Constructing exact symmetric informationally complete measurements from numerical solutions
NASA Astrophysics Data System (ADS)
Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne
2018-04-01
Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.
A new class of exact, nonlinear solutions to the Grad-Shafranov equation
NASA Technical Reports Server (NTRS)
Roumeliotis, George
1993-01-01
We have constructed a new class of exact, nonlinear solutions to the Grad-Shafranov equation, representing force-free magnetic fields with translational symmetry. These exact solutions are pertinent to the study of magnetic structures in the solar corona that are subjected to photospheric shearing motions.
FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.
2010-12-01
Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.
Exact solutions of the Wheeler–DeWitt equation and the Yamabe construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ita III, Eyo Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
Algebraic Construction of Exact Difference Equations from Symmetry of Equations
NASA Astrophysics Data System (ADS)
Itoh, Toshiaki
2009-09-01
Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.
Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M
2011-01-01
We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubrovsky, V. G.; Topovsky, A. V.
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums ofmore » special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.« less
NASA Astrophysics Data System (ADS)
Denicol, Gabriel; Heinz, Ulrich; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-12-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects S O (3 )q⊗S O (1 ,1 )⊗Z2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.
Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation
NASA Astrophysics Data System (ADS)
Boudoue Hubert, Malwe; Kudryashov, Nikolai A.; Justin, Mibaile; Abbagari, Souleymanou; Betchewe, Gambo; Doka, Serge Y.
2018-03-01
In this paper, we investigate the generalized Benjamin-Bona-Mahony equation which better describes long waves with arbitrary power-law nonlinearity. As a result, we obtain exact travelling wave soliton solutions, such as anti-kink soliton solution, bright soliton solution, dark soliton solution and periodic solution. These solutions have many free parameters such that they may be used to simulate many experimental situations. The main contribution, in this work, is to not apply the computer codes for construction of exact solutions and not consider the integration constants as zero, because they give all variants for solutions.
ERIC Educational Resources Information Center
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
The method of generating functions in exact scalar field inflationary cosmology
NASA Astrophysics Data System (ADS)
Chervon, Sergey V.; Fomin, Igor V.; Beesham, Aroonkumar
2018-04-01
The construction of exact solutions in scalar field inflationary cosmology is of growing interest. In this work, we review the results which have been obtained with the help of one of the most effective methods, viz., the method of generating functions for the construction of exact solutions in scalar field cosmology. We also include in the debate the superpotential method, which may be considered as the bridge to the slow roll approximation equations. Based on the review, we suggest a classification for the generating functions, and find a connection for all of them with the superpotential.
NASA Astrophysics Data System (ADS)
Zhuravlev, V. M.
2017-09-01
Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.
Perturbational blowup solutions to the compressible Euler equations with damping.
Cheung, Ka Luen
2016-01-01
The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-01-01
In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.
Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.
Gu, Yongyi; Qi, Jianming
2017-01-01
In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.
Bounce universe and black holes from critical Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong
2017-11-01
We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.
Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped
NASA Astrophysics Data System (ADS)
Papkov, S. O.
2017-11-01
An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-06-01
In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.
Rayleigh-Bloch waves trapped by a periodic perturbation: exact solutions
NASA Astrophysics Data System (ADS)
Merzon, A.; Zhevandrov, P.; Romero Rodríguez, M. I.; De la Paz Méndez, J. E.
2018-06-01
Exact solutions describing the Rayleigh-Bloch waves for the two-dimensional Helmholtz equation are constructed in the case when the refractive index is a sum of a constant and a small amplitude function which is periodic in one direction and of finite support in the other. These solutions are quasiperiodic along the structure and exponentially decay in the orthogonal direction. A simple formula for the dispersion relation of these waves is obtained.
Some Exact Solutions of a Nonintegrable Toda-type Equation
NASA Astrophysics Data System (ADS)
Kim, Chanju
2018-05-01
We study a Toda-type equation with two scalar fields which is not integrable and construct two families of exact solutions which are expressed in terms of rational functions. The equation appears in U(1) Chern-Simons theories coupled to two nonrelativistic matter fields with opposite charges. One family of solutions is a trivial embedding of Liouville-type solutions. The other family is obtained by transforming the equation into the Taubes vortex equation on the hyperbolic space. Though the Taubes equation is not integrable, a trivial vacuum solution provides nontrivial solutions to the original Toda-type equation.
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
Exact solutions to the time-fractional differential equations via local fractional derivatives
NASA Astrophysics Data System (ADS)
Guner, Ozkan; Bekir, Ahmet
2018-01-01
This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.
Rogue periodic waves of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Rogue periodic waves of the focusing nonlinear Schrödinger equation.
Chen, Jinbing; Pelinovsky, Dmitry E
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef
2013-01-01
The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.
Exact solution of the relativistic quantum Toda chain
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2017-03-01
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
Exact coherent structures in an asymptotically reduced description of parallel shear flows
NASA Astrophysics Data System (ADS)
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith
2015-02-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
Alam, Md Nur; Akbar, M Ali
2013-01-01
The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
Bernstein-Greene-Kruskal Modes in a Three-Dimensional Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.S.; Bhattacharjee, A.
2005-12-09
Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a finite magnetic guide field are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; García-Ravelo, Jesús; Pacheco-García, Christian
We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed inmore » closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.« less
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
Gödel metrics with chronology protection in Horndeski gravities
NASA Astrophysics Data System (ADS)
Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao
2018-05-01
Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.
NASA Astrophysics Data System (ADS)
Tisdell, C. C.
2017-08-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.
5D Lovelock gravity: New exact solutions with torsion
NASA Astrophysics Data System (ADS)
Cvetković, B.; Simić, D.
2016-10-01
Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.
NASA Astrophysics Data System (ADS)
Navas-Montilla, A.; Murillo, J.
2016-07-01
In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.
Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application
NASA Astrophysics Data System (ADS)
Kundu, Anjan
2016-08-01
Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.
Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory
NASA Astrophysics Data System (ADS)
Sciarappa, Antonio
2017-10-01
We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
Güner, Özkan; Cevikel, Adem C.
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972
Nakkeeran, K
2001-10-01
We consider a family of N coupled nonlinear Schrödinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
NASA Astrophysics Data System (ADS)
Russell, John
2000-11-01
A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.
Early-time solution of the horizontal unconfined aquifer in the build-up phase
NASA Astrophysics Data System (ADS)
Gravanis, Elias; Akylas, Evangelos
2017-04-01
The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface (Dupuit approximation). In general, 'vertically' means normally on the bed; combining the Dupuit approximation with the continuity equation leads to the Boussinesq equation. There are very few transient exact solutions. Self- similar solutions have been constructed in the past by various authors. A power series type of solution was derived for a self-similar Boussinesq equation by Barenblatt in 1990. That type of solution has generated a certain amount of literature. For the unconfined flow case for zero recharge rate Boussinesq derived for the horizontal aquifer an exact solution assuming separation of variables. This is actually an exact asymptotic solution of the horizontal aquifer recession phase for late times. The kinematic wave is an interesting solution obtained by dropping the non-linear term in the Boussinesq equation. Although it is an approximate solution, and holds well only for small values of the Henderson and Wooding λ parameter (that is, for steep slopes, high conductivity or small recharge rate), it becomes less and less approximate for smaller values of the parameter, that is, it is asymptotically exact with respect to that parameter. In the present work we consider the case of the unconfined subsurface flow over horizontal bed in the build-up phase under constant recharge rate. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq while the linear spatial derivative term goes away. Nonetheless, no analogue of the kinematic wave or the Boussinesq separable solution exists in this case. The late time state of the build-up phase under constant recharge rate is very simply the steady state solution. Our aim is to construct the early time asymptotic solution of this problem. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turn out to be asymptotic and it is regularized by re-summation techniques which are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.
Knotted optical vortices in exact solutions to Maxwell's equations
NASA Astrophysics Data System (ADS)
de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk
2017-05-01
We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.
NASA Technical Reports Server (NTRS)
Busemann, A.; Vinh, N. X.; Culp, R. D.
1976-01-01
The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.
Teardrop and heart orbits of a swinging Atwood's machine
NASA Astrophysics Data System (ADS)
Tufillaro, Nicholas B.
1994-03-01
An exact solution is presented for a swinging Atwood's machine. This teardrop-heart orbit is constructed using Hamilton-Jacobi theory. The example nicely illustrates the utility of the Hamilton-Jacobi method for finding solutions to nonlinear mechanical systems when more elementary techniques fail.
Boomerang RG flows in M-theory with intermediate scaling
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar
2017-07-01
We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.
Conformally symmetric traversable wormholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at amore » finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.« less
Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar
2005-11-04
The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.
Numerical method for solving the nonlinear four-point boundary value problems
NASA Astrophysics Data System (ADS)
Lin, Yingzhen; Lin, Jinnan
2010-12-01
In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.
NASA Astrophysics Data System (ADS)
Stelea, Cristian; Dariescu, Marina-Aura; Dariescu, Ciprian
2018-05-01
We extend a known solution-generating technique for isotropic fluids in order to construct more general models of anisotropic stars with poloidal magnetic fields. In particular, we discuss the magnetized versions of some well-known exact solutions describing anisotropic stars and dark energy stars, and we describe some of their properties.
Heun Polynomials and Exact Solutions for the Massless Dirac Particle in the C-Metric
NASA Astrophysics Data System (ADS)
Kar, Priyasri; Singh, Ritesh K.; Dasgupta, Ananda; Panigrahi, Prasanta K.
2018-03-01
The equation of motion of a massless Dirac particle in the C-metric leads to the general Heun equation (GHE) for the radial and the polar variables. The GHE, under certain parametric conditions, is cast in terms of a new set of su(1, 1) generators involving differential operators of degrees ±1/2 and 0. Additional Heun polynomials are obtained using this new algebraic structure and are used to construct some exact solutions for the radial and the polar parts of the Dirac equation.
Colliding impulsive gravitational waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.; Halil, M.
1977-11-28
We formulate the problem of colliding plane gravitational waves with two polarizations as the harmonic mappings of Riemannian manifolds and construct an exact solution of the vacuum Einstein field equations describing the interaction of colliding impulsive gravitational waves which in the limit of collinear polarization reduces to the solution of Khan and Penrose.
Adiabatic pumping solutions in global AdS
NASA Astrophysics Data System (ADS)
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid; Moawad, Salah M.
2018-05-01
In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.
Resonant vibrations of a submerged beam
NASA Astrophysics Data System (ADS)
Achenbach, J. D.; Qu, J.
1986-03-01
Forced vibration of a simply supported submerged beam of circular cross section is investigated by the use of two mathematical methods. In the first approach the problem formulation is reduced to a singular integro-differential equation for the transverse deflection. In the second approach the method of matched asymptotic expansions is employed. The integro-differential equation is solved numerically, to yield an exact solution for the frequency response. Subsequent use of a representation integral yields the radiated far field acoustic pressure. The exact results for the beam deflection are compared with approximate results that are available in the literature. Next, a matched asymptotic expansion is worked out by constructing "inner" and "outer" expansions for frequencies near and not near resonance frequencies, respectively. The two expansions are matched in an appropriate manner to yield a uniformly valid solution. The leading term of the matched asymptotic solution is compared with exact numerical results.
Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
NASA Astrophysics Data System (ADS)
Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias
2018-05-01
We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.
The Auto-Bäcklund transformations for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2017-01-01
In this work, the homogeneous balance method is used to construct Auto-Bäcklund transformation of the Boiti-Leon-Manna-Pempinelli (BLMP) equation. With the aid of the transformations founded in this paper and Maple packet programme, abundant exact and explicit solutions to the BLMP equation are constructed.
Localized light waves: Paraxial and exact solutions of the wave equation (a review)
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2007-04-01
Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.
A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Baleanu, Dumitru
2018-05-01
By using the modified homotopy analysis transform method, we construct the analytical solutions of the space-time generalized nonlinear Schrödinger equation involving a new fractional conformable derivative in the Liouville-Caputo sense and the fractional-order derivative with the Mittag-Leffler law. Employing theoretical parameters, we present some numerical simulations and compare the solutions obtained.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Schultz, Marc R.
2012-01-01
A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Fan, Engui
2015-04-01
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory.
On multisoliton solutions of the constant astigmatism equation
NASA Astrophysics Data System (ADS)
Hlaváč, Adam
2015-09-01
We introduce an algebraic formula producing infinitely many exact solutions of the constant astigmatism equation {z}{yy}+{(1/z)}{xx}+2=0 from a given seed. A construction of corresponding surfaces of constant astigmatism is then a matter of routine. As a special case, we consider multisoliton solutions of the constant astigmatism equation defined as counterparts of famous multisoliton solutions of the sine-Gordon equation. A few particular examples are surveyed as well.
Relativistic Modelling of Stable Anisotropic Super-Dense Star
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Gupta, Y. K.; Jasim, M. K.
2015-08-01
In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al. [1] algorithm. The anisotropic fluid solutions so obtained join continuously to the Schwarzschild exterior solution across the pressure-free boundary. It is observed that most of the new anisotropic solutions are well-behaved and are used to construct the super-dense star models such as neutron stars and pulsars.
Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations.
Islam, S M Rayhanul; Khan, Kamruzzaman; Akbar, M Ali
2015-01-01
In this paper, we implement the exp(-Φ(ξ))-expansion method to construct the exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we consider two model equations, namely the Korteweg-de Vries (KdV) equation and the time regularized long wave (TRLW) equation. These equations play significant role in nonlinear sciences. We obtained four types of explicit function solutions, namely hyperbolic, trigonometric, exponential and rational function solutions of the variables in the considered equations. It has shown that the applied method is quite efficient and is practically well suited for the aforementioned problems and so for the other NLEEs those arise in mathematical physics and engineering fields. PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.
Nonminimal coupling for the gravitational and electromagnetic fields: Traversable electric wormholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Zayats, Alexei E.; Lemos, Jose P. S.
2010-04-15
We discuss new exact solutions of a three-parameter nonminimal Einstein-Maxwell model. The solutions describe static spherically symmetric objects with and without center, supported by an electric field nonminimally coupled to gravity. We focus on a unique one-parameter model, which admits an exact solution for a traversable electrically charged wormhole connecting two universes, one asymptotically flat the other asymptotically de Sitter ones. The relation between the asymptotic mass and charge of the wormhole and its throat radius is analyzed. The wormhole solution found is thus a nonminimal realization of Wheeler's idea about charge without charge and shows that, if the worldmore » is somehow nonminimal in the coupling of gravity to electromagnetism, then wormhole appearance, or perhaps construction, is possible.« less
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Vacaru, Sergiu I.
2018-05-01
We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Exact general relativistic disks with magnetic fields
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.
1999-11-01
The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.
Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum
2014-01-01
In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-10-01
In this paper, the Lie symmetry analysis method is employed to investigate the Lie point symmetries and the one-parameter transformation groups of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. By using Ibragimov's method, the optimal system of one-dimensional subalgebras of this system is constructed. Truncated Painlevé analysis is used for deriving the Bäcklund transformation. The method of constructing lump-type solutions of integrable equations by means of Bäcklund transformation is first presented. Meanwhile, the lump-type solutions of the (2 + 1)-dimensional Boiti-Leon-Pempinelli system are obtained. The lump-type wave is one kind of rogue wave. The fusion-type N-solitary wave solutions are also constructed. In addition, this system is integrable in terms of the consistent Riccati expansion method.
Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef
2013-01-01
Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.
Bosonized Supersymmetric Sawada-Kotera Equations: Symmetries and Exact Solutions
NASA Astrophysics Data System (ADS)
Liu, Ping; Zeng, Bao-Qing; Liu, Li-Ming
2015-04-01
The Bosonized Supersymmetric Sawada-Kotera (BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada-Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out. Supported by the National Natural Science Foundation of China under Grant No. 11305031, the Natural Science Foundation of Guangdong Province under Grant No. S2013010011546, the Science and Technology Project Foundation of Zhongshan under Grant Nos. 2013A3FC0264 and 2013A3FC0334, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
A new construction of rational electromagnetic knots
NASA Astrophysics Data System (ADS)
Lechtenfeld, Olaf; Zhilin, Gleb
2018-06-01
We set up a correspondence between solutions of the Yang-Mills equations on R ×S3 and in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. We illustrate our method with a nontrivial example.
On Traveling Waves in Lattices: The Case of Riccati Lattices
NASA Astrophysics Data System (ADS)
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Stability of exact solutions describing two-layer flows with evaporation at the interface
NASA Astrophysics Data System (ADS)
Bekezhanova, V. B.; Goncharova, O. N.
2016-12-01
A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.
An Exact Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lu, James; Park, Michael A.; Darmofal, David L.
2003-01-01
An algorithm for solving the discrete adjoint system based on an unstructured-grid discretization of the Navier-Stokes equations is presented. The method is constructed such that an adjoint solution exactly dual to a direct differentiation approach is recovered at each time step, yielding a convergence rate which is asymptotically equivalent to that of the primal system. The new approach is implemented within a three-dimensional unstructured-grid framework and results are presented for inviscid, laminar, and turbulent flows. Improvements to the baseline solution algorithm, such as line-implicit relaxation and a tight coupling of the turbulence model, are also presented. By storing nearest-neighbor terms in the residual computation, the dual scheme is computationally efficient, while requiring twice the memory of the flow solution. The scheme is expected to have a broad impact on computational problems related to design optimization as well as error estimation and grid adaptation efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-08-27
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Charged black holes in quartic quasi-topological gravity
NASA Astrophysics Data System (ADS)
Ghanaatian, M.; Naeimipour, F.; Bazrafshan, A.; Abkar, M.
2018-05-01
In this paper, we construct exact solutions of charged black holes in the presence of quartic quasi-topological gravity. We obtain thermodynamics and conserved quantities of the solutions and check the first law of thermodynamics. In studying the physical properties of the solutions, we consider anti-de Sitter, de Sitter, and flat solutions of charged black holes in quartic quasi-topological gravity and compare them with Einstein and third-order quasi-topological gravities. We also investigate the thermal stability of the solutions and show that thermal stability is just for anti-de Sitter solutions, not for de Sitter and flat ones.
Exact N 3LO results for qq ' → H + X
Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik; ...
2015-07-27
We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.
Kümmel, Stephan; Perdew, John P
2003-01-31
For exchange-correlation functionals that depend explicitly on the Kohn-Sham orbitals, the potential V(xcsigma)(r) must be obtained as the solution of the optimized effective potential (OEP) integral equation. This is very demanding and has limited the use of orbital functionals. We demonstrate that instead the OEP can be obtained iteratively by solving the partial differential equations for the orbital shifts that exactify the Krieger-Li-Iafrate approximation. Unoccupied orbitals do not need to be calculated. Accuracy and efficiency of the method are shown for atoms and clusters using the exact-exchange energy. Counterintuitive asymptotic limits of the exact OEP are presented.
Exact solutions of a hierarchy of mixing speeds models
NASA Astrophysics Data System (ADS)
Cornille, H.; Platkowski, T.
1992-07-01
This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2017-12-01
In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.
Early-Time Solution of the Horizontal Unconfined Aquifer in the Buildup Phase
NASA Astrophysics Data System (ADS)
Gravanis, Elias; Akylas, Evangelos
2017-10-01
We derive the early-time solution of the Boussinesq equation for the horizontal unconfined aquifer in the buildup phase under constant recharge and zero inflow. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turns out to be asymptotic and it is regularized by resummation techniques that are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren Bo; Yu Jun; Lin Ji
Based on the bosonization approach, the N=1 supersymmetric Ito (sIto) system is changed to a system of coupled bosonic equations. The approach can effectively avoid difficulties caused by intractable fermionic fields which are anticommuting. By solving the coupled bosonic equations, the traveling wave solutions of the sIto system are obtained with the mapping and deformation method. Some novel types of exact solutions for the supersymmetric system are constructed with the solutions and symmetries of the usual Ito equation. In the meanwhile, the similarity reduction solutions of the model are also studied with the Lie point symmetry theory.
Semiclassical Dynamicswith Exponentially Small Error Estimates
NASA Astrophysics Data System (ADS)
Hagedorn, George A.; Joye, Alain
We construct approximate solutions to the time-dependent Schrödingerequation
Flattened halos in a nontopological soliton model of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mielke, Eckehard W.; Peralta, Humberto H.
2004-12-15
Soliton type solutions of a scalar model with a {phi}{sup 6} self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a 'nonlinear superposition' of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit.
Focusing of noncircular self-similar shock waves.
Betelu, S I; Aronson, D G
2001-08-13
We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.
BLUES function method in computational physics
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Müller-Nedebock, Kristian K.
2018-04-01
We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.
On the classification of the spectrally stable standing waves of the Hartree problem
NASA Astrophysics Data System (ADS)
Georgiev, Vladimir; Stefanov, Atanas
2018-05-01
We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.
Dispersion-relation-preserving finite difference schemes for computational acoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1993-01-01
Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.
NASA Astrophysics Data System (ADS)
Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.
2018-06-01
In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.; Bhattacharjee, A.; Skiff, F.
2006-05-15
Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less
Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A
2016-12-01
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
Geometric scalar theory of gravity beyond spherical symmetry
NASA Astrophysics Data System (ADS)
Moschella, U.; Novello, M.
2017-04-01
We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.
Period of vibration of axially vibrating truly nonlinear rod
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2016-07-01
In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.
Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
NASA Astrophysics Data System (ADS)
Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2015-01-01
We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.
Green's function enriched Poisson solver for electrostatics in many-particle systems
NASA Astrophysics Data System (ADS)
Sutmann, Godehard
2016-06-01
A highly accurate method is presented for the construction of the charge density for the solution of the Poisson equation in particle simulations. The method is based on an operator adjusted source term which can be shown to produce exact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating the discretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green's function of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that the exact calculation of the potential is possible independent of the order of the finite difference scheme but the computational efficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of the charge support.
NASA Astrophysics Data System (ADS)
Jia, Man; Lou, Sen Yue
2018-05-01
In natural and social science, many events happened at different space-times may be closely correlated. Two events, A (Alice) and B (Bob) are defined as correlated if one event is determined by another, say, B = f ˆ A for suitable f ˆ operators. A nonlocal AB-KdV system with shifted-parity (Ps, parity with a shift), delayed time reversal (Td, time reversal with a delay) symmetry where B =Ps ˆ Td ˆ A is constructed directly from the normal KdV equation to describe two-area physical event. The exact solutions of the AB-KdV system, including PsTd invariant and PsTd symmetric breaking solutions are shown by different methods. The PsTd invariant solution show that the event happened at A will happen also at B. These solutions, such as single soliton solutions, infinitely many singular soliton solutions, soliton-cnoidal wave interaction solutions, and symmetry reduction solutions etc., show the AB-KdV system possesses rich structures. Also, a special Bäcklund transformation related to residual symmetry is presented via the localization of the residual symmetry to find interaction solutions between the solitons and other types of the AB-KdV system.
Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models
NASA Astrophysics Data System (ADS)
Ghosh, Pijush K.; Sinha, Debdeep
2018-01-01
A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.
NASA Astrophysics Data System (ADS)
Feng, Lian-Li; Tian, Shou-Fu; Wang, Xiu-Bin; Zhang, Tian-Tian
2016-09-01
In this paper, the time fractional Fordy-Gibbons equation is investigated with Riemann-Liouville derivative. The equation can be reduced to the Caudrey-Dodd-Gibbon equation, Savada-Kotera equation and the Kaup-Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No. XZD201602, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527
Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models
NASA Astrophysics Data System (ADS)
Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido
2016-06-01
We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.
Black holes in vector-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic andmore » quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.« less
Impulsive spherical gravitational waves
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
2001-03-01
Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.
Application of the perturbation iteration method to boundary layer type problems.
Pakdemirli, Mehmet
2016-01-01
The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
NASA Astrophysics Data System (ADS)
Ma, Li-Yuan; Shen, Shou-Feng; Zhu, Zuo-Nong
2017-10-01
In this paper, we prove that an integrable nonlocal complex modified Korteweg-de Vries (mKdV) equation introduced by Ablowitz and Musslimani [Nonlinearity 29, 915-946 (2016)] is gauge equivalent to a spin-like model. From the gauge equivalence, one can see that there exists significant difference between the nonlocal complex mKdV equation and the classical complex mKdV equation. Through constructing the Darboux transformation for nonlocal complex mKdV equation, a variety of exact solutions including dark soliton, W-type soliton, M-type soliton, and periodic solutions are derived.
Separated flows near the nose of a body of revolution
NASA Technical Reports Server (NTRS)
Lin, S. P.
1986-01-01
The solution of the Navier-Stokes equations for the problem of cross-flow separataion about a deforming cylinder was achieved by iteration. It was shown that the separation starts at the rear stagnation point and the point of primary separation moves upstram along the cylinder surface. A general method of linear stability analysis for nonparallel external flows was constructed, which consists of representing the eigenfunctions with complete orthogonal sets and forms characteristic equations with the Galerkin method. The method was applied to the Kovasznay flow which is an exact solution of the Navier-Stokes equation. The results show that when the critical parameter is exceeded, there are only a few isolated unstable eigen-frequencies. Another exact solution is shown to be absolutely and monotonically stable with respect to infinitesimal disturbances of all frequencies. The flow is also globally, asymptotically, and monotonically stable in the mean with respect o three-dimensional disturbances. This result forms the sound foundation of rigorous stability analysis for nonparallel flows, and provides an invaluable test ground for future studies of nonparallel flows in which the basic states do not posses exact solutions. The application of this method to the study of the formation of spiral vorticies near the nose of a rotating body of revolution is underway. The same method will be applied to the stability analysis of reversed flow over a plate with suction.
Niedz, Randall P.
2016-01-01
ARS-Media for Excel is an ion solution calculator that uses “Microsoft Excel” to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel’s Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems– 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line. PMID:27812202
Niedz, Randall P
2016-01-01
ARS-Media for Excel is an ion solution calculator that uses "Microsoft Excel" to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel's Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems- 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line.
A pertinent approach to solve nonlinear fuzzy integro-differential equations.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.
Zhang, Peng; Lau, Y. Y.
2016-01-01
Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
NASA Astrophysics Data System (ADS)
Ávila, Jesús; Ramírez, Pedro F.; Ruipérez, Alejandro
2018-01-01
We propose a novel strategy that permits the construction of completely general five-dimensional microstate geometries on a Gibbons-Hawking space. Our scheme is based on two steps. First, we rewrite the bubble equations as a system of linear equations that can be easily solved. Second, we conjecture that the presence or absence of closed timelike curves in the solution can be detected through the evaluation of an algebraic relation. The construction we propose is systematic and covers the whole space of parameters, so it can be applied to find all five-dimensional BPS microstate geometries on a Gibbons-Hawking base. As a first result of this approach, we find that the spectrum of scaling solutions becomes much larger when non-Abelian fields are present. We use our method to describe several smooth horizonless multicenter solutions with the asymptotic charges of three-charge (Abelian and non-Abelian) black holes. In particular, we describe solutions with the centers lying on lines and circles that can be specified with exact precision. We show the power of our method by explicitly constructing a 50-center solution. Moreover, we use it to find the first smooth five-dimensional microstate geometries with arbitrarily small angular momentum.
Discrete conservation properties for shallow water flows using mixed mimetic spectral elements
NASA Astrophysics Data System (ADS)
Lee, D.; Palha, A.; Gerritsma, M.
2018-03-01
A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, Jr., Robert; Israel, Daniel M.; Doebling, Scott William
For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returnedmore » at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.« less
Unbraiding the bounce: superluminality around the corner
NASA Astrophysics Data System (ADS)
Dobre, David A.; Frolov, Andrei V.; Gálvez Ghersi, José T.; Ramazanov, Sabir; Vikman, Alexander
2018-03-01
We study a particular realization of the cosmological bounce scenario proposed recently by Ijjas and Steinhardt in [1]. First, we find that their bouncing solution starts from a divergent sound speed and ends with its vanishing. Thus, the solution connects two strongly coupled configurations. These pathologies are separated from the bouncing regime by only a few Planck times. We then reveal the exact structure of the Lagrangian, which reproduces this bouncing solution. This reconstruction allowed us to consider other cosmological solutions of the theory and analyze the phase space. In particular, we find other bouncing solutions and solutions with superluminal sound speed. These stable superluminal states can be continuously transformed into the solution constructed by Ijjas and Steinhardt. We discuss the consequences of this feature for a possible UV-completion.
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus
NASA Astrophysics Data System (ADS)
Voronov, B. L.; Gitman, D. M.; Levin, A. D.; Ferreira, R.
2016-05-01
We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval (-m,m) and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy E = -m; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the oneparticle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.
Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-04-01
We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.
Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Luo, Li-Shi
2007-01-01
In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.
Exactly solvable Schrödinger equation with double-well potential for hydrogen bond
NASA Astrophysics Data System (ADS)
Sitnitsky, A. E.
2017-05-01
We construct a double-well potential for which the Schrödinger equation can be exactly solved via reducing to the confluent Heun's one. Thus the wave function is expressed via the confluent Heun's function. The latter is tabulated in Maple so that the obtained solution is easily treated. The potential is infinite at the boundaries of the final interval that makes it to be highly suitable for modeling hydrogen bonds (both ordinary and low-barrier ones). We exemplify theoretical results by detailed treating the hydrogen bond in KHCO3 and show their good agreement with literature experimental data.
Type IIB Colliding Plane Waves
NASA Astrophysics Data System (ADS)
Gutperle, M.; Pioline, B.
2003-09-01
Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.
Embedding methods for the steady Euler equations
NASA Technical Reports Server (NTRS)
Chang, S. H.; Johnson, G. M.
1983-01-01
An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.
Tag SNP selection via a genetic algorithm.
Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh
2010-10-01
Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.
Solving nonlinear evolution equation system using two different methods
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.
2015-12-01
This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.
Axionic black branes in the k -essence sector of the Horndeski model
NASA Astrophysics Data System (ADS)
Cisterna, Adolfo; Hassaine, Mokhtar; Oliva, Julio; Rinaldi, Massimiliano
2017-12-01
We construct new black brane solutions in the context of Horndeski gravity, in particular, in its K-essence sector. These models are supported by axion scalar fields that depend only on the horizon coordinates. The dynamics of these fields is determined by a K-essence term that includes the standard kinetic term X and a correction of the form Xk. We find both neutral and charged exact and analytic solutions in D -dimensions, which are asymptotically anti-de Sitter. Then, we describe in detail the thermodynamical properties of the four-dimensional solutions and we compute the dual holographic DC conductivity.
NASA Astrophysics Data System (ADS)
Hsu, Bailey; van Huele, Jean-Francois
2009-10-01
The Stern-Gerlach effect (SGE) is iconic for visualizing spin. We analyze the evolution of atomic wavepackets by constructing exact solutions using propagators in SGE field configurations in different approximations. We contrast our results with the standard presentation of the SGE in textbooks and literature and illustrate with visual animations in 2D and 3D.
The degenerate parametric oscillator and Ince's equation
NASA Astrophysics Data System (ADS)
Cordero-Soto, Ricardo; Suslov, Sergei K.
2011-01-01
We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.
Study of analytical method to seek for exact solutions of variant Boussinesq equations.
Khan, Kamruzzaman; Akbar, M Ali
2014-01-01
In this paper, we have been acquired the soliton solutions of the Variant Boussinesq equations. Primarily, we have used the enhanced (G'/G)-expansion method to find exact solutions of Variant Boussinesq equations. Then, we attain some exact solutions including soliton solutions, hyperbolic and trigonometric function solutions of this equation. 35 K99; 35P05; 35P99.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
Exact coherent structures and chaotic dynamics in a model of cardiac tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Greg; Marcotte, Christopher D.; Grigoriev, Roman O., E-mail: roman.grigoriev@physics.gatech.edu
Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This ismore » especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.« less
Study of coupled nonlinear partial differential equations for finding exact analytical solutions
Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.
2015-01-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.
2018-04-01
We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.
NASA Astrophysics Data System (ADS)
Saengow, C.; Giacomin, A. J.
2017-12-01
The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.
NASA Technical Reports Server (NTRS)
Yijun, Huang; Guochen, Yu; Hong, Sun
1996-01-01
It is well known that the quantum Yang-Baxter equations (QYBE) play an important role in various theoretical and mathematical physics, such as completely integrable system in (1 + 1)-dimensions, exactly solvable models in statistical mechanics, the quantum inverse scattering method and the conformal field theories in 2-dimensions. Recently, much remarkable progress has been made in constructing the solutions of the QYBE associated with the representations of lie algebras. It is shown that for some cases except the standard solutions, there also exist new solutions, but the others have not non-standard solutions. In this paper by employing the weight conservation and the diagrammatic techniques we show that the solution associated with the 10-D representations of SU (4) are standard alone.
Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution
NASA Astrophysics Data System (ADS)
Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique
2015-05-01
A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.
Deceleration of a supersonic flow behind a curved shock wave with isentropic precompression
NASA Technical Reports Server (NTRS)
Dulov, V. G.; Shchepanovskiy, V. A.
1985-01-01
Three-dimensional supersonic flows of an ideal fluid in the neighborhood of bodies formed by being cut out along the streamlines of an axisymmetric flow are investigated. The flow consists of a region of isoentropic compression and a region of vortex flow. An exact solution with variable entropy is used to describe the flow in the vortex region. In the continuous flow region an approximate solution is constructed by expanding the solution in a series in a small parameter. The effect of the shape of the excision and the vorticity of the flow on compression of the jet and and the total pressure loss coefficient is studied.
NASA Astrophysics Data System (ADS)
Andrei, B. Utkin
2011-10-01
A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.
U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheltukhin, A. A.; Fysikum, AlbaNova, Stockholm University, 106 91 Stockholm; NORDITA, Roslagstullsbacken 23, 106 91 Stockholm
The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.
NASA Technical Reports Server (NTRS)
Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.
1990-01-01
The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
Asymptotically flat black holes in Horndeski theory and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr
We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which ismore » Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.« less
Rotating solutions in critical Lovelock gravities
Cvetič, M.; Feng, Xing -Hui; Lü, H.; ...
2016-12-12
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admits a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order n in d = 2n + 1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms ofmore » Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Furthermore, both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.« less
Rotating solutions in critical Lovelock gravities
NASA Astrophysics Data System (ADS)
Cvetič, M.; Feng, Xing-Hui; Lü, H.; Pope, C. N.
2017-02-01
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admit a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order n in d = 2 n + 1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.
Rotating solutions in critical Lovelock gravities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetič, M.; Feng, Xing -Hui; Lü, H.
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admits a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order n in d = 2n + 1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms ofmore » Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Furthermore, both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.« less
Higher dimensional Taub-NUT spaces and applications
NASA Astrophysics Data System (ADS)
Stelea, Cristian Ionut
In the first part of this thesis we discuss classes of new exact NUT-charged solutions in four dimensions and higher, while in the remainder of the thesis we make a study of their properties and their possible applications. Specifically, in four dimensions we construct new families of axisymmetric vacuum solutions using a solution-generating technique based on the hidden SL(2,R) symmetry of the effective action. In particular, using the Schwarzschild solution as a seed we obtain the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all the above solutions. In higher dimensions we present new classes of NUT-charged spaces, generalising the previously known even-dimensional solutions to odd and even dimensions, as well as to spaces with multiple NUT-parameters. We also find the most general form of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been shown to yield counter-examples to some of the conjectures advanced in the still elusive dS/CFT paradigm (such as the maximal mass conjecture and Bousso's entropic N-bound). One important application of NUT-charged spaces is to construct higher dimensional generalisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional Kaluza-Klein soliton. Another interesting application involves a study of time-dependent higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-dualities, new interesting time-dependent solutions in string theory. Finally, we construct and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories, generalising the known Reissner-Nordstrom solutions.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Mahak, Nadia
2018-06-01
The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.
Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.
Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng
2014-01-01
We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.
Peakompactons: Peaked compact nonlinear waves
Christov, Ivan C.; Kress, Tyler; Saxena, Avadh
2017-04-20
This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K #(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less
Exact Solution of the Two-Dimensional Problem on an Impact Ideal-Liquid Jet
NASA Astrophysics Data System (ADS)
Belik, V. D.
2018-05-01
The two-dimensional problem on the collision of a potential ideal-liquid jet, outflowing from a reservoir through a nozzle, with an infinite plane obstacle was considered for the case where the distance between the nozzle exit section and the obstacle is finite. An exact solution of this problem has been found using methods of the complex-variable function theory. Simple analytical expressions for the complex velocity of the liquid, its flow rate, and the force of action of the jet on the obstacle have been obtained. The velocity distributions of the liquid at the nozzle exit section, in the region of spreading of the jet, and at the obstacle have been constructed for different distances between the nozzle exit section and the obstacle. Analytical expressions for the thickness of the boundary layer and the Nusselt number at the point of stagnation of the jet have been obtained. A number of distributions of the local friction coefficient and the Nusselt number of the indicated jet are presented.
Essentially Entropic Lattice Boltzmann Model
NASA Astrophysics Data System (ADS)
Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh
2017-12-01
The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.
NASA Astrophysics Data System (ADS)
Bollati, Julieta; Tarzia, Domingo A.
2018-04-01
Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
NASA Astrophysics Data System (ADS)
Goryk, A. V.; Koval'chuk, S. B.
2018-05-01
An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.
Laplace-Beltrami operator and exact solutions for branes
NASA Astrophysics Data System (ADS)
Zheltukhin, A. A.
2013-02-01
Proposed is a new approach to finding exact solutions of nonlinear p-brane equations in D-dimensional Minkowski space based on the use of various initial value constraints. It is shown that the constraints Δx→=0 and Δx→=-Λ(t,σr)x→ give two sets of exact solutions.
NASA Astrophysics Data System (ADS)
Ghanbari, Behzad; Inc, Mustafa
2018-04-01
The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.
Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul
2014-01-01
In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.
Breather management in the derivative nonlinear Schrödinger equation with variable coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A&M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj
2015-04-15
We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of amore » transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.« less
NASA Astrophysics Data System (ADS)
Demina, Maria V.
2018-05-01
The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2 is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-van der Pol system are constructed.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
Wave Functions for Time-Dependent Dirac Equation under GUP
NASA Astrophysics Data System (ADS)
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
NASA Astrophysics Data System (ADS)
Vijayajayanthi, M.; Kanna, T.; Murali, K.; Lakshmanan, M.
2018-06-01
The energy-sharing collision of bright optical solitons in the Manakov system, governing pulse propagation in high birefringent fiber, is employed theoretically to realize optical logic gates. In particular, we successfully construct (theoretically) the universal NOR gate and the OR gate from the energy-sharing collisions of just four bright solitons which can be well described by the exact bright four-soliton solution of the Manakov system. This construction procedure has important merits such as realizing the two input gates with a minimal number of soliton collisions and possibilities of multistate logic. The recent experiments on Manakov solitons suggest the possibility of implementation of this theoretical construction of such gates and ultimately an all-optical computer.
Electromagnetic scattering from two-dimensional thick material junctions
NASA Technical Reports Server (NTRS)
Ricoy, M. A.; Volakis, John L.
1990-01-01
The problem of the plane wave diffraction is examined by an arbitrary symmetric two dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Generalized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs. GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate the GIBCs/GSTCs. The plane wave diffraction by a multilayer material slab recessed in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering Matrix Formulation (GDMF) in conjunction with the dual integral equation approach. Various scattering patterns are computed and validated with exact results where possible. The diffraction by a material discontinuity in a thick dielectric/ferrite slab is considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of unknown constants is obtained, and these constants are evaluated for the recessed slab geometry by comparison with the solution obtained therein. Several other simplified cases are also presented and discussed. An eigenfunction expansion method is introduced to determine the unknown solution constants in the general case. This procedure is applied to the non-unique solution in terms of unknown constants; and scattering patterns are presented for various slab junctions and compared with alternative results where possible.
NASA Astrophysics Data System (ADS)
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
Hairy black holes and duality in an extended supergravity model
NASA Astrophysics Data System (ADS)
Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario
2018-04-01
We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.
Some boundary-value problems for anisotropic quarter plane
NASA Astrophysics Data System (ADS)
Arkhypenko, K. M.; Kryvyi, O. F.
2018-04-01
To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.
New perspectives on constant-roll inflation
NASA Astrophysics Data System (ADS)
Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro
2018-01-01
We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.
Analyzing Lie symmetry and constructing conservation laws for time-fractional Benny-Lin equation
NASA Astrophysics Data System (ADS)
Rashidi, Saeede; Hejazi, S. Reza
This paper investigates the invariance properties of the time fractional Benny-Lin equation with Riemann-Liouville and Caputo derivatives. This equation can be reduced to the Kawahara equation, fifth-order Kdv equation, the Kuramoto-Sivashinsky equation and Navier-Stokes equation. By using the Lie group analysis method of fractional differential equations (FDEs), we derive Lie symmetries for the Benny-Lin equation. Conservation laws for this equation are obtained with the aid of the concept of nonlinear self-adjointness and the fractional generalization of the Noether’s operators. Furthermore, by means of the invariant subspace method, exact solutions of the equation are also constructed.
Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping
2011-02-01
We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.
NASA Astrophysics Data System (ADS)
Pan, Xiao-Yin; Slamet, Marlina; Sahni, Viraht
2010-04-01
We extend our prior work on the construction of variational wave functions ψ that are functionals of functions χ:ψ=ψ[χ] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions χ chosen such that the functional ψ[χ] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H-, the helium atom He, and its positive ions Li+ and Be2+. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W=∑irin,n=-2,-1,1,2, W=∑iδ(ri), W=-(1)/(2)∑i∇i2, and the two-particle operators W=∑nun,n=-2,-1,1,2, where u=|ri-rj|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals ψ[χ] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schrödinger equation, there exist ψ[χ] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.
Soliton and periodic solutions for time-dependent coefficient non-linear equation
NASA Astrophysics Data System (ADS)
Guner, Ozkan
2016-01-01
In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.
Approach to first-order exact solutions of the Ablowitz-Ladik equation.
Ankiewicz, Adrian; Akhmediev, Nail; Lederer, Falk
2011-05-01
We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions of the A-L equation with two independent parameters. This novel technique shows that every exact solution of the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE). © 2011 American Physical Society
Exact analytical solution to a transient conjugate heat-transfer problem
NASA Technical Reports Server (NTRS)
Sucec, J.
1973-01-01
An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.
Kedziora, D J; Ankiewicz, A; Chowdury, A; Akhmediev, N
2015-10-01
We present an infinite nonlinear Schrödinger equation hierarchy of integrable equations, together with the recurrence relations defining it. To demonstrate integrability, we present the Lax pairs for the whole hierarchy, specify its Darboux transformations and provide several examples of solutions. These resulting wavefunctions are given in exact analytical form. We then show that the Lax pair and Darboux transformation formalisms still apply in this scheme when the coefficients in the hierarchy depend on the propagation variable (e.g., time). This extension thus allows for the construction of complicated solutions within a greatly diversified domain of generalised nonlinear systems.
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605
Self-dual Skyrmions on the spheres S2 N +1
NASA Astrophysics Data System (ADS)
Amari, Y.; Ferreira, L. A.
2018-04-01
We construct self-dual sectors for scalar field theories on a (2 N +2 )-dimensional Minkowski space-time with the target space being the 2 N +1 -dimensional sphere S2 N +1. The construction of such self-dual sectors is made possible by the introduction of an extra functional in the action that renders the static energy and the self-duality equations conformally invariant on the (2 N +1 )-dimensional spatial submanifold. The conformal and target-space symmetries are used to build an ansatz that leads to an infinite number of exact self-dual solutions with arbitrary values of the topological charge. The five-dimensional case is discussed in detail, where it is shown that two types of theories admit self-dual sectors. Our work generalizes the known results in the three-dimensional case that lead to an infinite set of self-dual Skyrmion solutions.
A Super mKdV Equation: Bosonization, Painlevé Property and Exact Solutions
NASA Astrophysics Data System (ADS)
Ren, Bo; Lou, Sen-Yue
2018-04-01
The symmetry of the fermionic field is obtained by means of the Lax pair of the mKdV equation. A new super mKdV equation is constructed by virtue of the symmetry of the fermionic form. The super mKdV system is changed to a system of coupled bosonic equations with the bosonization approach. The bosonized SmKdV (BSmKdV) equation admits Painlevé property by the standard singularity analysis. The traveling wave solutions of the BSmKdV system are presented by the mapping and deformation method. We also provide other ideas to construct new super integrable systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11775146, 11435005, and 11472177, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213 and K. C. Wong Magna Fund in Ningbo University
Black hole solutions in d = 5 Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Radu, Eugen
2013-11-01
The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik
We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
Exact analytical solution of a classical Josephson tunnel junction problem
NASA Astrophysics Data System (ADS)
Kuplevakhsky, S. V.; Glukhov, A. M.
2010-10-01
We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.
Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo
2016-08-01
This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
Exact solution of the hidden Markov processes.
Saakian, David B
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.
Exact solution of the hidden Markov processes
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .
Exact and approximate solutions to the oblique shock equations for real-time applications
NASA Technical Reports Server (NTRS)
Hartley, T. T.; Brandis, R.; Mossayebi, F.
1991-01-01
The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.
NASA Astrophysics Data System (ADS)
Belyaev, V. A.; Shapeev, V. P.
2017-10-01
New versions of the collocations and least squares method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for the biharmonic equation in non-canonical domains. The solution of the biharmonic equation is used for simulating the stress-strain state of an isotropic plate under the action of transverse load. The differential problem is projected into a space of fourth-degree polynomials by the CLS method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLS method are implemented on the grids which are constructed in two different ways. It is shown that the approximate solution of problems converges with high order. Thus it matches with high accuracy with the analytical solution of the test problems in the case of known solution in the numerical experiments on the convergence of the solution of various problems on a sequence of grids.
Manafian Heris, Jalil; Lakestani, Mehrdad
2014-01-01
We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.
Exact solution for spin precession in the radiationless relativistic Kepler problem
NASA Astrophysics Data System (ADS)
Mane, S. R.
2014-11-01
There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
Calculating corner singularities by boundary integral equations.
Shi, Hualiang; Lu, Ya Yan; Du, Qiang
2017-06-01
Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.
Recursive-operator method in vibration problems for rod systems
NASA Astrophysics Data System (ADS)
Rozhkova, E. V.
2009-12-01
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.
Exact sampling of graphs with prescribed degree correlations
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán
2015-08-01
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.
NASA Astrophysics Data System (ADS)
Huang, Ding-jiang; Ivanova, Nataliya M.
2016-02-01
In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.
Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Hu, Xiangsheng
2018-05-01
The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.
Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2017-12-01
An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.
Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Frederickson, Paul O.
1990-01-01
High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.
NASA Astrophysics Data System (ADS)
Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood
2018-03-01
The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.
Gaussian and Airy wave packets of massive particles with orbital angular momentum
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry V.
2015-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.
Rholography, black holes and Scherk-Schwarz
Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan; ...
2015-06-10
We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. Here, we find that the corresponding (0, 4) (or (4, 4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name ourmore » construction “Rholography”.« less
Rholography, black holes and Scherk-Schwarz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan
We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. Here, we find that the corresponding (0, 4) (or (4, 4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name ourmore » construction “Rholography”.« less
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2018-07-01
This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called {sech}( {\\hat{ξ }} ) -type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell's equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a "high-level" quadrupole model consisting of one or more {sech}( {\\hat{ξ }} ) -type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.
Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D S
In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.
Successive phase transitions and kink solutions in Φ⁸, Φ¹⁰, and Φ¹² field theories
Khare, Avinash; Christov, Ivan C.; Saxena, Avadh
2014-08-27
We obtain exact solutions for kinks in Φ⁸, Φ¹⁰, and Φ¹² field theories with degenerate minima, which can describe a second-order phase transition followed by a first-order one, a succession of two first-order phase transitions and a second-order phase transition followed by two first-order phase transitions, respectively. Such phase transitions are known to occur in ferroelastic and ferroelectric crystals and in meson physics. In particular, we find that the higher-order field theories have kink solutions with algebraically-decaying tails and also asymmetric cases with mixed exponential-algebraic tail decay, unlike the lower-order Φ⁴ and Φ⁶ theories. Additionally, we construct distinct kinks withmore » equal energies in all three field theories considered, and we show the co-existence of up to three distinct kinks (for a Φ¹² potential with six degenerate minima). We also summarize phonon dispersion relations for these systems, showing that the higher-order field theories have specific cases in which only nonlinear phonons are allowed. For the Φ¹⁰ field theory, which is a quasi-exactly solvable (QES) model akin to Φ⁶, we are also able to obtain three analytical solutions for the classical free energy as well as the probability distribution function in the thermodynamic limit.« less
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
Direct determination of surface albedos from satellite imagery
NASA Technical Reports Server (NTRS)
Mekler, Y.; Joseph, J. H.
1983-01-01
An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
NASA Astrophysics Data System (ADS)
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
Building cosmological frozen stars
NASA Astrophysics Data System (ADS)
Kastor, David; Traschen, Jennie
2017-02-01
Janis-Newman-Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild-deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.
Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation
NASA Astrophysics Data System (ADS)
Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.
2017-10-01
It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.
Exact BPS domain walls at finite gauge coupling
NASA Astrophysics Data System (ADS)
Blaschke, Filip
2017-01-01
Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at the infinite gauge coupling limit, where the governing equation-the so-called master equation-is exactly solvable. Except for a handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as the simplest example, that exact solitons at finite gauge coupling can be readily obtained if the number of Higgs fields (NF ) is large enough. In particular, we present a family of exact solutions, describing N domain walls at arbitrary positions in models with at least NF≥2 N +1 . We have also found that adding together any pair of solutions can produce a new exact solution if the combined tension is below a certain limit.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun
In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.
A two-mass expanding exact space-time solution
NASA Astrophysics Data System (ADS)
Uzan, Jean-Philippe; Ellis, George F. R.; Larena, Julien
2011-01-01
In order to understand how locally static configurations around gravitationally bound bodies can be embedded in an expanding universe, we investigate the solutions of general relativity describing a space-time whose spatial sections have the topology of a 3-sphere with two identical masses at the poles. We show that Israel junction conditions imply that two spherically symmetric static regions around the masses cannot be glued together. If one is interested in an exterior solution, this prevents the geometry around the masses to be of the Schwarzschild type and leads to the introduction of a cosmological constant. The study of the extension of the Kottler space-time shows that there exists a non-static solution consisting of two static regions surrounding the masses that match a Kantowski-Sachs expanding region on the cosmological horizon. The comparison with a Swiss-Cheese construction is also discussed.
Differential invariants in nonclassical models of hydrodynamics
NASA Astrophysics Data System (ADS)
Bublik, Vasily V.
2017-10-01
In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with analytical methods makes it possible to make the results of mathematical modeling more accurate and reliable.
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Chen, J.
1989-01-01
The integrodifferential equation describing the linear tearing instability in the bi-Maxwellian neutral sheet is solved without approximating the particle orbits or the eigenfunction psi. Results of this calculation are presented. Comparison between the exact solution and the three-region approximation motivates the piecewise-straight-line approximation, a simplification that allows faster solution of the integrodifferential equation, yet retains the important features of the exact solution.
New Exact Solutions of Relativistic Hydrodynamics for Longitudinally Expanding Fireballs
NASA Astrophysics Data System (ADS)
Csörgő, Tamás; Kasza, Gábor; Csanád, Máté; Jiang, Zefang
2018-06-01
We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a temperature independent (average) value of the speed of sound. Observables like the rapidity density and the pseudorapidity density are evaluated analytically, resulting in simple and easy to fit formulae that can be matched to the high energy proton-proton and heavy ion collision data at RHIC and LHC. In the longitudinally boost-invariant limit, these new solutions approach the Hwa-Bjorken solution and the corresponding rapidity distributions approach a rapidity plateaux.
NASA Astrophysics Data System (ADS)
Yuan, Na
2018-04-01
With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.
NASA Astrophysics Data System (ADS)
Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar
2018-03-01
We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.
NASA Astrophysics Data System (ADS)
Yang, Zhan-Ying; Xue, Pan-Pan; Zhao, Liu; Shi, Kang-Jie
2008-11-01
Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1.
Paganin, David M; Beltran, Mario A; Petersen, Timothy C
2018-03-01
We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.
Exact solutions and low-frequency instability of the adiabatic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, John M.
1988-01-01
The adiabatic auroral arc model couples a kinetic theory parallel current driven by mirror forces to horizontal ionospheric currents; the resulting equations are nonlinear. Some exact stationary solutions to these equations, some of them based on the Liouville equation, are developed, with both latitudinal and longitudinal spatial variations. These Liouville equation exact solutions are related to stability boundaries of low-frequency instabilities such as Kelvin-Helmholtz, as shown by a study of a simplified model.
How hairpin vortices emerge from exact invariant solutions
NASA Astrophysics Data System (ADS)
Schneider, Tobias M.; Farano, Mirko; de Palma, Pietro; Robinet, Jean-Christoph; Cherubini, Stefania
2017-11-01
Hairpin vortices are among the most commonly observed flow structures in wall-bounded shear flows. However, within the dynamical system approach to turbulence, those structures have not yet been described. They are not captured by known exact invariant solutions of the Navier-Stokes equations nor have other state-space structures supporting hairpins been identified. We show that hairpin structures are observed along an optimally growing trajectory leaving a well known exact traveling wave solution of plane Poiseuille flow. The perturbation triggering hairpins does not correspond to an unstable mode of the exact traveling wave but lies in the stable manifold where non-normality causes strong transient amplification.
Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems
NASA Astrophysics Data System (ADS)
Pham, Duc Chinh
2018-02-01
Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.
Study of stability of the difference scheme for the model problem of the gaslift process
NASA Astrophysics Data System (ADS)
Temirbekov, Nurlan; Turarov, Amankeldy
2017-09-01
The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
An exact solution of a simplified two-phase plume model. [for solid propellant rocket
NASA Technical Reports Server (NTRS)
Wang, S.-Y.; Roberts, B. B.
1974-01-01
An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.
Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers
NASA Astrophysics Data System (ADS)
Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru
2018-06-01
The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.
Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Mikata
2006-08-22
This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbonmore » nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.« less
NASA Astrophysics Data System (ADS)
Grohs, Jacob R.; Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.
Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select ® series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material.
Exact Analytical Solutions for Elastodynamic Impact
2015-11-30
corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi
Exact analytic solution for the spin-up maneuver of an axially symmetric spacecraft
NASA Astrophysics Data System (ADS)
Ventura, Jacopo; Romano, Marcello
2014-11-01
The problem of spinning-up an axially symmetric spacecraft subjected to an external torque constant in magnitude and parallel to the symmetry axis is considered. The existing exact analytic solution for an axially symmetric body is applied for the first time to this problem. The proposed solution is valid for any initial conditions of attitude and angular velocity and for any length of time and rotation amplitude. Furthermore, the proposed solution can be numerically evaluated up to any desired level of accuracy. Numerical experiments and comparison with an existing approximated solution and with the integration of the equations of motion are reported in the paper. Finally, a new approximated solution obtained from the exact one is introduced in this paper.
NASA Astrophysics Data System (ADS)
Lekner, John; Andrejic, Petar
2018-01-01
Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams) are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel-Gauss beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the Gaussian waveform within the central focal region.
Periodic waves in fiber Bragg gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, K. W.; Merhasin, Ilya M.; Malomed, Boris A.
2008-02-15
We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named ''sn'' and ''cn'' waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies ({omega}<0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and,more » in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and {omega}>0, is identified. However, the sn waves with {omega}<0, as well as all cn solutions, are strongly unstable.« less
On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation
NASA Astrophysics Data System (ADS)
Akbulut, Arzu; Taşcan, Filiz
2018-04-01
In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.
Doebling, Scott William
2016-10-22
This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less
Exact vacuum solution to conformal Weyl gravity and galactic rotation curves
NASA Technical Reports Server (NTRS)
Mannheim, Philip D.; Kazanas, Demosthenes
1989-01-01
The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology.
Anomalous transport in turbulent plasmas and continuous time random walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1995-05-01
The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW`s) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW`s is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem:more » transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to {ital t}{sup 1/2} is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW.« less
Numerical simulations of Kadomtsev-Petviashvili soliton interactions
NASA Astrophysics Data System (ADS)
Infeld, E.; Senatorski, A.; Skorupski, A. A.
1995-04-01
The Kadomtsev-Petviashvili equation generalizes that of Korteweg and de Vries to two space dimensions and arises in various weakly dispersive media. Two very different species of soliton solutions are known for one variant, KPI. The first species to be discovered are line solitons, the second are two dimensional lumps. This paper describes numerical simulations, consistent with all constraints of the equation, in which very distorted line solitons break up into smaller line solitons and arrays of lumps. The arrays can interact with one another. In some cases, aspects of the results of the simulations can be understood in the light of specially constructed exact solutions. Simulations in which initial conditions fail to satisfy the constraints of the equation are also described.
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-09
Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less
The Kitaev honeycomb model on surfaces of genus g ≥ 2
NASA Astrophysics Data System (ADS)
Brennan, John; Vala, Jiří
2018-05-01
We present a construction of the Kitaev honeycomb lattice model on an arbitrary higher genus surface. We first generalize the exact solution of the model based on the Jordan–Wigner fermionization to a surface with genus g = 2, and then use this as a basic module to extend the solution to lattices of arbitrary genus. We demonstrate our method by calculating the ground states of the model in both the Abelian doubled {Z}}}2 phase and the non-Abelian Ising topological phase on lattices with the genus up to g = 6. We verify the expected ground state degeneracy of the system in both topological phases and further illuminate the role of fermionic parity in the Abelian phase.
NASA Astrophysics Data System (ADS)
Motsepa, Tanki; Masood Khalique, Chaudry
2018-05-01
In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.
Landau problem with time dependent mass in time dependent electric and harmonic background fields
NASA Astrophysics Data System (ADS)
Lawson, Latévi M.; Avossevou, Gabriel Y. H.
2018-04-01
The spectrum of a Hamiltonian describing the dynamics of a Landau particle with time-dependent mass and frequency undergoing the influence of a uniform time-dependent electric field is obtained. The configuration space wave function of the model is expressed in terms of the generalised Laguerre polynomials. To diagonalize the time-dependent Hamiltonian, we employ the Lewis-Riesenfeld method of invariants. To this end, we introduce a unitary transformation in the framework of the algebraic formalism to construct the invariant operator of the system and then to obtain the exact solution of the Hamiltonian. We recover the solutions of the ordinary Landau problem in the absence of the electric and harmonic fields for a constant particle mass.
Classical integrable many-body systems disconnected with semi-simple Lie algebras
NASA Astrophysics Data System (ADS)
Inozemtsev, V. I.
2017-05-01
The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Volkov, A. K.
2017-01-01
Recently some new nonlinear equations for the description of the Fermi - Pasta - Ulam problem have been derived. The main aim of this work is to use the symmetry test to investigate these equations. We consider equations for the description of the α and α + β Fermi - Pasta - Ulam model. We find the infinitesimal operators and Lie groups, admitted by the equations. Using the groups we find the self-similar variables as well as the reductions to the ordinary differential equations. Some exact solutions are also constructed.
Recursive solution of number of reachable states of a simple subclass of FMS
NASA Astrophysics Data System (ADS)
Chao, Daniel Yuh
2014-03-01
This paper aims to compute the number of reachable (forbidden, live and deadlock) states for flexible manufacturing systems (FMS) without the construction of reachability graph. The problem is nontrivial and takes, in general, an exponential amount of time to solve. Hence, this paper focusses on a simple version of Systems of Simple Sequential Processes with Resources (S3PR), called kth-order system, where each resource place holds one token to be shared between two processes. The exact number of reachable (forbidden, live and deadlock) states can be computed recursively.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2002-01-01
A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.
NASA Astrophysics Data System (ADS)
Liu, Jiangen; Zhang, Yufeng
2018-01-01
This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg-de Vries equation with space-time local fractional derivatives. By using the improved (G‧ G )-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.
Exact solutions to the Mo-Papas and Landau-Lifshitz equations
NASA Astrophysics Data System (ADS)
Rivera, R.; Villarroel, D.
2002-10-01
Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.
Asymptotic symmetries in p-form theories
NASA Astrophysics Data System (ADS)
Afshar, Hamid; Esmaeili, Erfan; Sheikh-Jabbari, M. M.
2018-05-01
We consider ( p + 1)-form gauge fields in flat (2 p + 4)-dimensions for which radiation and Coulomb solutions have the same asymptotic fall-off behavior. Imposing appropriate fall-off behavior on fields and adopting a Maxwell-type action, we construct the boundary term which renders the action principle well-defined in the Lorenz gauge. We then compute conserved surface charges and the corresponding asymptotic charge algebra associated with nontrivial gauge transformations. We show that for p ≥ 1, there are three sets of conserved asymptotic charges associated with exact, coexact and zero-mode parts of the corresponding p-form gauge transformations on the asymptotic S 2 p+2. The coexact and zero-mode charges are higher form extensions of the four dimensional electrodynamics ( p = 0), and are commuting. Charges associated with exact gauge transformations have no counterparts in four dimensions and form infinite copies of Heisenberg algebras. We briefly discuss physical implications of these charges and their algebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Geloun, Joseph; Govaerts, Jan; Hounkonnou, M. Norbert
2007-03-15
Classes of (p,q) deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q) arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translatesmore » into (p,q) deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.« less
Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble
NASA Astrophysics Data System (ADS)
Mestyán, M.; Pozsgay, B.; Takács, G.; Werner, M. A.
2015-04-01
Following our previous work (Pozsgay et al 2014 Phys. Rev. Lett. 113 117203) we present here a detailed comparison of the quench action approach and the predictions of the generalized Gibbs ensemble, with the result that while the quench action formalism correctly captures the steady state, the GGE does not give a correct description of local short-distance correlation functions. We extend our studies to include another initial state, the so-called q-dimer state. We present important details of our construction, including new results concerning exact overlaps for the dimer and q-dimer states, and we also give an exact solution of the quench-action-based overlap-TBA for the q-dimer. Furthermore, we extend our computations to include the xx spin correlations besides the zz correlations treated previously, and give a detailed discussion of the underlying reasons for the failure of the GGE, especially in the light of new developments.
Grazing-incidence X-ray diffraction from a crystal with subsurface defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaevskii, A. Yu., E-mail: transilv@mail.ru; Golentus, I. E.
2015-03-15
The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaksmore » are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.« less
Geometrically derived difference formulae for the numerical integration of trajectory problems
NASA Technical Reports Server (NTRS)
Mcleod, R. J. Y.; Sanz-Serna, J. M.
1982-01-01
An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.
Band structure of an electron in a kind of periodic potentials with singularities
NASA Astrophysics Data System (ADS)
Hai, Kuo; Yu, Ning; Jia, Jiangping
2018-06-01
Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.
New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods
NASA Astrophysics Data System (ADS)
S Saha, Ray
2016-04-01
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.
Exact solutions for postbuckling of a graded porous beam
NASA Astrophysics Data System (ADS)
Ma, L. S.; Ou, Z. Y.
2018-06-01
An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.
Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.
Petrov, E Yu; Kudrin, A V
2010-05-14
The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang
2017-10-01
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.
Mitlin, Vlad
2005-10-15
A new transformation termed the mu-derivative is introduced. Applying it to the Cahn-Hilliard equation yields dynamical exact solutions. It is shown that the mu-transformed Cahn-Hilliard equation can be presented in a separable form. This transformation also yields dynamical exact solutions and separable forms for other nonlinear models such as the modified Korteveg-de Vries and the Burgers equations. The general structure of a nonlinear partial differential equation that becomes separable upon applying the mu-derivative is described.
Non-equilibrium steady-state distributions of colloids in a tilted periodic potential
NASA Astrophysics Data System (ADS)
Ma, Xiaoguang; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger
A two-layer colloidal system is constructed to study the effects of the external force F on the non-equilibrium steady-state (NESS) dynamics of the diffusing particles over a tilted periodic potential, in which detailed balance is broken due to the presence of a steady particle flux. The periodic potential is provided by the bottom layer colloidal spheres forming a fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom colloidal crystal provides a gravitational potential field for the top layer diffusing particles. By tilting the sample with respect to gravity, a tangential component F is applied to the diffusing particles. The measured NESS probability density function Pss (x , y) of the particles is found to deviate from the equilibrium distribution depending on the driving or distance from equilibrium. The experimental results are compared with the exact solution of the 1D Smoluchowski equation and the numerical results of the 2D Smoluchowski equation. Moreover, from the obtained exact 1D solution, we develop an analytical method to accurately extract the 1D potential U0 (x) from the measured Pss (x) . Work supported in part by the Research Grants Council of Hong Kong SAR.
Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel
2013-06-01
Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.
NASA Astrophysics Data System (ADS)
Menon, Govind K.
The Reissner-Nordstrom solution possesses a naked singularity when e2 > m2, where m is the mass and e is the net charge of the system. Also, the singularity at r = 0 is repulsive (i.e., no timelike geodesics (neutral particles) can reach the singularity). These unusual properties of the Reissner-Nordstrom geometry are considered as an accident resulting from the highly symmetric nature of the space-time. Here we wish to generalize the condition of spherical symmetry to axial symmetry and to probe into the issues of naked singularity and gravitational repulsion. To do this, we must construct a nonspherical solution to the Einstein-Maxwell set of equations in the event that e2 > m2. The Erez-Rosen extension of the vacuum Schwarzschild solution to the non-spherical case gave one of the first physically significant solutions of the Einstein field equations. Nonvacuum extensions of the Erez-Rosen solution representing a non-spherical mass containing a very high net charge (i.e., when e2 > m2) will be discussed. The special case of spherical symmetry, as would be expected, results in the Reissner-Nordstrom solution. The search for the physical singularities involves the calculation of a nontrivial scalar constructed from the Riemann curvature tensor. As it turns out, the resulting geometry does indeed possess a naked singularity. In addition, the space-time also entertains gravitational repulsion. However, unlike the Reissner-Nordstrom solution, it has been found that all timelike geodesics are not necessarily repelled from the origin.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
Essentially nonoscillatory postprocessing filtering methods
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1992-01-01
High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters.
Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning
2016-11-21
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations
NASA Astrophysics Data System (ADS)
Han, Zhong; Chen, Yong
2017-01-01
To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attributed to the classification of the corresponding Lie subalgebras. The comprehensiveness and inequivalence of the optimal system are shown clearly under different values of invariants. Then by virtue of the optimal system obtained, the boundary-layer equations are directly reduced to a system of ordinary differential equations (ODEs) by only one step. It has been shown that not only do we recover many of the known results but also find some new reductions and explicit solutions, which may be previously unknown. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of China under Grant Nos. 11275072, 11435005, 11675054, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213
A deformation of Sasakian structure in the presence of torsion and supergravity solutions
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi; Takeuchi, Hiroshi; Yasui, Yukinori
2013-07-01
A deformation of Sasakian structure in the presence of totally skew-symmetric torsion is discussed on odd-dimensional manifolds whose metric cones are Kähler with torsion. It is shown that such a geometry inherits similar properties to those of Sasakian geometry. As their example, we present an explicit expression of local metrics. It is also demonstrated that our example of the metrics admits the existence of hidden symmetry described by non-trivial odd-rank generalized closed conformal Killing-Yano tensors. Furthermore, using these metrics as an ansatz, we construct exact solutions in five-dimensional minimal gauged/ungauged supergravity and 11-dimensional supergravity. Finally, the global structures of the solutions are discussed. We obtain regular metrics on compact manifolds in five dimensions, which give natural generalizations of Sasaki-Einstein manifolds Yp, q and La, b, c. We also briefly discuss regular metrics on non-compact manifolds in 11 dimensions.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ping; Yu, Lan; Wei, Guang-Mei
2018-02-01
Under investigation with symbolic computation in this paper, is a variable-coefficient Sasa-Satsuma equation (SSE) which can describe the ultra short pulses in optical fiber communications and propagation of deep ocean waves. By virtue of the extended Ablowitz-Kaup-Newell-Segur system, Lax pair for the model is directly constructed. Based on the obtained Lax pair, an auto-Bäcklund transformation is provided, then the explicit one-soliton solution is obtained. Meanwhile, an infinite number of conservation laws in explicit recursion forms are derived to indicate its integrability in the Liouville sense. Furthermore, exact explicit rogue wave (RW) solution is presented by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the RW can exhibit graphically an intriguing twisted rogue-wave (TRW) pair that involve four well-defined zero-amplitude points.
Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
Ma, Li-Yuan; Zhu, Zuo-Nong
2014-09-01
In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.
Some exact velocity profiles for granular flow in converging hoppers
NASA Astrophysics Data System (ADS)
Cox, Grant M.; Hill, James M.
2005-01-01
Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.
Analytical approach for the fractional differential equations by using the extended tanh method
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Yildirim, Ayse
2018-07-01
In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.
More exact solutions of the constant astigmatism equation
NASA Astrophysics Data System (ADS)
Hlaváč, Adam
2018-01-01
By using Bäcklund transformation for the sine-Gordon equation, new periodic exact solutions of the constant astigmatism equation zyy +(1 / z) xx + 2 = 0 are generated from a seed which corresponds to Lipschitz surfaces of constant astigmatism.
A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation
ERIC Educational Resources Information Center
Karaoglu, Bekir
2007-01-01
A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model
NASA Astrophysics Data System (ADS)
Cheviakov, Alexei F.
2018-05-01
A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2018-01-01
In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.
Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Huang, Li-Li; Qiao, Zhi-Jun; Chen, Yong
2018-02-01
Based on nonlocal symmetry method, localized excitations and interactional solutions are investigated for the reduced Maxwell-Bloch equations. The nonlocal symmetries of the reduced Maxwell-Bloch equations are obtained by the truncated Painleve expansion approach and the Mobious invariant property. The nonlocal symmetries are localized to a prolonged system by introducing suitable auxiliary dependent variables. The extended system can be closed and a novel Lie point symmetry system is constructed. By solving the initial value problems, a new type of finite symmetry transformations is obtained to derive periodic waves, Ma breathers and breathers travelling on the background of periodic line waves. Then rich exact interactional solutions are derived between solitary waves and other waves including cnoidal waves, rational waves, Painleve waves, and periodic waves through similarity reductions. In particular, several new types of localized excitations including rogue waves are found, which stem from the arbitrary function generated in the process of similarity reduction. By computer numerical simulation, the dynamics of these localized excitations and interactional solutions are discussed, which exhibit meaningful structures.
Equilibrium configurations of the conducting liquid surface in a nonuniform electric field
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2011-01-01
Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.
Neural network for nonsmooth pseudoconvex optimization with general convex constraints.
Bian, Wei; Ma, Litao; Qin, Sitian; Xue, Xiaoping
2018-05-01
In this paper, a one-layer recurrent neural network is proposed for solving a class of nonsmooth, pseudoconvex optimization problems with general convex constraints. Based on the smoothing method, we construct a new regularization function, which does not depend on any information of the feasible region. Thanks to the special structure of the regularization function, we prove the global existence, uniqueness and "slow solution" character of the state of the proposed neural network. Moreover, the state solution of the proposed network is proved to be convergent to the feasible region in finite time and to the optimal solution set of the related optimization problem subsequently. In particular, the convergence of the state to an exact optimal solution is also considered in this paper. Numerical examples with simulation results are given to show the efficiency and good characteristics of the proposed network. In addition, some preliminary theoretical analysis and application of the proposed network for a wider class of dynamic portfolio optimization are included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V
2016-01-01
Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2017-05-01
We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
NASA Astrophysics Data System (ADS)
Kruglov, Vladimir I.; Harvey, John D.
2006-12-01
We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.
Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
Ankiewicz, A; Akhmediev, N
2017-07-01
We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.
Gravitational field of a concentrated mass in Jordan—Brans—Dicke theory
NASA Astrophysics Data System (ADS)
Arutyunyan, G. G.; Papoyan, V. V.
1994-04-01
The problem of determining the gravitational field of a static, spherically symmetric, self-gravitating object is formulated. The small number of physically applicable exact solutions of the equations in Jordan—Brans—Dicke theory is augmented with new exact solutions describing the external gravitational field of the given body. Once a solution has been found, it can be rewritten in modified curvature, homogeneous, and other coordinates by appropriate gauging. In a special case the solution coincides with the well-known Schwarzschild solution.
Analytical solution for boundary heat fluxes from a radiating rectangular medium
NASA Technical Reports Server (NTRS)
Siegel, R.
1991-01-01
Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.
Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system
NASA Astrophysics Data System (ADS)
Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello
2018-01-01
An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.
Exact example of backreaction of small scale inhomogeneities in cosmology
NASA Astrophysics Data System (ADS)
Green, Stephen; Wald, Robert
2013-04-01
We construct a one-parameter family of polarized vacuum Gowdy spacetimes on a torus. In the limit as the parameter N goes to infinity, the metric uniformly approaches a smooth ``background metric.'' However, spacetime derivatives of the metric do not approach a limit. As a result, we find that the background metric itself is not a solution of the vacuum Einstein equation. Rather, it is a solution of the Einstein equation with an ``effective stress-energy tensor,'' which is traceless and satisfies the weak energy condition. This is an explicit example of backreaction due to small scale inhomogeneities. We comment on the non-vacuum case, where we have proven in previous work that, provided the matter stress-energy tensor satisfies the weak energy condition, no additional backreaction is possible.
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel
2017-05-01
The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.
On a class of nonlinear dispersive-dissipative interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenau, P.
1997-07-29
The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are foundmore » and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.« less
Constructing the Exact Significance Level for a Person-Fit Statistic.
ERIC Educational Resources Information Center
Liou, Michelle; Chang, Chih-Hsin
1992-01-01
An extension is proposed for the network algorithm introduced by C.R. Mehta and N.R. Patel to construct exact tail probabilities for testing the general hypothesis that item responses are distributed according to the Rasch model. A simulation study indicates the efficiency of the algorithm. (SLD)
NASA Astrophysics Data System (ADS)
Lefèvre, Victor; Lopez-Pamies, Oscar
2017-02-01
This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi-)conducting/high-permittivity particles to dielectric elastomers does not lead to the extreme electrostriction enhancements observed in experiments. It is posited that such extreme enhancements are the manifestation of interphasial phenomena.
Exact solutions to force-free electrodynamics in black hole backgrounds
NASA Astrophysics Data System (ADS)
Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted
2013-10-01
A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
Logical gaps in the approximate solutions of the social learning game and an exact solution.
Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan
2014-01-01
After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiotelis, Nicos; Popolo, Antonino Del, E-mail: adelpopolo@oact.inaf.it, E-mail: hiotelis@ipta.demokritos.gr
We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions aremore » in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.« less
Modulated amplitude waves in collisionally inhomogeneous Bose Einstein condensates
NASA Astrophysics Data System (ADS)
Porter, Mason A.; Kevrekidis, P. G.; Malomed, Boris A.; Frantzeskakis, D. J.
2007-05-01
We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length a subjected to a spatially periodic modulation, a=a(x)=a(x+L). This “collisionally inhomogeneous” BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of x. We transform this equation into a GP equation with a constant coefficient and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that “on-site” solutions, whose maxima correspond to maxima of a(x), are more robust and likely to be observed than their “off-site” counterparts.
Four-dimensional black holes in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Interior radiances in optically deep absorbing media. 1: Exact solutions for one-dimensional model
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1973-01-01
The exact solutions are obtained for a one dimensional model of a scattering and absorbing medium. The results are given for both the reflected and transmitted radiance for any arbitrary surface albedo as well as for the interior radiance. These same quantities are calculated by the matrix operator method. The relative error of the solutions is obtained by comparison with the exact solutions as well as by an error analysis of the equations. The importance of an accurate starting value for the reflection and transmission operators is shown. A fourth order Runge-Kutta method can be used to solve the differential equations satisfied by these operators in order to obtain such accurate starting values.
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sheftel, M. B.
2014-02-01
This is a corrected and essentially extended version of the unpublished manuscript by Y Nutku and M Sheftel which contains new results. It is proposed to be published in honour of Y Nutku’s memory. All corrections and new results in sections 1, 2 and 4 are due to M Sheftel. We present new anti-self-dual exact solutions of the Einstein field equations with Euclidean and neutral (ultra-hyperbolic) signatures that admit only one rotational Killing vector. Such solutions of the Einstein field equations are determined by non-invariant solutions of Boyer-Finley (BF) equation. For the case of Euclidean signature such a solution of the BF equation was first constructed by Calderbank and Tod. Two years later, Martina, Sheftel and Winternitz applied the method of group foliation to the BF equation and reproduced the Calderbank-Tod solution together with new solutions for the neutral signature. In the case of Euclidean signature we obtain new metrics which asymptotically locally look like a flat space and have a non-removable singular point at the origin. In the case of ultra-hyperbolic signature there exist three inequivalent forms of metric. Only one of these can be obtained by analytic continuation from the Calderbank-Tod solution whereas the other two are new.
Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.
Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung
2009-03-01
An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.
NASA Astrophysics Data System (ADS)
Nutku, Y.
1985-06-01
We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.
Mathematical Analysis for Peristaltic Flow of Two Phase Nanofluid in a Curved Channel
NASA Astrophysics Data System (ADS)
Nadeem, S.; Shahzadi, Iqra
2015-11-01
This paper describes the theoretical analysis for peristaltic motion of water base nanofluid containing distinct types of the nanoparticles like Cu, TiO2, and Al2O3. Equations of nano fluid are modelled and simplified by constructing the suppositions of low Reynolds number as well as long wave length. The reduced equations are solved exactly. Solutions are represented through graphs. Outcomes for the velocity, temperature, pressure rise and stream lines are analyzed graphically. The work presented here is based on the fictitious values, however some other values can be tested experimentally.
New Turaev braided group categories and weak (co)quasi-Turaev group coalgebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaohui, E-mail: zxhhhhh@gmail.com; Wang, Shuanhong, E-mail: shuanhwang2002@yahoo.com
In order to construct a class of new braided crossed G-categories with nontrivial associativity and unit constraints, we study the G-graded monoidal category over a family of algebras (H{sub α}){sub α∈G} and introduce the notion of a weak (co)quasi-Turaev G-(co)algebra. Then we prove that the category of (co)representations of (co)quasitriangular weak (co)quasi-Turaev π-(co)algebras is exactly a braided crossed G-category. In fact, this (co)quasitriangular structure provides a solution to a generalized quantum Yang-Baxter type equation.
Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber
NASA Astrophysics Data System (ADS)
Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei
2018-01-01
Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Bennett, D.H.
2002-08-01
In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analyticalmore » solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.« less
Reconciliation of Gene and Species Trees
Rusin, L. Y.; Lyubetskaya, E. V.; Gorbunov, K. Y.; Lyubetsky, V. A.
2014-01-01
The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i) inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii) trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii) can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree. PMID:24800245
Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A and M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj
2014-12-15
We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number,more » and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.« less
Gravitational Instantons and Minimal Surfaces
NASA Astrophysics Data System (ADS)
Nutku, Y.
1996-12-01
We show that for every minimal surface in E3 there is a gravitational instanton, an exact solution of the Einstein field equations with Euclidean signature and anti-self-dual curvature. The explicit metric establishing this correspondence is presented and a new class of exact solutions are obtained.
Exact solutions to quadratic gravity
NASA Astrophysics Data System (ADS)
Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.
2017-04-01
Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS
NASA Technical Reports Server (NTRS)
Breakwell, J. V.
1994-01-01
OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.
Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Zayats, Alexei E.
2014-08-01
We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.
NASA Astrophysics Data System (ADS)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Applications of He's semi-inverse method, ITEM and GGM to the Davey-Stewartson equation
NASA Astrophysics Data System (ADS)
Zinati, Reza Farshbaf; Manafian, Jalil
2017-04-01
We investigate the Davey-Stewartson (DS) equation. Travelling wave solutions were found. In this paper, we demonstrate the effectiveness of the analytical methods, namely, He's semi-inverse variational principle method (SIVPM), the improved tan(φ/2)-expansion method (ITEM) and generalized G'/G-expansion method (GGM) for seeking more exact solutions via the DS equation. These methods are direct, concise and simple to implement compared to other existing methods. The exact solutions containing four types solutions have been achieved. The results demonstrate that the aforementioned methods are more efficient than the Ansatz method applied by Mirzazadeh (2015). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found by the improved tan(φ/2)-expansion and generalized G'/G-expansion methods. By He's semi-inverse variational principle we have obtained dark and bright soliton wave solutions. Also, the obtained semi-inverse variational principle has profound implications in physical understandings. These solutions might play important role in engineering and physics fields. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.
Lushnikov, Pavel M; Zubarev, Nikolay M
2018-05-18
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Lushnikov, Pavel M.; Zubarev, Nikolay M.
2018-05-01
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Hierarchic models for laminated plates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Actis, Ricardo Luis
1991-01-01
Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of MSC/PROBE. Hierarchic models make the computation of any engineering data possible to an arbitrary level of precision within the framework of the theory of elasticity.
Solution of the advection-dispersion equation: Continuous load of finite duration
Runkel, R.L.
1996-01-01
Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.
Exact-solution for cone-plate viscometry
NASA Astrophysics Data System (ADS)
Giacomin, A. J.; Gilbert, P. H.
2017-11-01
The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza
2018-07-01
Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.
An exact plane-stress solution for a class of problems in orthotropic elasticity
NASA Technical Reports Server (NTRS)
Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.
1982-01-01
An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.
Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.
2015-01-01
By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
ERIC Educational Resources Information Center
Fulcher, Lewis P.
1979-01-01
Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)
Effect of inhomogeneities on high precision measurements of cosmological distances
NASA Astrophysics Data System (ADS)
Peel, Austin; Troxel, M. A.; Ishak, Mustapha
2014-12-01
We study effects of inhomogeneities on distance measures in an exact relativistic Swiss-cheese model of the Universe, focusing on the distance modulus. The model has Λ CDM background dynamics, and the "holes" are nonsymmetric structures described by the Szekeres metric. The Szekeres exact solution of Einstein's equations, which is inhomogeneous and anisotropic, allows us to capture potentially relevant effects on light propagation due to nontrivial evolution of structures in an exact framework. Light beams traversing a single Szekeres structure in different ways can experience either magnification or demagnification, depending on the particular path. Consistent with expectations, we find a shift in the distance modulus μ to distant sources due to demagnification when the light beam travels primarily through the void regions of our model. Conversely, beams are magnified when they propagate mainly through the overdense regions of the structures, and we explore a small additional effect due to time evolution of the structures. We then study the probability distributions of Δ μ =μΛ CDM-μSC for sources at different redshifts in various Swiss-cheese constructions, where the light beams travel through a large number of randomly oriented Szekeres holes with random impact parameters. We find for Δ μ the dispersions 0.004 ≤σΔ μ≤0.008 mag for sources with redshifts 1.0 ≤z ≤1.5 , which are smaller than the intrinsic dispersion of, for example, magnitudes of type Ia supernovae. The shapes of the distributions we obtain for our Swiss-cheese constructions are peculiar in the sense that they are not consistently skewed toward the demagnification side, as they are in analyses of lensing in cosmological simulations. Depending on the source redshift, the distributions for our models can be skewed to either the demagnification or the magnification side, reflecting a limitation of these constructions. This could be the result of requiring the continuity of Einstein's equations throughout the overall spacetime patchwork, which imposes the condition that compensating overdense shells must accompany the underdense void regions in the holes. The possibility to explore other uses of these constructions that could circumvent this limitation and lead to different statistics remains open.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-08-01
We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.
Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold
NASA Astrophysics Data System (ADS)
Shchigolev, V. K.; Bezbatko, D. N.
2018-04-01
The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.
Exact Exchange calculations for periodic systems: a real space approach
NASA Astrophysics Data System (ADS)
Natan, Amir; Marom, Noa; Makmal, Adi; Kronik, Leeor; Kuemmel, Stephan
2011-03-01
We present a real-space method for exact-exchange Kohn-Sham calculations of periodic systems. The method is based on self-consistent solutions of the optimized effective potential (OEP) equation on a three-dimensional non-orthogonal grid, using norm conserving pseudopotentials. These solutions can be either exact, using the S-iteration approach, or approximate, using the Krieger, Li, and Iafrate (KLI) approach. We demonstrate, using a variety of systems, the importance of singularity corrections and use of appropriate pseudopotentials.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Mikulas, Martin M., Jr.
2009-01-01
Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.
NASA Astrophysics Data System (ADS)
Scholle, M.; Gaskell, P. H.; Marner, F.
2018-04-01
An exact first integral of the full, unsteady, incompressible Navier-Stokes equations is achieved in its most general form via the introduction of a tensor potential and parallels drawn with Maxwell's theory. Subsequent to this gauge freedoms are explored, showing that when used astutely they lead to a favourable reduction in the complexity of the associated equation set and number of unknowns, following which the inviscid limit case is discussed. Finally, it is shown how a change in gauge criteria enables a variational principle for steady viscous flow to be constructed having a self-adjoint form. Use of the new formulation is demonstrated, for different gauge variants of the first integral as the starting point, through the solution of a hierarchy of classical three-dimensional flow problems, two of which are tractable analytically, the third being solved numerically. In all cases the results obtained are found to be in excellent accord with corresponding solutions available in the open literature. Concurrently, the prescription of appropriate commonly occurring physical and necessary auxiliary boundary conditions, incorporating for completeness the derivation of a first integral of the dynamic boundary condition at a free surface, is established, together with how the general approach can be advantageously reformulated for application in solving unsteady flow problems with periodic boundaries.
Formalism for the solution of quadratic Hamiltonians with large cosine terms
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Levin, Michael
2016-02-01
We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.
Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography
NASA Astrophysics Data System (ADS)
Choboter, P.; Duke, D.; Horton, J.; Sinz, P.
2009-12-01
The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
NASA Astrophysics Data System (ADS)
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott William
This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavinto, Mikko; Räsänen, Syksy; Szybka, Sebastian J., E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi, E-mail: sebastian.szybka@uj.edu.pl
We construct the first exact statistically homogeneous and isotropic cosmological solution in which inhomogeneity has a significant effect on the expansion rate. The universe is modelled as a Swiss Cheese, with dust FRW background and inhomogeneous holes. We show that if the holes are described by the quasispherical Szekeres solution, their average expansion rate is close to the background under certain rather general conditions. We specialise to spherically symmetric holes and violate one of these conditions. As a result, the average expansion rate at late times grows relative to the background, \\ie backreaction is significant. The holes fit smoothly intomore » the background, but are larger on the inside than a corresponding background domain: we call them Tardis regions. We study light propagation, find the effective equations of state and consider the relation of the spatially averaged expansion rate to the redshift and the angular diameter distance.« less
Hidden symmetries for ellipsoid-solitonic deformations of Kerr-Sen black holes and quantum anomalies
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2013-02-01
We prove the existence of hidden symmetries in the general relativity theory defined by exact solutions with generic off-diagonal metrics, nonholonomic (non-integrable) constraints, and deformations of the frame and linear connection structure. A special role in characterization of such spacetimes is played by the corresponding nonholonomic generalizations of Stackel-Killing and Killing-Yano tensors. There are constructed new classes of black hole solutions and we study hidden symmetries for ellipsoidal and/or solitonic deformations of "prime" Kerr-Sen black holes into "target" off-diagonal metrics. In general, the classical conserved quantities (integrable and not-integrable) do not transfer to the quantized systems and produce quantum gravitational anomalies. We prove that such anomalies can be eliminated via corresponding nonholonomic deformations of fundamental geometric objects (connections and corresponding Riemannian and Ricci tensors) and by frame transforms.
Time-Reversal Generation of Rogue Waves
NASA Astrophysics Data System (ADS)
Chabchoub, Amin; Fink, Mathias
2014-03-01
The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.
A new exact anisotropic solution of embedding class one
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Gupta, Y. K.; T. T., Smitha; Rahaman, Farook
2016-07-01
We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor ( Δ by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor ( Δ. The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2).
Polynomial interpretation of multipole vectors
NASA Astrophysics Data System (ADS)
Katz, Gabriel; Weeks, Jeff
2004-09-01
Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.; Bouchaud, Jean-Philippe
2008-08-01
We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.
NASA Astrophysics Data System (ADS)
Cowperthwaite, M.
1994-03-01
Methods of differential geometry and Bernoulli's equation, written as B=0, are used to develop a new approach for constructing an exact solution for axial flow in a classical, two-dimensional, ZND detonation wave in a polytropic explosive with an arbitrary rate of decomposition. This geometric approach is fundamentally different from the traditional approaches to this axial flow problem formulated by Wood and Kirkwood (WK) and Fickett and Davis (FD), and gives equations for the axial particle velocity (u), the sound speed (c), the pressure (p), and the density (ρ), that are expressed in terms of the detonation velocity (D), the extent of decomposition (λ), the polytropic index (K), and two nonideal parameters ɛ3 and ɛ1, and reduce to the equations for steady-state, one-dimensional detonation as ɛ3 and ɛ1 approach zero. In contrast to the FD approach, the equations for u and c are obtained from first integrals of a tangent vector à on (u,c,λ) space, and the invariant condition, ÃB=aB=0, bypasses the FD eigenvalue problem by defining ɛ3 in terms of the detonation velocity deficit D/D∞ and K. In contrast to the WK approach, the equations for p and ρ are obtained from equations expressing the conservation of axial momentum and energy. Because the equations for these flow variables are derived without using the conservation of mass, the axial radial particle velocity gradient (war) associated with the flow can be obtained from the continuity equation without making approximations. The relationship between ɛ1 and ɛ3 that closes the solution is obtained from equations expressing constraints imposed on the axial flow at the shock front by the axial and radial momentum equations, the curved shock and the decomposition rate law, and a particular solution is constructed from the ɛ1-ɛ3 relationship determined by a prescribed rate law and value of K. Properties of particular solutions are presented to provide a better understanding of two-dimensional detonation, and a new axial condition for detonation failure is used to show that detonation failure can occur before the curve relating D/D∞ to the axial radius of curvature of the shock (Sa) becomes infinite.
NASA Astrophysics Data System (ADS)
Varró, Sándor
2014-01-01
Exact solutions are presented of the Klein-Gordon equation of a charged particle moving in a transverse monochromatic plasmon wave of arbitrary high amplitude, which propagates in an underdense plasma. These solutions are expressed in terms of Ince polynomials, forming a doubly infinite set, parametrized by discrete momentum components of the charged particle’s de Broglie wave along the polarization vector and along the propagation direction of the plasmon radiation. The envelope of the exact wavefunctions describes a high-contrast periodic structure of the particle density on the plasma length scale, which may have relevance in novel particle acceleration mechanisms.
Quantum spectral curve for arbitrary state/operator in AdS5/CFT4
NASA Astrophysics Data System (ADS)
Gromov, Nikolay; Kazakov, Vladimir; Leurent, Sébastien; Volin, Dmytro
2015-09-01
We give a derivation of quantum spectral curve (QSC) — a finite set of Riemann-Hilbert equations for exact spectrum of planar N=4 SYM theory proposed in our recent paper Phys. Rev. Lett. 112 (2014). We also generalize this construction to all local single trace operators of the theory, in contrast to the TBA-like approaches worked out only for a limited class of states. We reveal a rich algebraic and analytic structure of the QSC in terms of a so called Q-system — a finite set of Baxter-like Q-functions. This new point of view on the finite size spectral problem is shown to be completely compatible, though in a far from trivial way, with already known exact equations (analytic Y-system/TBA, or FiNLIE). We use the knowledge of this underlying Q-system to demonstrate how the classical finite gap solutions and the asymptotic Bethe ansatz emerge from our formalism in appropriate limits.
Ultrarelativistic boost of a black hole in the magnetic universe of Levi-Civita-Bertotti-Robinson
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Astorino, Marco
2018-05-01
We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia, which describes a Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti, and Robinson (LCBR). After reviewing the basic properties of this spacetime, we study the ultrarelativistic limit in which the black hole is boosted to the speed of light, while sending its mass to 0. This results in a nonexpanding impulsive wave traveling in the LCBR universe. The wave front is a 2-sphere carrying two null point particles at its poles—a remnant of the structure of the original static spacetime. It is also shown that the obtained line element belongs to the Kundt class of spacetimes, and the relation with the known family of exact gravitational waves of finite duration propagating in the LCBR background is clarified. In the limit of a vanishing electromagnetic field, one point particle is pushed away to infinity and the single-particle Aichelburg-Sexl p p -wave propagating in Minkowski space is recovered.
Bound states of dipolar bosons in one-dimensional systems
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.
2013-04-01
We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.
F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation
Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah
2014-01-01
F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327
F-expansion method and new exact solutions of the Schrödinger-KdV equation.
Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah
2014-01-01
F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.
Symmetry Enriched Topological Phases and Their Edge Theories
NASA Astrophysics Data System (ADS)
Heinrich, Christopher
In this thesis we investigate topological phases of matter that have a global, unbroken symmetry group--also known as symmetry enriched topological (SET) phases. We address three questions about these phases: (1) how can we build exactly solvable models that realize them? (2) how can we determine if their edge theories can be gapped without breaking the symmetry? and (3) how do we understand the phenomenon of decoupled charge and neutral modes which occurs in certain fractional quantum Hall states? More specifically, we address the first question by constructing exactly solvable models for a wide class of symmetry enriched topological (SET) phases, which we call symmetry-enriched string nets. The construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group G, and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples. For the second question, we focus on the edge theories of 2D SET phases with Z2 symmetry. The central problem we seek to solve is to determine which edge theories can be gapped without breaking the symmetry. Previous attempts to answer this question in special cases relied on constructing perturbations of a particular type to gap the edge. This method proves the edge can be gapped when the appropriate perturbations can be found, but is inconclusive if they cannot be found. We build on this previous work by deriving a necessary and sufficient algebraic condition for when the edge can be gapped. Our results apply to Z2 symmetry protected topological phases as well as Abelian Z2 SET phases. Finally, in the fourth chapter, we describe solvable models that capture how impurity scattering in certain fractional quantum Hall edges can give rise to a neutral mode--i.e. an edge mode that does not carry electric charge. These models consist of two counter-propagating chiral Luttinger liquids together with a collection of discrete impurity scatterers. Our main result is an exact solution of these models in the limit of infinitely strong impurity scattering. From this solution, we explicitly derive the existence of a neutral mode and we determine all of its microscopic properties including its velocity. We also study the stability of the neutral mode and show that it survives at finite but sufficiently strong scattering. Our results are applicable to a family of Abelian fractional quantum Hall states of which the nu = 2/3 state is the most prominent example.
Exact solution of a quantum forced time-dependent harmonic oscillator
NASA Technical Reports Server (NTRS)
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
NASA Astrophysics Data System (ADS)
Yamasaki, Hayata; Soeda, Akihito; Murao, Mio
2017-09-01
We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.
Exact solutions of the Navier-Stokes equations generalized for flow in porous media
NASA Astrophysics Data System (ADS)
Daly, Edoardo; Basser, Hossein; Rudman, Murray
2018-05-01
Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.
Path Following in the Exact Penalty Method of Convex Programming.
Zhou, Hua; Lange, Kenneth
2015-07-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.
Path Following in the Exact Penalty Method of Convex Programming
Zhou, Hua; Lange, Kenneth
2015-01-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044
Propagation of sound waves through a linear shear layer: A closed form solution
NASA Technical Reports Server (NTRS)
Scott, J. N.
1978-01-01
Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.
NASA Astrophysics Data System (ADS)
Ishkhanyan, Tigran A.; Krainov, Vladimir P.; Ishkhanyan, Artur M.
2018-05-01
We present a conditionally integrable potential, belonging to the bi-confluent Heun class, for which the Schrödinger equation is solved in terms of the confluent hypergeometric functions. The potential involves an attractive inverse square root term x-1/2 with arbitrary strength and a repulsive centrifugal barrier core x-2 with the strength fixed to a constant. This is a potential well defined on the half-axis. Each of the fundamental solutions composing the general solution of the Schrödinger equation is written as an irreducible linear combination, with non-constant coefficients, of two confluent hypergeometric functions. We present the explicit solution in terms of the non-integer order Hermite functions of scaled and shifted argument and discuss the bound states supported by the potential. We derive the exact equation for the energy spectrum and approximate that by a highly accurate transcendental equation involving trigonometric functions. Finally, we construct an accurate approximation for the bound-state energy levels.
Analytical description of the breakup of liquid jets in air
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.
1993-01-01
A viscous or inviscid cylindrical jet with surface tension in a vacuum tends to pinch due to the mechanism of capillary instability. Similarity solutions are constructed which describe this phenomenon as a critical time is encountered, for two physically distinct cases: inviscid jets governed by the Euler equations and highly viscous jets governed by the Stokes equations. In both cases the only assumption imposed is that at the time of pinching the jet shape has a radial length scale which is smaller than the axial length scale. For the inviscid case, we show that our solution corresponds exactly to one member of the one-parameter family of solutions obtained from slender jet theories and the shape of the jet is locally concave at breakup. For highly viscous jets our theory predicts local shapes which are monotonic increasing or decreasing indicating the formation of a mother drop connected to the jet by a thin fluid tube. This qualitative behavior is in complete agreement with both direct numerical simulations and experimental observations.
Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection
NASA Technical Reports Server (NTRS)
Sparrow, E. M.; Gregg, J. L.
1959-01-01
A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.
Exact finite element method analysis of viscoelastic tapered structures to transient loads
NASA Technical Reports Server (NTRS)
Spyrakos, Constantine Chris
1987-01-01
A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.
NASA Astrophysics Data System (ADS)
Protasov, M.; Gadylshin, K.
2017-07-01
A numerical method is proposed for the calculation of exact frequency-dependent rays when the solution of the Helmholtz equation is known. The properties of frequency-dependent rays are analysed and compared with classical ray theory and with the method of finite-difference modelling for the first time. In this paper, we study the dependence of these rays on the frequency of signals and show the convergence of the exact rays to the classical rays with increasing frequency. A number of numerical experiments demonstrate the distinctive features of exact frequency-dependent rays, in particular, their ability to penetrate into shadow zones that are impenetrable for classical rays.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.
2018-05-01
A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.
On the exact solutions of high order wave equations of KdV type (I)
NASA Astrophysics Data System (ADS)
Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet
2014-12-01
In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.
Expanded solutions of force-free electrodynamics on general Kerr black holes
NASA Astrophysics Data System (ADS)
Li, Huiquan; Wang, Jiancheng
2017-07-01
In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.
Exact nonparaxial beams of the scalar Helmholtz equation.
Rodríguez-Morales, Gustavo; Chávez-Cerda, Sabino
2004-03-01
It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the connection between the physical parameters of nonparaxial spheroidal beam solutions and those of paraxial beams. These results are also helpful for investigating exact vector nonparaxial beams.
NASA Astrophysics Data System (ADS)
Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel
2018-05-01
A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal Control of the Valve Based on Traveling Wave Method in the Water Hammer Process
NASA Astrophysics Data System (ADS)
Cao, H. Z.; Wang, F.; Feng, J. L.; Tan, H. P.
2011-09-01
Valve regulation is an effective method for process control during the water hammer. The principle of d'Alembert traveling wave theory was used in this paper to construct the exact analytical solution of the water hammer, and the optimal speed law of the valve that can reduce the water hammer pressure in the maximum extent was obtained. Combining this law with the valve characteristic curve, the principle corresponding to the valve opening changing with time was obtained, which can be used to guide the process of valve closing and to reduce the water hammer pressure in the maximum extent.
Solute Migration from the Aquifer Matrix into a Solution Conduit and the Reverse.
Li, Guangquan; Field, Malcolm S
2016-09-01
A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one-dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production-value problem. Both nonuniform cross-section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two-way transfer between conduit water and matrix water is also investigated by using the solution for the production-value problem as a first-order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring-breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Euler and Lagrangian approaches are used to solve transport in conduit. Two-way transfer between conduit and matrix is investigated. The solution is applicable to transport in conduit of persisting solute from matrix. © 2016, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Bobodzhanov, A. A.; Safonov, V. F.
2016-04-01
We consider an algorithm for constructing asymptotic solutions regularized in the sense of Lomov (see [1], [2]). We show that such problems can be reduced to integro-differential equations with inverse time. But in contrast to known papers devoted to this topic (see, for example, [3]), in this paper we study a fundamentally new case, which is characterized by the absence, in the differential part, of a linear operator that isolates, in the asymptotics of the solution, constituents described by boundary functions and by the fact that the integral operator has kernel with diagonal degeneration of high order. Furthermore, the spectrum of the regularization operator A(t) (see below) may contain purely imaginary eigenvalues, which causes difficulties in the application of the methods of construction of asymptotic solutions proposed in the monograph [3]. Based on an analysis of the principal term of the asymptotics, we isolate a class of inhomogeneities and initial data for which the exact solution of the original problem tends to the limit solution (as \\varepsilon\\to+0) on the entire time interval under consideration, also including a boundary-layer zone (that is, we solve the so-called initialization problem). The paper is of a theoretical nature and is designed to lead to a greater understanding of the problems in the theory of singular perturbations. There may be applications in various applied areas where models described by integro-differential equations are used (for example, in elasticity theory, the theory of electrical circuits, and so on).
Using exact solutions to develop an implicit scheme for the baroclinic primitive equations
NASA Technical Reports Server (NTRS)
Marchesin, D.
1984-01-01
The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.
Benchmark problems and solutions
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1995-01-01
The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.
Li, B O; Liu, Yuan
A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.
Dirac-Kähler particle in Riemann spherical space: boson interpretation
NASA Astrophysics Data System (ADS)
Ishkhanyan, A. M.; Florea, O.; Ovsiyuk, E. M.; Red'kov, V. M.
2015-11-01
In the context of the composite boson interpretation, we construct the exact general solution of the Dirac--K\\"ahler equation for the case of the spherical Riemann space of constant positive curvature, for which due to the geometry itself one may expect to have a discrete energy spectrum. In the case of the minimal value of the total angular momentum, $j=0$, the radial equations are reduced to second-order ordinary differential equations, which are straightforwardly solved in terms of the hypergeometric functions. For non-zero values of the total angular momentum, however, the radial equations are reduced to a pair of complicated fourth-order differential equations. Employing the factorization approach, we derive the general solution of these equations involving four independent fundamental solutions written in terms of combinations of the hypergeometric functions. The corresponding discrete energy spectrum is then determined via termination of the involved hypergeometric series, resulting in quasi-polynomial wave-functions. The constructed solutions lead to notable observations when compared with those for the ordinary Dirac particle. The energy spectrum for the Dirac-K\\"ahler particle in spherical space is much more complicated. Its structure substantially differs from that for the Dirac particle since it consists of two paralleled energy level series each of which is twofold degenerate. Besides, none of the two separate series coincides with the series for the Dirac particle. Thus, the Dirac--K\\"ahler field cannot be interpreted as a system of four Dirac fermions. Additional arguments supporting this conclusion are discussed.
Spatial correlations and exact solution of the problem of the boson peak profile in amorphous media
NASA Astrophysics Data System (ADS)
Kirillov, Sviatoslav A.; A. Voyiatzis, George; Kolomiyets, Tatiana M.; H. Anastasiadis, Spiros
1999-11-01
Based on a model correlation function which covers spatial correlations from Gaussian to exponential, we have arrived at an exact analytic solution of the problem of the Boson peak profile in amorphous media. Probe fits made for polyisoprene and triacetin prove the working ability of the formulae obtained.
Exact Solutions to Time-dependent Mdps
NASA Technical Reports Server (NTRS)
Boyan, Justin A.; Littman, Michael L.
2000-01-01
We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
NASA Astrophysics Data System (ADS)
Baradaran, M.; Panahi, H.
2018-05-01
Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.
Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.
Lira, Sérgio A; Miranda, José A
2016-01-01
We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.
NASA Astrophysics Data System (ADS)
Bini, Donato; Chicone, Carmen; Mashhoon, Bahram
2018-03-01
In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.
NASA Astrophysics Data System (ADS)
Majewski, Kurt
2018-03-01
Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.
Quantum decay model with exact explicit analytical solution
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'El
2009-01-01
A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.
Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.
Sun, Qiming; Chan, Garnet Kin-Lic
2014-09-09
Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.
Nonlinear Field Equations and Solitons as Particles
NASA Astrophysics Data System (ADS)
Maccari, Attilio
2006-05-01
Profound advances have recently interested nonlinear field theories and their exact or approximate solutions. We review the last results and point out some important unresolved questions. It is well known that quantum field theories are based upon Fourier series and the identification of plane waves with free particles. On the contrary, nonlinear field theories admit the existence of coherent solutions (dromions, solitons and so on). Moreover, one can construct lower dimensional chaotic patterns, periodic-chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution. We discuss in some detail a nonlinear Dirac field and a spontaneous symmetry breaking model that are reduced by means of the asymptotic perturbation method to a system of nonlinear evolution equations integrable via an appropriate change of variables. Their coherent, chaotic and fractal solutions are examined in some detail. Finally, we consider the possible identification of some types of coherent solutions with extended particles along the de Broglie-Bohm theory. However, the last findings suggest an inadequacy of the particle concept that appears only as a particular case of nonlinear field theories excitations.
Exact one-sided confidence limits for the difference between two correlated proportions.
Lloyd, Chris J; Moldovan, Max V
2007-08-15
We construct exact and optimal one-sided upper and lower confidence bounds for the difference between two probabilities based on matched binary pairs using well-established optimality theory of Buehler. Starting with five different approximate lower and upper limits, we adjust them to have coverage probability exactly equal to the desired nominal level and then compare the resulting exact limits by their mean size. Exact limits based on the signed root likelihood ratio statistic are preferred and recommended for practical use.
NASA Astrophysics Data System (ADS)
Gori-Giorgi, Paola; Ziesche, Paul
2002-12-01
The momentum distribution of the unpolarized uniform electron gas in its Fermi-liquid regime, n(k,rs), with the momenta k measured in units of the Fermi wave number kF and with the density parameter rs, is constructed with the help of the convex Kulik function G(x). It is assumed that n(0,rs),n(1±,rs), the on-top pair density g(0,rs), and the kinetic energy t(rs) are known (respectively, from accurate calculations for rs=1,…,5, from the solution of the Overhauser model, and from quantum Monte Carlo calculations via the virial theorem). Information from the high- and the low-density limit, corresponding to the random-phase approximation and to the Wigner crystal limit, is used. The result is an accurate parametrization of n(k,rs), which fulfills most of the known exact constraints. It is in agreement with the effective-potential calculations of Takada and Yasuhara [Phys. Rev. B 44, 7879 (1991)], is compatible with quantum Monte Carlo data, and is valid in the density range rs≲12. The corresponding cumulant expansions of the pair density and of the static structure factor are discussed, and some exact limits are derived.
Ghose, R; Fushman, D; Cowburn, D
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.
Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny
NASA Astrophysics Data System (ADS)
Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell
Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.
NASA Astrophysics Data System (ADS)
Ghose, Ranajeet; Fushman, David; Cowburn, David
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.
Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan
2011-11-01
Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).
Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences
Gao, Song; Sung, Wing-Kin
2011-01-01
Abstract Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/). PMID:21929371
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.
1981-01-01
Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.
Cosmic transit and anisotropic models in f(R,T) gravity
NASA Astrophysics Data System (ADS)
Sahu, S. K.; Tripathy, S. K.; Sahoo, P. K.; Nath, A.
2017-06-01
Accelerating cosmological models are constructed in a modified gravity theory dubbed as $f(R,T)$ gravity at the backdrop of an anisotropic Bianchi type-III universe. $f(R,T)$ is a function of the Ricci scalar $R$ and the trace $T$ of the energy-momentum tensor and it replaces the Ricci scalar in the Einstein-Hilbert action of General Relativity. The models are constructed for two different ways of modification of the Einstein-Hilbert action. Exact solutions of the field equations are obtained by a novel method of integration. We have explored the behaviour of the cosmic transit from an decelerated phase of expansion to an accelerated phase to get the dynamical features of the universe. Within the formalism of the present work, it is found that, the modification of the Einstein-Hilbert action does not affect the scale factor. However the dynamics of the effective dark energy equation of state is significantly affected.
A Coupled model for ERT monitoring of contaminated sites
NASA Astrophysics Data System (ADS)
Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya
2018-02-01
The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.
Exact and approximate solutions for transient squeezing flow
NASA Astrophysics Data System (ADS)
Lang, Ji; Santhanam, Sridhar; Wu, Qianhong
2017-10-01
In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature and will have a broad impact on industrial and biomedical applications.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.
Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I
2007-03-23
The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.
Exact time-dependent solutions for a self-regulating gene.
Ramos, A F; Innocentini, G C P; Hornos, J E M
2011-06-01
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Balog, János
2014-11-01
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Average expansion rate and light propagation in a cosmological Tardis spacetime
NASA Astrophysics Data System (ADS)
Lavinto, Mikko; Räsänen, Syksy; Szybka, Sebastian J.
2013-12-01
We construct the first exact statistically homogeneous and isotropic cosmological solution in which inhomogeneity has a significant effect on the expansion rate. The universe is modelled as a Swiss Cheese, with dust FRW background and inhomogeneous holes. We show that if the holes are described by the quasispherical Szekeres solution, their average expansion rate is close to the background under certain rather general conditions. We specialise to spherically symmetric holes and violate one of these conditions. As a result, the average expansion rate at late times grows relative to the background, ie backreaction is significant. The holes fit smoothly into the background, but are larger on the inside than a corresponding background domain: we call them Tardis regions. We study light propagation, find the effective equations of state and consider the relation of the spatially averaged expansion rate to the redshift and the angular diameter distance.
Singular perturbations and time scales in the design of digital flight control systems
NASA Technical Reports Server (NTRS)
Naidu, Desineni S.; Price, Douglas B.
1988-01-01
The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.
Finite conformal quantum gravity and spacetime singularities
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Rachwał, Lesław
2017-12-01
We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.
NASA Astrophysics Data System (ADS)
Vijayalekshmi, S.; Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.
2015-09-01
We investigate the controllable behavior of nonautonomous soliton in external potentials with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous fiber system. We derive the Lax pair with a variable spectral parameter and the exact multi-soliton solution is generated via Darboux transformation. Based on these solutions, several novel optical solitons are constructed by selecting appropriate functions and the main evolution features of these waves are shown by some interesting figures with computer simulation. As few examples, breathers in periodic potential, soliton compression in an exponentially dispersion decreasing fiber and interaction of boomerang solitons are discussed. The presented results have applications in the study of nonautonomous soliton birefringence-managed switching architecture. These results are potentially useful in the management of nonautonomous soliton with external potentials in the optical soliton communications and long-haul telecommunication networks.
[Robot--a member of (re)habilitation team].
Krasnik, Rastislava; Mikov, Aleksandra; Golubović, Spela; Komazec, Zoran; Komazec, Slobodanka Lemajić
2012-01-01
The rehabilitation process involves a whole team of experts who participate in it over a long period oftime. The Intensive development of science and technology has made it possible to design a number of robots which are used for therapeutic purposes and participate in the rehabilitation process. During the long history of technological development of mankind, a number of conceptual and technological solutions for the construction of robots have been known. By using robots in medical rehabilitation it is possible to implement the rehabilitation of peripheral and central motor neurons by increasing the motivation of patients for further recovery and effectiveness of therapy. The paper presents some technological solutions for robot-assisted rehabilitation of patients of different age groups and some possibilities of its use in the treatment. Using robots in standard physiotherapy protocols that involve a number of repetitions, exact dosage, quality design and adaptability to each individual patient leads to the significant progress in the rehabilitation of patients.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Mark Christopher; Holmes, Mark; Sailor, William C
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
NASA Astrophysics Data System (ADS)
Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.
2018-04-01
We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.
NASA Astrophysics Data System (ADS)
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn; Ide, Yusuke
In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coinmore » and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.« less
NASA Technical Reports Server (NTRS)
Boersma, J.; Rahmat-Samii, Y.
1980-01-01
The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2017-06-01
In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.
NASA Astrophysics Data System (ADS)
Lacasa, Lucas
2014-09-01
Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein-Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments.
Some new exact solitary wave solutions of the van der Waals model arising in nature
NASA Astrophysics Data System (ADS)
Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef
2018-06-01
This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.
Nickel, J; Schürmann, H W
2007-03-01
In a recent article Kengne and Liu [Phys. Rev. E 73, 026603 (2006)] have presented a number of exact elliptic solutions for a derivative nonlinear Schrödinger equation. It is the aim of this Comment to point out that all these solutions given in Secs. II and III of this article (referred to as KL in the following) are subcases of the general solution of Eq. (KL.9). Conditions for the parameters A-E of the solutions given by Kengne and Liu can be found from general conditions for solitary and periodic elliptic solutions as shown in the following. Positive and bounded solutions can be found by considering the phase diagram. Therefore, the comment of Kengne and Liu that "we find its particular positive bounded solutions" can be specified.
An entropy maximization problem related to optical communication
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Rodemich, E. R.; Swanson, L.
1986-01-01
In relation to a problem in optical communication, the paper considers the general problem of maximizing the entropy of a stationary radom process that is subject to an average transition cost constraint. By using a recent result of Justesen and Hoholdt, an exact solution to the problem is presented and a class of finite state encoders that give a good approximation to the exact solution is suggested.
Chapter 5. Hidden Symmetry and Exact Solutions in Einstein Gravity
NASA Astrophysics Data System (ADS)
Yasui, Y.; Houri, T.
Conformal Killing-Yano tensors are introduced as ageneralization of Killing vectors. They describe symmetries of higher-dimensional rotating black holes. In particular, a rank-2 closed conformal Killing-Yano tensor generates the tower of both hidden symmetries and isometries. We review a classification of higher-dimensional spacetimes admitting such a tensor, and present exact solutions to the Einstein equations for these spacetimes.
NASA Astrophysics Data System (ADS)
Prosviryakov, E. Yu.; Spevak, L. F.
2017-12-01
A new exact solution of the Oberbeck-Boussinesq system is found. The Marangoni thermocapillary convection in an infinite fluid layer is described. It is demonstrated that the specification of tangential stresses at both boundaries of the layered velocity field is nonstationary. Velocities describe a superposition of unidirectional flows with an intermediate time interval when there are counterflows.
Exact periodic solutions of the sixth-order generalized Boussinesq equation
NASA Astrophysics Data System (ADS)
Kamenov, O. Y.
2009-09-01
This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): utt = uxx + 3(u2)xx + uxxxx + αuxxxxxx, α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.
Bianchi class A models in Sàez-Ballester's theory
NASA Astrophysics Data System (ADS)
Socorro, J.; Espinoza-García, Abraham
2012-08-01
We apply the Sàez-Ballester (SB) theory to Bianchi class A models, with a barotropic perfect fluid in a stiff matter epoch. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.
NASA Technical Reports Server (NTRS)
Lebedeff, S. A.; Hameed, S.
1975-01-01
The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.
Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G
2008-01-01
The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.
[Studies for analyzing restricted ingredients such as phenylbenzoimidazole sulfonic acid].
Tokunaga, Hiroshi; Mori, Kenichiro; Onuki, Nahomi; Nosaka, Tomio; Doi, Kayo; Sakaguchi, Hiroshi; Fujii, Makiko; Takano, Katuhiro; Hayashi, Masato; Yoshizawa, Kenichi; Shimamura, Kimio; Sato, Nobuo
2006-01-01
Phenylbenzoimidazol sulfonic acid (PBS) is a kind of sunscreens in cosmetics and is nominated as the restricted ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for PBS was investigated by HPLC. 1.0 g of the lotions with 1.0% PBS was exactly weighed, put into a 50-mL volumetric flask. Water was added to make exactly 50 mL and this mixture was used as the sample solution. On the other hand, 1.0 g of the creams with 1.0% PBS was exactly weighed, put into a beaker. After adding 1 mL of tetrahydrofuran and dissolving the cream, that mixture was transferred to a 50-mL volumetric flask. And then the beaker was rinsed with 1 mL of tetrahydrofuran and the rinsed solution was put together into the volumetric flask. After adding water to the volumetric flask to make exactly 50 mL, this mixture was used as the sample solution. If necessary, the mixture was filtrated with a membrane filter (0.45 microm). 5.0 mL of the sample solution was pipetted and put into a 200-mL volumetric flask. After adding water to make exactly 200 mL, 20 microL of this solution was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 mm i.d. x 250 mm), the mixture of 40 mmol/L acetic buffer (pH 3.4) and acetonitrile (3:1) with 0.8 mmol/L dodecyltrimethyl ammonium bromide and the detection wavelength of 305 nm. The working curve from 0.5 to 20.0 microg/mL showed a linear line between the concentrations of PBS and the peak areas. There was no interference of peak of PBS from the lotion and cream.
Exact analytic solution for non-linear density fluctuation in a ΛCDM universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1991-01-01
Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.
An exact solution for a thick domain wall in general relativity
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1989-01-01
An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.
Exact solutions for network rewiring models
NASA Astrophysics Data System (ADS)
Evans, T. S.
2007-03-01
Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.
NASA Astrophysics Data System (ADS)
Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong
2011-12-01
We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.
Regular black holes in f(T) Gravity through a nonlinear electrodynamics source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr
2015-10-01
We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.
Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades.
Saveliev, V L; Gorokhovski, M A
2012-12-01
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.
Exact solution of large asymmetric traveling salesman problems.
Miller, D L; Pekny, J F
1991-02-15
The traveling salesman problem is one of a class of difficult problems in combinatorial optimization that is representative of a large number of important scientific and engineering problems. A survey is given of recent applications and methods for solving large problems. In addition, an algorithm for the exact solution of the asymmetric traveling salesman problem is presented along with computational results for several classes of problems. The results show that the algorithm performs remarkably well for some classes of problems, determining an optimal solution even for problems with large numbers of cities, yet for other classes, even small problems thwart determination of a provably optimal solution.
ALARA: The next link in a chain of activation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, P.P.H.; Henderson, D.L.
1996-12-31
The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
Digit replacement: A generic map for nonlinear dynamical systems.
García-Morales, Vladimir
2016-09-01
A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.
Radial rescaling approach for the eigenvalue problem of a particle in an arbitrarily shaped box.
Lijnen, Erwin; Chibotaru, Liviu F; Ceulemans, Arnout
2008-01-01
In the present work we introduce a methodology for solving a quantum billiard with Dirichlet boundary conditions. The procedure starts from the exactly known solutions for the particle in a circular disk, which are subsequently radially rescaled in such a way that they obey the new boundary conditions. In this way one constructs a complete basis set which can be used to obtain the eigenstates and eigenenergies of the corresponding quantum billiard to a high level of precision. Test calculations for several regular polygons show the efficiency of the method which often requires one or two basis functions to describe the lowest eigenstates with high accuracy.
Noether symmetries in Gauss-Bonnet-teleparallel cosmology.
Capozziello, Salvatore; De Laurentis, Mariafelicia; Dialektopoulos, Konstantinos F
2016-01-01
A generalized teleparallel cosmological model, [Formula: see text], containing the torsion scalar T and the teleparallel counterpart of the Gauss-Bonnet topological invariant [Formula: see text], is studied in the framework of the Noether symmetry approach. As [Formula: see text] gravity, where [Formula: see text] is the Gauss-Bonnet topological invariant and R is the Ricci curvature scalar, exhausts all the curvature information that one can construct from the Riemann tensor, in the same way, [Formula: see text] contains all the possible information directly related to the torsion tensor. In this paper, we discuss how the Noether symmetry approach allows one to fix the form of the function [Formula: see text] and to derive exact cosmological solutions.
NASA Astrophysics Data System (ADS)
Wisniewski, Nicholas Andrew
This dissertation is divided into two parts. First we present an exact solution to a generalization of the Behrens-Fisher problem by embedding the problem in the Riemannian manifold of Normal distributions. From this we construct a geometric hypothesis testing scheme. Secondly we investigate the most commonly used geometric methods employed in tensor field interpolation for DT-MRI analysis and cardiac computer modeling. We computationally investigate a class of physiologically motivated orthogonal tensor invariants, both at the full tensor field scale and at the scale of a single interpolation by doing a decimation/interpolation experiment. We show that Riemannian-based methods give the best results in preserving desirable physiological features.
Small-on-large geometric anelasticity
2016-01-01
In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids. PMID:27956887
Agent-based model for the h-index - exact solution
NASA Astrophysics Data System (ADS)
Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek
2016-01-01
Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.
Rainfall-runoff response informed by exact solutions of Boussinesq equation on hillslopes
NASA Astrophysics Data System (ADS)
Bartlett, M. S., Jr.; Porporato, A. M.
2017-12-01
The Boussinesq equation offers a powerful approach forunderstanding the flow dynamics of unconfined aquifers. Though this nonlinear equation allows for concise representation of both soil and geomorphological controls on groundwater flow, it has only been solved exactly for a limited number of initial and boundary conditions. These solutions do not include source/sink terms (evapotranspiration, recharge, and seepage to bedrock) and are typically limited to horizontal aquifers. Here we present a class of exact solutions that are general to sloping aquifers and a time varying source/sink term. By incorporating the source/sink term, they may describe aquifers with both time varying recharge over seasonal or weekly time scales, as well as a loss of water from seepage to the bedrock interface, which is a common feature in hillslopes. These new solutions shed light on the hysteretic relationship between streamflow and groundwater and the behavior of the hydrograph recession curves, thus providing a robust basis for deriving a runoff curves for the partition of rainfall into infiltration and runoff.
Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity
NASA Astrophysics Data System (ADS)
Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.
2018-04-01
Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.
Quantifying risks with exact analytical solutions of derivative pricing distribution
NASA Astrophysics Data System (ADS)
Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin
2017-04-01
Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.
Lungu, Radu P; Huckaby, Dale A
2008-07-21
An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.
EXACT2: the semantics of biomedical protocols
2014-01-01
Background The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. Methods We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2) protocols. Results The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. Conclusions The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format. PMID:25472549
ERIC Educational Resources Information Center
Shumway, Richard J.
1989-01-01
Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)
Exact treatment of the Jaynes-Cummings model under the action of an external classical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, M. Sebawe, E-mail: m.sebaweh@physics.org; Khalil, E.M.; Mathematics Department, College of Science, Taibah University, Al-MaDinah
2011-09-15
We consider the usual Jaynes-Cummings model (JCM), in the presence of an external classical field. Under a certain canonical transformation for the Pauli operators, the system is transformed into the usual JCM. Using the equations of motion in the Heisenberg picture, exact solutions for the time-dependent dynamical operators are obtained. In order to calculate the expectation values of these operators, the wave function has been constructed. It has been shown that the classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states. Changes of squeezing from one quadrature to another is also observed for a strongmore » value of the coupling parameter of the classical field. Furthermore, the system in this case displays partial entanglement and the state of the field losses its purity. - Highlights: > The time-dependent JCM, in the presence of the classical field, is still one of the essential problems in the quantum optics. > A new approach is applied through a certain canonical transformation. > The classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states.« less
Site-occupation embedding theory using Bethe ansatz local density approximations
NASA Astrophysics Data System (ADS)
Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel
2018-06-01
Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.
Lagrangian descriptors of driven chemical reaction manifolds.
Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto
2017-08-01
The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.
Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery
2015-07-23
In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.
On prototypical wave transmission across a junction of waveguides with honeycomb structure
NASA Astrophysics Data System (ADS)
Sharma, Basant Lal
2018-02-01
An exact expression for the scattering matrix associated with a junction generated by partial unzipping along the zigzag direction of armchair tubes is presented. The assumed simple, but representative, model, for scalar wave transmission can be interpreted in terms of the transport of the out-of-plane phonons in the ribbon-side vis-a-vis the radial phonons in the tubular-side of junction, based on the nearest-neighbor interactions between lattice sites. The exact solution for the `bondlength' in `broken' versus intact bonds can be constructed via a standard application of the Wiener-Hopf technique. The amplitude distribution of outgoing phonons, far away from the junction on either side of it, is obtained in closed form by the mode-matching method; eventually, this leads to the provision of the scattering matrix. As the main result of the paper, a succinct and closed form expression for the accompanying reflection and transmission coefficients is provided along with a detailed derivation using the Chebyshev polynomials. Applications of the analysis presented in this paper include linear wave transmission in nanotubes, nanoribbons, and monolayers of honeycomb lattices containing carbon-like units.
Combining constraint satisfaction and local improvement algorithms to construct anaesthetists' rotas
NASA Technical Reports Server (NTRS)
Smith, Barbara M.; Bennett, Sean
1992-01-01
A system is described which was built to compile weekly rotas for the anaesthetists in a large hospital. The rota compilation problem is an optimization problem (the number of tasks which cannot be assigned to an anaesthetist must be minimized) and was formulated as a constraint satisfaction problem (CSP). The forward checking algorithm is used to find a feasible rota, but because of the size of the problem, it cannot find an optimal (or even a good enough) solution in an acceptable time. Instead, an algorithm was devised which makes local improvements to a feasible solution. The algorithm makes use of the constraints as expressed in the CSP to ensure that feasibility is maintained, and produces very good rotas which are being used by the hospital involved in the project. It is argued that formulation as a constraint satisfaction problem may be a good approach to solving discrete optimization problems, even if the resulting CSP is too large to be solved exactly in an acceptable time. A CSP algorithm may be able to produce a feasible solution which can then be improved, giving a good, if not provably optimal, solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin
Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiativemore » transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.« less
Use of variational methods in the determination of wind-driven ocean circulation
NASA Technical Reports Server (NTRS)
Gelos, R.; Laura, P. A. A.
1976-01-01
Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.
Exact solutions to Brans-Dicke cosmologies in flat Friedmann universes.
NASA Technical Reports Server (NTRS)
Morganstern, R. E.
1971-01-01
The Brans-Dicke cosmological equations for flat Friedmann-type expanding universes are solved parametrically for time, density, expansion parameter, and scalar field. These results reduce to a previously obtained exact solution to the radiation cosmology. Although the scalar field may be undetectable at the present epoch, it is felt that, if it exists, it must play an important role as one approaches the initial singularity of the cosmology.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.
2018-03-01
The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.
Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B
2017-06-09
In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.
Evolutionary squeaky wheel optimization: a new framework for analysis.
Li, Jingpeng; Parkes, Andrew J; Burke, Edmund K
2011-01-01
Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing.
Bi-material plane with interface crack for the model of semi-linear material
NASA Astrophysics Data System (ADS)
Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.
2018-05-01
The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
A new method for multi-bit and qudit transfer based on commensurate waveguide arrays
NASA Astrophysics Data System (ADS)
Petrovic, J.; Veerman, J. J. P.
2018-05-01
The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
A Path Algorithm for Constrained Estimation
Zhou, Hua; Lange, Kenneth
2013-01-01
Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382
Akhmediev, Nail; Ankiewicz, Adrian
2011-04-01
We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.
Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-
2014-01-01
Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.
Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.
Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng
2002-12-01
We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.
On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.
2010-02-01
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.
Mohamad, Ahmad Qushairi; Khan, Ilyas; Ismail, Zulkhibri; Shafie, Sharidan
2016-01-01
Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).
The RPA Atomization Energy Puzzle.
Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I
2010-01-12
There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.
The construction of sparse models of Mars' crustal magnetic field
NASA Astrophysics Data System (ADS)
Moore, Kimberly; Bloxham, Jeremy
2017-04-01
The crustal magnetic field of Mars is a key constraint on Martian geophysical history, especially the timing of the dynamo shutoff. Maps of the crustal magnetic field of Mars show wide variations in the intensity of magnetization, with most of the Northern hemisphere only weakly magnetized. Previous methods of analysis tend to favor smooth solutions for the crustal magnetic field of Mars, making use of techniques such as L2 norms. Here we utilize inversion methods designed for sparse models, to see how much of the surface area of Mars must be magnetized in order to fit available spacecraft magnetic field data. We solve for the crustal magnetic field at 10,000 individual magnetic pixels on the surface of Mars. We employ an L1 regularization, and solve for models where each magnetic pixel is identically zero, unless required otherwise by the data. We find solutions with an adequate fit to the data with over 90% sparsity (90% of magnetic pixels having a field value of exactly 0). We contrast these solutions with L2-based solutions, as well as an elastic net model (combination of L1 and L2). We find our sparse solutions look dramatically different from previous models in the literature, but still give a physically reasonable history of the dynamo (shutting off around 4.1 Ga).
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, George I.; Hameiri, Eliezer
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less
Thermodynamics of new black hole solutions in the Einstein-Maxwell-dilaton gravity
NASA Astrophysics Data System (ADS)
Dehghani, M.
In the present work, thermodynamics of the new black hole solutions to the four-dimensional Einstein-Maxwell-dilaton gravity theory have been studied. The dilaton potential, as the solution to the scalar field equations, has been constructed out by a linear combination of three Liouville-type potentials. Three new classes of charged dilatonic black hole solutions, as the exact solutions to the coupled equations of gravitational, electromagnetic and scalar fields, have been introduced. The conserved charge and mass of the new black holes have been calculated by utilizing Gauss's electric law and Abbott-Deser mass proposal, respectively. Also, the temperature, entropy and the electric potential of these new classes of charged dilatonic black holes have been calculated, making use of the geometrical approaches. Through a Smarr-type mass formula, the intensive parameters of the black holes have been calculated and validity of the first law of black hole thermodynamics has been confirmed. A thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. The heat capacity of the new black holes has been calculated and the points of type one- and type two-phase transitions as well as the ranges at which the new charged dilatonic black holes are locally stable have been determined, precisely.
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.
2017-04-01
Heterotic supergravity with (1 + 3)-dimensional domain wall configurations and (warped) internal, six dimensional, almost-Kähler manifolds {{}6}\\text{X} are studied. Considering ten dimensional spacetimes with nonholonomic distributions and conventional double fibrations, 2 + 2 + ... = 2 + 2 + 3 + 3, and associated SU(3) structures on internal space, we generalize for real, internal, almost symplectic gravitational structures the constructions with gravitational and gauge instantons of tanh-kink type [1, 2]. They include the first {α\\prime} corrections to the heterotic supergravity action, parameterized in a form to imply nonholonomic deformations of the Yang-Mills sector and corresponding Bianchi identities. We show how it is possible to construct a variety of solutions depending on the type of nonholonomic distributions and deformations of ‘prime’ instanton configurations characterized by two real supercharges. This corresponds to N=1/2 supersymmetric, nonholonomic manifolds from the four dimensional point of view. Our method provides a unified description of embedding nonholonomically deformed tanh-kink-type instantons into half-BPS solutions of heterotic supergravity. This allows us to elaborate new geometric methods of constructing exact solutions of motion equations, with first order {α\\prime} corrections to the heterotic supergravity. Such a formalism is applied for general and/or warped almost-Kähler configurations, which allows us to generate nontrivial (1 + 3)-d domain walls and black hole deformations determined by quasiperiodic internal space structures. This formalism is utilized in our associated publication [3] in order to construct and study generic off-diagonal nonholonomic deformations of the Kerr metric, encoding contributions from heterotic supergravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
New exact solutions for a discrete electrical lattice using the analytical methods
NASA Astrophysics Data System (ADS)
Manafian, Jalil; Lakestani, Mehrdad
2018-03-01
This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines using the semi-inverse variational principle method (SIVPM), the \\exp(-Ω(ξ)) -expansion method (EEM) and the improved tan(φ/2) -expansion method (ITEM), with the aid of the symbolic computation package Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution, trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their corresponding equations with the aid of the Maple package program. We depicted the physical explanation of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations. Finally, we show that the used methods are robust and more efficient than other methods. More importantly, the solutions found in this work can have significant applications in telecommunication systems where solitons are used to codify data.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2013-09-01
A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.
NASA Technical Reports Server (NTRS)
Busemann, A.; Vinh, N. X.; Culp, R. D.
1974-01-01
The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.
Applying the Zel'dovich approximation to general relativity
NASA Astrophysics Data System (ADS)
Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.
1994-03-01
Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.
Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio
2014-10-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.
Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio
2014-01-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530
Time-evolving bubbles in two-dimensional stokes flow
NASA Technical Reports Server (NTRS)
Tanveer, Saleh; Vasconcelos, Giovani L.
1994-01-01
A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.
NASA Technical Reports Server (NTRS)
Barnes, A.
1983-01-01
An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.
Gravitational waves in ghost free bimetric gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohseni, Morteza, E-mail: m-mohseni@pnu.ac.ir
2012-11-01
We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extensionmore » of the theory admits similar solutions but in general is plagued with ghost instabilities.« less
Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades
NASA Astrophysics Data System (ADS)
Saveliev, V. L.; Gorokhovski, M. A.
2012-12-01
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Batool, Fiza
2017-10-01
The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2013-01-01
Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
An efficient technique for higher order fractional differential equation.
Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef
2016-01-01
In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Christiansen, H. R.; Cunha, M. S.; Muniz, C. R.
2017-07-01
We obtain the exact (confluent Heun) solutions to the massive scalar field in a gravity's rainbow Schwarzschild metric. With these solutions at hand, we study the Hawking radiation resulting from the tunneling rate through the event horizon. We show that the emission spectrum obeys nonextensive statistics and is halted when a certain mass remnant is reached. Next, we infer constraints on the rainbow parameters from recent LHC particle physics experiments and Hubble STIS astrophysics measurements. Finally, we study the low frequency limit in order to find the modified energy spectrum around the source.
NASA Technical Reports Server (NTRS)
Chen, Guanrong
1991-01-01
An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.