bacteria. In cyanobacteria, the FDPs Flv1 and Flv3 are essential in the light-dependent reduction of O2 downstream of PSI. Phylogenetic analysis revealed that two genes (flvA and flvB) in the genome of Chlamydomonas reinhardtii show high homology to flv1 and flv3 genes of the cyanobacterium Synechocystis sp. PCC 6803. The physiological role of these FDPs in eukaryotic green algae is not known, but it is of a special interest since these phototrophic organisms perform oxygenic photosynthesis similar to higher plants, which do not possess FDP homologs. We have analyzed the levels of flvA and flvB transcripts in C. reinhardtii cells under various environmental conditions and showed that these genes are highly expressed under ambient CO2 levels and during the early phase of acclimation to sulfur deprivation, just before the onset of anaerobiosis and the induction of efficient H2 photoproduction. Importantly, the increase in transcript levels of the flvA and flvB genes was also corroborated by protein levels. These results strongly suggest the involvement of FLVA and FLVB proteins in alternative electron transport. PMID:26063391

  9. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    NASA Technical Reports Server (NTRS)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  10. Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass.

    PubMed

    Zimmerman, R. C.; Kohrs, D. G.; Steller, D. L.; Alberte, R. S.

    1997-10-01

    Seagrasses, although well adapted for submerged existence, are CO2-limited and photosynthetically inefficient in seawater. This leads to high light requirements for growth and survival and makes seagrasses vulnerable to light limitation. We explored the long-term impact of increased CO2 availability on light requirements, productivity, and C allocation in eelgrass (Zostera marina L.). Enrichment of seawater CO2 increased photosynthesis 3-fold, but had no long-term impact on respiration. By tripling the rate of light-saturated photosynthesis, CO2 enrichment reduced the daily period of irradiance-saturated photosynthesis (Hsat) that is required for the maintenance of positive whole-plant C balance from 7 to 2.7 h, allowing plants maintained under 4 h of Hsat to perform like plants growing in unenriched seawater with 12 h of Hsat. Eelgrass grown under 4 h of Hsat without added CO2 consumed internal C reserves as photosynthesis rates and chlorophyll levels dropped. Growth ceased after 30 d. Leaf photosynthesis, respiration, chlorophyll, and sucrose-phosphate synthase activity of CO2-enriched plants showed no acclimation to prolonged enrichment. Thus, the CO2-stimulated improvement in photosynthesis reduced light requirements in the long term, suggesting that globally increasing CO2 may enhance seagrass survival in eutrophic coastal waters, where populations have been devastated by algal proliferation and reduced water-column light transparency.

  11. The effect of visible light stress on chemical signaling in two life stages of Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Valentin-Alvarado, L.; Cooney, E.; Bright, K.; Strom, S.

    2016-02-01

    The cosmopolitan marine phytoplankton species Emiliania huxleyi presents a digenetic heteromorphic life cycle, with the non-motile diploid phase bearing coccoliths and the flagellated haploid phase being non-calcified. E. huxleyi contains high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS). DMSP is a multifactorial compound; it acts as a compatible solute in cell metabolism and as a chemical signal influencing bacterial and protist behavior. In the atmosphere DMS enhances cloud formation influencing climate. However, little has been documented on E. huxleyi chemical signal responses to high light stress, and how this relates to the heteromorphic life cycle. To this end, low light acclimated cultures of both haploid and diploid E. huxleyi were exposed to high light for 2 hr and allowed to recover in low light for 2 hr. During and after these treatments, growth, photosynthetic efficiency (Fv/Fm), DMSP (intracellular and released) and cell chlorophyll content were measured. Our preliminary results suggest that presence of high light decreased Fv/Fm to a greater extent in haploid than in diploid (calcified) cells, while recovery of Fv/Fm was rapid in both life stages. The chlorophyll content and intracellular DMSP was not different in both life stages. However, the dissolved DMSP increased after light stress in diploid cells suggesting a possible advantage as antioxidant protection or another cellular function, such as grazing protection in this life stage.

  12. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  13. Coping with daily thermal variability: behavioural performance of an ectotherm model in a warming world.

    PubMed

    Rojas, José M; Castillo, Simón B; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco

    2014-01-01

    Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24 ± 0, 24 ± 4 and 24 ± 8 °C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, --i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance.

  14. Coping with Daily Thermal Variability: Behavioural Performance of an Ectotherm Model in a Warming World

    PubMed Central

    Rojas, José M.; Castillo, Simón B.; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco

    2014-01-01

    Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24±0, 24±4 and 24±8°C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, – i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance. PMID:25207653

  15. A new route of bioaugmentation by allochthonous and autochthonous through biofilm bacteria for soluble chemical oxygen demand removal of old leachate.

    PubMed

    Alijani Ardeshir, Rashid; Rastgar, Sara; Peyravi, Majid; Jahanshahi, Mohsen; Shokuhi Rad, Ali

    2017-10-01

    Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P < .05). In the biofilm form, the aerobic condition and the use of acclimated bacteria from leachate and sewage increased the removal efficiency of SCOD in comparison with other biofilm groups (P < .05). Three species of bacteria, including Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa were identified in the biofilm from leachate and sewage. Bioaugmentation technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.

  16. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses.

    PubMed

    Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-27

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  17. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses

    NASA Astrophysics Data System (ADS)

    Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-01

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  18. Plasticity of muscle function in a thermoregulating ectotherm (Crocodylus porosus): biomechanics and metabolism.

    PubMed

    Seebacher, Frank; James, Rob S

    2008-03-01

    Thermoregulation and thermal sensitivity of performance are thought to have coevolved so that performance is optimized within the selected body temperature range. However, locomotor performance in thermoregulating crocodiles (Crocodylus porosus) is plastic and maxima shift to different selected body temperatures in different thermal environments. Here we test the hypothesis that muscle metabolic and biomechanical parameters are optimized at the body temperatures selected in different thermal environments. Hence, we related indices of anaerobic (lactate dehydrogenase) and aerobic (cytochrome c oxidase) metabolic capacities and myofibrillar ATPase activity to the biomechanics of isometric and work loop caudofemoralis muscle function. Maximal isometric stress (force per muscle cross-sectional area) did not change with thermal acclimation, but muscle work loop power output increased with cold acclimation as a result of shorter activation and relaxation times. The thermal sensitivity of myofibrillar ATPase activity decreased with cold acclimation in caudofemoralis muscle. Neither aerobic nor anaerobic metabolic capacities were directly linked to changes in muscle performance during thermal acclimation, although there was a negative relationship between anaerobic capacity and isometric twitch stress in cold-acclimated animals. We conclude that by combining thermoregulation with plasticity in biomechanical function, crocodiles maximize performance in environments with highly variable thermal properties.

  19. Molecular processes of transgenerational acclimation to a warming ocean

    NASA Astrophysics Data System (ADS)

    Veilleux, Heather D.; Ryu, Taewoo; Donelson, Jennifer M.; van Herwerden, Lynne; Seridi, Loqmane; Ghosheh, Yanal; Berumen, Michael L.; Leggat, William; Ravasi, Timothy; Munday, Philip L.

    2015-12-01

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  20. Circadian Behavioral Study: LED vs Cool White Fluorescent - 0.1, 1, 10, 40, 80 lux. Part 2

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Syrkin, N.; Mele, G.

    2000-01-01

    Currently, the light source most commonly used in animal habitat lighting is cool white fluorescent (CWF) light. It was the objective of this study to evaluate a novel LED light source for use in animal habitat lighting by comparing its effectiveness to CWF light in producing and maintaining a normal circadian entrainment. The LED and CWF lights had similar spectral power distributions. Sprague-Dawley rats (175-350 g) were kept individually in metabolic cages, under a strict lighting control: 4 days of acclimation at 12:12 LD, 14 days of 12:12 LD, 14 days of 24:0 LD (free-run), and finally 12:12 LD. Food and water were provided ad libitum. Three behavioral parameters were monitored continuously: gross locomotor activity, drinking, and feeding. Combined mean free run periods (tau) were (mean +/- SEM): 24.6 +/- 0.1 and 24.7 +/- 0.2 at 0.1 lux, 25.5 +/- 0.1 and 25.7 +/- 0.1 at 1.0 lux, 25.3 +/- 0.2 and 25.4 +/- 0.2 at 10 lux, 25.8 +/- 0.1 and 25.9 +/- 0.1 at 40 lux, and 25.9 +/- 0.1 and 25.9 +/- 0.1 at 80 lux, CWF and LED respectively. ANOVA found a significant effect (p < 0.05) due to light level, but no difference in tau between rats exposed to constant CWF light and rats exposed to constant LED light. This study has shown that LED light can produce the same entrainment pattern as a conventional CWT light at similar intensities (0.1, 1, 10, 40, and 80 lux). LED light sources may be a suitable replacement for conventional light sources used in animal habitat lighting while providing many mechanical and economical advantages.

  1. Mie Scattering of Growing Molecular Contaminants

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2007-01-01

    Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers and to produce many roughly hemispherical "islands" of contamination on the surface. The mathematics of the hemispherical scattering is simplified by introducing a Virtual source below the plane of the optic, in this case a mirror, allowing the use of Mie theory to produce a solution for the resulting sphere .in transmission. Experimentally, a fixed wavelength in the vacuum ultraviolet was used as the illumination source and scattered light from the polished and coated glass mirrors was detected at a fixed angle as the contamination islands grew in time.

  2. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes.

    PubMed

    Guy, Joshua H; Deakin, Glen B; Edwards, Andrew M; Miller, Catherine M; Pyne, David B

    2015-03-01

    Extreme environmental conditions present athletes with diverse challenges; however, not all sporting events are limited by thermoregulatory parameters. The purpose of this leading article is to identify specific instances where hot environmental conditions either compromise or augment performance and, where heat acclimation appears justified, evaluate the effectiveness of pre-event acclimation processes. To identify events likely to be receptive to pre-competition heat adaptation protocols, we clustered and quantified the magnitude of difference in performance of elite athletes competing in International Association of Athletics Federations (IAAF) World Championships (1999-2011) in hot environments (>25 °C) with those in cooler temperate conditions (<25 °C). Athletes in endurance events performed worse in hot conditions (~3 % reduction in performance, Cohen's d > 0.8; large impairment), while in contrast, performance in short-duration sprint events was augmented in the heat compared with temperate conditions (~1 % improvement, Cohen's d > 0.8; large performance gain). As endurance events were identified as compromised by the heat, we evaluated common short-term heat acclimation (≤7 days, STHA) and medium-term heat acclimation (8-14 days, MTHA) protocols. This process identified beneficial effects of heat acclimation on performance using both STHA (2.4 ± 3.5 %) and MTHA protocols (10.2 ± 14.0 %). These effects were differentially greater for MTHA, which also demonstrated larger reductions in both endpoint exercise heart rate (STHA: -3.5 ± 1.8 % vs MTHA: -7.0 ± 1.9 %) and endpoint core temperature (STHA: -0.7 ± 0.7 % vs -0.8 ± 0.3 %). It appears that worthwhile acclimation is achievable for endurance athletes via both short-and medium-length protocols but more is gained using MTHA. Conversely, it is also conceivable that heat acclimation may be counterproductive for sprinters. As high-performance athletes are often time-poor, shorter duration protocols may be of practical preference for endurance athletes where satisfactory outcomes can be achieved.

  3. Na⁺/K⁺-ATPase α1 mRNA expression in the gill and rectal gland of the Atlantic stingray, Dasyatis sabina, following acclimation to increased salinity.

    PubMed

    Evans, Andrew N; Lambert, Faith N

    2015-06-05

    The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na(+)/K(+)-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na(+)/K(+)-ATPase activity and abundance in response to salinity acclimation. However, while the transcriptional regulation of Na(+)/K(+)-ATPase in the teleost gill has been well documented the potential for mRNA regulation to facilitate rectal gland plasticity during salinity acclimation in elasmobranchs has not been examined. Therefore, in this study we acclimated Atlantic stingrays, Dasyatis sabina (Lesueur) from 11 to 34 ppt salinity over 3 days, and examined changes in plasma components as well as gill and rectal gland Na(+)/K(+)-ATPase α1 (atp1a1) mRNA expression. Acclimation to increased salinity did not affect hematocrit but resulted in significant increases in plasma osmolality, chloride and urea. Rectal gland atp1a1 mRNA expression was higher in 34 ppt-acclimated D. sabina vs. There was no significant change in gill atp1a1 mRNA expression, however mRNA expression of this gene in the gill and rectal gland were negatively correlated. This study demonstrates regulation of atp1a1 in the elasmobranch salt-secreting gland in response to salinity acclimation and a negative relationship between rectal gland and gill atp1a1 expression. These results support the hypothesis that the gill and rectal gland play opposing roles in ion balance with the gill potentially facilitating ion uptake in hypoosmotic environments. Future studies should further examine this possibility as well as potential differences in the regulation of Na(+)/K(+)-ATPase gene expression between euryhaline and stenohaline elasmobranch species.

  4. Passive heat acclimation improves skeletal muscle contractility in humans.

    PubMed

    Racinais, S; Wilson, M G; Périard, J D

    2017-01-01

    The aim of this study was to investigate the effect of repeated passive heat exposure (i.e., acclimation) on muscle contractility in humans. Fourteen nonheat-acclimated males completed two trials including electrically evoked twitches and voluntary contractions in thermoneutral conditions [Cool: 24°C, 40% relative humidity (RH)] and hot ambient conditions in the hyperthermic state (Hot: 44-50°C, 50% RH) on consecutive days in a counterbalanced order. Rectal temperature was ~36.5°C in Cool and was maintained at ~39°C throughout Hot. Both trials were repeated after 11 days of passive heat acclimation (1 h per day, 48-50°C, 50% RH). Heat acclimation decreased core temperature in Cool (-0.2°C, P < 0.05), increased the time required to reach 39°C in Hot (+9 min, P < 0.05) and increased sweat rate in Hot (+0.7 liter/h, P < 0.05). Moreover, passive heat acclimation improved skeletal muscle contractility as evidenced by an increase in evoked peak twitch amplitude both in Cool (20.5 ± 3.6 vs. 22.0 ± 4.0 N·m) and Hot (20.5 ± 4.7 vs. 22.0 ± 4.0 N·m) (+9%, P < 0.05). Maximal voluntary torque production was also increased both in Cool (145 ± 42 vs. 161 ± 36 N·m) and Hot (125 ± 36 vs. 145 ± 30 N·m) (+17%, P < 0.05), despite voluntary activation remaining unchanged. Furthermore, the slope of the relative torque/electromyographic linear relationship was improved postacclimation (P < 0.05). These adjustments demonstrate that passive heat acclimation improves skeletal muscle contractile function during electrically evoked and voluntary muscle contractions of different intensities both in Cool and Hot. These results suggest that repeated heat exposure may have important implications to passively maintain or even improve muscle function in a variety of performance and clinical settings. Copyright © 2017 the American Physiological Society.

  5. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Understanding and quantifying foliar temperature acclimation for Earth System Models

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly simulating leaf carbon exchange responses to future warming. Therefore, our data, if used to parameterize large-scale models, are likely to provide an even greater improvement in model performance, resulting in more reliable projections of future carbon-clime feedbacks.

  8. Drinking and water balance during exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  9. Effects of 4-chlorophenol wastewater treatment on sludge acute toxicity, microbial diversity and functional genes expression in an activated sludge process.

    PubMed

    Zhao, Jianguo; Li, Yahe; Li, Yu; Yu, Zeya; Chen, Xiurong

    2018-05-31

    In this study, the effects of 4-chlorophenol (4-CP) wastewater treatment on sludge acute toxicity of luminescent bacteria, microbial diversity and functional genes expression of Pseudomonas were explored. Results showed that in the entire operational process, the sludge acute toxicity acclimated by 4-CP in a sequencing batch bioreactor (SBR) was significantly higher than the control SBR without 4-CP. The dominant phyla in acclimated SBR were Proteobacteria and Firmicutes, which also existed in control SBR. Some identified genera in acclimated SBR were responsible for 4-CP degradation. At the stable operational stages, the functional genes expression of Pseudomonas in acclimated SBR was down-regulated at the end of SBR cycle, and their expression mechanisms needed further research. This study provides a theoretical support to comprehensively understand the sludge performance in industrial wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Heat Acclimation and Water-Immersion Deconditioning: Fluid Electrolyte Shifts with Tilting

    NASA Technical Reports Server (NTRS)

    Conertino, V. A.; Shvartz, E.; Haines, R. F.; Bhattacharya, A.; Superinde, S. J.; Keil, L. C.; Greenlean, J. E.

    1977-01-01

    One of the major problems encountered by astronauts exposed to space flight is a reduction of orthostatic tolerance on return to earth. Many studies have been performed in an attempt to define the physiologic mechanism of orthostatic intolerance and to develop some remedial treatment. Exercise training does not appear to enhance orthostatic tolerance . In contrast, heat acclimation (i.e., exercise training in the heat) has been reported to enhance orthostatic tolerance. Since plasma volume increases with both exercise training and heat acclimation, it is not clear what role fluid and electrolytes play in determining tolerance to hydrostatic pressure. The purpose of this study was to compare the effects of exercise training in a cool environment and heat acclimation on resting plasma volume (PV) and the ensuing fluid and electrolyte shifts which occur during head-up tilting before and after water immersion deconditioning.

  11. Effectiveness of exercise-heat acclimation for preventing heat illness in the workplace.

    PubMed

    Yamazaki, Fumio

    2013-09-01

    The incidence of heat-related illness in the workplace is linked to whether or not workers have acclimated to a hot environment. Heat acclimation improves endurance work performance in the heat and thermal comfort at a given work rate. These improvements are achieved by increased sweating and skin blood flow responses, better fluid balance and cardiovascular stability. As a practical means of acclimatizing the body to heat stress, daily aerobic exercise training is recommended since thermoregulatory capacity and blood volume increase with physical fitness. In workers wearing personal protective suits in hot environments, however, little psychophysiological benefit is received from short-term exercise training and/or heat acclimation because of the ineffectiveness of sweating for heat dissipation and the aggravation of thermal discomfort with the accumulation of sweat within the suit. For a manual laborer who works under uncompensable heat stress, better management of the work rate, the work environment and health is required.

  12. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.

    PubMed

    Cho, Hyeyoung; Ra, Chae-Hun; Kim, Sung-Koo

    2014-02-28

    For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

  13. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Procaccini, Gabriele; Ruocco, Miriam; Marín-Guirao, Lázaro; Dattolo, Emanuela; Brunet, Christophe; D'Esposito, Daniela; Lauritano, Chiara; Mazzuca, Silvia; Serra, Ilia Anna; Bernardo, Letizia; Piro, Amalia; Beer, Sven; Björk, Mats; Gullström, Martin; Buapet, Pimchanok; Rasmusson, Lina M.; Felisberto, Paulo; Gobert, Sylvie; Runcie, John W.; Silva, João; Olivé, Irene; Costa, Monya M.; Barrote, Isabel; Santos, Rui

    2017-02-01

    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.

  14. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica

    PubMed Central

    Procaccini, Gabriele; Ruocco, Miriam; Marín-Guirao, Lázaro; Dattolo, Emanuela; Brunet, Christophe; D’Esposito, Daniela; Lauritano, Chiara; Mazzuca, Silvia; Serra, Ilia Anna; Bernardo, Letizia; Piro, Amalia; Beer, Sven; Björk, Mats; Gullström, Martin; Buapet, Pimchanok; Rasmusson, Lina M.; Felisberto, Paulo; Gobert, Sylvie; Runcie, John W.; Silva, João; Olivé, Irene; Costa, Monya M.; Barrote, Isabel; Santos, Rui

    2017-01-01

    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems. PMID:28211527

  15. Bioactive Compounds in Wild, In vitro Obtained, Ex vitro Adapted, and Acclimated Plants of Centaurea davidovii (Asteraceae).

    PubMed

    Trendafilova, Antoaneta; Jadranin, Milka; Gorgorov, Rossen; Stanilova, Marina

    2015-06-01

    In vitro cultures were initiated from a single seed of Centaurea davidovii. Whole plantlets were regenerated and cultivated for several months on agar-solidified nutrient media differing by their composition: basal MS medium, MS medium supplemented with plant growth regulators, and liquid MS medium. Plantlets were ex vitro adapted and successfully acclimated to open-air conditions; flowering was observed in some individuals in the first summer, and mass flowering during the second summer. The contents of the total flavonoids and the total phenolic compounds were determined spectrophotometrically in the leaves of the in vitro plantlets cultured on different media, and then compared with those in the leaves of the wild plants and in the leaves of the acclimated plants of the field plot. The sesquiterpene lactone 8α-(5'-hydroxyangeloyl)-salonitenolide was determined by HPLC in leaf samples of C. davidovii wild plants, in vitro obtained plantlets and ex vitro acclimated plants in the greenhouse and on the experimental field plot. The composition of the nutrient medium influenced the contents of all studied bioactive substances. The highest concentrations of all tested secondary metabolites were detected in the leaves of the acclimated plants during mass flowering, the content of the lactone reaching 56.2 mg/g DW, which was several times more than in the other leaf samples. The obtained results revealed both the effectiveness of biotechnological methods for propagation and conservation of rare and endangered plant species, and the possibility to use C. davidovii plants ex vitro acclimated to field conditions as a source of secondary metabolites with potential biological activity.

  16. Role of glucose-6-phosphate dehydrogenase in freezing-induced freezing resistance of Populus suaveolens.

    PubMed

    Lin, Shan-Zhi; Zhang, Zhi-Yi; Liu, Wen-Feng; Lin, Yuan-Zhen; Zhang, Qian; Zhu, Bao-Qing

    2005-02-01

    To explore the role of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in the enhancement of freezing resistance induced by freezing acclimation, G6PDH was purified from the leaves of 8-week-old Populus suaveolens cuttings. The G6PDH activity in the absence or the presence of reduced dithiothreitol (DTT(red)) were determined, and the changes in superoxide dismutase (SOD), peroxides (POD) and cytosolic G6PDH activities, malondial-dehyde (MDA) content as well as freezing resistance (expressed as LT(50)) of P. suaveolens cuttings during freezing acclimation at -20 degrees C were investigated. The results showed that the purified G6PDH was probably located in the cytosol of P. suaveolens. Freezing acclimation increased the activities of SOD, POD and cytosolic G6PDH, and decreased the MDA content and LT(50) of cuttings, while 2 d of de-acclimation at 25 degrees C resulted in a decrease in SOD, POD and cytosolic G6PDH activities, and caused an increase in MDA content and LT(50). The change in cytosolic G6PDH activity was found to be closely correlated to the levels of SOD, POD and MDA, and to the degree of freezing resistance of cuttings during freezing acclimation. It is suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation is related to the distinct increase in cytosolic G6PDH activity, which may be involved in the activation of SOD and POD, and the induction of freezing resistance of cuttings.

  17. Can acclimation of thermal tolerance, in adults and across generations, act as a buffer against climate change in tropical marine ectotherms?

    PubMed

    Morley, S A; Nguyen, K D; Peck, L S; Lai, C-H; Tan, K S

    2017-08-01

    Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F 1 and F 2 generations reared at a subset of the same incubation temperatures. The increase in CT max (measured through loss of key behavioural metrics) of F 0 adults across the incubation temperature range 25.4-33.4°C was low: 0.00°C (V. cochlidium), 0.05°C (S. amaryllis) and 0.06°C (A. amphitrite) per 1°C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4-33.4°C, the increase in CT max in the F 1 (0.30°C) and F 2 (0.15°C) generations of A. amphitrite was greater than in the F 0 (0.10°C). These correspond to ARR's of 0.03°C (F 0 ), 0.08°C (F 1 ) and 0.04°C (F 2 ), respectively. The variability in CT max between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Thermal acclimation and nutritional history affect the oxidation of different classes of exogenous nutrients in Siberian hamsters, Phodopus sungorus.

    PubMed

    McCue, Marshall D; Voigt, Christian C; Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-11-01

    During acclimatization to winter, changes in morphology and physiology combined with changes in diet may affect how animals use the nutrients they ingest. To study (a) how thermal acclimation and (b) nutritional history affect the rates at which Siberian hamsters (Phodopus sungorus) oxidize different classes of dietary nutrients, we conducted two trials in which we fed hamsters one of three (13) C-labeled compounds, that is, glucose, leucine, or palmitic acid. We predicted that under acute cold stress (3 hr at 2°C) hamsters previously acclimated to cold temperatures (10°C) for 3 weeks would have higher resting metabolic rate (RMR) and would oxidize a greater proportion of dietary fatty acids than animals acclimated to 21°C. We also investigated how chronic nutritional stress affects how hamsters use dietary nutrients. To examine this, hamsters were fed four different diets (control, low protein, low lipid, and low-glycemic index) for 2 weeks. During cold challenges, hamsters previously acclimated to cold exhibited higher thermal conductance and RMR, and also oxidized more exogenous palmitic acid during the postprandial phase than animals acclimated to 21°C. In the nutritional stress trial, hamsters fed the low protein diet oxidized more exogenous glucose, but not more exogenous palmitic acid than the control group. The use of (13) C-labeled metabolic tracers combined with breath testing demonstrated that both thermal and nutritional history results in significant changes in the extent to which animals oxidize dietary nutrients during the postprandial period. © 2014 Wiley Periodicals, Inc.

  19. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation

    PubMed Central

    Semones, Molly C.; Kuhn, Donald E.; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L.

    2014-01-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess LPO susceptibility, rates of LPO were quantified with the fluorescent probe C11-BODIPY in mitochondria and sarcoplasmic reticulum from oxidative and glycolytic muscle of striped bass (Morone saxatilis) acclimated to 7°C and 25°C. We also measured phospholipid compositions, contents of LPO products [i.e., individual classes of phospholipid hydroperoxides (PLOOH)], and two membrane antioxidants. Despite phospholipid headgroup and acyl chain remodeling, these alterations do not counter the effect of temperature on LPO rates (i.e., LPO rates are generally not different among acclimation groups when normalized to phospholipid content and compared at a common temperature). Although absolute levels of PLOOH are higher in muscles from cold- than warm-acclimated fish, this difference is lost when PLOOH levels are normalized to total phospholipid. Contents of vitamin E and two homologs of ubiquinone are more than four times higher in mitochondria prepared from oxidative muscle of warm- than cold-acclimated fish. Collectively, our data demonstrate that although phospholipid remodeling does not provide a means for offsetting thermal effects on rates of LPO, differences in phospholipid quantity ensure a constant proportion of LPO products with temperature variation. PMID:25519739

  20. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus

    PubMed Central

    Seale, Lucia A.; Gilman, Christy L.; Moorman, Benjamin P.; Berry, Marla J.; Grau, E. Gordon; Seale, Andre P.

    2014-01-01

    Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity. PMID:24854764

  1. The Shift of Thermoneutral Zone in Striped Hamster Acclimated to Different Temperatures

    PubMed Central

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Liu, Quan-Sheng; Zheng, Wei-Hong; Liu, Jin-Song; Wang, De-Hua

    2014-01-01

    Temperature affects all biological functions and will therefore modulate ecologically significant interactions between animals and their environment. Here, we examined the effect of ambient temperature (Ta) on the thermal biology and energy budget in striped hamsters acclimated to cold (5°C), warm (21°C) and hot temperatures (31°C). Thermoneutral zone (TNZ) was 22.5–32.5°C, 25–32.5°C and 30–32.5°C in the cold-, warm- and hot-acclimated hamsters, respectively. The cold acclimation decreased the lower critical temperature and made the TNZ wider, and hot exposure elevated the lower critical temperature, resulting in a narrow TNZ. Within the TNZ, cold-acclimated hamsters showed a significantly higher rate of metabolism and thermogenesis than those acclimated to hot temperature. Digestive enzymes activities, including intestinal sucrase, maltase, L-alanine aminopeptidase-N and leucine aminopeptidase were higher in the cold than in the hot. The changes in metabolic rate and thermogenesis at different temperatures were in parallel with cytochrome c oxidase activity and uncoupling protein 1 gene expression of brown adipose tissue. This suggests that the shift of the lower critical temperature of TNZ is possibly associated with the rate of metabolism and thermogenesis, as well as with the digestive capacity of the gastrointestinal tract at different Ta. The upper critical temperature of TNZ may be independent of the changes in Ta. The changes of lower critical temperature of TNZ are an important strategy in adaption to variations of Ta. PMID:24400087

  2. The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.)--variation over the growing season and along the vertical light gradient in the canopy.

    PubMed

    Hansen, Ute; Schneiderheinze, Jenny; Stadelmann, Simone; Rank, Barbara

    2003-01-01

    This study was performed in order to investigate whether the actual requirement for defence against photo-oxidative stress is reflected by the alpha-tocopherol (alpha-Toco) content in leaves of pedunculate oak (Quercus robur L.). Antioxidants and pigments were quantified in leaves that were collected on six days between May and September 2000 in a mixed pine/oak forest at canopy positions differing in light environment. Pools of hydrophilic antioxidants and photo-protective xanthophyll cycle pigments (V + A + Z) reflected the anti-oxidative demand, as these pools increased with the average light intensity to which the leaves were acclimated. The photo-protective demand was not the determinant of the alpha-Toco content of oak leaves, as (1) foliage of a young oak, exposed to low light levels in the understorey, contained higher amounts of this lipophilic antioxidant than leaves sampled from semimature oaks at canopy positions with a similar light environment, and (2) a strong increase in the alpha-Toco content over the growing season was detected at each investigated crown position, whereas the V + A + Z pool did not show a concomitant accumulation during leaf ageing. The rate of alpha-Toco accumulation differed distinctly between samples taken at different canopy positions.

  3. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation?

    PubMed

    Galle, Alexander; Florez-Sarasa, Igor; Tomas, Magdalena; Pou, Alicia; Medrano, Hipolito; Ribas-Carbo, Miquel; Flexas, Jaume

    2009-01-01

    While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during recovery from water stress, but its role is strongly dependent on the impact of additional environmental factors.

  4. Bounds on light gluinos from the BEBC beam dump experiment

    NASA Astrophysics Data System (ADS)

    Cooper-Sarkar, A. M.; Parker, M. A.; Sarkar, S.; Aderholz, M.; Bostock, P.; Clayton, E. F.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Schmid, P.; Schmitz, N.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Walck, Ch.; Wachsmuth, H.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require ifm g˜$̆4 GeV for ifm q˜ - minw.

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operations and Maintenance, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2005-02-01

    There were 2 acclimation periods at the Catherine Creek Acclimation Facility (CCAF) in 2004. During the early acclimation period, 92,475 smolts were delivered from Lookingglass Hatchery (LGH) on 8 March. This group was comprised entirely of progeny from the captive broodstock program. The size of the fish at delivery was 23.1 fish/lb. Volitional releases began 15 March 2004 and ended 22 March with an estimated total (based on PIT tag detections of 1,475) of 8,785 fish leaving the raceways. This was 9.5% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourly detectionsmore » of PIT-tagged fish showed that most of the fish left between 1200 and 2000 hours which was similar to the hourly temperature profile. The size of the fish just before the volitional release was 23.1 and the size of the fish remaining just before the forced release was 23.5 fish/lb. The total mortality for the acclimation period was 62 (0.07 %). The total number of fish released from the acclimation facility during the early period was 92,413. During the second acclimation period 70,977 smolts were delivered from LGH on 24 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 23.4 fish/lb. Volitional releases began 30 March 2004 and ended 12 April with an estimated total (based on PIT tag detections of 3,632) of 49,147 fish leaving the raceways. This was 69.2% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourly detections of PIT-tagged fish showed that most of the fish left between 1200 and 2000 hours which was similar to the hourly temperature profile. The size of the fish just before the volitional release was 23.4 and the size of the fish remaining just before the forced release was 23.9 fish/lb. The total mortality for the acclimation period was 18 (0.03 %). The total number of fish released from the acclimation facility during the late period was 70,959.« less

  6. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters.

    PubMed

    Chandrasekar, S; Nich, T; Tripathi, G; Sahu, N P; Pal, A K; Dasgupta, S

    2014-06-01

    The present study was conducted to elucidate the osmoregulatory ability of the fish pearl spot (Etroplus suratensis) to know the scope of this species for aquaculture under various salinities. Juvenile pearl spot were divided into three groups and acclimated to freshwater (FW), brackish water (BW) or seawater (SW) for 15 days. The fish exhibited effective salinity tolerance under osmotic challenges. Although the plasma osmolality and Na(+), K(+) and Cl(-) levels increased with the increasing salinities, the parameters remained within the physiological range. The muscle water contents were constant among FW-, BW- and SW-acclimated fish. Two Na+/K+-ATPase α-isoforms (NKA α) were expressed in gills during acclimation in FW, BW and SW. Abundance of one isoform was up-regulated in response to seawater acclimation, suggesting its role in ion secretion similar to NKA α1b, while expression of another isoform was simultaneously up-regulated in response to both FW and SW acclimation, suggesting the presence of isoforms switching phenomenon during acclimation to different salinities. Nevertheless, NKA enzyme activities in the gills of the SW and FW individuals were higher (p < 0.05) than in BW counterparts. Immunohistochemistry revealed that Na(+)/K(+)-ATPase immunoreactive (NKA-IR) cells were mainly distributed in the interlamellar region of the gill filaments in FW groups and in the apical portion of the filaments in BW and SW groups. The number of NKA-IR cells in the gills of the FW-acclimated fish was almost similar to that of SW individuals, which exceeded that of the BW individuals. The NKA-IR cells of BW and SW were bigger in size than their FW counterparts. Besides, the relative abundance of branchial Na(+)/K(+)/2Cl(-) co-transporter showed stronger evidence in favor of involvement of this protein in hypo-osmoregulation, requiring ion secretion by the chloride cells. To the best of our knowledge, this is the first study reporting the wide salinity tolerance of E. suratensis involving differential activation of ion transporters and thereby suggesting its potential as candidate for fish farming under different external salinities.

  7. The short-term response of Arabidopsis thaliana (C3) and Zea mays (C4) chloroplasts to red and far red light.

    PubMed

    Zienkiewicz, Maksymilian; Drożak, Anna; Wasilewska, Wioleta; Bacławska, Ilona; Przedpełska-Wąsowicz, Ewa; Romanowska, Elżbieta

    2015-12-01

    Light quality has various effects on photochemistry and protein phosphorylation in Zea mays and Arabidopsis thaliana thylakoids due to different degrees of light penetration across leaves and redox status in chloroplasts. The effect of the spectral quality of light (red, R and far red, FR) on the function of thylakoid proteins in Zea mays and Arabidopsis thaliana was investigated. It was concluded that red light stimulates PSII activity in A. thaliana thylakoids and in maize bundle sheath (BS) thylakoids, but not in mesophyll (M) thylakoids. The light quality did not change PSI activity in M thylakoids of maize. FR used after a white light period increased PSI activity significantly in maize BS and only slightly in A. thaliana thylakoids. As shown by blue native (BN)-PAGE followed by SDS-PAGE, proteins were differently phosphorylated in the thylakoids, indicating their different functions. FR light increased dephosphorylation of LHCII proteins in A. thaliana thylakoids, whereas in maize, dephosphorylation did not occur at all. The rate of phosphorylation was higher in maize BS than in M thylakoids. D1 protein phosphorylation increased in maize and decreased in A. thaliana upon irradiation with both R and growth light (white light, W). Light variations did not change the level of proteins in thylakoids. Our data strongly suggest that response to light quality is a species-dependent phenomenon. We concluded that the maize chloroplasts were differently stimulated, probably due to different degrees of light penetration across the leaf and thereby the redox status in the chloroplasts. These acclimation changes induced by light quality are important in the regulation of chloroplast membrane flexibility and thus its function.

  8. PANATIKI: A Network Access Control Implementation Based on PANA for IoT Devices

    PubMed Central

    Sanchez, Pedro Moreno; Lopez, Rafa Marin; Gomez Skarmeta, Antonio F.

    2013-01-01

    Internet of Things (IoT) networks are the pillar of recent novel scenarios, such as smart cities or e-healthcare applications. Among other challenges, these networks cover the deployment and interaction of small devices with constrained capabilities and Internet protocol (IP)-based networking connectivity. These constrained devices usually require connection to the Internet to exchange information (e.g., management or sensing data) or access network services. However, only authenticated and authorized devices can, in general, establish this connection. The so-called authentication, authorization and accounting (AAA) services are in charge of performing these tasks on the Internet. Thus, it is necessary to deploy protocols that allow constrained devices to verify their credentials against AAA infrastructures. The Protocol for Carrying Authentication for Network Access (PANA) has been standardized by the Internet engineering task force (IETF) to carry the Extensible Authentication Protocol (EAP), which provides flexible authentication upon the presence of AAA. To the best of our knowledge, this paper is the first deep study of the feasibility of EAP/PANA for network access control in constrained devices. We provide light-weight versions and implementations of these protocols to fit them into constrained devices. These versions have been designed to reduce the impact in standard specifications. The goal of this work is two-fold: (1) to demonstrate the feasibility of EAP/PANA in IoT devices; (2) to provide the scientific community with the first light-weight interoperable implementation of EAP/PANA for constrained devices in the Contiki operating system (Contiki OS), called PANATIKI. The paper also shows a testbed, simulations and experimental results obtained from real and simulated constrained devices. PMID:24189332

  9. PANATIKI: a network access control implementation based on PANA for IoT devices.

    PubMed

    Moreno Sanchez, Pedro; Marin Lopez, Rafa; Gomez Skarmeta, Antonio F

    2013-11-01

    Internet of Things (IoT) networks are the pillar of recent novel scenarios, such as smart cities or e-healthcare applications. Among other challenges, these networks cover the deployment and interaction of small devices with constrained capabilities and Internet protocol (IP)-based networking connectivity. These constrained devices usually require connection to the Internet to exchange information (e.g., management or sensing data) or access network services. However, only authenticated and authorized devices can, in general, establish this connection. The so-called authentication, authorization and accounting (AAA) services are in charge of performing these tasks on the Internet. Thus, it is necessary to deploy protocols that allow constrained devices to verify their credentials against AAA infrastructures. The Protocol for Carrying Authentication for Network Access (PANA) has been standardized by the Internet engineering task force (IETF) to carry the Extensible Authentication Protocol (EAP), which provides flexible authentication upon the presence of AAA. To the best of our knowledge, this paper is the first deep study of the feasibility of EAP/PANA for network access control in constrained devices. We provide light-weight versions and implementations of these protocols to fit them into constrained devices. These versions have been designed to reduce the impact in standard specifications. The goal of this work is two-fold: (1) to demonstrate the feasibility of EAP/PANA in IoT devices; (2) to provide the scientific community with the first light-weight interoperable implementation of EAP/PANA for constrained devices in the Contiki operating system (Contiki OS), called PANATIKI. The paper also shows a testbed, simulations and experimental results obtained from real and simulated constrained devices.

  10. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.

    PubMed

    Lepetit, Bernard; Gélin, Gautier; Lepetit, Mariana; Sturm, Sabine; Vugrinec, Sascha; Rogato, Alessandra; Kroth, Peter G; Falciatore, Angela; Lavaud, Johann

    2017-04-01

    Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Biotreatment of Gaseous-Phase Volatile Organic Compounds

    DTIC Science & Technology

    1990-07-31

    determined benzene to be degradable by methanogenic cultures acclimated to lignin-derived aromatic acids under strict anaerobic conditions. 5.3 CARBON...1986. Toluene and benzene transformation by ferulate - acclimated methanogenic consortia. Abstracts of the 86th Annual Meeting of the American Society

  12. Acclimation of Juglans mandshurica Maxim. and Phellodendron amurense Rupr. in the Middle Volga region

    NASA Astrophysics Data System (ADS)

    Tishin, D.; Fardeeva, M.; Chizhikova, N.; Rizatdinov, R.

    2018-01-01

    This research is the first attempt to analyze the results of acclimation of J. mandshurica and P. amurense in coniferous-deciduous forests under the conditions of the temperate continental climate of the Middle Volga Region. The study has been performed in the Volga-Kama Nature Reserve (Republic of Tatarstan, Russia) and demonstrated that J. mandshurica is a successfully acclimated species. This species naturalized in the forests of the Reserve, being distinguished by a rapid biomass production, high germination capacity of seeds and high number of pre-generative specimens. P. amurense can be characterized by the opposite features.

  13. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.

    PubMed

    MacMillan, Heath A; Yerushalmi, Gil Y; Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-08-18

    Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.

  14. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus).

    PubMed

    Takahashi, H; Sakamoto, T; Narita, K

    2006-06-01

    In order to replace the diffusive loss of water to the surrounding environment, seawater (SW)-acclimated euryhaline fishes have gastrointestinal tracts with higher ion/water flux in concert with greater permeability, and contrast that to freshwater (FW)-acclimated fish. To understand the cellular basis for these differences, we examined cell proliferation and apoptosis in the anterior intestine of mudskipper transferred from one-third SW to FW or to SW for 1 and 7 days, and those kept out of water for 1 day. The intestinal apoptosis (indicated by DNA laddering) increased during seawater acclimation. TUNEL staining detected numerous apoptotic cells over the epithelium of SW-acclimated fish. Cell proliferation ([3H]thymidine incorporation) in the FW fish was greater than those in SW 7 days after transfer. Labeling with a Proliferating cell nuclear antigen (PCNA) antibody indicated that proliferating cells were greater in number and randomly distributed in the epithelium of FW fish, whereas in SW fish they were almost entirely in the troughs of the intestinal folds. There were no changes in cell turnover in fish kept out of water. During acclimation to different salinities, modification of the cell turnover and abundance may play an important role in regulating the permeability (and transport capacity) of the gastrointestinal tract of fish.

  15. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    PubMed

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  16. Responses to salinity stress in bivalves: Evidence of ontogenetic changes in energetic physiology on Cerastoderma edule.

    PubMed

    Peteiro, Laura G; Woodin, Sarah A; Wethey, David S; Costas-Costas, Damian; Martínez-Casal, Arantxa; Olabarria, Celia; Vázquez, Elsa

    2018-05-29

    Estuarine bivalves are especially susceptible to salinity fluctuations. Stage-specific sensibilities may influence the structure and spatial distribution of the populations. Here we investigate differences on the energetic strategy of thread drifters (3-4 mm) and sedentary settlers (9-10 mm) of Cerastoderma edule over a wide range of salinities. Several physiological indicators (clearance, respiration and excretion rates, O:N) were measured during acute (2 days) and acclimated responses (7 days of exposure) for both size classes. Our results revealed a common lethal limit for both developmental stages (Salinity 15) but a larger physiological plasticity of thread drifters than sedentary settlers. Acclimation processes in drifters were initiated after 2 days of exposure and they achieved complete acclimation by day 7. Sedentary settlers delay acclimation and at day 7 feeding activity had not resumed and energetic losses through respiration and excretion were higher at the lowest salinity treatment. Different responses facing salinity stress might be related to differences in habitat of each stage. For sedentary settlers which occupy relatively stable niches, energy optimisation include delaying the initiation of the energetically expensive acclimation processes while drifters which occupy less stable environments require a more flexible process which allow them to optimize energy acquisition as fast as possible.

  17. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm.

    PubMed

    Glanville, E J; Seebacher, F

    2006-12-01

    Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (U(crit)) shifted to the respective mean body temperatures during acclimation (cold=20 degrees C, warm=29 degrees C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.

  18. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    PubMed

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-06-01

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Biodegradation of tetrabromobisphenol A in the sewage sludge process.

    PubMed

    Peng, Xingxing; Wang, Zhangna; Wei, Dongyang; Huang, Qiyuan; Jia, Xiaoshan

    2017-11-01

    Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A (TBBPA) was successfully acclimated in an anaerobic reactor over 280days. During the period from 0 to 280days, the TBBPA degradation rate (DR), utilization of glucose, and VSS were monitored continuously. After 280days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20days of treatment in batch experiments. Based on scanning electron microscopy (SEM) observations and denaturing gradient gel electrophoresis (DGGE) determinations, the diversity of the microorganisms after 0 and 280days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol, 3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A, were identified by gas chromatography-mass spectrometry (GC-MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model. Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions. Copyright © 2017. Published by Elsevier B.V.

  20. A Dual Strategy to Cope with High Light in Chlamydomonas reinhardtii[W

    PubMed Central

    Allorent, Guillaume; Tokutsu, Ryutaro; Roach, Thomas; Peers, Graham; Cardol, Pierre; Girard-Bascou, Jacqueline; Seigneurin-Berny, Daphné; Petroutsos, Dimitris; Kuntz, Marcel; Breyton, Cécile; Franck, Fabrice; Wollman, Francis-André; Niyogi, Krishna K.; Krieger-Liszkay, Anja; Minagawa, Jun; Finazzi, Giovanni

    2013-01-01

    Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition–deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II. PMID:23424243

Top