Sample records for construct scientific explanations

  1. Constructing a Scientific Explanation--A Narrative Account

    ERIC Educational Resources Information Center

    Yeo, Jennifer; Gilbert, John K.

    2014-01-01

    Studies analyzing explanations that have been constructed by science students have found that they were generally weak and lack necessary features. The goal of this study was to establish the competencies that one needs to construct a scientific explanation. Scientific explanations can be looked at in three ways, in terms of their function, form…

  2. Scientific Explanations: Characterizing and Evaluating the Effects of Teachers' Instructional Practices on Student Learning

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Krajcik, Joseph

    2008-01-01

    Teacher practices are essential for supporting students in scientific inquiry practices, such as the construction of scientific explanations. In this study, we examine what instructional practices teachers engage in when they introduce scientific explanation and whether these practices influence students' ability to construct scientific…

  3. The PRO Instructional Strategy in the Construction of Scientific Explanations

    ERIC Educational Resources Information Center

    Tang, Kok-Sing

    2015-01-01

    This article presents an instructional strategy called Premise-Reasoning-Outcome (PRO) designed to support students in the construction of scientific explanations. Informed by the philosophy of science and linguistic studies of science, the PRO strategy involves identifying three components of a scientific explanation: (i) premise--an accepted…

  4. Constructing Scientific Explanations: a System of Analysis for Students' Explanations

    NASA Astrophysics Data System (ADS)

    de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica

    2017-08-01

    This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.

  5. Scaffolding Middle School Students' Construction of Scientific Explanations: Comparing a cognitive versus a metacognitive evaluation approach

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Yu

    2015-01-01

    This study investigated the effects of scaffolds as cognitive prompts and as metacognitive evaluation on seventh-grade students' growth of content knowledge and construction of scientific explanations in five inquiry-based biology activities. Students' scores on multiple-choice pretest and posttest and worksheets for five inquiry-based activities were analyzed. The results show that the students' content knowledge in all conditions significantly increased from the pretest to posttest. Incorporating cognitive prompts with the explanation scaffolds better facilitated knowledge integration and resulted in greater learning gains of content knowledge and better quality evidence and reasoning. The metacognitive evaluation instruction improved all explanation components, especially claims and reasoning. This metacognitive approach also significantly reduced students' over- or underestimation during peer-evaluation by refining their internal standards for the quality of scientific explanations. The ability to accurately evaluate the quality of explanations was strongly associated with better performance on explanation construction. The cognitive prompts and metacognitive evaluation instruction address different aspects of the challenges faced by the students, and show different effects on the enhancement of content knowledge and the quality of scientific explanations. Future directions and suggestions are provided for improving the design of the scaffolds to facilitate the construction of scientific explanations.

  6. Constructing a Scientific Explanation—A Narrative Account

    NASA Astrophysics Data System (ADS)

    Yeo, Jennifer; Gilbert, John K.

    2014-07-01

    Studies analyzing explanations that have been constructed by science students have found that they were generally weak and lack necessary features. The goal of this study was to establish the competencies that one needs to construct a scientific explanation. Scientific explanations can be looked at in three ways, in terms of their function, form and level, as being essentially sign-making processes. Taking a case study approach and using Lemke's multimodal framework, we analyzed the scientific explanation of an electromagnetic induction phenomenon constructed by one high school student. We found that such a construction involves the complex coordination of different types of signs, not only to represent the entities in the phenomenon, but also to support thinking and reasoning about it at abstract levels. Scientific conventions and rules, and everyday material and social tools were found to be crucial in shifting from one level of abstraction to another. The findings highlight the importance of developing the skillful use of schemes of scientific representation by students and familiarizing them with commonly encountered contexts.

  7. Constructing Scientific Explanations through Premise-Reasoning-Outcome (PRO): An Exploratory Study to Scaffold Students in Structuring Written Explanations

    ERIC Educational Resources Information Center

    Tang, Kok-Sing

    2016-01-01

    This paper reports on the design and enactment of an instructional strategy aimed to support students in constructing scientific explanations. Informed by the philosophy of science and linguistic studies of science, a new instructional framework called premise--reasoning--outcome (PRO) was conceptualized, developed, and tested over two years in…

  8. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon

    2016-06-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life cycle of plants, in four grade 4 classrooms (age 10) taught by three teachers constitute the data for this study. Students' written explanations were subjected to a combination of content and linguistic analysis. The linguistic analysis was conducted using selected analytical tools from the systemic functional linguistics framework. A diversity of linguistic resources and meanings were identified from the students' explanations, which reveal the extent to which the students were able to employ linguistic resources to construct written scientific explanations and the challenges involved. Both content and linguistic analyses also illuminate patterns of language use that are significant for realising scientific meanings. Finally, a comparison is made in the use of linguistic resources between the students' explanations and the instructional language to highlight possible links. This comparison reveals that the teachers' expectations of the students' written explanations were seldom reflected in their oral questioning or made explicit during the instruction. The findings of this study suggest that a focus on conceptual development is not sufficient in itself to foster students' ability to construct explanations. Pedagogical implications involving the support needed by primary students to construct scientific explanations are discussed.

  9. Supporting Reform-Oriented Secondary Science Teaching through the Use of a Framework to Analyze Construction of Scientific Explanations

    ERIC Educational Resources Information Center

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-01-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice…

  10. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-05-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific explanations (i.e., explanation skills). Quantitative and qualitative data including interview transcripts, classroom video recordings, and pre- and post-tests of explanation skills were collected from 68 fifth graders in two science classes. Analyses of data show that after engaging in 5-week inquiry activities, students developed better inquiry skills to construct scientific explanations. More students realized the existence of experimental errors, viewed experimental data as evidence to support their claims, and had richer understanding about the nature of scientific questions. However, most students' epistemological beliefs were still naïve (the beginning level); they could not differentiate between experimental results and scientific knowledge and believed that the purpose of science is doing experiments or research. The results also show that students who held a more sophisticated epistemology (the intermediate level) tended to develop better inquiry skills than those with naïve beliefs. Analyses of classroom observations suggest possible explanations for how students reflected their epistemological views in their inquiry practices.

  11. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    ERIC Educational Resources Information Center

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  12. Scaffolding Middle School Students' Construction of Scientific Explanations: Comparing a Cognitive versus a Metacognitive Evaluation Approach

    ERIC Educational Resources Information Center

    Wang, Chia-Yu

    2015-01-01

    This study investigated the effects of scaffolds as cognitive prompts and as metacognitive evaluation on seventh-grade students' growth of content knowledge and construction of scientific explanations in five inquiry-based biology activities. Students' scores on multiple-choice pretest and posttest and worksheets for five inquiry-based activities…

  13. Constructing scientific explanations through premise-reasoning-outcome (PRO): an exploratory study to scaffold students in structuring written explanations

    NASA Astrophysics Data System (ADS)

    Tang, Kok-Sing

    2016-06-01

    This paper reports on the design and enactment of an instructional strategy aimed to support students in constructing scientific explanations. Informed by the philosophy of science and linguistic studies of science, a new instructional framework called premise-reasoning-outcome (PRO) was conceptualized, developed, and tested over two years in four upper secondary (9th-10th grade) physics and chemistry classrooms. This strategy was conceptualized based on the understanding of the structure of a scientific explanation, which comprises three primary components: (a) premise - accepted knowledge that provides the basis of the explanation, (b) reasoning - logical sequences that follow from the premise, and (c) outcome - the phenomenon to be explained. A study was carried out to examine how the PRO strategy influenced students' written explanations using multiple data sources (e.g. students' writing, lesson observations, focus group discussions). Analysis of students' writing indicates that explanations with a PRO structure were graded better by the teachers. In addition, students reported that the PRO strategy provided a useful organizational structure for writing scientific explanations, although they had some difficulties in identifying and using the structure. With the PRO as a new instructional tool, comparison with other explanation frameworks as well as implications for educational research and practice are discussed.

  14. Characterizing High School Students' Written Explanations in Biology Laboratories

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Wallace, Carolyn S.

    2011-03-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students' laboratory reports and individual interviews. The results indicated that students' explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause-effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist-empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.

  15. Supporting Reform-Oriented Secondary Science Teaching Through the Use of a Framework to Analyze Construction of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-08-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students' learning of science in this 3D way. We examined TCs' ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs' ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate's ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.

  16. Supporting students' scientific explanations: A case study investigating the synergy focusing on a teacher's practices when providing instruction and using mobile devices

    NASA Astrophysics Data System (ADS)

    Delen, Ibrahim

    Engage students in constructing scientific practices is a critical component of science instruction. Therefore a number of researchers have developed software programs to help students and teachers in this hard task. The Zydeco group, designed a mobile application called Zydeco, which enables students to collect data inside and outside the classroom, and then use the data to create scientific explanations by using claim-evidence-reasoning framework. Previous technologies designed to support scientific explanations focused on how these programs improve students' scientific explanations, but these programs ignored how scientific explanation technologies can support teacher practices. Thus, to increase our knowledge how different scaffolds can work together, this study aimed to portray the synergy between a teacher's instructional practices (part 1) and using supports within a mobile devices (part 2) to support students in constructing explanations. Synergy can be thought of as generic and content-specific scaffolds working together to enable students to accomplish challenging tasks, such as creating explanations that they would not normally be able to do without the scaffolds working together. Providing instruction (part 1) focused on understanding how the teacher scaffolds students' initial understanding of the claim-evidence-reasoning (CER) framework. The second component of examining synergy (part 2: using mobile devices) investigated how this teacher used mobile devices to provide feedback when students created explanations. The synergy between providing instruction and using mobile devices was investigated by analyzing a middle school teacher's practices in two different units (plants and water quality). Next, this study focused on describing how the level of synergy influenced the quality of students' scientific explanations. Finally, I investigated the role of focused teaching intervention sessions to inform teacher in relation to students' performance. In conclusion, findings of this study showed that the decrease in the teacher's support for claims, did not affect the quality of the students' claims. On the other hand, the quality of students' reasoning were linked with the teacher's practices. This suggests that when supporting students' explanations, focusing on components that students find challenging would benefit students' construction of explanations. To achieve synergy in this process, the collaboration between teacher's practices, focused teaching intervention sessions and scaffolds designed to support teachers played a crucial role in aiding students in creating explanations.

  17. Examining elementary teachers' knowledge and instruction of scientific explanations for fostering children's explanations in science

    NASA Astrophysics Data System (ADS)

    Wiebke, Heidi Lynn

    This study employed an embedded mixed methods multi-case study design (Creswell, 2014) with six early childhood (grades K-2) teachers to examine a) what changes occurred to their subject matter knowledge (SMK) and pedagogical content knowledge (PCK) for teaching scientific explanations while participating in a professional development program, b) how they planned for and implemented scientific explanation instruction within a teacher developed unit on properties of matter, and c) what affordances their instruction of scientific explanations had on fostering their students' abilities to generate explanations in science. Several quantitative and qualitative measures were collected and analyzed in accordance to this studies conceptual framework, which consisted of ten instructional practices teachers should consider assimilating or accommodating into their knowledge base (i.e., SMK & PCK) for teaching scientific explanations. Results of this study indicate there was little to no positive change in the teachers' substantive and syntactic SMK. However, all six teachers did make significant changes to all five components of their PCK for teaching explanations in science. While planning for scientific explanation instruction, all six teachers' contributed some ideas for how to incorporate seven of the ten instructional practices for scientific explanations within the properties of matter unit they co-developed. When enacting the unit, the six teachers' employed seven to nine of the instructional practices to varying levels of effectiveness, as measured by researcher developed rubrics. Given the six teachers' scientific explanation instruction, many students did show improvement in their ability to formulate a scientific explanation, particularly their ability to provide multiple pieces of evidence. Implications for professional developers, teacher educators, researchers, policy makers, and elementary teachers regarding how to prepare teachers for and support students' construction of scientific explanations are discussed.

  18. Straight from the Professional Development Classroom: A Practical Experience

    ERIC Educational Resources Information Center

    Koul, Anjni

    2017-01-01

    This article presents an instructional strategy called Premise-Reasoning- Outcome (PRO) designed to support students in the construction of scientific explanations. Informed by the philosophy of science and linguistic studies of science, the PRO strategy involves identifying three components of a scientific explanation: (i) premise--an accepted…

  19. Two-Year Community: Construction with Scaffolds: Helping Community College Students Build Explanations

    ERIC Educational Resources Information Center

    Bennett, Steve; Gotwals, Amelia Wenk

    2017-01-01

    Science education reform documents call for students to learn science by engaging in inquiry and using science practices. One such science practice is constructing evidence-based explanations. Few students enter community college science classrooms having experience with, or being proficient in, using evidence to explain scientific phenomena.…

  20. Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela

    2013-11-01

    The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's (Prim Sci Rev 63:6-19, 2002, Aspects of teaching secondary science, Routledge Falmer, London, 2002) ladder of explanations for the context of dissolving, current scientific explanations for dissolving and perspectives on conceptions and misconceptions provided the unified framework for the study. Concept maps, interview transcripts, written artifacts, and drawings and narratives were used as data to investigate these prospective teachers' conceptual understanding of dissolving throughout the 15-weeks of the methods course. Analysis revealed that participants' explanations of dissolving were predominantly descriptive explanations (39 %) and interpretative explanations (38 %), with lower percentage occurrences of intentional (14 %) and cause and effect (9 %) level explanations. Most of these explanations were also constructed by a set of loosely connected and reinforcing everyday concepts abstracted from common everyday experiences making them misconceptions. Implications include: (1) the need for science teacher educators to use multiple platforms to derive their prospective elementary teachers' conceptual understandings of science content; and (2) to identify and help them identify their own scientific conceptions and misconceptions and how they influence the construction of scientific/nonscientific explanations. Science teacher educators also need to emphasize the role of meaningful frameworks associated with the concept that is being introduced during the Engage phase of the 5E learning cycle. This is important because, relevant prior knowledge is associated with the knowledge of the particle theory of matter and both are part of larger knowledge system comprised of interrelated scientific concepts.

  1. Explanation-Construction in Fourth-Grade Classrooms in Germany and the USA: A cross-national comparative video study

    NASA Astrophysics Data System (ADS)

    Forbes, Cory; Lange, Kim; Möller, Kornelia; Biggers, Mandy; Laux, Mira; Zangori, Laura

    2014-09-01

    To help explain the differences in students' performance on internationally administered science assessments, cross-national, video-based observational studies have been advocated, but none have yet been conducted at the elementary level for science. The USA and Germany are two countries with large formal education systems whose students underperform those from peers on internationally administered standardized science assessments. However, evidence from the 2011 Trends in International Mathematics and Science Exam assessment suggests fourth-grade students (9-10 year-olds) in the USA perform higher than those in Germany, despite more instructional time devoted to elementary science in Germany. The purpose of this study is to comparatively analyze fourth-grade classroom science in both countries to learn more about how teachers and students engage in scientific inquiry, particularly explanation-construction. Videorecordings of US and German science instruction (n 1 = 42, n 2 = 42) were sampled from existing datasets and analyzed both qualitatively and quantitatively. Despite German science lessons being, on average, twice as long as those in the USA, study findings highlight many similarities between elementary science in terms of scientific practices and features of scientific inquiry. However, they also illustrate crucial differences around the scientific practice of explanation-construction. While students in German classrooms were afforded more substantial opportunities to formulate evidence-based explanations, US classrooms were more strongly characterized by opportunities for students to actively compare and evaluate evidence-based explanations. These factors may begin to help account for observed differences in student achievement and merit further study grounded in international collaboration.

  2. Supporting students' construction of scientific explanation through curricular scaffolds and teacher instructional practices

    NASA Astrophysics Data System (ADS)

    McNeill, Katherine Lynch

    An essential goal of classroom science is to help all students become scientifically literate to encourage greater public understanding in a science infused world. This type of literacy requires that students participate in scientific inquiry practices such as construction of arguments or scientific explanations in which they justify their claims with appropriate evidence and reasoning. Although scientific explanations are an important learning goal, this complex inquiry practice is frequently omitted from k-12 science classrooms and students have difficulty creating them. I investigated how two different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these two types of support influence student learning of scientific explanations. This study focuses on an eight-week middle school chemistry curriculum, How can I make new stuff from old stuff?, which was enacted by six teachers with 578 students during the 2004-2005 school year. Overall, students' written scientific explanations improved during the unit in which they were provided with multiple forms of teacher and curricular support. A growth curve model of student learning showed that there was a significant difference in the effect of the two curricular scaffolds towards the end of the unit and on the posttest. The context-specific scaffolds resulted in greater student learning of how to write scientific explanations, but only for three of the six teachers. The case studies created from the videotapes of classroom enactments revealed that teachers varied in which instructional practices they engaged in and the quality of those practices. Analyses suggested that the curricular scaffolds and teacher instructional practices were synergistic in that the supports interacted and the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in this complex task only when teachers' enactments provided generic support for scientific explanation through instructional practices. For teachers who did not provide their students with generic support, neither curricular scaffold was more effective. Classrooms are complex systems in which multiple factors and the interactions between those factors influence student learning.

  3. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  4. Developing Explanations and Developing Understanding: Students Explain the Phases of the Moon Using Visual Representations

    ERIC Educational Resources Information Center

    Parnafes, Orit

    2012-01-01

    This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…

  5. The ontic conception of scientific explanation.

    PubMed

    Wright, Cory

    2015-12-01

    Wesley Salmon's version of the ontic conception of explanation is a main historical root of contemporary work on mechanistic explanation. This paper examines and critiques the philosophical merits of Salmon's version, and argues that his conception's most fundamental construct is either fundamentally obscure, or else reduces to a non-ontic conception of explanation. Either way, the ontic conception is a misconception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life…

  7. Teachers' and Prospective Teachers' Explanations of Liquid-State Phenomena: A Comparative Study Involving Three European Countries

    ERIC Educational Resources Information Center

    Leite, Laurinda; Mendoza, Jose; Borsese, Aldo

    2007-01-01

    As contact with liquids occurs from an early stage in individuals' lives, children construct explanations for liquids and liquid-state phenomena. These may differ from the accepted scientific explanations, interfere with formal teaching, and even persist until entry into higher education. The objective of this investigation is to compare…

  8. The Pursuit of a "Better" Explanation as an Organizing Framework for Science Teaching and Learning

    ERIC Educational Resources Information Center

    Papadouris, Nicos; Vokos, Stamatis; Constantinou, Constantinos P.

    2018-01-01

    This article seeks to make the case for the pursuit of a "better" explanation being a productive organizing framework for science teaching and learning. Underlying this position is the idea that this framework allows promoting, in a unified manner, facility with the scientific practice of constructing explanations, appreciation of its…

  9. The Nature of Students' Chemical Reasoning Employed in Scientific Argumentation in Physical Chemistry

    ERIC Educational Resources Information Center

    Moon, A.; Stanford, C.; Cole, R.; Towns, M.

    2016-01-01

    Recent science education reform efforts have emphasized scientific practices in addition to scientific knowledge. Less work has been done at the tertiary level to consider students' engagement in scientific practices. In this work, we consider physical chemistry students' engagement in argumentation and construction of causal explanations.…

  10. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  11. Construction of technological artifacts and teaching strategies to promote flexible scientific understanding

    NASA Astrophysics Data System (ADS)

    Spitulnik, Michele Wisnudel

    Science education reforms advocate inquiry as a way to build explanations and make informed decisions. Based on this call this dissertation (1) defines flexible scientific understanding by elaborating on content, inquiry and epistemic understandings; (2) describes an inquiry based unit that integrates dynamic modeling software; (3) examines students' understandings as they construct models; and (4) identifies instructional strategies that support inquiry and model building. A curriculum unit was designed to engage students in inquiry by identifying problems and constructing models to represent, explain and predict phenomena. Ninth grade students in a public mid-western high school worked in teams of 2-3 to ask questions, find information and reflect on the purposes of models. Data sources including classroom video, observations, interviews, student models and handouts were used to formulate cases that examine how two groups construct understanding. A teacher case study identifies the teaching strategies that support understanding. Categories within content, inquiry and epistemic understandings were used to analyze student understandings and teaching supports. The findings demonstrate that students can build flexible understanding by constructing models. Students built: (1) content understanding by identifying key ideas and building relationships and explanations of phenomena; (2) inquiry understanding by defining problems, constructing models and developing positions; and (3) epistemic understanding by describing the purposes of models as generalizing phenomena, testing hypotheses and making predictions. However, students demonstrated difficulty in using evidence to defend scientific arguments. Strategies that support flexible understanding were also identified. Content supports include: setting expectations for explanations; using examples to illustrate explanations; modeling questions; and providing feedback that prompts detailed explanations. Supports for inquiry are setting expectations for data gathering; using examples that illustrate model building; modeling the development of an argument; and providing feedback to promote coherent models. Epistemic supports include: using examples to illustrate purposes and assumptions within models, and providing feedback as students evaluate their models. The dissertation demonstrates that teaching strategies impact student understanding but are challenging to implement. When strategies are not used, students do not necessarily construct desired outcomes such as, using evidence to support arguments.

  12. Investigating Assessment Bias for Constructed Response Explanation Tasks: Implications for Evaluating Performance Expectations for Scientific Practice

    NASA Astrophysics Data System (ADS)

    Federer, Meghan Rector

    Assessment is a key element in the process of science education teaching and research. Understanding sources of performance bias in science assessment is a major challenge for science education reforms. Prior research has documented several limitations of instrument types on the measurement of students' scientific knowledge (Liu et al., 2011; Messick, 1995; Popham, 2010). Furthermore, a large body of work has been devoted to reducing assessment biases that distort inferences about students' science understanding, particularly in multiple-choice [MC] instruments. Despite the above documented biases, much has yet to be determined for constructed response [CR] assessments in biology and their use for evaluating students' conceptual understanding of scientific practices (such as explanation). Understanding differences in science achievement provides important insights into whether science curricula and/or assessments are valid representations of student abilities. Using the integrative framework put forth by the National Research Council (2012), this dissertation aimed to explore whether assessment biases occur for assessment practices intended to measure students' conceptual understanding and proficiency in scientific practices. Using a large corpus of undergraduate biology students' explanations, three studies were conducted to examine whether known biases of MC instruments were also apparent in a CR instrument designed to assess students' explanatory practice and understanding of evolutionary change (ACORNS: Assessment of COntextual Reasoning about Natural Selection). The first study investigated the challenge of interpreting and scoring lexically ambiguous language in CR answers. The incorporation of 'multivalent' terms into scientific discourse practices often results in statements or explanations that are difficult to interpret and can produce faulty inferences about student knowledge. The results of this study indicate that many undergraduate biology majors frequently incorporate multivalent concepts into explanations of change, resulting in explanatory practices that were scientifically non-normative. However, use of follow-up question approaches was found to resolve this source of bias and thereby increase the validity of inferences about student understanding. The second study focused on issues of item and instrument structure, specifically item feature effects and item position effects, which have been shown to influence measures of student performance across assessment tasks. Results indicated that, along the instrument item sequence, items with similar surface features produced greater sequencing effects than sequences of items with dissimilar surface features. This bias could be addressed by use of a counterbalanced design (i.e., Latin Square) at the population level of analysis. Explanation scores were also highly correlated with student verbosity, despite verbosity being an intrinsically trivial aspect of explanation quality. Attempting to standardize student response length was one proposed solution to the verbosity bias. The third study explored gender differences in students' performance on constructed-response explanation tasks using impact (i.e., mean raw scores) and differential item function (i.e., item difficulties) patterns. While prior research in science education has suggested that females tend to perform better on constructed-response items, the results of this study revealed no overall differences in gender achievement. However, evaluation of specific item features patterns suggested that female respondents have a slight advantage on unfamiliar explanation tasks. That is, male students tended to incorporate fewer scientifically normative concepts (i.e., key concepts) than females for unfamiliar taxa. Conversely, females tended to incorporate more scientifically non-normative ideas (i.e., naive ideas) than males for familiar taxa. Together these results indicate that gender achievement differences for this CR instrument may be a result of differences in how males and females interpret and respond to combinations of item features. Overall, the results presented in the subsequent chapters suggest that as science education shifts toward the evaluation of fused scientific knowledge and practice (e.g., explanation), it is essential that educators and researchers investigate potential sources of bias inherent to specific assessment practices. This dissertation revealed significant sources of CR assessment bias, and provided solutions to address these problems.

  13. Middle School Students' Learning about Genetic Inheritance through On-Line Scaffolding Supports

    ERIC Educational Resources Information Center

    Manokore, Viola

    2010-01-01

    The main goal of school science is to enable learners to become scientifically literate through their participation in scientific discourses (McNeill & Krajcik, 2009). One of the key elements of scientific discourses is the ability to construct scientific explanations that consist of valid claims supported by appropriate evidence (e.g., McNeill &…

  14. The Construction of a Reasoned Explanation of a Health Phenomenon: An Analysis of Competencies Mobilized

    ERIC Educational Resources Information Center

    Faria, Cláudia; Freire, Sofia; Baptista, Mónica; Galvão, Cecília

    2014-01-01

    Mobilizing scientific knowledge for understanding the natural world and for critically appraise socio-scientific situations and make decisions are key competencies for today's' society. Therefore, it is essential to understand how students at the end of compulsory schooling use scientific knowledge for understanding the surrounding world. The…

  15. Teaching with Insects: An Applied Life Science Course for Supporting Prospective Elementary Teachers' Scientific Inquiry

    ERIC Educational Resources Information Center

    Haefner, Leigh A.; Friedrichsen, Patricia Meis; Zembal-Saul, Carla

    2006-01-01

    The National Science Education Standards (National Research Council [NRC], 1996) call for a greater emphasis on scientific inquiry in K-12 science classes. The Inquiry Standards recommend that students be engaged with scientific questions in which they collect and interpret data, give priority to evidence to construct explanations, test those…

  16. Adjusting Claims as New Evidence Emerges: Do Students Incorporate New Evidence into Their Scientific Explanations?

    ERIC Educational Resources Information Center

    Novak, Ann M.; Treagust, David F.

    2018-01-01

    Constructing explanations of complex phenomena is an important part of doing science and it is also an important component of learning science. Students need opportunities to make claims based on available evidence and then use science concepts to justify why evidence supports the claim. But what happens when "new" evidence emerges for…

  17. Scientific Argument and Explanation: A Necessary Distinction?

    ERIC Educational Resources Information Center

    Osborne, Jonathan F.; Patterson, Alexis

    2011-01-01

    In this paper, we argue that there is an emergent confusion in the literature in the use of the terms "argument" and "explanation." Drawing on a range of publications, we point to instances where these terms are either used inappropriately or conflated. We argue that the distinction between these two constructs is, however, important as a lack of…

  18. Performance Evaluation of an Online Argumentation Learning Assistance Agent

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Wang, Yu-Wu; Huang, Tz-Hau; Chen, Ying-Chen; Chen, Heng-Ming; Chang, Shun-Chih

    2011-01-01

    Recent research indicated that students' ability to construct evidence-based explanations in classrooms through scientific inquiry is critical to successful science education. Structured argumentation support environments have been built and used in scientific discourse in the literature. To the best of our knowledge, no research work in the…

  19. Students' abilities to critique scientific evidence when reading and writing scientific arguments

    NASA Astrophysics Data System (ADS)

    Knight, Amanda M.

    Scientific arguments are used to persuade others for explanations that make sense of the natural world. Over time, through the accumulation of evidence, one explanation for a scientific phenomenon tends to take precedence. In science education, arguments make students' thinking and reasoning visible while also supporting the development of their conceptual, procedural, and epistemic knowledge. As such, argumentation has become a goal within recent policy documents, including the Next Generation Science Standards, which, in turn, presents a need for comprehensive, effective, and scalable assessments. This dissertation used assessments that measure students' abilities to critique scientific evidence, which is measured in terms of the form of justification and the support of empirical evidence, when reading and writing scientific arguments. Cognitive interviews were then conducted with a subset of the students to explore the criteria they used to critique scientific evidence. Specifically, the research investigated what characteristics of scientific evidence the students preferred, how they critiqued both forms of justification and empirical evidence, and whether the four constructs represented four separate abilities. Findings suggest that students' prioritized the type of empirical evidence to the form of justification, and most often selected relevant-supporting justifications. When writing scientific arguments, most students constructed a justified claim, but struggled to justify their claims with empirical evidence. In comparison, when reading scientific arguments, students had trouble locating a justification when it was not empirical data. Additionally, it was more difficult for students to critique than identify or locate empirical evidence, and it was more difficult for students to identify than locate empirical evidence. Findings from the cognitive interviews suggest that students with more specific criteria tended to have more knowledge of the construct. Lastly, dimensional analyses suggest that these may not be four distinct constructs, which has important implications for curriculum development and instructional practice. Namely, teachers should attend to the critique of scientific evidence separately when reading and writing scientific arguments.

  20. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-01-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific…

  1. Explanation, argumentation and dialogic interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Aguiar, Orlando G.

    2016-12-01

    As a responsive article to Miranda Rocksén's paper "The many roles of `explanation' in science education: a case study", this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts of dialogue and dialogism in science classrooms contexts. Dialogism is discussed as the basic tenet from which Rocksén developed her research design and methods. In turn, dialogues in science classrooms may be considered as a particular type of discourse that allows the students' culture, mostly based on everyday knowledge, and the science school culture, related to scientific knowledge and language to be interwoven. I argue that in school, science teachers are always committed to the resolution of differences according to a scientific position for the knowledge to be constructed. Thus, the institution of schooling constrains the ways in which dialogue can be conducted in the classrooms, as the scientific perspective will be always, beforehand, the reference for the conclusions to be reached. The second theme developed here, in dialogue with Rocksén, is about explanations in science classrooms. Based on Jean Paul Bronckart (Atividade de linguagem, textos e discursos: por um interacionismo sócio-discursivo, Educ, São Paulo, 1999), the differences and relationship between explanation and argumentation as communicative acts are re-discussed as well its practical consequences to science teaching. Finally, some epistemological questions are raised about the status of scientific explanations in relation to non-scientific ones.

  2. Engaging Karen refugee students in science learning through a cross-cultural learning community

    NASA Astrophysics Data System (ADS)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  3. Sailing toward Understanding Surface Currents: A Science and Geography Integration Activity for Upper-Elementary Students

    ERIC Educational Resources Information Center

    Eidietis, Laura; Rutherford, Sandra

    2009-01-01

    In the activities presented in this article, students mimic real scientists while constructing predictions and scientific explanations about surface currents. The activities are inspired by and couched within true scientific inquiries regarding the ocean and the North American Great Lakes. Students engage in a classroom inquiry and use map-reading…

  4. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  5. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  6. Facilitating Preschoolers' Scientific Knowledge Construction via Computer Games Regarding Light and Shadow: The Effect of the Prediction-Observation-Explanation (POE) Strategy

    ERIC Educational Resources Information Center

    Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong

    2011-01-01

    Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the…

  7. Elementary Students' Views of Explanation, Argumentation, and Evidence, and Their Abilities to Construct Arguments over the School Year

    ERIC Educational Resources Information Center

    McNeill, Katherine L.

    2011-01-01

    Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade…

  8. Romantic Agrarianism and Movement Education in the United States: Examining the Discursive Politics of Learning Disability Science

    ERIC Educational Resources Information Center

    Danforth, Scot

    2011-01-01

    The learning disability construct gained scientific and political legitimacy in the United States in the 1960s as an explanation for some forms of childhood learning difficulties. In 1975, federal law incorporated learning disability into the categorical system of special education. The historical and scientific roots of the disorder involved a…

  9. Argumentation Key to Communicating Climate Change to the Public

    NASA Astrophysics Data System (ADS)

    Bleicher, R. E.; Lambert, J. L.

    2012-12-01

    Argumentation plays an important role in how we communicate climate change science to the public and is a key component integrated throughout the Next Generation Science Standards. A scientific argument can be described as a disagreement between explanations with data being used to justify each position. Argumentation is social process where two or more individuals construct and critique arguments (Kuhn & Udell, 2003; Nussbaum, 1997). Sampson, Grooms, and Walker's (2011) developed a framework for understanding the components of a scientific argument. The three components start with a claim (a conjecture, conclusion, explanation, or an answer to a research question). This claim must fit the evidence (observations that show trends over time, relationships between variables or difference between groups). The evidence must be justified with reasoning (explains how the evidence supports the explanation and whey it should count as support). In a scientific argument, or debate, the controversy focuses on how data were collected, what data can or should be included, and what inferences can be made based on a set of evidence. Toulmin's model (1969) also includes rebutting or presenting an alternative explanation supported by counter evidence and reasoning of why the alternative is not the appropriate explanation for the question of the problem. The process of scientific argumentation should involve the construction and critique of scientific arguments, one that involves the consideration of alternative hypotheses (Lawson, 2003). Scientific literacy depends as much on the ability to refute and recognize poor scientific arguments as much as it does on the ability to present an effective argument based on good scientific data (Osborne, 2010). Argument is, therefore, a core feature of science. When students learn to construct a sound scientific argument, they demonstrate critical thinking and a mastery of the science being taught. To present a convincing argument in support of climate change, students must have a sound foundation in the science underlying it. One place to lay this foundation is in the high school science classroom. For students to gain a good conceptual understanding of climate change science, teachers need a sound understanding of climate change and effective resources to teach it to students. Teacher professional development opportunities are required to provide this background as well as establish collaborative curriculum planning opportunities on the school site (Shulman, 2007). Various strategies for and challenges of implementing argumentation with preservice and practicing teachers will be discussed in this session, as well as ways that argumentation skills can help the broader public evaluate claims of climate skeptics. In the field of argumentation theory, Goodwin (2010) has designed a strategy for developing the ability to make effective scientific arguments. The goal is to establish trust even when there is strong disagreement. At the core, a student fully acknowledges the uncertainty involved in the complex science underlying climate change. This has the effect of establishing some degree of trust. In other words, teachers or students trying to explain climate change to others might be perceived as more trustworthy if they openly declare that there are degrees of uncertainty in different aspects of climate change science (American Meteorological Society, 2011).

  10. Strong Stems Need Strong Sprouts!

    ERIC Educational Resources Information Center

    McGough, Julie; Nyberg, Lisa

    2013-01-01

    In this article, students examined how and why plants work through in-depth investigations. They performed scientific inquiry through questioning, developed models, constructed explanations, and communicated information of the structure and function and system models of plants, and then engineered a representation of their understanding. The…

  11. Validity Evidence for a Learning Progression of Scientific Explanation

    ERIC Educational Resources Information Center

    Yao, Jian-Xin; Guo, Yu-Ying

    2018-01-01

    Providing scientific explanations for natural phenomena is a fundamental aim of science; therefore, scientific explanation has been selected as one of the key practices in science education policy documents around the world. To further elaborate on existing educational frameworks of scientific explanation in K-12, we propose a learning progression…

  12. The many roles of "explanation" in science education: a case study

    NASA Astrophysics Data System (ADS)

    Rocksén, Miranda

    2016-12-01

    In this paper the role of explanations is discussed in relation to possible consequences originating in the polysemy of the word explanation. The present study is a response to conceptual confusions that have arisen in the intersection between theory and practice, and between science education literature and communication in authentic science classroom settings. Science classroom communication is examined in terms of one teacher's word use during eleven lessons about evolution. The study contributes empirical examples of how disciplinary norms of valid explanations are manifested in science classroom communication. A dialogical analysis shows how the teacher provides three conversational structures: asking for acts of explanation, providing opportunities to talk about what explanations are in this context and providing opportunities to talk about explanations constructed by students. These three structures facilitate the process of learning how to evaluate and justify explanations. Three potential meanings of the word "explanation" are pointed to: an everyday meaning, a pedagogical-professional meaning and a scientific meaning of the word. It is suggested that the co-existence of these three potential meanings has communicative consequences in science education.

  13. Pharmacology Students' Perceptions of Creating Multimodal Digital Explanations

    ERIC Educational Resources Information Center

    Nielsen, W.; Hoban G.; Hyland, C. J. T.

    2017-01-01

    Students can now digitally construct their own representations of scientific concepts using a variety of modes including writing, diagrams, 2-D and 3-D models, images or speech, all of which communicate meaning. In this study, final-year chemistry students studying a pharmacology subject created a ''blended media'' digital product as an assignment…

  14. Engaging Karen Refugee Students in Science Learning through a Cross-Cultural Learning Community

    ERIC Educational Resources Information Center

    Harper, Susan G.

    2017-01-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as…

  15. Modeling as an Anchoring Scientific Practice for Explaining Friction Phenomena

    ERIC Educational Resources Information Center

    Neilson, Drew; Campbell, Todd

    2017-01-01

    Through examining the day-to-day work of scientists, researchers in science studies have revealed how models are a central sense-making practice of scientists as they construct and critique explanations about how the universe works. Additionally, they allow predictions to be made using the tenets of the model. Given this, alongside research…

  16. A Follow-Up Study of Medical Students' Biomedical Understanding and Clinical Reasoning Concerning the Cardiovascular System

    ERIC Educational Resources Information Center

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Olkinuora, Erkki; Kaapa, Pekka

    2011-01-01

    Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in…

  17. Facilitating Preschoolers' Scientific Knowledge Construction via Computer Games Regarding Light and Shadow: The Effect of the Prediction-Observation-Explanation (POE) Strategy

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong

    2011-10-01

    Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the prediction-observation-explanation (POE) strategy (White and Gunstone in Probing understanding. Routledge, New York, 1992) on facilitating preschoolers' acquisition of scientific concepts regarding light and shadow. The children's alternative conceptions were explored as well. Fifty participants were randomly assigned into either an experimental group that played a computer game integrating the POE model or a control group that played a non-POE computer game. By assessing the students' conceptual understanding through interviews, this study revealed that the students in the experimental group significantly outperformed their counterparts in the concepts regarding "shadow formation in daylight" and "shadow orientation." However, children in both groups, after playing the games, still expressed some alternative conceptions such as "Shadows always appear behind a person" and "Shadows should be on the same side as the sun."

  18. Collaborative explanation, explanatory roles, and scientific explaining in practice.

    PubMed

    Love, Alan C

    2015-08-01

    Scientific explanation is a perennial topic in philosophy of science, but the literature has fragmented into specialized discussions in different scientific disciplines. An increasing attention to scientific practice by philosophers is (in part) responsible for this fragmentation and has put pressure on criteria of adequacy for philosophical accounts of explanation, usually demanding some form of pluralism. This commentary examines the arguments offered by Fagan and Woody with respect to explanation and understanding in scientific practice. I begin by scrutinizing Fagan's concept of collaborative explanation, highlighting its distinctive advantages and expressing concern about several of its assumptions. Then I analyze Woody's attempt to reorient discussions of scientific explanation around functional considerations, elaborating on the wider implications of this methodological recommendation. I conclude with reflections on synergies and tensions that emerge when the two papers are juxtaposed and how these draw attention to critical issues that confront ongoing philosophical analyses of scientific explanation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Contextually Aided Recovery (CARe): a scientific theory for innate healing.

    PubMed

    Newell, Dave; Lothe, Lise R; Raven, Timothy J L

    2017-01-01

    The chiropractic profession emerged when scientific explanations for causes of health and disease were still in infancy and the co-existence of notions such as innate healing and vitalism were perhaps admissible within such a historical context. Notwithstanding, within the scientific culture of the 21 st Century all healthcare paradigms require evidential support which in regard these early concepts are in large part, absent. Nevertheless, a large body of emerging scientific evidence supports the existence of innate healing phenomena that may explain a plethora of clinical outcomes observed during chiropractic care. However, in contrast to the notion that removing the putative subluxation constitutes the mechanism by which this healing is initiated, the evidentially supported explanation is one that invokes the impact of contextual factors inherent in the skilful care and authority of the healthcare provider. This perspective is presented here as the scientific model of Contextually Aided Recovery (CARe). This paper contends that;Contextual effects are powerful and desirable and are triggered by contextual factors present in all therapeutic encounters including those encountered in chiropractic practice.These factors can elicit large clinical effects with substantive evidence supporting pain, immune and motor modulation.The compartmentalisation of specific and non-specific effects is a biologically and scientifically false dichotomy, erroneously invoked to de-legitimise treatment approaches that expertly construct contextual healing scenarios.The use of factors to construct contextual healing scenarios that maximise positive (placebo) and minimize negative (nocebo) effects is a skilful clinical art within the multimodal approach that describes modern chiropractic care and should be presented and defended as a legitimate component of orthodox healthcare Clinical improvement during chiropractic care, beyond any biologically specific treatment effects of manipulation and other modalities, may be largely understood considering contextual factors as described by a Contextually Aided Recovery (CARe) model.

  20. Periodical cicadas: A minimal automaton model

    NASA Astrophysics Data System (ADS)

    de O. Cardozo, Giovano; de A. M. M. Silvestre, Daniel; Colato, Alexandre

    2007-08-01

    The Magicicada spp. life cycles with its prime periods and highly synchronized emergence have defied reasonable scientific explanation since its discovery. During the last decade several models and explanations for this phenomenon appeared in the literature along with a great deal of discussion. Despite this considerable effort, there is no final conclusion about this long standing biological problem. Here, we construct a minimal automaton model without predation/parasitism which reproduces some of these aspects. Our results point towards competition between different strains with limited dispersal threshold as the main factor leading to the emergence of prime numbered life cycles.

  1. Cultural Border Crossing: The Interaction between Fundamental Christian Beliefs and Scientific Explanations

    ERIC Educational Resources Information Center

    Elimbi, Celestine Nakeli

    2017-01-01

    The purpose of this study is to investigate the interaction between people's fundamental Christian beliefs and scientific explanations. When people with fundamental Christian beliefs encounter scientific explanations, such explanations may interact with their deeply rooted beliefs in a way that is likely to produce tensions. It is expedient to…

  2. Understanding the Alternative Conceptions of Pre-Service Secondary Science Teachers about Tidal Phenomena Based on Toulmin's Argumentation

    ERIC Educational Resources Information Center

    Oh, Jun-Young

    2014-01-01

    Constructing explanations and participating in argumentative discourse are seen as essential practices of scientific inquiry. The objective of this study was to explore the elements and origins of pre-service secondary science teachers' alternative conceptions of tidal phenomena based on the elements used in Toulmin's Argument Model through…

  3. Investigating Elementary Teachers' Thinking about and Learning to Notice Students' Science Ideas

    ERIC Educational Resources Information Center

    Luna, Melissa Jo

    2013-01-01

    Children naturally use observations and everyday thinking to construct explanations as to why phenomena happen in the world. Science instruction can benefit by starting with these ideas to help children build coherent scientific understandings of how the physical world works. To do so, science teaching must involve attending to students'…

  4. The Contribution of the Human Body in Young Children's Explanations about Shadow Formation

    ERIC Educational Resources Information Center

    Herakleioti, Evagelia; Pantidos, Panagiotis

    2016-01-01

    This paper begins with the view that the generation of meaning is a multimodal process. Props, drawings, graphs, gestures, as well as speech and written text are all mediators through which students construct new knowledge. Each semiotic context makes a unique contribution to the conceptualization of scientific entities. The human body, in…

  5. Using Abductive Research Logic: "The Logic of Discovery", to Construct a Rigorous Explanation of Amorphous Evaluation Findings

    ERIC Educational Resources Information Center

    Levin-Rozalis, Miri

    2010-01-01

    Background: Two kinds of research logic prevail in scientific research: deductive research logic and inductive research logic. However, both fail in the field of evaluation, especially evaluation conducted in unfamiliar environments. Purpose: In this article I wish to suggest the application of a research logic--"abduction"--"the logic of…

  6. Characterizing Students' Attempts to Explain Observations from Practical Work: Intermediate Phases of Understanding

    NASA Astrophysics Data System (ADS)

    Mestad, Idar; Kolstø, Stein Dankert

    2017-10-01

    This study aims to characterize a group of students' preliminary oral explanations of a scientific phenomenon produced as part of their learning process. The students were encouraged to use their own wordings to test out their own interpretation of observations when conducting practical activities. They presented their explanations orally in the whole class after having discussed and written down an explanation in a small group. The data consists of transcribed video recordings of the presented explanations, observation notes, and interviews. A genre perspective was used to characterize the students' explanations together with analysis of the students use of scientific terms, gestures, and the language markers "sort of" and "like." Based on the analysis we argue to separate between event-focused explanations, where the students describe how objects move, and object-focused explanations, where the students describe object properties and interactions. The first type uses observable events and few scientific terms, while the latter contains object properties and tentative use of scientific terms. Both types are accompanied by an extensive use of language markers and gestures. A third category, term-focused explanations, is used when the students only provide superficial explanations by expressing scientific terms. Here, the students' use of language markers and gestures are low. The analyses shows how students' explanations can be understood as tentative attempts to build on their current understanding and observations while trying to reach out for a deeper and scientific way of identifying observations and building explanations and new ways of talking.

  7. How Do Preservice Biology Teachers Explain the Origin of Biological Traits?: A Philosophical Analysis

    ERIC Educational Resources Information Center

    Kampourakis, Kostas; Silveira, Patricia; Strasser, Bruno J.

    2016-01-01

    Research suggests that students tend to explain the origin of biological traits in terms of needs or purposes and/or as the direct product of genes, rather than as the outcome of evolutionary and developmental processes. We suggest that in order for students to be able to construct scientific explanations, it is important to clearly and explicitly…

  8. Modelling Molecular Mechanisms: A Framework of Scientific Reasoning to Construct Molecular-Level Explanations for Cellular Behaviour

    ERIC Educational Resources Information Center

    van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Waarlo, Arend Jan

    2013-01-01

    Although molecular-level details are part of the upper-secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the level of cells, organs and organisms. Recent studies suggest that students lack a framework to reason about complex systems to make this connection. In this…

  9. Formative Assessment Probes: Is It Melting? Formative Assessment for Teacher Learning

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    Formative assessment probes are effective tools for uncovering students' ideas about the various concepts they encounter when learning science. They are used to build a bridge from where the student is in his or her thinking to where he or she needs to be in order to construct and understand the scientific explanation for observed phenomena.…

  10. Scientific Explanations in Greek Upper Secondary Physics Textbooks

    ERIC Educational Resources Information Center

    Velentzas, Athanasios; Halkia, Krystallia

    2018-01-01

    In this study, an analysis of the structure of scientific explanations included in physics textbooks of upper secondary schools in Greece was completed. In scientific explanations for specific phenomena found in the sample textbooks, the "explanandum" is a logical consequence of the "explanans," which in all cases include at…

  11. Working toward a Stronger Conceptualization of Scientific Explanation for Science Education

    ERIC Educational Resources Information Center

    Braaten, Melissa; Windschitl, Mark

    2011-01-01

    Scientific explanation plays a central role in science education reform documents, including the "Benchmarks for Science Literacy," the "National Science Education Standards", and the recent research report, "Taking Science to School." While scientific explanation receives significant emphases in these documents, there is little discussion or…

  12. Lay Americans' views of why scientists disagree with each other.

    PubMed

    Johnson, Branden B; Dieckmann, Nathan F

    2017-10-01

    A survey experiment assessed response to five explanations of scientific disputes: problem complexity, self-interest, values, competence, and process choices (e.g. theories and methods). A US lay sample ( n = 453) did not distinguish interests from values, nor competence from process, as explanations of disputes. Process/competence was rated most likely and interests/values least; all, on average, were deemed likely to explain scientific disputes. Latent class analysis revealed distinct subgroups varying in their explanation preferences, with a more complex latent class structure for participants who had heard of scientific disputes in the past. Scientific positivism and judgments of science's credibility were the strongest predictors of latent class membership, controlling for scientific reasoning, political ideology, confidence in choice, scenario, education, gender, age, and ethnicity. The lack of distinction observed overall between different explanations, as well as within classes, raises challenges for further research on explanations of scientific disputes people find credible and why.

  13. Thinking and Doing Prevention: A Critical Analysis of Contemporary Youth Crime and Suicide Prevention Discourses

    ERIC Educational Resources Information Center

    White, Jennifer; Stoneman, Lorinda

    2012-01-01

    In this article, we have traced some of the dominant cultural narratives shaping current understandings of youth crime and suicide. We have aimed to show some of the ways that our received understandings of what the problem is and what should be done about it are social constructions that privilege a certain kind of scientific explanation. By…

  14. Creating a Taken-as-Shared Understanding for Scientific Explanation: Classroom Norm Perspective

    ERIC Educational Resources Information Center

    Saglam, Yilmaz; Karaaslan, Emre Harun; Ayas, Alipasa

    2014-01-01

    The study aimed to investigate whether classroom norm perspective influence the students' capability of elucidating a natural phenomena and beliefs about scientific explanation. In particular, our objective was to explore the process by which the norm for scientific explanation was established and discover how the students' explanation…

  15. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry processes. (4) Scaffolded protocols positively influenced participants' attention to having students construct evidence-based explanations during science planning and teaching. (5) Teachers' beliefs about children's science capabilities influence their attention to and adoption of practices associated with teaching science as argument. Findings are discussed in terms of their implications for teacher education, such as the use of coherent conceptual frameworks to guide coursework and field experiences and the development of video-based cases that represent "images of the possible" associated with challenging reform-oriented teaching practices.

  16. Learning from instructional explanations: effects of prompts based on the active-constructive-interactive framework.

    PubMed

    Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten

    2015-01-01

    Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge.

  17. Learning from Instructional Explanations: Effects of Prompts Based on the Active-Constructive-Interactive Framework

    PubMed Central

    Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten

    2015-01-01

    Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge. PMID:25853629

  18. Kindergarten girls "illuminating" their identities-in-practice through science instruction framed in explanation building: From the shadows into the light

    NASA Astrophysics Data System (ADS)

    McDyre, Alicia M.

    Recent research on young children's learning has revealed that they are capable of sophisticated scientific reasoning and has prompted a new era of reform framed around the integration of three main strands -- core disciplinary ideas, scientific and engineering practices, and cross-cutting themes. Given the documented issues with girls in science in later grades, I chose to examine their participation in scientific norms and practices in kindergarten to gain insights into their identities-in-practice. From the perspective of identity as an enactment of self, I used the lens identities-in-practice (Lave & Wenger, 1991) to examine the impact that having classroom science instruction framed around constructing explanations with evidence would have on the girls in the class. In this study, I drew from theories of sociocultural learning, positioning, and identities-in-practice to study: a) the norms of participation, b) the authoring and positioning of girls, and c) the identities-in-practice that the girls' enacted in the kindergarten science classroom. Using a research design informed by qualitative methods and participant observation, I analyzed data using a constant comparative approach and crafted case studies of four girls in the science classroom. Three assertions were generated from this study: a) Identity-in-practice manifests differently in different literacy practices and shows how students chose to be science students across time and activities- a focus on one literacy practice alone is insufficient to understand identity; b) The ways in which the teacher positions girls, especially "quiet" girls, is essential for engaging them in productive participation in science discourse and learning; and c) A focus on classroom science instruction grounded in constructing explanations from evidence provided a consistent framework for students' writing and talking, which facilitated the establishment of expectations and norms of participation for all students. Implications from this study for elementary school science teachers, professional developers, and university researchers, and a direction for future research are provided after the analysis.

  19. The Feature of Scientific Explanation in the Teaching of Chemistry in the Environment of New Information of School Students' Developmental Education

    ERIC Educational Resources Information Center

    Gilmanshina, Suriya I.; Gilmanshin, Iskander R.; Sagitova, Rimma N.; Galeeva, Asiya I.

    2016-01-01

    The aim of this article is to disclose features of scientific explanation in teaching of chemistry in the environment of new information of school students' developmental education. The leading approach to the study of this problem is the information and environmental approach that comprehensively address the problem of scientific explanation in…

  20. Characterizing High School Students' Written Explanations in Biology Laboratories

    ERIC Educational Resources Information Center

    Peker, Deniz; Wallace, Carolyn S.

    2011-01-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific…

  1. Cultural border crossing: The interaction between fundamental Christian beliefs and scientific explanations

    NASA Astrophysics Data System (ADS)

    Elimbi, Celestine Nakeli

    The purpose of this study is to investigate the interaction between people's fundamental Christian beliefs and scientific explanations. When people with fundamental Christian beliefs encounter scientific explanations, such explanations may interact with their deeply rooted beliefs in a way that is likely to produce tensions. It is expedient to understand the classroom/professional experiences of such individuals and how they manage these tensions. I will apply Jegede's collateral learning theory as a lens to look at how individuals manage the tensions between their religious and scientific worldviews. Gaining insight into people's experiences in the classroom/work place and how they manage these tensions will potentially inform classroom instruction and ways by which we can help students with fundamental Christian beliefs maintain their pursuit of science related careers by easing the nature of the borders they cross. Sources of data will include participant reported perspectives of how they manage the tensions and observations of real-time resolution of potentially conflicting explanations from their religious and scientific worldviews.

  2. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-08-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.

  3. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  4. Modern Cosmology and Anthropic Fine-Tuning: Three approaches

    NASA Astrophysics Data System (ADS)

    Collins, Robin

    The anthropic fine-tuning of the cosmos refers to the claim that the laws of nature, the constants of physics, and the initial conditions of the universe must be set to an enormous degree of precision for embodied conscious agents to exist. Three major responses have been offered to this fine-tuning: the multiverse explanation; theism; and the claim that it is just a brute fact that requires no further explanation. In this chapter, I will consider each explanation in turn, and provide some novel arguments for the superiority of a theistic or related explanation. In the last section, I will show how whether or not one adopts a theistic or related explanation can significantly influence what features of the universe one considers in need of further scientific explanation, and the type of scientific explanation that one should find satisfactory. In particular, I will argue that in some cases atheism, not theism, serves as a science stopper in discouraging a search for deeper scientific explanations of phenomena.

  5. What's the Alternative?

    ERIC Educational Resources Information Center

    Lombardi, Doug; Sibley, Bret; Carroll, Kristoffer

    2013-01-01

    Scientifically literate citizens need to understand how scientists evaluate competing explanations. Likewise, students must learn to critically evaluate the quality of scientific knowledge and weigh alternative explanations. Regrettably, high school graduates often are not critically evaluative about scientific topics. To help remedy that, this…

  6. Re-orienting discussions of scientific explanation: A functional perspective.

    PubMed

    Woody, Andrea I

    2015-08-01

    Philosophy of science offers a rich lineage of analysis concerning the nature of scientific explanation, but the vast majority of this work, aiming to provide an analysis of the relation that binds a given explanans to its corresponding explanandum, presumes the proper analytic focus rests at the level of individual explanations. There are, however, other questions we could ask about explanation in science, such as: What role(s) does explanatory practice play in science? Shifting focus away from explanations, as achievements, toward explaining, as a coordinated activity of communities, the functional perspective aims to reveal how the practice of explanatory discourse functions within scientific communities given their more comprehensive aims and practices. In this paper, I outline the functional perspective, argue that taking the functional perspective can reveal important methodological roles for explanation in science, and consequently, that beginning here provides resources for developing more adequate responses to traditional concerns. In particular, through an examination of the ideal gas law, I emphasize the normative status of explanations within scientific communities and discuss how such status underwrites a compelling rationale for explanatory power as a theoretical virtue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Supernatural Explanations: Science or Not?

    ERIC Educational Resources Information Center

    Eastwell, Peter

    2011-01-01

    Contrary to the advice of supposedly authoritative sources, the a priori exclusion of supernatural explanations or claims from scientific scrutiny is not appropriate. This paper shows how supernatural hypotheses or claims should be treated by science and, in the process, differentiates scientific and non-scientific hypotheses or claims.…

  8. What was historical about natural history? Contingency and explanation in the science of living things.

    PubMed

    Harrison, Peter

    2016-08-01

    There is a long-standing distinction in Western thought between scientific and historical modes of explanation. According to Aristotle's influential account of scientific knowledge there cannot be an explanatory science of what is contingent and accidental, such things being the purview of a descriptive history. This distinction between scientia and historia continued to inform assumptions about scientific explanation into the nineteenth century and is particularly significant when considering the emergence of biology and its displacement of the more traditional discipline of natural history. One of the consequences of this nineteenth-century transition was that while modern evolutionary theory retained significant, if often implicit, historical components, these were often overlooked as evolutionary biology sought to accommodate itself to a model of scientific explanation that involved appeals to laws of nature. These scientific aspirations of evolutionary biology sometimes sit uncomfortably with its historical dimension. This tension lies beneath recent philosophical critiques of evolutionary theory and its modes of explanation. Such critiques, however, overlook the fact that there are legitimate modes of historical explanation that do not require recourse to laws of nature. But responding to these criticisms calls for a more explicit recognition of the affinities between evolutionary biology and history. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Do cultural factors affect causal beliefs? Rational and magical thinking in Britain and Mexico.

    PubMed

    Subbotsky, Eugene; Quinteros, Graciela

    2002-11-01

    In two experiments, unusual phenomena (spontaneous destruction of objects in an empty wooden box) were demonstrated to adult participants living in rural communities in Mexico. These were accompanied by actions which had no physical link to the destroyed object but could suggest either scientifically based (the effect of an unknown physical device) or non-scientifically based (the effect of a 'magic spell') causal explanations of the event. The results were compared to the results of the matching two experiments from the earlier study made in Britain. The expectation that scientifically based explanations would prevail in British participants' judgments and behaviours, whereas Mexican participants would be more tolerant toward magical explanations, received only partial support. The prevalence of scientific explanations over magical explanations was evident in British participants' verbal judgments but not in Mexican participants' judgments. In their behavioural responses under the low-risk condition, British participants rejected magical explanations more frequently than did Mexican participants. However, when the risk of disregarding the possible causal effect of magic was increased, participants in both samples showed an equal degree of credulity in the possible effect of magic. The data are interpreted in terms of the relationships between scientific and 'folk' representations of causality and object permanence.

  10. Synergy and Students' Explanations: Exploring the Role of Generic and Content-Specific Scaffolds

    ERIC Educational Resources Information Center

    Delen, Ibrahim; Krajcik, Joseph

    2018-01-01

    In this study, we explored how a teacher used a new mobile application that enables students to collect data inside and outside the classroom, and then use the data to create scientific explanations by using claim-evidence-reasoning framework. Previous technologies designed to support scientific explanations focused on how these programs improve…

  11. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  12. Effectiveness of the use of question-driven levels of inquiry based instruction (QD-LOIBI) assisted visual multimedia supported teaching material on enhancing scientific explanation ability senior high school students

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Muslim; Samsudin, A.; Hermita, N.; Supriyatman

    2018-05-01

    In this study, the effectiveness of the use of Question-Driven Levels of Inquiry Based Instruction (QD-LOIBI) assisted visual multimedia supported teaching materials on enhancing senior high school students scientific explanation ability has been studied. QD-LOIBI was designed by following five-levels of inquiry proposed by Wenning. Visual multimedia used in teaching materials included image (photo), virtual simulation and video phenomena. QD-LOIBI assisted teaching materials supported by visual multimedia were tried out on senior high school students at one high school in one district in West Java. A quasi-experiment method with design one experiment group (n = 31) and one control group (n = 32) were used. Experimental group were given QD-LOIBI assisted teaching material supported by visual multimedia, whereas the control group were given QD-LOIBI assisted teaching materials not supported visual multimedia. Data on the ability of scientific explanation in both groups were collected by scientific explanation ability test in essay form concerning kinetic gas theory concept. The results showed that the number of students in the experimental class that has increased the category and quality of scientific explanation is greater than in the control class. These results indicate that the use of multimedia supported instructional materials developed for implementation of QD-LOIBI can improve students’ ability to provide explanations supported by scientific evidence gained from practicum activities and applicable concepts, laws, principles or theories.

  13. The Nature and Development of Scientific Reasoning: A Synthetic View

    ERIC Educational Resources Information Center

    Lawson, Antone E.

    2004-01-01

    This paper presents a synthesis of what is currently known about the nature and development of scientific reasoning and why it plays a central role in acquiring scientific literacy. Science is viewed as a hypothetico-deductive (HD) enterprise engaging in the generation and test of alternative explanations. Explanation generation and test requires…

  14. Scientific explanations in Greek upper secondary physics textbooks

    NASA Astrophysics Data System (ADS)

    Velentzas, Athanasios; Halkia, Krystallia

    2018-01-01

    In this study, an analysis of the structure of scientific explanations included in physics textbooks of upper secondary schools in Greece was completed. In scientific explanations for specific phenomena found in the sample textbooks, the explanandum is a logical consequence of the explanans, which in all cases include at least one scientific law (and/or principle, model or rule) previously presented, as well as statements concerning a specific case or specific conditions. The same structure is also followed in most of the cases in which the textbook authors explain regularities (i.e. laws, rules) as consequences of one or more general law or principle of physics. Finally, a number of the physics laws and principles presented in textbooks are not deduced as consequences from other, more general laws, but they are formulated axiomatically or inductively derived and the authors argue for their validity. Since, as it was found, the scientific explanations presented in the textbooks used in the study have similar structures to the explanations in internationally known textbooks, the findings of the present work may be of interest not only to science educators in Greece, but also to the community of science educators in other countries.

  15. A Social Control Perspective on Scientific Misconduct.

    ERIC Educational Resources Information Center

    Hackett, Edward J.

    1994-01-01

    Some explanations for scientific misconduct are examined, including those based on theories of individual psychopathology, anomie, and alienation. An alternative explanation, drawing on the concept of social control, is presented, and implications for research and policy are examined. (MSE)

  16. The Role of Consistency, Order, and Structure in Evaluating and Comprehending Competing Scientific Explanations

    ERIC Educational Resources Information Center

    Ihme, Natalie; Wittwer, Jörg

    2015-01-01

    Research shows that when evaluating competing explanations people usually discount an explanation in favor of an alternative explanation and, at the same time, prefer the explanation that is provided before an alternative explanation. In this article, we examine how inconsistencies in one but not the other explanation influence the evaluation and…

  17. Validating Measurement of Knowledge Integration in Science Using Multiple-Choice and Explanation Items

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Liu, Ou Lydia; Linn, Marcia C.

    2011-01-01

    This study explores measurement of a construct called knowledge integration in science using multiple-choice and explanation items. We use construct and instructional validity evidence to examine the role multiple-choice and explanation items plays in measuring students' knowledge integration ability. For construct validity, we analyze item…

  18. Investigating minority student participation in an authentic science research experience

    NASA Astrophysics Data System (ADS)

    Preston, Stephanie Danette

    In the United States, a problem previously overlooked in increasing the total number of scientifically literate citizens is the lack of diversity in advanced science classes and in science, technology, engineering, and mathematics (STEM) fields. Groups traditionally underserved in science education and thus underrepresented in the STEM fields include: low-income, racial/ethnic minorities, and females of all ethnic and racial backgrounds. Despite the number of these students who are initially interested in science very few of them thrive in the discipline. Some scholars suggest that the declining interest for students underrepresented in science is traceable to K-12th grade learning experiences and access to participating in authentic science. Consequently, the diminishing interest of minorities and women in science contributes negatively to the representation of these groups in the STEM disciplines. The purpose of this study was to investigate a summer science research experience for minority students and the nature of students' participation in scientific discourse and practices within the context of the research experience. The research questions that guided this study are: The nature of the Summer Experience in Earth and Mineral Science (SEEMS) research experience . (A) What are the SEEMS intended outcomes? (B) To what extent does SEEMS enacted curriculum align with the intended outcomes of the program? The nature of students engagement in the SEEMS research. (A) In what ways do students make sense of and apply science concepts as they engage in the research (e.g., understand problem, how they interpret data, how they construct explanations), and the extent to which they use the science content appropriately? (B) In what ways do students engage in the cultural practices of science, such as using scientific discourse, interpreting inscriptions, and constructing explanations from evidence (engaging in science practices, knowing science and doing science)? The following data sources were used in this study: SEEMS curriculum and documentation, interviews with program staff and participants, TRIO program documentation, Upward Bound Math Science (UBMS) promotional material, and audio/video recordings and field notes of students' daily interactions in the research setting. Findings revealed that students who participated in the research experience were able to successfully engage in some cultural practices of science, such as using inscriptions, constructing explanations, and collecting data. Analysis and observations of their engagement demonstrated a need for programs similar to SEEMS to focus on: (1) understanding how students make sense of science as they engage in the cultural practices, and (2) incorporating aspects of students' culture and social practices into the experience.

  19. How the World Gains Understanding of a Planet: Analysis of Scientific Understanding in Earth Sciences and of the Communication of Earth-Scientific Explanation

    NASA Astrophysics Data System (ADS)

    Voute, S.; Kleinhans, M. G.; de Regt, H.

    2010-12-01

    A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification or falsification and conclusions that must be well grounded and argued. The intelligibility of theories is improved by the combination of these two types of understanding. This is also attested by the fact that both theoretical and embodied skills are considered essential for the training of university students at all levels. However, from surprised and confounded reactions of the public to natural disasters it appears that just showing scientific results is not enough to convey the scientific understanding to the public. By using the tools used by earth scientists to develop explanations and achieve understanding, laymen could achieve understanding as well without rigorous theoretical training. We are presently investigating in science musea whether engaging the public in scientific activities based on embodied skills leads to understanding of earth-scientific phenomena by laymen.

  20. Evolution, Insight and Truth?

    ERIC Educational Resources Information Center

    Newall, Emma

    2017-01-01

    Evolution has been positioned at the centre of conflict between scientific and religious explanations of the workings of the world. However, little research has examined other possible reasons for some people rejecting scientific explanations. The author's research indicates that for some people, irrespective of faith, the ideas associated with…

  1. Constructing Explanations of Flight: A Study of Instructional Discourse in Primary Science

    ERIC Educational Resources Information Center

    Rowell, Patricia M.; Ebbers, Margaretha

    2004-01-01

    In this paper, we examine the instructional discourse of science lessons in two primary classrooms for explanations of bird adaptations for flight. We draw on case study data to describe ways in which student construction of explanations is scaffolded by the teachers. We recognized three categories of explanations developed in the discourse:…

  2. The construction of causal schemes: learning mechanisms at the knowledge level.

    PubMed

    diSessa, Andrea A

    2014-06-01

    This work uses microgenetic study of classroom learning to illuminate (1) the role of pre-instructional student knowledge in the construction of normative scientific knowledge, and (2) the learning mechanisms that drive change. Three enactments of an instructional sequence designed to lead to a scientific understanding of thermal equilibration are used as data sources. Only data from a scaffolded student inquiry preceding introduction of a normative model were used. Hence, the study involves nearly autonomous student learning. In two classes, students developed stable and socially shared explanations ("causal schemes") for understanding thermal equilibration. One case resulted in a near-normative understanding, while the other resulted in a non-normative "alternative conception." The near-normative case seems to be a particularly clear example wherein the constructed causal scheme is a composition of previously documented naïve conceptions. Detailed prior description of these naive elements allows a much better than usual view of the corresponding details of change during construction of the new scheme. A list of candidate mechanisms that can account for observed change is presented. The non-normative construction seems also to be a composition, albeit of a different structural form, using a different (although similar) set of naïve elements. This article provides one of very few high-resolution process analyses showing the productive use of naïve knowledge in learning. © 2014 Cognitive Science Society, Inc.

  3. Biological Evolution and the History of the Earth Are Foundations of Science

    NASA Astrophysics Data System (ADS)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  4. Explanation in Biology: Reduction, Pluralism, and Explanatory Aims

    ERIC Educational Resources Information Center

    Brigandt, Ingo

    2013-01-01

    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and…

  5. Explanation and the Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    McCain, Kevin

    2015-01-01

    Explaining phenomena is a primary goal of science. Consequently, it is unsurprising that gaining a proper understanding of the nature of explanation is an important goal of science education. In order to properly understand explanation, however, it is not enough to simply consider theories of the nature of explanation. Properly understanding…

  6. The effects of different styles of interaction on the learning of evolutionary theories

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akiko

    This study investigated the effects of different styles of social interaction on the learning of advanced biological knowledge. Recent research has increasingly acknowledged the importance of social interaction for promoting learning and cognitive development. However, there has been a controversy about the optimal style of interaction. Some studies have showed the beneficial effects of symmetrical interactions such as an argument between peers, whereas other studies have found the superiority of asymmetrical interactions in which a novice learn with the guidance of an expert. The reason for the contradictory results may be that different styles of interaction enhance different kinds of learning. The present study focused on the three styles of interaction; (1) Conflicting style, in which two novice students with scientifically wrong but conflicting views argue with one another, (2) Guiding style, in which a novice student is led by a more expert student to an understanding of scientifically appropriate knowledge, (3) Mutual Constructive style, in which an expert student and a novice student jointly solve a scientific problem on an equal footing. Sixty college students with non-biology-majors and 30 students with a biology major participated in this experiment to discuss an evolutionary problem in these three styles of interaction, with the former serving as novices and the latter as experts. Analyses of the Pre- and the Posttest performance and discussion processes in the Interaction session revealed the following. First, the Guiding style and the Mutual Constructive style enhanced the acquisition of the scientific evolutionary conceptual framework more effectively than the Conflicting style. However, some students in the Conflicting style also grasped the scientific evolutionary framework, and many students reconstructed their theories of evolution through discussion, even if the frameworks remained scientifically inappropriate. Second, the students who discussed evolution in the Conflicting style and the Mutual Constructive style tended to become more reflective and flexible than the students in the Guiding style, when solving a new evolutionary problem. Third, analyses of epistemological beliefs and critiques of evolutionary explanations suggested that the Mutual Constructive style and the Conflicting style facilitated the development of critical thinking more than the Guiding style.

  7. The concept of ego threat in social and personality psychology: is ego threat a viable scientific construct?

    PubMed

    Leary, Mark R; Terry, Meredith L; Batts Allen, Ashley; Tate, Eleanor B

    2009-08-01

    Although widely invoked as an explanation for psychological phenomena, ego threat has been conceptualized and induced in a variety of ways. Most contemporary research conceptualizes ego threat as a threat to a person's self-image or self-esteem, but experimental operationalizations of ego threat usually confound threats to self-esteem with threats to public image or decreased control over negative events, leading to an inability to distinguish the effects of threats to people's personal egos from threats to public image or threats to feelings of control. This article reviews research on ego threat, discusses experimental manipulations that confound ego threat with other processes, and makes recommendations regarding the use of ego threat as a construct in personality and social psychology.

  8. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    ERIC Educational Resources Information Center

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-01-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation…

  9. Scientist-teacher collaboration: Integration of real data from a coastal wetland into a high school life science ecology-based research project

    NASA Astrophysics Data System (ADS)

    Hagan, Wendy L.

    Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.

  10. Scientific Explanations and Piagetian Operational Levels.

    ERIC Educational Resources Information Center

    Bass, Joel E.; Maddux, Cleborne D.

    1982-01-01

    Examined effects of operational levels of ninth-grade (N=16) and college (N=40) students on causal explanations they recalled after instruction. Results indicate concrete/formal students recalled explanations requiring chaining of two implication statements while formal subjects outperformed concrete subjects in reconstruction of complex…

  11. Towards a Conceptual Profile: Rethinking Conceptual Mediation in the Light of Recent Cognitive and Neuroscientific Findings

    ERIC Educational Resources Information Center

    Dawson, Chris

    2014-01-01

    One important focus for science education researchers over many years has been the attempts to replace students' commonsense and non-scientific explanations of various phenomena by scientific explanations. The approach we adopted almost three decades ago was conceptual mediation, and this was shown to have a considerable level of success with…

  12. Analysing How Scientists Explain Their Research: A Rubric for Measuring the Effectiveness of Scientific Explanations

    ERIC Educational Resources Information Center

    Sevian, Hannah; Gonsalves, Lisa

    2008-01-01

    The present article presents a rubric we developed for assessing the quality of scientific explanations by science graduate students. The rubric was developed from a qualitative analysis of science graduate students' abilities to explain their own research to an audience of non-scientists. Our intention is that use of the rubric to characterise…

  13. Examining Gender Differences in Written Assessment Tasks in Biology: A Case Study of Evolutionary Explanations

    PubMed Central

    Federer, Meghan Rector; Nehm, Ross H.; Pearl, Dennis K.

    2016-01-01

    Understanding sources of performance bias in science assessment provides important insights into whether science curricula and/or assessments are valid representations of student abilities. Research investigating assessment bias due to factors such as instrument structure, participant characteristics, and item types are well documented across a variety of disciplines. However, the relationships among these factors are unclear for tasks evaluating understanding through performance on scientific practices, such as explanation. Using item-response theory (Rasch analysis), we evaluated differences in performance by gender on a constructed-response (CR) assessment about natural selection (ACORNS). Three isomorphic item strands of the instrument were administered to a sample of undergraduate biology majors and nonmajors (Group 1: n = 662 [female = 51.6%]; G2: n = 184 [female = 55.9%]; G3: n = 642 [female = 55.1%]). Overall, our results identify relationships between item features and performance by gender; however, the effect is small in the majority of cases, suggesting that males and females tend to incorporate similar concepts into their CR explanations. These results highlight the importance of examining gender effects on performance in written assessment tasks in biology. PMID:26865642

  14. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    NASA Astrophysics Data System (ADS)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will discuss implications for undergraduate astronomy education towards increasing future teachers’ proficiency in doing astronomy in ways that move them towards understanding how astronomers investigate the universe.

  15. ``The sun is sleeping now'': Early learning about light and shadows

    NASA Astrophysics Data System (ADS)

    Segal, Gilda; Cosgrove, Mark

    1993-12-01

    To keep intuitive knowledge fluid for an extended time, we wish to encourage young children to examine continuously those intuitive explanations for natural phenomena which later become hard wired, highly resistant to development or change. To assist this we designed a learning package which integrated three extensively researched educational strategies (cooperative learning, informal inquiry and familiar context) for children to explore their notions about the topic light. Children in a kindergarten class were encouraged to share their ideas about shadows and shadow formation with peers, as they took part in explorations of shadow formation inside and outside their classroom. Whole class discussions, small group conversations and final conversations between researcher and small groups provide insights into social and individual construction of knowledge, young children's abilities to be scientific and the social construction of gender.

  16. ArtArctic Science: a polarTREC effort to educate about Antarctica through art

    NASA Astrophysics Data System (ADS)

    Botella, J.; Racette, B.

    2013-12-01

    Formal scientific education is as important as ever for raising awarness about Antarctic issues, but some people resistance to learning about scienctific issues demands novel approaches for reaching people who are not in the classroom. ArtArctic Science is an interactive exhibit of photography and paintings presented at the Overture Center for the Arts, in Madison, WI by Monona Grove High School students and a science teacher that attempts to educate the general audience about Antarctic science. The exhibit explores art as a form of perceiving and understanding the world around us, and as a way of igniting the spark of curiosity that can lead to scientific inquiries. Antarctica has inspired explorers and scientists for over 100 years, and we add our work to efforts that share scientific results with common people. Antarctica offers stunning views of amazing geometric ice structures complemented and contrasted by the organisms that inhabit it that fascinate most everyone. We probe these scenes through photography and paintings knowing that there is more in each image than what the eye can 'see'. We invite the viewer to discover these secrets by engaging the observer in a mimicking of the scientific method (observation, questioning, finding an explanation, revising the explanation). Each art piece has a question and a scientific explanation hidden under a wooden lid. The observer is invited to explore the scene, involve itself with the scientific query, come up with an answer, and compare his or her idea with the hidden explanation. The exhibit is inspired by an Antarctic PolarTREC expedition in which our science teacher participated as a member of a scientific research team. In this presentation we share the knowledge acquired through this experience in hopes that it will help others attempting a similar Project.

  17. Promoting Scientific Thinking and Conceptual Change about Alternative Explanations of Climate Change and Other Controversial Socio-scientific Topics

    NASA Astrophysics Data System (ADS)

    Lombardi, D.; Sinatra, G. M.

    2013-12-01

    Critical evaluation and plausibility reappraisal of scientific explanations have been underemphasized in many science classrooms (NRC, 2012). Deep science learning demands that students increase their ability to critically evaluate the quality of scientific knowledge, weigh alternative explanations, and explicitly reappraise their plausibility judgments. Therefore, this lack of instruction about critical evaluation and plausibility reappraisal has, in part, contributed to diminished understanding about complex and controversial topics, such as global climate change. The Model-Evidence Link (MEL) diagram (originally developed by researchers at Rutgers University under an NSF-supported project; Chinn & Buckland, 2012) is an instructional scaffold that promotes students to critically evaluate alternative explanations. We recently developed a climate change MEL and found that the students who used the MEL experienced a significant shift in their plausibility judgments toward the scientifically accepted model of human-induced climate change. Using the MEL for instruction also resulted in conceptual change about the causes of global warming that reflected greater understanding of fundamental scientific principles. Furthermore, students sustained this conceptual change six months after MEL instruction (Lombardi, Sinatra, & Nussbaum, 2013). This presentation will discuss recent educational research that supports use of the MEL to promote critical evaluation, plausibility reappraisal, and conceptual change, and also, how the MEL may be particularly effective for learning about global climate change and other socio-scientific topics. Such instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) is demanded by both the Next Generation Science Standards (Achieve, 2013) and the Common Core State Standards for English Language Arts and Mathematics (CCSS Initiative-ELA, 2010; CCSS Initiative-Math, 2010), as well as a society that is equipped to deal with challenges in a way that is beneficial to our national and global community.

  18. Kindergarten students' explanations during science learning

    NASA Astrophysics Data System (ADS)

    Harris, Karleah

    The study examines kindergarten students' explanations during science learning. The data on children's explanations are drawn from videotaped and transcribed discourse collected from four public kindergarten science classrooms engaged in a life science inquiry unit on the life cycle of the monarch butterfly. The inquiry unit was implemented as part of a larger intervention conducted as part of the Scientific Literacy Project or SLP (Mantzicopoulos, Patrick & Samarapungavan, 2005). The children's explanation data were coded and analyzed using quantitative content analysis procedures. The coding procedures involved initial "top down" explanation categories derived from the existing theoretical and empirical literature on scientific explanation and the nature of students' explanations, followed by an inductive or "bottom up" analysis, that evaluated and refined the categorization scheme as needed. The analyses provide important descriptive data on the nature and frequency of children's explanations generated in classroom discourse during the inquiry unit. The study also examines how teacher discourse strategies during classroom science discourse are related to children's explanations. Teacher discourse strategies were coded and analyzed following the same procedures as the children's explanations as noted above. The results suggest that, a) kindergarten students have the capability of generating a variety of explanations during inquiry-based science learning; b) teachers use a variety of classroom discourse strategies to support children's explanations during inquiry-based science learning; and c) The conceptual discourse (e.g., asking for or modeling explanations, asking for clarifications) to non-conceptual discourse (e.g., classroom management discourse) is related to the ratio of explanatory to non-explanatory discourse produced by children during inquiry-based science learning.

  19. The effect of scaffolded strategies on content learning in a designed science cyberlearning environment

    NASA Astrophysics Data System (ADS)

    Kern, Cynthia Lee

    Scientific inscriptions---graphs, diagrams, and data---and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in inscriptions. Furthermore, when learners engage in argumentation, learning science content becomes secondary to the learning of argumentation skills. This design-based research study is nested within the larger effort to inform the design and development of the 5-Featured Dynamic Inquiry Enterprise design framework (5-DIE) for cyberlearning environments and to advance theory associated with the difficulties learners have with scientific inscriptions and the consequences related to using argumentation to learn science content. In an attempt to engage participants in the process of learning science content with scientific inscriptions and argumentation, two learning strategies were embedded in a 5-DIE lessons. The two learning strategies evaluated in this study were (1) self-explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific knowledge claims. The participants consisted of ninth and tenth grade students (age: 13-16 years; N=245) enrolled in one of three state-mandated biology courses taught by four different teachers. A three factor mixed model analysis of variance (ANOVA) with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre, post, delayed post-test) was used to evaluate the effects of the learning strategies on the acquisition and retention of domain-specific content knowledge. Both between factors had two levels (with & without) and are described by the following experimental conditions: (1) control condition (general prompts), (2) self-explanation condition, (3) faded worked examples condition, and (4) combined condition with both self-explanation and faded worked examples. Acquisition and retention of content knowledge was assessed with a 17-item multiple-choice, researcher-developed content knowledge test. Results indicated that self-explanation prompts and faded worked examples learning strategies did not influence acquisition and retention of science content in a positive (i.e., learning) way. Based on the finding of this study, it may be concluded that the use of general prompts is as effective as self-explanation prompts and faded worked examples for scaffolding learner engagement with scientific inscriptions and argumentation. Furthermore, the finding indicated additional research is warranted evaluating the generalizability of scaffolds from college to pre-college populations.

  20. Constructing New World Views: Learning Science in a Historical Context

    NASA Astrophysics Data System (ADS)

    Becker, B. J.

    1994-12-01

    Recent research has shown that children, like scientists, can tolerate a wide range of observations that do not match their expectations, or that even directly conflict with them, without abandoning their personally constructed system of beliefs about the natural world. Traditional approaches -- even laboratory experiences that support textbook presentations of theories -- do not guarantee students will alter their convictions concerning how things "ought" to work. In contrast, a history-grounded approach to presenting scientific concepts has the potential for doing precisely that. In this paper, the author argues that embedding science learning in a historical context engages students in thinking about science in a way that complements and enriches a "hands-on" approach to inquiry learning. It conveys the creative and very human character of scientific explanation -- its tentative, probabilistic, and serendipitous nature. By integrating well-chosen historical images and ideas into traditional content-centered science units, educators can stimulate productive classroom discussion and establish a classroom atmosphere that nurtures students to think critically about the meaning of scientific activity in different cultures and times More importantly, the use of historic episodes in teaching science opens up opportunities for students to identify their own untutored beliefs about the workings of the natural world, to examine them critically in the light of considered historical debate, and to confront these beliefs in a way that results in positive, long-lasting conceptual change.

  1. Mimics of child abuse: Can choking explain abusive head trauma?

    PubMed

    Edwards, George A

    2015-10-01

    Choking is one of the alternative explanations of abusive head trauma in children that have been offered in courtroom testimony and in the media. Most of these explanations - including choking - are not scientifically supported. This article highlights four points. (1) The origins of choking as an explanation for intracranial and retinal hemorrhages are speculative. (2) Choking has been used in high profile court testimony as an explanation for the death of a child thought to have been abused. (3) A case report that proposes choking as an alternative explanation for the death of a child diagnosed with abusive head trauma includes omissions and misrepresentations of facts. (4) There was a decision by the editor of the journal that published the case report that it was not necessary to include all the facts of the case; moreover, the editor indicated that facts are not required when presenting an alternative explanation. The use of scientifically unsupported alternative explanations for abusive head trauma based on inaccurate and biased information constitutes further victimization of the abused child and represents a travesty of justice. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Is the bias for function-based explanations culturally universal? Children from China endorse teleological explanations of natural phenomena

    PubMed Central

    Schachner, Adena; Zhu, Liqi; Li, Jing; Kelemen, Deborah

    2017-01-01

    Young children in Western cultures tend to endorse teleological (function-based) explanations broadly across many domains, even when scientifically unwarranted. For instance, in contrast to Western adults, they explicitly endorse the idea that mountains were created for climbing, just like hats were created for warmth. Is this bias a product of culture, or a product of universal aspects of human cognition? In two studies, we explored whether adults and children in Mainland China, a highly secular, non-Western culture, show a bias for teleological explanations. When explaining both object properties (Exp. 1) and origins (Exp. 2), we found evidence that they do. While Chinese adults restricted teleological explanations to scientifically warranted cases, Chinese children endorsed them more broadly, extending them across different kinds of natural phenomena. This bias decreased with rising grade level across first, second and fourth grade. Overall, these data provide evidence that children’s bias for teleological explanations is not solely a product of Western Abrahamic cultures. Instead, it extends to other cultures including the East Asian secular culture of modern-day China. This suggests that the bias for function-based explanations may be driven by universal aspects of human cognition. PMID:28110152

  3. What Matters in Scientific Explanations: Effects of Elaboration and Content

    PubMed Central

    Rottman, Benjamin M.; Keil, Frank C.

    2011-01-01

    Given the breadth and depth of available information, determining which components of an explanation are most important is a crucial process for simplifying learning. Three experiments tested whether people believe that components of an explanation with more elaboration are more important. In Experiment 1, participants read separate and unstructured components that comprised explanations of real-world scientific phenomena, rated the components on their importance for understanding the explanations, and drew graphs depicting which components elaborated on which other components. Participants gave higher importance scores for components that they judged to be elaborated upon by other components. Experiment 2 demonstrated that experimentally increasing the amount of elaboration of a component increased the perceived importance of the elaborated component. Furthermore, Experiment 3 demonstrated that elaboration increases the importance of the elaborated information by providing insight into understanding the elaborated information; information that was too technical to provide insight into the elaborated component did not increase the importance of the elaborated component. While learning an explanation, people piece together the structure of elaboration relationships between components and use the insight provided by elaboration to identify important components. PMID:21924709

  4. Levels of theory and types of theoretical explanation in theoretical physics

    NASA Astrophysics Data System (ADS)

    Flores, Francisco J.

    In Newtonian physics, there is a clear distinction between a 'framework theory', a collection of general physical principles and definitions of physical terms, and theories that describe specific causal interactions such as gravitation, i.e., 'interaction theories'. I argue that this distinction between levels of theory can also be found in the context of Special Relativity and that recognizing it is essential for a philosophical account of how laws are explained in this theory. As a case study, I consider the history of derivations of mass-energy equivalence which shows, I argue, that there are two distinct types of theoretical explanations (i.e., explanations of laws) in physics. One type is best characterized by the 'top-down' account of scientific explanation, while the other is more accurately described by the 'bottom-up' account. What is significant, I argue, is that the type of explanation a law receives depends on whether it is part of the framework theory or part of an interaction theory. The former only receive 'top-down' explanations while the latter can also receive 'bottom- up' explanations. Thus, I argue that current debates regarding 'top-down' vs 'bottom-up' views of scientific explanation can be clarified by recognizing the distinction between two levels of physical theory.

  5. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    NASA Astrophysics Data System (ADS)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  6. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  7. Is it the Earth that turns or the Sun that goes behind the mountains? Students' misconceptions about the day/night cycle after reading a science text

    NASA Astrophysics Data System (ADS)

    Vosniadou, Stella; Skopeliti, Irini

    2017-10-01

    The present research tested the hypothesis that the reading of science text can create new misconceptions in students with incongruent prior knowledge, and that these new misconceptions will be similar to the fragmented and synthetic conceptions obtained in prior developmental research. Ninety-nine third- and fifth-grade children read and recalled one of two texts that provided scientific or phenomenal explanations of the day/night cycle. All the participants gave explanations of the phenomenon in question prior to reading one of the texts and after they read it. The results showed that the participants who provided explanations of the day/night cycle at pretest incongruent with the scientific explanation recalled less information and generated more invalid inferences. An analysis of the participants' posttest explanations indicated that these readers formed new misconceptions similar to the fragmented and synthetic conceptions obtained in developmental research. The implications of the above for text comprehension and science education research are discussed.

  8. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  9. For Whom Is Argument and Explanation a Necessary Distinction? A Response to Osborne and Patterson

    ERIC Educational Resources Information Center

    Berland, Leema K.; McNeill, Katherine L.

    2012-01-01

    Scientific argumentation and explanation are essential practices of science that have been highlighted as equally important for K-12 science education. However, as Osborne and Patterson (2011) have recently argued, both the term "argument" and "explanation" have multiple, overlapping, meanings, and uses in science education. In this article, the…

  10. The Role of Prior Knowledge and Problem Contexts in Students' Explanations of Complex System

    ERIC Educational Resources Information Center

    Barth-Cohen, Lauren April

    2012-01-01

    The purpose of this dissertation is to study students' competencies in generating scientific explanations within the domain of complex systems, an interdisciplinary area in which students tend to have difficulties. While considering students' developing explanations of how complex systems work, I investigate the role of prior knowledge…

  11. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.

  12. Assessing Scientific Practices Using Machine-Learning Methods: How Closely Do They Match Clinical Interview Performance?

    NASA Astrophysics Data System (ADS)

    Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.

    2014-02-01

    The landscape of science education is being transformed by the new Framework for Science Education (National Research Council, A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific practices—such as explanation, argumentation, and communication—in science teaching, learning, and assessment. A major challenge facing the field of science education is developing assessment tools that are capable of validly and efficiently evaluating these practices. Our study examined the efficacy of a free, open-source machine-learning tool for evaluating the quality of students' written explanations of the causes of evolutionary change relative to three other approaches: (1) human-scored written explanations, (2) a multiple-choice test, and (3) clinical oral interviews. A large sample of undergraduates (n = 104) exposed to varying amounts of evolution content completed all three assessments: a clinical oral interview, a written open-response assessment, and a multiple-choice test. Rasch analysis was used to compute linear person measures and linear item measures on a single logit scale. We found that the multiple-choice test displayed poor person and item fit (mean square outfit >1.3), while both oral interview measures and computer-generated written response measures exhibited acceptable fit (average mean square outfit for interview: person 0.97, item 0.97; computer: person 1.03, item 1.06). Multiple-choice test measures were more weakly associated with interview measures (r = 0.35) than the computer-scored explanation measures (r = 0.63). Overall, Rasch analysis indicated that computer-scored written explanation measures (1) have the strongest correspondence to oral interview measures; (2) are capable of capturing students' normative scientific and naive ideas as accurately as human-scored explanations, and (3) more validly detect understanding than the multiple-choice assessment. These findings demonstrate the great potential of machine-learning tools for assessing key scientific practices highlighted in the new Framework for Science Education.

  13. Different Approaches to Assessing the Quality of Explanations Following a Multiple-Document Inquiry Activity in Science

    ERIC Educational Resources Information Center

    Wiley, Jennifer; Hastings, Peter; Blaum, Dylan; Jaeger, Allison J.; Hughes, Simon; Wallace, Patricia; Griffin, Thomas D.; Britt, M. Anne

    2017-01-01

    This article describes several approaches to assessing student understanding using written explanations that students generate as part of a multiple-document inquiry activity on a scientific topic (global warming). The current work attempts to capture the causal structure of student explanations as a way to detect the quality of the students'…

  14. What Do Students' Explanations Look Like When They Use Second-Hand Data?

    ERIC Educational Resources Information Center

    Delen, Ibrahim; Krajcik, Joseph

    2015-01-01

    Explanation studies underlined the importance of using evidence in support of claims. However, few studies have focused on students' use of others' data (second-hand data) in this process. In this study, students collected data from a local water source and then took all the data back to the classroom to create scientific explanations by using…

  15. How Do Students Make Sense of Science?

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Songer, Nancy Butler

    1993-01-01

    Eighth graders' ideas about thermodynamics, and their understanding of thermodynamics principles, were assessed before and after they attended a one-semester course on thermodynamics. Results characterized students' views concerning scientific explanations of phenomena, parsimonious versus descriptive explanations, the application of science…

  16. Exploring the Effects of Integrating Self-Explanation into a Multi-User Game on the Acquisition of Scientific Concepts

    ERIC Educational Resources Information Center

    Hsu, Chung-Yuan; Tsai, Chin-Chung; Wang, Hung-Yuan

    2016-01-01

    The purpose of this study was to examine the impacts of embedding collaboration into a game with a self-explanation design for supporting the acquisition of light and shadow concepts. The participants were 184 fourth graders who were randomly assigned to three conditions: a solitary mode of the game with self-explanation, a collaborative mode with…

  17. Simple explanations and reasoning: From philosophy of science to expert systems

    NASA Technical Reports Server (NTRS)

    Rochowiak, Daniel

    1988-01-01

    A preliminary prototype of a simple explanation system was constructed. Although the system, based on the idea of storytelling, did not incorporate all of the principles of simple explanation, it did demonstrate the potential of the approach. The system incorporated a hypertext system, an inference engine, and facilities for constructing contrast type explanations. The continued development of such a system should prove to be valuable. By extending the resources of the expert system paradigm, the knowledge engineer is not forced to learn a new set of skills, and the domain knowledge already acquired by him is not lost. Further, both the beginning user and the more advanced user can be accommodated. For the beginning user, corrective explanations and ES explanations provide facilities for more clearly understanding the way in which the system is functioning. For the more advanced user, the instance and state explanations allow him to focus on the issues at hand. The simple model of explanation attempts to exploit and show how the why and how facilities of the expert system paradigm can be extended by attending to the pragmatics of explanation and adding texture to the ordinary pattern of reasoning in a rule based system.

  18. Describing Changes in Undergraduate Students' Preconceptions of Research Activities

    ERIC Educational Resources Information Center

    Cartrette, David P.; Melroe-Lehrman, Bethany M.

    2012-01-01

    Research has shown that students bring naive scientific conceptions to learning situations which are often incongruous with accepted scientific explanations. These preconceptions are frequently determined to be misconceptions; consequentially instructors spend time to remedy these beliefs and bring students' understanding of scientific concepts to…

  19. Maintaining continuity through a scientific revolution: a rereading of E. B. Wilson and T. H. Morgan on sex determination and Mendelism.

    PubMed

    Kingsland, Sharon E

    2007-09-01

    A rereading of the American scientific literature on sex determination from 1902 to 1926 leads to a different understanding of the construction of the Mendelian-chromosome theory after 1910. There was significant intellectual continuity, which has not been properly appreciated, underlying this scientific "revolution." After reexamining the relationship between the ideas of key scientists, in particular Edmund B. Wilson and Thomas Hunt Morgan, I argue that, contrary to the historical literature, Wilson and Morgan did not adopt opposing views on Mendelism and sex determination. Rather, each preferred a non-Mendelian explanation of the determination of sex. Around 1910, both integrated the Mendelian and non-Mendelian theories to create a synthetic theory. One problem was the need to avoid an overly deterministic view of sex while also accepting the validity of Mendelism. Morgan's discovery of mutations on the X chromosome takes on different significance when set in the context of the debate about sex determination, and Calvin Bridges's work on sex determination is better seen as a development of Morgan's ideas, rather than a departure from them. Conclusions point to the role of synthesis within fields as a way to advance scientific theories and reflect on the relationship between synthesis and explanatory "pluralism" in biology.

  20. A Principle of Intentionality.

    PubMed

    Turner, Charles K

    2017-01-01

    The mainstream theories and models of the physical sciences, including neuroscience, are all consistent with the principle of causality. Wholly causal explanations make sense of how things go, but are inherently value-neutral, providing no objective basis for true beliefs being better than false beliefs, nor for it being better to intend wisely than foolishly. Dennett (1987) makes a related point in calling the brain a syntactic (procedure-based) engine. He says that you cannot get to a semantic (meaning-based) engine from there. He suggests that folk psychology revolves around an intentional stance that is independent of the causal theories of the brain, and accounts for constructs such as meanings, agency, true belief, and wise desire. Dennett proposes that the intentional stance is so powerful that it can be developed into a valid intentional theory. This article expands Dennett's model into a principle of intentionality that revolves around the construct of objective wisdom. This principle provides a structure that can account for all mental processes, and for the scientific understanding of objective value. It is suggested that science can develop a far more complete worldview with a combination of the principles of causality and intentionality than would be possible with scientific theories that are consistent with the principle of causality alone.

  1. A Principle of Intentionality

    PubMed Central

    Turner, Charles K.

    2017-01-01

    The mainstream theories and models of the physical sciences, including neuroscience, are all consistent with the principle of causality. Wholly causal explanations make sense of how things go, but are inherently value-neutral, providing no objective basis for true beliefs being better than false beliefs, nor for it being better to intend wisely than foolishly. Dennett (1987) makes a related point in calling the brain a syntactic (procedure-based) engine. He says that you cannot get to a semantic (meaning-based) engine from there. He suggests that folk psychology revolves around an intentional stance that is independent of the causal theories of the brain, and accounts for constructs such as meanings, agency, true belief, and wise desire. Dennett proposes that the intentional stance is so powerful that it can be developed into a valid intentional theory. This article expands Dennett’s model into a principle of intentionality that revolves around the construct of objective wisdom. This principle provides a structure that can account for all mental processes, and for the scientific understanding of objective value. It is suggested that science can develop a far more complete worldview with a combination of the principles of causality and intentionality than would be possible with scientific theories that are consistent with the principle of causality alone. PMID:28223954

  2. Describing Acupuncture: A New Challenge for Technical Communicators.

    ERIC Educational Resources Information Center

    Karanikas, Marianthe

    1997-01-01

    Considers acupuncture as an increasingly popular alternative medical therapy, but difficult to describe in technical communication. Notes that traditional Chinese medical explanations of acupuncture are unscientific, and that scientific explanations of acupuncture are inconclusive. Finds that technical communicators must translate acupuncture for…

  3. Professional physical scientists display tenacious teleological tendencies: purpose-based reasoning as a cognitive default.

    PubMed

    Kelemen, Deborah; Rottman, Joshua; Seston, Rebecca

    2013-11-01

    Teleological explanations account for objects and events by reference to a functional consequence or purpose. Although they are popular in religion, they are unpopular in science: Physical scientists in particular explicitly reject them when explaining natural phenomena. However, prior research provides reasons to suspect that this explanatory form may represent a default explanatory preference. As a strong test of this hypothesis, we explored whether physical scientists endorse teleological explanations of natural phenomena when their information-processing resources are limited. In Study 1, physical scientists from top-ranked American universities judged explanations as true or false, either at speed or without time restriction. Like undergraduates and age-matched community participants, scientists demonstrated increased acceptance of unwarranted teleological explanations under speed despite maintaining high accuracy on control items. Scientists' overall endorsement of inaccurate teleological explanation was lower than comparison groups, however. In Study 2, we explored this further and found that the teleological tendencies of professional scientists did not differ from those of humanities scholars. Thus, although extended education appears to produce an overall reduction in inaccurate teleological explanation, specialization as a scientist does not, in itself, additionally ameliorate scientifically inaccurate purpose-based theories about the natural world. A religion-consistent default cognitive bias toward teleological explanation tenaciously persists and may have subtle but profound consequences for scientific progress. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Novice Explanations of Hurricane Formation Offer Insights into Scientific Literacy and the Development of Expert-Like Conceptions

    ERIC Educational Resources Information Center

    Arthurs, Leilani A.; Van Den Broeke, Matthew S.

    2016-01-01

    The ability to explain scientific phenomena is a key feature of scientific literacy, and engaging students' prior knowledge, especially their alternate conceptions, is an effective strategy for enhancing scientific literacy and developing expertise. The gap in knowledge about the alternate conceptions that novices have about many of Earth's…

  5. Constructing the principles: Method and metaphysics in the progress of theoretical physics

    NASA Astrophysics Data System (ADS)

    Glass, Lawrence C.

    This thesis presents a new framework for the philosophy of physics focused on methodological differences found in the practice of modern theoretical physics. The starting point for this investigation is the longstanding debate over scientific realism. Some philosophers have argued that it is the aim of science to produce an accurate description of the world including explanations for observable phenomena. These scientific realists hold that our best confirmed theories are approximately true and that the entities they propose actually populate the world, whether or not they have been observed. Others have argued that science achieves only frameworks for the prediction and manipulation of observable phenomena. These anti-realists argue that truth is a misleading concept when applied to empirical knowledge. Instead, focus should be on the empirical adequacy of scientific theories. This thesis argues that the fundamental distinction at issue, a division between true scientific theories and ones which are empirically adequate, is best explored in terms of methodological differences. In analogy with the realism debate, there are at least two methodological strategies. Rather than focusing on scientific theories as wholes, this thesis takes as units of analysis physical principles which are systematic empirical generalizations. The first possible strategy, the conservative, takes the assumption that the empirical adequacy of a theory in one domain serves as good evidence for such adequacy in other domains. This then motivates the application of the principle to new domains. The second strategy, the innovative, assumes that empirical adequacy in one domain does not justify the expectation of adequacy in other domains. New principles are offered as explanations in the new domain. The final part of the thesis is the application of this framework to two examples. On the first, Lorentz's use of the aether is reconstructed in terms of the conservative strategy with respect to the principles of Galilean relativity. A comparison between the conservative strategy as an application of the conservative strategy and TeVeS as one of the innovative constitutes the second example.

  6. Hierarchy, causation and explanation: ubiquity, locality and pluralism

    PubMed Central

    Love, Alan C.

    2012-01-01

    The ubiquity of top-down causal explanations within and across the sciences is prima facie evidence for the existence of top-down causation. Much debate has been focused on whether top-down causation is coherent or in conflict with reductionism. Less attention has been given to the question of whether these representations of hierarchical relations pick out a single, common hierarchy. A negative answer to this question undermines a commonplace view that the world is divided into stratified ‘levels’ of organization and suggests that attributions of causal responsibility in different hierarchical representations may not have a meaningful basis for comparison. Representations used in top-down and bottom-up explanations are primarily ‘local’ and tied to distinct domains of science, illustrated here by protein structure and folding. This locality suggests that no single metaphysical account of hierarchy for causal relations to obtain within emerges from the epistemology of scientific explanation. Instead, a pluralist perspective is recommended—many different kinds of top-down causation (explanation) can exist alongside many different kinds of bottom-up causation (explanation). Pluralism makes plausible why different senses of top-down causation can be coherent and not in conflict with reductionism, thereby illustrating a productive interface between philosophical analysis and scientific inquiry. PMID:23386966

  7. On the contributions of astroparticle physics to cosmology

    NASA Astrophysics Data System (ADS)

    Falkenburg, Brigitte

    2014-05-01

    Studying astroparticle physics sheds new light on scientific explanation and on the ways in which cosmology is empirically underdetermined or not. Astroparticle physics extends the empirical domain of cosmology from purely astronomical data to "multi-messenger astrophysics", i.e., measurements of all kinds of cosmic rays including very high energetic gamma rays, neutrinos, and charged particles. My paper investigates the ways in which these measurements contribute to cosmology and compares them with philosophical views about scientific explanation, the relation between theory and data, and scientific realism. The "standard models" of cosmology and particle physics lack of unified foundations. Both are "piecemeal physics" in Cartwright's sense, but contrary to her metaphysics of a "dappled world" the work in both fields of research aims at unification. Cosmology proceeds "top-down", from models to data and from large scale to small-scale structures of the universe. Astroparticle physics proceeds "bottom-up", from data taking to models and from subatomic particles to large-scale structures of the universe. In order to reconstruct the causal stories of cosmic rays and the nature of their sources, several pragmatic unifying strategies are employed. Standard views about scientific explanation and scientific realism do not cope with these "bottom-up" strategies and the way in which they contribute to cosmology. In addition it has to be noted that the shift to "multi-messenger astrophysics" transforms the relation between cosmological theory and astrophysical data in a mutually holistic way.

  8. Attention and working memory: two basic mechanisms for constructing temporal experiences

    PubMed Central

    Marchetti, Giorgio

    2014-01-01

    Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language, and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activity, which has a discrete and periodic nature, and working memory, which allows for the combination of discrete attentional operations. An explanation is also provided of how past and future events are constructed. PMID:25177305

  9. Australian Students' Appreciation of the Greenhouse Effect and the Ozone Hole.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Examines students' explanations of the greenhouse effect and the hole in the ozone layer, using a life-world and scientific dichotomy. Illuminates ideas often expressed in classrooms and sheds light on the progression in students' developing powers of explanation. Contains 17 references. (DDR)

  10. How Is the Ideal Gas Law Explanatory?

    ERIC Educational Resources Information Center

    Woody, Andrea I.

    2013-01-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight…

  11. Curve Balls, Airplane Wings, and Prairie Dog Holes.

    ERIC Educational Resources Information Center

    Barnes, George B.

    1984-01-01

    Describes activities involving Bernoulli's principle which allows students to experience the difference between knowledge and scientific understanding. Explanations for each of the activities (using such materials as wooden spools, straws, soda bottles and table tennis balls) and explanations of phenomena in terms of Bernoulli's are provided. (BC)

  12. 'Learning disabilities' as a 'black box': on the different conceptions and constructions of a popular clinical entity in Israel.

    PubMed

    Katchergin, Ofer

    2014-12-01

    This article aims to stimulate new thinking about learning disabilities than is customary in local literature. Previous educational and psychological studies concerning learning disabilities regarded them as if they were objective categories with formal definitions and criteria accepted in scholarly literature. Contrary to that, this article explores the various conceptions, constructions, and meanings of learning disabilities that comprise the narrative descriptions and explanations of didactic diagnosticians. For this purpose, 50 in-depth interviews were conducted. There are four sections. Part One lays out the theoretical and methodological background of the sociological and discursive debate about learning disabilities. Part Two explores the various main thematic aspects and narrative strategies that were used by the diagnosticians in their construction of their purportedly 'objective', 'a-historical', 'a-political' experts' narrative. The third part reveals the polyphonic multifaceted nature of the learning disabilities construct. The experts' narrative undermines the objective and homogeneous definitions in the literature by uncovering learning disabilities' heterogeneous meaning repertoire. This repertoire consists, among others, of conceptualizing disability as a 'disease', a 'symptom', a 'genetic defect', a 'disorder', an 'educational difficulty', a 'variance', and even a 'gift'. This part also reveals the experts' narrative reaction strategies to the aforementioned polyphonic spectacle. It is revealed that the interviewees' narrative deconstructs the 'scientific factual nature' of the clinical categories. The fourth part highlights a central paradox in the expert narrative: The tension between the narrative stigmatic-labeling aspects and the destigmatic-'liberating' aspects. The claim is made that this tension can partly explain the current popularity of the LD diagnosis. This article is the third in a series of papers that seeks to contribute to the creation of a more nuanced disability discourse by exposing its shaky scientific foundations.

  13. Carl Sagan: Cosmic Evolution vs. the Creationist Myth.

    ERIC Educational Resources Information Center

    Harnack, William J.

    1981-01-01

    Considers the dichotomy between the cosmic perspective and the creationist view. Presents an overview of various current explanations of the origin and nature of the universe, including scientific explanations, fundamentalist beliefs, and creation myths from other cultures. The article is based on comments made by Carl Sagan at the American…

  14. Designing Automated Guidance to Promote Productive Revision of Science Explanations

    ERIC Educational Resources Information Center

    Tansomboon, Charissa; Gerard, Libby F.; Vitale, Jonathan M.; Linn, Marcia C.

    2017-01-01

    Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student written work, we compare forms of automated guidance designed to motivate productive revision and help…

  15. Extrasensory Perception--Pseudoscience? A Battle at the Edge of Science

    ERIC Educational Resources Information Center

    Stonefoot, Sarah G.; Herreid, Clyde Freeman

    2004-01-01

    This case teaches students to be skeptical of "scientific claims," especially those that are sensational and fall outside the boundaries of normal scientific explanation. Students read the case scenario and then evaluate data to determine whether they believe there is enough scientific evidence to confirm the existence of extrasensory perception.…

  16. Modeling Pupils' Understanding and Explanations Concerning Changes in Matter

    ERIC Educational Resources Information Center

    Hatzinikita, Vassilia; Koulaidis, Vasilios; Hatzinikitas, Agapitos

    2005-01-01

    The explanations of thirty primary pupils for changes in matter were recorded through individual, semi-structured interviews. The analysis of data pointed to the construction of a system for classifying pupils' explanations of changes in matter. A parallel analysis of data focused on the identification and interpretation of associations between…

  17. A Technology-Enhanced Unit of Modeling Static Electricity: Integrating scientific explanations and everyday observations

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Linn, Marcia C.

    2011-08-01

    What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.

  18. The changing features of the body-mind problem.

    PubMed

    Agassi, Joseph

    2007-01-01

    The body-mind problem invites scientific study, since mental events are repeated and repeatable and invite testable explanations. They seemed troublesome because of the classical theory of substance that failed to solve its own central problems. These are soluble with the aid of the theory of the laws of nature, particularly in its emergentist version [Bunge, M., 1980. The Body-mind Problem, Pergamon, Oxford] that invites refutable explanations [Popper, K.R., 1959. The Logic of Scientific Discovery, Hutchinson, London]. The view of mental properties as emergent is a modification of the two chief classical views, materialism and dualism. As this view invites testable explanations of events of the inner world, it is better than the quasi-behaviorist view of self-awareness as computer-style self-monitoring [Minsky, M., Laske, O., 1992. A conversation with Marvin Minsky. AI Magazine 13 (3), 31-45].

  19. Content-Free Computer Supports for Self-Explaining: Modifiable Typing Interface and Prompting

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Liang, Hung-Ta

    2009-01-01

    Self-explaining, which asks students to generate explanations while reading a text, is a self-constructive activity and is helpful for students' learning. Studies have revealed that prompts by a human tutor promote students' self-explanations. However, most studies on self-explaining focus on spoken self-explanations. This study investigates the…

  20. Are Instructional Explanations More Effective in the Context of an Impasse?

    ERIC Educational Resources Information Center

    Sanchez, Emilio; Garcia-Rodicio, Hector; Acuna, Santiago R.

    2009-01-01

    Effective instructional explanations help the students to construct coherent mental representations. To do so, one condition is that they must be tailored to students' needs. It is hypothesized that explanations are more helpful if they also explicitly aid the students to detect problems in their mental representations, as this provokes an impasse…

  1. Using the Illogic of Creationism to Teach the Logic of Science.

    ERIC Educational Resources Information Center

    Wells, Neil Andrew

    1989-01-01

    Presented is a strategy which uses creationism and other pseudosciences as examples of non-scientific approaches to critical thinking to teach students the nature of science and the scientific method. Examples of the illogic of non-scientific approaches are given along with an explanation of how they can be used in teaching critical thinking to…

  2. Best Practices for Effective Poster Design

    NASA Astrophysics Data System (ADS)

    Star Cartier, Kimberly Michelle; Zhao, Ming; Beatty, Thomas G.; Morehead, Robert C.; Jontof-Hutter, Daniel

    2016-01-01

    This meta-poster illustrates how good poster design can effectively communicate scientific ideas to a broad professional audience. Inclusion of illustrative fugues supplemented by concise explanations of scientific information will provide a clear overview of your science to aid your oral pitch.

  3. Fostering Second Graders' Scientific Explanations: A Beginning Elementary Teacher's Knowledge, Beliefs, and Practice

    ERIC Educational Resources Information Center

    Beyer, Carrie J.; Davis, Elizabeth A.

    2008-01-01

    Teaching science as explanation is fundamental to reform efforts but is challenging for teachers--especially new elementary teachers, for whom the complexities of teaching are compounded by high demands and little classroom experience. Despite these challenges, few studies have characterized the knowledge, beliefs, and instructional practices that…

  4. Beyond Explanations: What Else Do Students Need to Understand Science?

    ERIC Educational Resources Information Center

    Hamza, Karim M.; Wickman, Per-Olof

    2009-01-01

    Students' difficulties with learning science have generally been framed in terms of their generalized conceptual knowledge of a science topic as elicited through their explanations of natural phenomena. In this paper, we empirically explore what more goes into giving a scientific account of a natural phenomenon than giving such generalized…

  5. Psychology Is Still a Problematic Science and the Public Knows It

    ERIC Educational Resources Information Center

    Teo, Thomas

    2012-01-01

    According to the philosophers of science Hempel and Oppenheim (1948), who were cited appropriately by Lilienfeld (see record 2011-12007-001) in his article, scientific explanations serve to answer "why" questions. Clarifying the logic of explanations in the sciences, they developed famously the notion that phenomena can be explained (using…

  6. Mission of ITER and Challenges for the Young

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2009-02-01

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time. The partners in the Project—the ITER Parties—are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER. Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER. The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.

  7. Mission of ITER and Challenges for the Young

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Kaname

    2009-02-19

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time.The partners in the Project--the ITER Parties--are the European Union, Japan, the People'smore » Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER.Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER.The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.« less

  8. Plausibility and the Theoreticians' Regress: Constructing the evolutionary fate of stars

    NASA Astrophysics Data System (ADS)

    Ipe, Alex Ike

    2002-10-01

    This project presents a case-study of a scientific controversy that occurred in theoretical astrophysics nearly seventy years ago following the conceptual discovery of a novel phenomenon relating to the evolution and structure of stellar matter, known as the limiting mass. The ensuing debate between the author of the finding, Subrahmanyan Chandrasekhar and his primary critic, Arthur Stanley Eddington, witnessed both scientists trying to convince one another, as well as the astrophysical community, that their respective positions on the issue was the correct one. Since there was no independent criterion—that is, no observational evidence—at the time of the dispute that could have been drawn upon to test the validity of the limiting mass concept, a logical, objective resolution to the controversy was not possible. In this respect, I argue that the dynamics of the Chandrasekhar-Eddington debate succinctly resonates with Kennefick's notion of the Theoreticians' Regress. However, whereas this model predicts that such a regress can be broken if both parties in a dispute come to agree on who was in error and collaborate on a calculation whose technical foundation can be agreed to, I argue that a more pragmatic path by which the Theoreticians' Regress is broken is when one side in a dispute is able to construct its argument as being more plausible than that of its opponent, and is so successful in doing so, that its opposition is subsequently forced to withdraw from the debate. In order to adequately deal with the construction of plausibility in the context of scientific controversies, I draw upon Harvey's Plausibility Model as well as Pickering's work on the role socio-cultural factors play in the resolution of intellectual disputes. It is believed that the ideas embedded in these social- relativist-constructivist perspectives provide the most parsimonious explanation as to the reasons for the genesis and ultimate closure of this particular scientific controversy.

  9. Are Scientific Abstracts Written in Poetic Verse an Effective Representation of the Underlying Research?

    NASA Astrophysics Data System (ADS)

    Illingworth, Samuel

    2016-04-01

    The central purpose of science is to explain (Purtill, 1970). However, who is that explanation for, and how is this explanation communicated once it has been deduced? Scientific research is typically communicated via papers in journals, with an abstract presented as a summary of that explanation. However, in many instances they may be written in a manner which is non-communicatory to a lay reader (Halliday and Martin, 2003). Research concerning climate change in particular demands to be communicated, because of its global relevance and the potential societal consequences of its findings. This study begins to investigate if poetry could be used as an alternative form of communication, by first assessing if poetic verse is an effective form of communication to other scientists. In order to assess this suitability, a survey was conducted in which two different groups of participants were asked questions based on a scientific abstract. One group of participants was given the original scientific abstract, whilst the second group was instead given a poem written about the scientific study. Quantitative analysis found that whilst a scientific audience found a poetic interpretation of a scientific abstract to be no less interesting or inspiring than the original prose, they did find it to be less accessible. However, further qualitative analysis suggested that the poem did a good job in conveying a similar meaning to that presented in the original abstract. The results of this study indicate that whilst for a scientific audience poetry should not replace the prose abstract, it could be used alongside the original format to inspire the reader to find out more about the topic. Further research is needed to investigate the effectiveness of this approach for a general audience. References: HALLIDAY, M. A. K. & MARTIN, J. R. 2003. Writing science: Literacy and discursive power, Taylor & Francis. PURTILL, R. 1970. The purpose of science. Philosophy of Science, 301-306.

  10. Engaging Students In The Science Of Climate Change

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest research on learning this curriculum provides numerous opportunities for students to use real data to make evidence-based explanations. During the session, we will discuss ways in which students can use scientific data related to climate change as evidence in their construction of scientific arguments.

  11. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  12. Missed Opportunities for Science Learning: Unacknowledged Unscientific Arguments in Asynchronous Online and Face-to-Face Discussions

    NASA Astrophysics Data System (ADS)

    Callis-Duehl, Kristine; Idsardi, Robert; Humphrey, Eve A.; Gougis, Rebekka Darner

    2018-02-01

    We explored the scientific argumentation that occurs among university biology students during an argumentation task implemented in two environments: face-to-face in a classroom and online in an asynchronous discussion. We observed 10 student groups, each composed of three students. Our analysis focused on how students respond to their peers' unscientific arguments, which we define as assertions, hypotheses, propositions, or explanations that are inaccurate or incomplete from a scientific perspective. Unscientific arguments provide opportunities for productive dissent, scientific argumentation, and conceptual development of scientifically desirable conceptions. We found that students did not respond to the majority of unscientific arguments in both environments. Challenges to unscientific arguments were expressed as a question or through explanation, although the latter was more common online than face-to-face. Students demonstrated significantly more epistemic distancing in the face-to-face environment than the online environment. We discuss the differences in discourse observed in both environments and teaching implications. We also provide direction for future research seeking to address the challenges of engaging students in productive scientific argumentation in both face-to-face and online environments.

  13. Utilizing Professional Vision in Supporting Preservice Teachers' Learning About Contextualized Scientific Practices. Collaborative Discourse Practices Between Teachers and Scientists

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, Asli

    2018-03-01

    Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists' videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers' sense-making of scientific practices to teach climate change. The findings show that experienced teachers' and scientists' explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists' lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.

  14. The Impact of a Kinesthetic Approach to Teaching Earth's Seasons

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie; Morrow, C. A.

    2010-01-01

    The AAAS Benchmarks and NRC National Science Education Standards clearly prescribe that all American middle school students should understand that Earth's seasons are caused by variations in the amount of sunlight that hits Earth's surface due to tilt. An explanation for the cause of the seasons that is consistent with a scientifically accurate viewpoint would involve how the amount of sunlight reaching Earth's surface at different latitudes and is directly related to the planet's tilt. However, the most common alternative explanation given is the changing distance between the Sun and Earth. Previous research, as well as common experience, indicates that conventional instructional approaches on the concept of seasons are rarely sufficient in achieving scientifically accurate or durable conceptual change. Given the highly spatial nature of the concept, and the highly socially nature of human beings, some curriculum developers have turned to kinesthetic instructional approaches as a means to develop students' spatial reasoning and problem solving skills while confronting misconceptions and allowing students to socially construct scientifically accurate models of the seasons. We report results from a quantitative study on the impact on understanding of ninth grade students using kinesthetic approach to instruction for the traditionally challenging topic of Earth's seasons. The guiding research question was: To what extent does the kinesthetic astronomy instructional approach assist students in correcting misconceptions about the cause of the seasons? Using a single-group, multiple measures quasi-experimental study design, data was collected pre- and post-instruction using written, student-supplied-response assessments. Additionally, a third assessment was conducted 8 weeks after instruction in an attempt to measure durability. The results showed that statistically significant conceptual change occurred across three subtopics supporting seasons and were stable over 8 following weeks, suggesting that students’ content knowledge did not substantially diminish over time and that the students’ conceptual understanding has durability.

  15. Detecting opportunities for parallel observations on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Lucks, Michael

    1992-01-01

    The presence of multiple scientific instruments aboard the Hubble Space Telescope provides opportunities for parallel science, i.e., the simultaneous use of different instruments for different observations. Determining whether candidate observations are suitable for parallel execution depends on numerous criteria (some involving quantitative tradeoffs) that may change frequently. A knowledge based approach is presented for constructing a scoring function to rank candidate pairs of observations for parallel science. In the Parallel Observation Matching System (POMS), spacecraft knowledge and schedulers' preferences are represented using a uniform set of mappings, or knowledge functions. Assessment of parallel science opportunities is achieved via composition of the knowledge functions in a prescribed manner. The knowledge acquisition, and explanation facilities of the system are presented. The methodology is applicable to many other multiple criteria assessment problems.

  16. Mass Media and Global Warming: A Public Arenas Model of the Greenhouse Effect's Scientific Roots.

    ERIC Educational Resources Information Center

    Neuzil, Mark

    1995-01-01

    Uses the Public Arenas model to examine the historical roots of the greenhouse effect issue as communicated in scientific literature from the early 1800s to modern times. Utilizes a constructivist approach to discuss several possible explanations for the rise and fall of global warming as a social problem in the scientific arena. (PA)

  17. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    NASA Astrophysics Data System (ADS)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and explanation construction. Student opportunities to engage in practices that prioritize scientific discourse also occurred when interns were using dialogic voice and the tools designed to foster development of teacher knowledge for facilitating investigation-based science discussions. However, several intern characteristics likely moderated or mediated intern use of tools, dialogic voice, and productive teaching practices to capitalize on student contributions. These characteristics included intern knowledge of the science content and practices and initial beliefs about science teaching. Missed opportunities to use a combination of several teaching practices and tools designed to foster the development of knowledge for science teaching resulted in fewer opportunities for students to engage in data analysis, argumentation based on evidence, and construction of scientific explanations. These findings highlight the potential of teacher-educator provided tools for supporting beginning teachers in learning to facilitate investigation-based discussions that capitalize on student contributions. These findings also help the field conceptualize how beginning teachers use tools and teaching practices to plan and enact investigation-based science lessons, and how intern characteristics relate to tool use and planned and enacted lessons. By analyzing the investigation-based science lessons holistically, this study begins to unpack the complexities of facilitating investigation-based discussions including the interplay between intern characteristics and tool use, and the ways intern engagement in synergistic teaching practices provide opportunities for students to engage in data analysis, explanation construction, and argumentation. This study also describes methodological implications for this type of whole-lesson analysis and comments on the need for further research investigating beginning teachers' use of tools over time. Finally, I propose the need for iterative design of scaffolds to further support beginning teacher facilitation of investigation-based science lessons.

  18. Characterizing Students' Attempts to Explain Observations from Practical Work: Intermediate Phases of Understanding

    ERIC Educational Resources Information Center

    Mestad, Idar; Kolstø, Stein Dankert

    2017-01-01

    This study aims to characterize a group of students' preliminary oral explanations of a scientific phenomenon produced as part of their learning process. The students were encouraged to use their own wordings to test out their own interpretation of observations when conducting practical activities. They presented their explanations orally in the…

  19. A Five-Stage Prediction-Observation-Explanation Inquiry-Based Learning Model to Improve Students' Learning Performance in Science Courses

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Jon-Chao; Chen, Po-Hsi; Lu, Chow-Chin; Chen, Sherry Y.

    2017-01-01

    A five-stage prediction-observation-explanation inquiry-based learning (FPOEIL) model was developed to improve students' scientific learning performance. In order to intensify the science learning effect, the repertory grid technology-assisted learning (RGTL) approach and the collaborative learning (CL) approach were utilized. A quasi-experimental…

  20. The problem of dissemination: evidence and ideology.

    PubMed

    Traynor, M

    1999-09-01

    This paper recontextualises research evidence as an example of textually-based social control. It does this by drawing on two areas of theoretical literature; feminist literary theory and the sociology of scientific knowledge. Accounts of literary works as ideological instruments of social control suggest that (at least some kinds of) research literature may fulfil a similar role among a clinical readership. There have also been compelling accounts of scientific writing as expressions of desire on the part of one group to 'act at a distance' upon others. In the light of this literature, it becomes less tenable to see research dissemination as the simple transfer of information, supplemented by organisational work. Research is implicated in the attempt by one group to enrol others in its own project and in the (self-)construction of the identities of the healthcare worker. The accounts that literary theory can provide do not remain focused upon the text, but draw links between the reading process and the experience and place in society, for example the gender, of the writer and reader. As such their explanations create a space for the resisting reader.

  1. The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms.

    PubMed

    Soto, Ana M; Longo, Giuseppe; Montévil, Maël; Sonnenschein, Carlos

    2016-10-01

    The principle of inertia is central to the modern scientific revolution. By postulating this principle Galileo at once identified a pertinent physical observable (momentum) and a conservation law (momentum conservation). He then could scientifically analyze what modifies inertial movement: gravitation and friction. Inertia, the default state in mechanics, represented a major theoretical commitment: there is no need to explain uniform rectilinear motion, rather, there is a need to explain departures from it. By analogy, we propose a biological default state of proliferation with variation and motility. From this theoretical commitment, what requires explanation is proliferative quiescence, lack of variation, lack of movement. That proliferation is the default state is axiomatic for biologists studying unicellular organisms. Moreover, it is implied in Darwin's "descent with modification". Although a "default state" is a theoretical construct and a limit case that does not need to be instantiated, conditions that closely resemble unrestrained cell proliferation are readily obtained experimentally. We will illustrate theoretical and experimental consequences of applying and of ignoring this principle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms

    PubMed Central

    SOTO, ANA M.; LONGO, GIUSEPPE; Montévil, Maël; SONNENSCHEIN, CARLOS

    2017-01-01

    The principle of inertia is central to the modern scientific revolution. By postulating this principle Galileo at once identified a pertinent physical observable (momentum) and a conservation law (momentum conservation). He then could scientifically analyze what modifies inertial movement: gravitation and friction. Inertia, the default state in mechanics, represented a major theoretical commitment: there is no need to explain uniform rectilinear motion, rather, there is a need to explain departures from it. By analogy, we propose a biological default state of proliferation with variation and motility. From this theoretical commitment, what requires explanation is proliferative quiescence, lack of variation, lack of movement. That proliferation is the default state is axiomatic for biologists studying unicellular organisms. Moreover, it is implied in Darwin’s “descent with modification”. Although a “default state” is a theoretical construct and a limit case that does not need to be instantiated, conditions that closely resemble unrestrained cell proliferation are readily obtained experimentally. We will illustrate theoretical and experimental consequences of applying and of ignoring this principle. PMID:27381480

  3. 32 CFR 1700.6 - Fees for records services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... explanation or argument as to how his or her request satisfies the requirements of this regulation and the Act... scientific institution requesters, representatives of the news media requesters, and all other requesters... duplicating responsive records (if any); (2) Educational and non-commercial scientific institution requesters...

  4. 32 CFR 1700.6 - Fees for records services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... explanation or argument as to how his or her request satisfies the requirements of this regulation and the Act... scientific institution requesters, representatives of the news media requesters, and all other requesters... duplicating responsive records (if any); (2) Educational and non-commercial scientific institution requesters...

  5. Nacherzeugung, Nachverstehen: A phenomenological perspective on how public understanding of science changes by engaging with online media.

    PubMed

    Roth, Wolff-Michael; Friesen, Norm

    2014-10-01

    It is widely acknowledged in science education that everyday understandings and evidence are generally inconsistent with the scientific view of the matter: "heartache" has little to do with matters cardiopulmonary, and a rising or setting sun actually reflects the movements of the earth. How then does a member of the general public, which in many areas of science is characterized as "illiterate" and "non-scientific," come to regard something scientifically? Moreover, how do traditional unscientific (e.g., Ptolemaic) views continue their lives, even many centuries after scientists have overthrown them in what are termed scientific (e.g., Copernican) revolutions? In this study, we develop a phenomenological perspective, using Edmund Husserl's categories of Nacherzeugung and Nachverstehen, which provide descriptive explanations for our observations. These observations are contextualized in a case study using online video and historical materials concerning the motions of the heart and blood to exemplify our explanations. © The Author(s) 2013.

  6. 32 CFR 1900.13 - Fees for record services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... encouraged to provide any explanation or argument as to how his or her request satisfies the statutory... requesters for fee purposes: Commercial use requesters, educational and non-commercial scientific institution... scientific institution requesters as well as “representatives of the news media” requesters: Only charges for...

  7. 32 CFR 1800.13 - Fees for record services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any explanation or argument as to how his or her request satisfies the statutory requirement set forth..., “educational and non-commercial scientific institution” requesters, “representatives of the news media... records (if any); (2) “Educational and non-commercial scientific institution” requesters as well as...

  8. 32 CFR 1800.13 - Fees for record services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... any explanation or argument as to how his or her request satisfies the statutory requirement set forth..., “educational and non-commercial scientific institution” requesters, “representatives of the news media... records (if any); (2) “Educational and non-commercial scientific institution” requesters as well as...

  9. 32 CFR 1900.13 - Fees for record services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... encouraged to provide any explanation or argument as to how his or her request satisfies the statutory... requesters for fee purposes: Commercial use requesters, educational and non-commercial scientific institution... scientific institution requesters as well as “representatives of the news media” requesters: Only charges for...

  10. Discovering Socio-Cultural Aspects of Science through Artworks

    ERIC Educational Resources Information Center

    Güney, Burcu Gülay; Seker, Hayati

    2017-01-01

    Scientific literacy is one of the primary purposes of science education which briefly focuses on using and interpreting scientific explanations, understanding science within its culture. However, science curricula emphasize science with its cognitive aspects and underestimate affective and aesthetic aspects of science. Science education needs to…

  11. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    NASA Astrophysics Data System (ADS)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  12. Treatment Seeking and Self-Constructed Explanations of Pain and Pain Management Strategies Among Adolescents with Temporomandibular Disorder Pain.

    PubMed

    Nilsson, Ing-Marie; Willman, Ania

    2016-01-01

    To explore adolescents' explanations of their temporomandibular disorder (TMD) pain, their pain management strategies for TMD pain, and their treatment-seeking behavior. One-on-one interviews were conducted with 21 adolescents aged 15 to 19 years who had TMD pain and followed a semistructured interview guide. Subjects were strategically selected from patients referred to an orofacial pain clinic. All participants had been examined and received a pain diagnosis based on the Research Diagnostic Criteria for TMD. The interviews focused on the adolescents' experiences of TMD pain, their strategies for handling pain, and how they seek care. The interviews were recorded, transcribed verbatim, and analyzed using qualitative manifest content analysis. Qualitative manifest content analysis revealed two categories: (1) self-constructed explanations, with three subcategories (situation-based explanatory model, physical/biologic model, and psychological explanatory model); and (2) pain management strategies, with four subcategories (social support, treatment, relaxation/rest, and psychological strategies). Adolescents used physical activities and psychological and pharmacologic treatment to manage pain. Reasons for seeking treatment were to be cured, to obtain an explanation for their pain, and because their symptoms bother others. Adolescents living with TMD pain develop self-constructed explanations and pain management strategies. With access to these descriptions, dentists can be better prepared to have a dialogue with their adolescent patients about their own explanations of pain, the nature of pain, and in which situations the pain appears. Dentists can also explore adolescent patients' pain management strategies and perhaps also suggest new treatment strategies at an earlier stage.

  13. What Color Do You See? A Color-Sorting Activity in Which Students Collect Data and Articulate Scientific Explanations

    ERIC Educational Resources Information Center

    Blattner, Margaret; Hug, Barbara; Ogrodnik, Jon; Korol, Donna

    2013-01-01

    Generating, collecting, and analyzing data is an essential practice in the science classroom (NRC 2012). Taking this data and using it to craft an explanation that demonstrates understanding of content is another essential practice. But both practices can be challenging, and students often require teacher support to succeed. Accordingly, the…

  14. Deductive Reasoning to Teach Newton's Law of Motion

    ERIC Educational Resources Information Center

    Lee, Han Su; Park, Jongwon

    2013-01-01

    Finding out about and then understanding the forces acting on a moving object, based on a description of the change in motion of this object, is an important part of the conceptual understanding of Newton's law of motion. Using Hempel's deductive-normative model for scientific explanation, we developed a deductive explanation task (DET),…

  15. Reflections on the Study of Infant Perception and Cognition: What Does Morgan's Canon Really Tell Us To Do?

    ERIC Educational Resources Information Center

    Yonas, Albert

    2001-01-01

    Comments on Needham's research of infant perception by focusing on the types of evidence needed to make inferences concerning infant cognition. Considers the history of scientific explanations of animal cognition as nearer to infant cognition, and the high level of creativity required in proposing and testing alternative explanations of infant…

  16. 77 FR 23260 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    .... 6. Scientific soundness of the measure: Explanation of methods to determine the scientific soundness..., 2015. Method of Collection To achieve the goals of this project, AHRQ intends to solicit submission of... proprietary rights (e.g., patent or data rights), any confidentiality or trade secret protections, National...

  17. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  18. The Evidence-Based Reasoning Framework: Assessing Scientific Reasoning

    ERIC Educational Resources Information Center

    Brown, Nathaniel J. S.; Furtak, Erin Marie; Timms, Michael; Nagashima, Sam O.; Wilson, Mark

    2010-01-01

    Recent science education reforms have emphasized the importance of students engaging with and reasoning from evidence to develop scientific explanations. A number of studies have created frameworks based on Toulmin's (1958/2003) argument pattern, whereas others have developed systems for assessing the quality of students' reasoning to support…

  19. Three Why's: Religion and Science in School

    ERIC Educational Resources Information Center

    Covaleskie, John F.

    2008-01-01

    In this article, I argue the proposition that educators ought to be including a serious consideration of intelligent design as a counterexample to the scientific explanations of human origins. The article first distinguishes between three different ways people ask "why": the Scientific Why, the Ultimate Why, and the Teleological Why. Although…

  20. Metaphoric Images from Abstract Concepts.

    ERIC Educational Resources Information Center

    Vizmuller-Zocco, Jana

    1992-01-01

    Discusses children's use of metaphors to create meaning, using as an example the pragmatic and "scientific" ways in which preschool children explain thunder and lightning to themselves. Argues that children are being shortchanged by modern scientific notions of abstractness and that they should be encouraged to create their own explanations of…

  1. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  2. `Quantum Mechanics' and `Scientific Explanation' An Explanatory Strategy Aiming at Providing `Understanding'

    NASA Astrophysics Data System (ADS)

    Hadzidaki, Pandora

    2008-01-01

    Empirical studies persistently indicate that the usual explanatory strategies used in quantum mechanics (QM) instruction fail, in general, to yield understanding. In this study, we propose an instructional intervention, which: (a) incorporates into its subject matter a critical comparison of QM scientific content with the fundamental epistemological and ontological commitments of the prominent philosophical theories of explanation, a weak form of which we meet in QM teaching; (b) illuminates the reasons of their failure in the quantum domain; and (c) implements an explanatory strategy highly inspired by the epistemological pathways through which, during the birth-process of QM, science has gradually reached understanding. This strategy, an inherent element of which is the meta-cognitive and meta-scientific thinking, aims at leading learners not only to an essential understanding of QM worldview, but to a deep insight into the ‘Nature of Science’ as well.

  3. Can the behavioral sciences self-correct? A social epistemic study.

    PubMed

    Romero, Felipe

    2016-12-01

    Advocates of the self-corrective thesis argue that scientific method will refute false theories and find closer approximations to the truth in the long run. I discuss a contemporary interpretation of this thesis in terms of frequentist statistics in the context of the behavioral sciences. First, I identify experimental replications and systematic aggregation of evidence (meta-analysis) as the self-corrective mechanism. Then, I present a computer simulation study of scientific communities that implement this mechanism to argue that frequentist statistics may converge upon a correct estimate or not depending on the social structure of the community that uses it. Based on this study, I argue that methodological explanations of the "replicability crisis" in psychology are limited and propose an alternative explanation in terms of biases. Finally, I conclude suggesting that scientific self-correction should be understood as an interaction effect between inference methods and social structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sixth Graders' Co-Construction of Explanations of a Disturbance in an Ecosystem: Exploring Relationships between Grouping, Reflective Scaffolding, and Evidence-Based Explanations

    ERIC Educational Resources Information Center

    Kyza, Eleni A.; Constantinou, Costas P.; Spanoudis, George

    2011-01-01

    We report on a study investigating the relationship between cognitive ability grouping, reflective inquiry scaffolding, and students' collaborative explanations of an ecosystem disturbance which took place when a number of flamingo birds died in a salt lake because of nearby intensive human activities. Twenty-six pairs of students from two intact…

  5. The Early Scientific Contributions of J. Robert Oppenheimer: Why Did the Scientific Community Miss the Black Hole Opportunity?

    NASA Astrophysics Data System (ADS)

    Ortega-Rodríguez, M.; Solís-Sánchez, H.; Boza-Oviedo, E.; Chaves-Cruz, K.; Guevara-Bertsch, M.; Quirós-Rojas, M.; Vargas-Hernández, S.; Venegas-Li, A.

    2017-04-01

    We assess the scientific value of Oppenheimer's research on black holes in order to explain its neglect by the scientific community, and even by Oppenheimer himself. Looking closely at the scientific culture and conceptual belief system of the 1930s, the present article seeks to supplement the existing literature by enriching the explanations and complicating the guiding questions. We suggest a rereading of Oppenheimer as a figure both more intriguing for the history of astrophysics and further ahead of his time than is commonly supposed.

  6. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    NASA Astrophysics Data System (ADS)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  7. The Influence of Curriculum, Instruction, Technology, and Social Interactions on Two Fifth-Grade Students' Epistemologies in Modeling Throughout a Model-Based Curriculum Unit

    NASA Astrophysics Data System (ADS)

    Baek, Hamin; Schwarz, Christina V.

    2015-04-01

    In the past decade, reform efforts in science education have increasingly attended to engaging students in scientific practices such as scientific modeling. Engaging students in scientific modeling can help them develop their epistemologies by allowing them to attend to the roles of mechanism and empirical evidence when constructing and revising models. In this article, we present our in-depth case study of how two fifth graders—Brian and Joon—who were students in a public school classroom located in a Midwestern state shifted their epistemologies in modeling as they participated in the enactment of a technologically enhanced, model-based curriculum unit on evaporation and condensation. First, analyses of Brian's and Joon's models indicate that their epistemologies in modeling related to explanation and empirical evidence shifted productively throughout the unit. Additionally, while their initial and final epistemologies in modeling were similar, the pathways in which their epistemologies in modeling shifted differed. Next, analyses of the classroom activities illustrate how various components of the learning ecology including technological tools, the teacher's scaffolding remarks, and students' collective activities and conversations, were marshaled in the service of the two students' shifting epistemologies in modeling. These findings suggest a nuanced view of individual learners' engagement in scientific modeling, their epistemological shifts in the practice, and the roles of technology and other components of a modeling-oriented learning environment for such shifts.

  8. E-Beam Capture Aid Drawing Based Modelling on Cell Biology

    NASA Astrophysics Data System (ADS)

    Hidayat, T.; Rahmat, A.; Redjeki, S.; Rahman, T.

    2017-09-01

    The objectives of this research are to find out how far Drawing-based Modeling assisted with E-Beam Capture could support student’s scientific reasoning skill using Drawing - based Modeling approach assisted with E-Beam Capture. The research design that is used for this research is the Pre-test and Post-test Design. The data collection of scientific reasoning skills is collected by giving multiple choice questions before and after the lesson. The data analysis of scientific reasoning skills is using scientific reasoning assessment rubric. The results show an improvement of student’s scientific reasoning in every indicator; an improvement in generativity which shows 2 students achieving high scores, 3 students in elaboration reasoning, 4 students in justification, 3 students in explanation, 3 students in logic coherency, 2 students in synthesis. The research result in student’s explanation reasoning has the highest number of students with high scores, which shows 20 students with high scores in the pre-test and 23 students in post-test and synthesis reasoning shows the lowest number, which shows 1 student in the pretest and 3 students in posttest. The research result gives the conclusion that Drawing-based Modeling approach assisted with E-Beam Capture could not yet support student’s scientific reasoning skills comprehensively.

  9. Development and Assessment of Self-explaining Skills in College Chemistry Instruction

    NASA Astrophysics Data System (ADS)

    Villalta-Cerdas, Adrian

    The prevalent trend in chemistry instruction relies on what has been described as the classroom game. In this model, students take a passive role and the instructor does all the explaining (thinking), and learning is trivialized to knowing the correct answers (memorizing) and being able to produce them when prompted (regurgitating). The generation of explanations is central to scientific and technological development. In the process of figuring out explanations, the generation of inferences relies on the application of skills associated with scientific behaviors (e.g., analytical reasoning and critical thinking). The process of explanation generation causes a deeper analysis and revision of the scientific models, thus impacting the conceptual understanding of such models. Although the process of generating authentic explanations is closer to the experience of doing science, this process is seldom replicated in science instruction. Self-explaining refers to the generation of inferences about causal connections between objects and events. In science, this may be summarized as making sense of how and why actual or hypothetical phenomena take place. Research findings in educational psychology show that implementing activities that elicit self-explaining improves learning in general and specifically enhances authentic learning in the sciences. Research also suggests that self-explaining influences many aspects of cognition, including acquisition of problem-solving skills and conceptual understanding. Although the evidence that links self-explaining and learning is substantial, most of the research has been conducted in experimental settings. The purpose of this work was to advance knowledge in this area by investigating the effect of different self-explaining tasks on self-explaining behavior and the effect of engaging in different levels of self-explaining on learning chemistry concepts. Unlike most of the research in the field, this work did not focus on advancing procedural knowledge through self-explanation of examples or conceptual understanding through self-explanation of textual information and concepts. Instead, it focused on an experience closer to doing science by presenting a familiar phenomenon to the participants and a fact that would potentially induce cognitive imbalance to then prompt them to self-explain. This work used a multi-condition, mixed-method approach to categorize students' self-explaining behaviors in response to learning tasks and link it to the performance in a post-learning task. Students were randomly assigned to conditions that included the following: studying an experts' explanation, explaining correct and incorrect answers, explaining agreement with another's answer, and explaining one's own answer for others to use. Data were gathered in the classroom ecology of a university, large-enrollment general chemistry course. Content and construct validity evidence support the functionality of the research instruments for the assessment of conceptual understanding of entropy and the Second Law of Thermodynamics. An in-depth analysis of the post-learning task showed that the data collected from the instrument is reliable, consistent and reproducible. Findings supported an association between the self-explaining tasks and students' self-explaining behaviors. Results showed distinct categorical self-explaining behaviors in students' written responses. These self-explaining behaviors were associated with the self-explaining task given to the students. Thoughtful design of learning tasks can effectively elicit engagement in sophisticated self-explaining in natural, large-enrollment college chemistry classroom environments. Comparison analyses of performance in the post-learning task suggested that in the context of large-enrollment college chemistry classroom environments, self-explaining activities improved students' conceptual understanding in chemistry. Overall, the work showed that students can self-explain chemical phenomena and apply the underlying chemistry concepts in the resolution of novel problems without direct intervention of an instructor. This work supports the incorporation of self-explaining activities in the repertoire of teaching practices of both experienced and novice instructors for general chemistry courses.

  10. An Analysis of Activities in Saudi Arabian Middle School Science Textbooks and Workbooks for the Inclusion of Essential Features of Inquiry

    NASA Astrophysics Data System (ADS)

    Aldahmash, Abdulwali H.; Mansour, Nasser S.; Alshamrani, Saeed M.; Almohi, Saeed

    2016-12-01

    This study examines Saudi Arabian middle school science textbooks' coverage of the essential features of scientific inquiry. All activities in the middle school science textbooks and workbooks were analyzed by using the scientific inquiry `essential features' rubric. The results indicated that the essential features are included in about 59 % of the analyzed science activities. However, feature 2, `making learner give priority to evidence in responding to questions' and feature 3, `allowing learner to formulate explanations from evidence' appeared more frequently than the other three features (feature 1: engaging learner in scientifically oriented questions, feature 4: helping learner connect explanations to scientific knowledge, and feature 5: helping learner communicate and justify explanations to others), whether in the activities as a whole, or in the activities included in each of the four science domains (physical science, Earth science, life science and chemistry). These features are represented in almost all activities. This means that almost all activities in the middle school science textbooks and the workbooks include features 2 and 3. Meanwhile, the mean level of inclusion of the five essential features of scientific inquiry found in the middle school science textbooks and workbooks as a whole is 2.55. However, results found for features 1, 4, 5 and for in-level inclusion of the inquiry features in each of the science domains indicate that the inclusion of the essential inquiry features is teacher-centred. As a result, neither science textbooks nor workbooks provide students with the opportunity or encouragement to develop their inquiry skills. Consequently, the results suggest important directions for educational administrators and policy-makers in the preparation and use of science educational content.

  11. Young Children's Impressionable Use of Teleology: The Influence of Question Wording and Questioned Topic on Teleological Explanations for Natural Phenomena

    ERIC Educational Resources Information Center

    Halls, Jonathan Grant; Ainsworth, Shaaron Elizabeth; Oliver, Mary Collette

    2018-01-01

    There is a significant body of research on children's preconceptions concerning scientific concepts and the impact this has upon their science education. One active issue concerns the extent to which young children's explanations for the existence of natural kinds rely on a teleological rationale: for example, rain is for watering the grass, or…

  12. Conceptual Change from the Framework Theory Side of the Fence

    NASA Astrophysics Data System (ADS)

    Vosniadou, Stella; Skopeliti, Irini

    2014-07-01

    We describe the main principles of the framework theory approach to conceptual change and briefly report on the results of a text comprehension study that investigated some of the hypotheses that derive from it. We claim that children construct a naive physics which is based on observation in the context of lay culture and which forms a relatively coherent conceptual system—i.e., a framework theory—that can be used as a basis for explanation and prediction of everyday phenomena. Learning science requires fundamental ontological, epistemological, and representational changes in naive physics. These conceptual changes take a long time to be achieved, giving rise to fragmentation and synthetic conceptions. We also argue that both fragmentation and synthetic conceptions can be explained to result from learners' attempts assimilate scientific information into their existing but incompatible naive physics.

  13. Bothered by abstractness or engaged by cohesion? Experts' explanations enhance novices' deep-learning.

    PubMed

    Lachner, Andreas; Nückles, Matthias

    2015-03-01

    Experts' explanations have been shown to better enhance novices' transfer as compared with advanced students' explanations. Based on research on expertise and text comprehension, we investigated whether the abstractness or the cohesion of experts' and intermediates' explanations accounted for novices' learning. In Study 1, we showed that the superior cohesion of experts' explanations accounted for most of novices' transfer, whereas the degree of abstractness did not impact novices' transfer performance. In Study 2, we investigated novices' processing while learning with experts' and intermediates' explanations. We found that novices studying experts' explanations actively self-regulated their processing of the explanations, as they showed mainly deep-processing activities, whereas novices learning with intermediates' explanations were mainly engaged in shallow-processing activities by paraphrasing the explanations. Thus, we concluded that subject-matter expertise is a crucial prerequisite for instructors. Despite the abstract character of experts' explanations, their subject-matter expertise enables them to generate highly cohesive explanations that serve as a valuable scaffold for students' construction of flexible knowledge by engaging them in deep-level processing. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  14. Does Teaching Sequence Matter When Teaching High School Chemistry with Scientific Visualisations?

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David; Mukherjee, Michelle

    2012-01-01

    Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier's Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the…

  15. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  16. Just-So Stories: Vaccines, Autism, and the Single-Bullet Disorder

    ERIC Educational Resources Information Center

    Bearman, Peter

    2010-01-01

    When should people believe in science, especially in scientific explanations of the causes of health, ill or otherwise? One line of argumentation is that scientific evidence based in robust ecological data, supported by previously tested animal or biological models or double-blinded randomized control trials trumps intuition or just plain "common…

  17. Making Meaning of Scientific Practices: Exploring the Pathways and Variations of Classrooms Engaging in Science Practices

    ERIC Educational Resources Information Center

    Ko, Mon-Lin Monica

    2013-01-01

    A focus of reforms in standards, learning environments, teacher preparation programs and professional development is to support teachers' and students' engagement with scientific practices such as argumentation, modeling and generating explanations for real-world phenomena (NRC, 2011). Engaging in these practices in authentic ways…

  18. The Process of Student Cognition in Constructing Mathematical Conjecture

    ERIC Educational Resources Information Center

    Astawa, I. Wayan Puja; Budayasa, I. Ketut; Juniati, Dwi

    2018-01-01

    This research aims to describe the process of student cognition in constructing mathematical conjecture. Many researchers have studied this process but without giving a detailed explanation of how students understand the information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and prove the…

  19. Scientific Literacy in Food Education: Gardening and Cooking in School

    NASA Astrophysics Data System (ADS)

    Strohl, Carrie A.

    Recent attention to socio-scientific issues such as sustainable agriculture, environmental responsibility and nutritional health has spurred a resurgence of public interest in gardening and cooking. Seen as contexts for fostering scientific literacy---the knowledge domains, methodological approaches, habits of mind and discourse practices that reflect one's understanding of the role of science in society, gardening and cooking are under-examined fields in science education, in part, because they are under-utilized pedagogies in school settings. Although learning gardens were used historically to foster many aspects of scientific literacy (e.g., cognitive knowledge, norms and methods of science, attitudes toward science and discourse of science), analysis of contemporary studies suggests that science learning in gardens focuses mainly on science knowledge alone. Using multiple conceptions of scientific literacy, I analyzed qualitative data to demonstrate how exploration, talk and text fostered scientific literacy in a school garden. Exploration prompted students to engage in scientific practices such as making observations and constructing explanations from evidence. Talk and text provided background knowledge and accurate information about agricultural, environmental and nutritional topics under study. Using a similar qualitative approach, I present a case study of a third grade teacher who explicitly taught food literacy through culinary arts instruction. Drawing on numerous contextual resources, this teacher created a classroom community of food practice through hands-on cooking lessons, guest chef demonstrations, and school-wide tasting events. As a result, she promoted six different types of knowledge (conceptual, procedural, dispositional, sensory, social, and communal) through leveraging contextual resources. This case study highlights how food literacy is largely contingent on often-overlooked mediators of food literacy: the relationships between participants, the activity, and the type of knowledge invoked. Scientific literacy in food education continues to be a topic of interest in the fields of public health and of sustainable agriculture, as well as to proponents of the local food movement. This dissertation begins to map a more cohesive and comprehensive approach to gardening and cooking implementation and research in school settings.

  20. Examining the Effects of Model-Based Inquiry on Concepetual Understanding and Engagement in Science

    NASA Astrophysics Data System (ADS)

    Baze, Christina L.

    Model-Based Inquiry (MBI) is an instructional model which engages students in the scientific practices of modeling, explanation, and argumentation while they work to construct explanations for natural phenomena. This instructional model has not been previously studied at the community college level. The purpose of this study is to better understand how MBI affects the development of community college students' conceptual understanding of evolution and engagement in the practices of science. Mixed-methods were employed to collect quantitative and qualitative data through the multiple-choice Concepts Inventory of Natural Selection, student artifacts, and semi-structured interviews. Participants were enrolled in Biology Concepts, an introductory class for non-science majors, at a small, rural community college in the southwestern United States. Preliminary data shows that conceptual understanding is not adversely affected by the implementation of MBI, and that students gain valuable insights into the practices of science. Specifically, students who participated in the MBI intervention group gained a better understanding of the role of models in explaining and predicting phenomena and experienced feeling ownership of their ideas, an appropriate depth of thinking, more opportunities for collaboration, and coherence and context within the unit. Implications of this study will be of interest to postsecondary science educators and researchers who seek to reform and improve science education.

  1. Elementary Students' Mathematical Explanations and Attention to Audience with Screencasts

    ERIC Educational Resources Information Center

    Soto, Melissa

    2015-01-01

    Reasoning and constructing mathematical explanations for an audience have become increasingly important activities in elementary classrooms with the implementation of reform-oriented curriculum and standards. Mobile learning tools and applications, such as screencasts, allow students to generate multimedia presentations of their solution…

  2. Mental models as indicators of scientific thinking

    NASA Astrophysics Data System (ADS)

    Derosa, Donald Anthony

    One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models with respect to content. There was no significant difference in the frequency of explanative information expressed by either group. Both groups scored poorly on the problem solving transfer problems. The average score for the constructivist group was 30% and the average score for the transmissional group was 34%. A significant correlation was found between the frequency of explanative information and scores on the problem-solving transfer questions, r = 0.766. Conclusion. The subjects exhibited difficulty in formulating and applying mental models to effectively answer problem solving transfer questions regardless of the context in which the subjects were taught. The results call into question the extent to which students have been taught to use mental models and more generally, the extent to which their prior academic experience has encouraged them to develop an awareness of scientific thinking skills. Implications of the study suggest further consideration of mental modeling in science education reform and the deliberate integration of an awareness of scientific thinking skills in the development of science curricula.

  3. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    ERIC Educational Resources Information Center

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  4. Dirt and disgust as key drivers in nurses' infection control behaviours: an interpretative, qualitative study.

    PubMed

    Jackson, C; Griffiths, P

    2014-06-01

    Infection prevention remains a significant challenge for healthcare systems. Yet despite considerable work to provide clear policies and scientifically proven techniques to reduce infection transmission, beliefs and practices of healthcare workers do not always concur with scientific rationale. To provide explanations for nurses' infection prevention behaviours. An interpretative, qualitative approach was taken using semi-structured interviews. Twenty interviews with registered nurses working in an acute hospital setting were conducted. Analysis was conducted using the Framework method. This paper focuses on the theme 'protection from dirt'. Within the findings clear distinction was made between infection and dirt. Fear of contact with dirt, particularly dirt belonging to those who were unknown, was a key driver in behaviour carried out to reduce threat. Familiarity with the patient resulted in a reduction of the protective behaviours required. These behaviours, which initially appeared as part of an infection prevention strategy, were primarily a form of self-protection from patients, who at first encounter were considered as dirty. Behaviours do not always fit with a rational response to infection, but instead may be responses to dirt. Any programme that simply attempts to address scientific knowledge and behaviour deficits is unlikely to have the desired goals if it does not take into account existing social constructions of dirt and the response it evokes. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Supporting 3rd-Grade Students Model-Based Explanations about Groundwater: A Quasi-Experimental Study of a Curricular Intervention

    ERIC Educational Resources Information Center

    Zangori, Laura; Vo, Tina; Forbes, Cory T.; Schwarz, Christina V.

    2017-01-01

    Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students' learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and…

  6. Scientific Basis vs. Contextualized Teaching and Learning: The Effect on the Achievement of Postsecondary Students

    ERIC Educational Resources Information Center

    Curry, Kevin W., Jr.; Wilson, Elizabeth; Flowers, Jim L.; Farin, Charlotte E.

    2012-01-01

    The purpose of the study was to compare two teaching methodologies for an integrated agricultural biotechnology course at the postsecondary level. The two teaching methods tested were the explanation of the scientific basis for content (comparison treatment) versus the application of content to a real-world agricultural context (experimental…

  7. Similarities and Dissimilarities in Coauthorship Networks: Gestalt Theory as Explanation for Well-Ordered Collaboration Structures and Production of Scientific Literature.

    ERIC Educational Resources Information Center

    Kretschmer, Hildrun

    2002-01-01

    Based on Gestalt theory, the author assumes the existence of a field-force equilibrium to explain how, according to the conciseness principle, mathematically precise gestalts could exist in coauthorship networks. Develops a mathematical function to describe these gestalts in scientific literature and discusses structural characteristics of…

  8. Silly Science: Strange and Startling Projects To Amaze Your Family and Friends.

    ERIC Educational Resources Information Center

    Levine, Shar; Johnstone, Leslie

    This book is a collection of 28 experiments that are not meant to have any practical purpose. Each experiment, however, illustrates a scientific principle and enables students to discover how scientific facts and theories apply to seemingly useless experiments. Each experiment includes a list of materials, a series of steps, an explanation of the…

  9. Scientific Practices in Elementary Classrooms: Third-Grade Students' Scientific Explanations for Seed Structure and Function

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2014-01-01

    Elementary science standards emphasize that students should develop conceptual understanding of the characteristics and life cycles of plants (National Research Council, 2012), yet few studies have focused on early learners' reasoning about seed structure and function. The purpose of this study is twofold: to (a) examine third-grade…

  10. Dialogic Framing of Scientific Content for Conceptual and Epistemic Understanding

    ERIC Educational Resources Information Center

    Ford, Michael J.; Wargo, Brian M.

    2012-01-01

    This article draws on M. M. Bakhtin's (1981) notion of dialogism to articulate what it means to understand a scientific idea. In science, understanding an idea is both conceptual and epistemic and is exhibited by an ability to use it in explanation and argumentation. Some distillation of these activities implies that dialogic understanding of a…

  11. The Research Potential of Educational Theory: On the Specific Characteristics of the Issues of Education

    ERIC Educational Resources Information Center

    Les, Tomasz

    2017-01-01

    In this article, I present the argument that educational theory has specific character, which distinguishes it from most scientific disciplines. It requires the application of not only strictly scientific methods, which essentially consist of descriptions and explanations, but also normative ones, which indicate how it is related to philosophy and…

  12. English Secondary Students' Thinking about the Status of Scientific Theories: Consistent, Comprehensive, Coherent and Extensively Evidenced Explanations of Aspects of the Natural World--Or Just "An Idea Someone Has"

    ERIC Educational Resources Information Center

    Taber, Keith S.; Billingsley, Berry; Riga, Fran; Newdick, Helen

    2015-01-01

    Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally…

  13. The Interactive Attribution of School Success in Multi-Ethnic Schools

    ERIC Educational Resources Information Center

    de Haan, Mariette; Wissink, Inge

    2013-01-01

    The study shows how explanations for school success are expressed and dialogically constructed during teacher-parent conferences at school. Attribution theory is used to conceptualize the various explanations for school success that were expressed. However, instead of only looking at attributions as beliefs which individuals or groups "have", the…

  14. Gesture, Meaning, and Thinking-for-Teaching in Unplanned Vocabulary Explanations

    ERIC Educational Resources Information Center

    van Compernolle, Rémi A.; Smotrova, Tetyana

    2017-01-01

    In this article, we examine the ways in which an ESL instructor constructs contextually relevant meanings through the synchronization of speech and gesture during unplanned vocabulary explanations. Video recorded data are analysed, with focus on an in-class homework review in which students demonstrated difficulty in comprehending several key…

  15. Preservice Elementary Teachers and Explanation Construction: Knowledge-"for"-Practice and Knowledge-"in"-Practice

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2013-01-01

    Effectively designed science learning environments revolve around students' sensemaking through the use of evidence to ground explanations about natural phenomena. However, little research has been conducted to investigate elementary teachers' learning to promote students' sensemaking in elementary (K-5) classrooms. The purpose of this…

  16. The scientific argumentation profile of physics teacher candidate in Surabaya

    NASA Astrophysics Data System (ADS)

    Ain, T. N.; Wibowo, H. A. C.; Rohman, A.; Deta, U. A.

    2018-03-01

    The ability of scientific argumentation is an essential factor that must be mastered by physics teacher candidate as a requirement in explaining good and accurate scientific concepts. In the process of arguing, students develop explanations or persuade colleagues to support their hypotheses, express doubts, ask questions, relate alternative answers, and confirm what is unknown to develop the ability to provide rational and scientific explanations. The design of this research is descriptive qualitative with the subject of research is 20 undergraduate students of Physics Education Department in Surabaya. The research instrument consists of four casuistic questions related to the concept of kinematics. The argumentation pattern of physics teacher candidate is coded using Toulmin's argumentation pattern. The results show that the student’s ability in providing scientific argument is at the level of providing claims with the support of a weak warrant. The students are not able to provide excellent rebuttals. In each case given, the student can give a good claim statement in answering the questions. However, the concept used to support the claim is not correct. This case causes the warrant used to support the claim is weak. Students also do not analyse other facts that affect the system. Students have not reached a higher level because the understanding of physics is not deep enough.

  17. Middle school students' learning about genetic inheritance through on-line scaffolding supports

    NASA Astrophysics Data System (ADS)

    Manokore, Viola

    The main goal of school science is to enable learners to become scientifically literate through their participation in scientific discourses (McNeill & Krajcik, 2009). One of the key elements of scientific discourses is the ability to construct scientific explanations that consist of valid claims supported by appropriate evidence (e.g., McNeill & Krajcik, 2006, Sadler, 2004; Sandoval & Reiser, 2004). Curricula scaffolds may help students construct scientific explanations and achieve their learning goals. This dissertation study is part of a larger study designed to support fifth through seventh grade students' learning about genetic inheritance through curricula scaffolds. Seventh grade students in this study interacted with a Web Based Inquiry Science Environment (WISE) unit called "From Genotype to Phenotype" that had curricula scaffolds. Informed by the Scaffolded Knowledge Integration, two versions of the unit were developed around concepts on genetic inheritance. Version one of the units was explicit on explaining to students how to make a claim and support it with appropriate evidence. Although the science concepts covered were the same, Version two was not explicit on claims and evidence use. Embedded in the units were scaffolding supports in the form of prompts. This dissertation study explored students' responses to the scaffolding support prompts using a knowledge integration (KI) rubric as described by Linn and His (2000). Two teachers, each with about 150 students in five classes of about 25 each, participated in the study. Each teacher had three classes of students that received a version one and the other two classed received version two of "From Genotype to Phenotype" unit. Using the Statistical Package for Social Scientists (SPSS), I explored whether students' scores, as measured by the KI rubric, varied by the unit version the students received or by the teacher they had. The findings suggested that the two versions of the unit were equally valuable as there were no significant differences in test scores between students who interacted with different unit versions, F(1, 141) = 3.35, p = 0.07. However, there was a significant difference between test scores of students who had different teachers, F (1, 141) = 12.51, p = 0.001. Furthermore, apart from scoring for scientific accuracy, responses were also examined to establish whether students held some of the conceptions reported in literature about genetic inheritance. Where possible, attempts were made to identify whether students were using evidence from the unit or their out-of-school experiences in their responses to the scaffolding support prompts. It was evident that about half of the students attributed most of their inherited traits to a specific parent they resemble for that trait. In this dissertation study, the term students' resemblance theory was used to refer to the aforementioned students' reasoning. Additional, I argue that students' resemblance theory may be used to explain students' thinking when they incorrectly believe that boys or girls inherit more genes from their father or mother based on gender resemblance. Consequently, I argued that students' resemblance theory may influence students' learning and understanding about Mendel's law of segregation which include the following principles; genes exist in more than one form, offspring inherit two alleles for each trait, allele pairs separate during meiosis and alleles can be recessive or dominant. This study documented students' conceptions related to Mendel's law of segregation.

  18. In defense of derivations

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.

    2016-05-01

    At the 2015 AAPT Summer Meeting, I presented four derivations of the formula for motional emf. Such physics derivations involve the construction of explanatory frameworks involving diagrams and mathematical models. Although textbooks devote considerable space to such explanations, many teachers and students spend their time on worksheets, end-of-chapter problems, and the like. The book is reduced to a bank of solved (i.e., example) and unsolved (i.e., homework) questions, along with equations in colored boxes that presumably are to be used to answer those questions. Such an approach encourages fragmentation of knowledge, the view that there is only one right answer to a problem with the goal of physics being to find that answer (neatly boxed of course), and the inability to reason about even a slightly different (much less a novel) situation. If we are to develop scientific literacy, significant course time must be devoted to explaining the structure of and support for the models and equations we use.

  19. Bewitchment, biology, or both: the co-existence of natural and supernatural explanatory frameworks across development.

    PubMed

    Legare, Cristine H; Gelman, Susan A

    2008-06-01

    Three studies examined the co-existence of natural and supernatural explanations for illness and disease transmission, from a developmental perspective. The participants (5-, 7-, 11-, and 15-year-olds and adults; N = 366) were drawn from 2 Sesotho-speaking South African communities, where Western biomedical and traditional healing frameworks were both available. Results indicated that, although biological explanations for illness were endorsed at high levels, witchcraft was also often endorsed. More important, bewitchment explanations were neither the result of ignorance nor replaced by biological explanations. Instead, both natural and supernatural explanations were used to explain the same phenomena, and bewitchment explanations were highest among adults. Taken together, these data provide insight into how diverse, culturally constructed belief systems about illness co-exist across development. 2008 Cognitive Science Society, Inc.

  20. Inquiry, Argumentation, and the Phases of the Moon: Helping Students Learn Important Concepts and Practices

    ERIC Educational Resources Information Center

    Hall, Cady B.; Sampson, Victor

    2009-01-01

    An important goal of the current reform movement in science education is to promote scientific literacy in the United States, and scientific inquiry is at its heart. However, the National Science Education Standards clearly indicate that to promote inquiry, more emphasis should be placed on "science as argument and explanation" rather than on…

  1. It Happened in Antarctica. A Collection of Observations Requiring Scientific Explanations.

    ERIC Educational Resources Information Center

    Yaxley, Murray

    There are many reasons for studying Antarctica. It is the key element in the world's climate. Some of the secrets of the earth's past are locked beneath its icecap. It has a fascinating physical environment and a unique and fragile ecosystem. It is a frontier of scientific research and technological development. Its history is an important and…

  2. Learning by Generating vs. Receiving Instructional Explanations: Two Approaches to Enhance Attention Cueing in Animations

    ERIC Educational Resources Information Center

    de Koning, Bjorn B.; Tabbers, Huib K.; Rikers, Remy M. J. P.; Paas, Fred

    2010-01-01

    This study investigated whether learners construct more accurate mental representations from animations when instructional explanations are provided via narration than when learners attempt to infer functional relations from the animation through self-explaining. Also effects of attention guidance by means of cueing are investigated. Psychology…

  3. Using Google Earth to Teach Plate Tectonics and Science Explanations

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen

    2012-01-01

    "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…

  4. Good-bye to Fairy Tales

    ERIC Educational Resources Information Center

    Schamp, Homer W., Jr.

    1975-01-01

    Discusses attitudes seemingly engendered by practices in science teaching. Comments on explanations of scientific phenomena which appear in recent science texts as over-simplified and thus impede the child's imagination. (Author/EB)

  5. Human altruism, evolution and moral philosophy

    PubMed Central

    2017-01-01

    This paper has two central aims. The first is to explore philosophical complications that arise when we move from (i) explaining the evolutionary origins of genetically influenced traits associated with human cooperation and altruism, to (ii) explaining present manifestations of human thought, feeling and behaviour involving cooperation and altruism. While the former need only appeal to causal factors accessible to scientific inquiry, the latter must engage also with a distinctive form of explanation, i.e. reason-giving explanation, which in turn raises important philosophical questions, the answers to which will affect the nature of the ultimate explanations of our moral beliefs and related actions. On one possibility I will explore, this explanatory project cannot avoid engaging with first-order ethical theory. The second aim is to apply lessons from these explanatory complications to the critique of ‘evolutionary debunking arguments’, which seek to debunk morality, or at least objective construals of it (i.e. moral realism), by appeal to allegedly scientific debunking explanations of our moral beliefs that would defeat our justification for them. The explanatory complications brought out in the first half raise difficulties for such debunking arguments. If we avoid begging central philosophical questions then such debunking arguments pose little threat of saddling us with moral scepticism or subjectivism, though they do pose an important challenge for those developing a moral realist view. PMID:28878990

  6. Research traditions and evolutionary explanations in medicine.

    PubMed

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  7. Kansas Working Papers in Linguistics.

    ERIC Educational Resources Information Center

    Khym, Hangyoo, Ed.; Kookiattikoon, Supath, Ed.

    1997-01-01

    The seven working papers on linguistic theory contained in this volume include: "Two Properties of the Intransitive Resultative Construction" (Yoichi Miyamoto); "Multiple Subject Construction in Korean: A Functional Explanation" (Youngjun Jang); "Constraints on Noun Incorporation in Korean" (Hangyoo Khym);…

  8. 7 CFR 1.671 - How do I propose an alternative?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the project works for electricity production; (4) An explanation of how the alternative will affect... any scientific studies, literature, and other documented information relied on to support your...

  9. Pain Perception in Buddhism Perspective.

    PubMed

    Waikakul, Waraporn; Waikakul, Saranatra

    2016-08-01

    Dhamma, which Lord Buddha has presented to people after his enlightenment, analyzes every phenomenon and objects into their ultimate elements. The explanation of sensory system is also found in a part of Dhamma named Abhidhammapitaka, the Book of the Higher Doctrine in Buddhism. To find out the relationship between explanation of pain in the present neuroscience and the explanation of pain in Abhidhamma, the study was carried out by the use of a comprehensive review. The comparisons were in terms of peripheral stimulation, signal transmission, modulation, perception, suffering, determination and decision making for the responding to pain. We found that details of the explanation on pain mechanism and perception in Abhidhamma could associate well with our present scientific knowledge. Furthermore, more refinement information about the process and its function in particular aspects of pain perception were provided in Abhidhammapitaka.

  10. Lay public's understanding of equipoise and randomisation in randomised controlled trials.

    PubMed

    Robinson, E J; Kerr, C E P; Stevens, A J; Lilford, R J; Braunholtz, D A; Edwards, S J; Beck, S R; Rowley, M G

    2005-03-01

    To research the lay public's understanding of equipoise and randomisation in randomised controlled trials (RCTs) and to look at why information on this may not be not taken in or remembered, as well as the effects of providing information designed to overcome barriers. Investigations were informed by an update of systematic review on patients' understanding of consent information in clinical trials, and by relevant theory and evidence from experimental psychology. Nine investigations were conducted with nine participants. Access (return to education), leisure and vocational courses at Further Education Colleges in the Midlands, UK. Healthy adults with a wide range of educational backgrounds and ages. Participants read hypothetical scenarios and wrote brief answers to subsequent questions. Sub-samples of participants were interviewed individually to elaborate on their written answers. Participants' background assumptions concerning equipoise and randomisation were examined and ways of helping participants recognise the scientific benefits of randomisation were explored. Judgments on allocation methods; treatment preferences; the acceptability of random allocation; whether or not individual doctors could be completely unsure about the best treatment; whether or not doctors should reveal treatment preferences under conditions of collective equipoise; and how sure experts would be about the best treatment following random allocation vs doctor/patient choice. Assessments of understanding hypothetical trial information. Recent literature continues to report trial participants' failure to understand or remember information about randomisation and equipoise, despite the provision of clear and readable trial information leaflets. In current best practice, written trial information describes what will happen without offering accessible explanations. As a consequence, patients may create their own incorrect interpretations and consent or refusal may be inadequately informed. In six investigations, most participants identified which methods of allocation were random, but judged the random allocation methods to be unacceptable in a trial context; the mere description of a treatment as new was insufficient to engender a preference for it over a standard treatment; around half of the participants denied that a doctor could be completely unsure about the best treatment. A majority of participants judged it unacceptable for a doctor to suggest letting chance decide when uncertain of the best treatment, and, in the absence of a justification for random allocation, participants did not recognise scientific benefits of random allocation over normal treatment allocation methods. The pattern of results across three intervention studies suggests that merely supplementing written trial information with an explanation is unlikely to be helpful. However, when people manage to focus on the trial's aim of increasing knowledge (as opposed to making treatment decisions about individuals), and process an explanation actively, they may be helped to understand the scientific reasons for random allocation. This research was not carried out in real healthcare settings. However, participants who could correctly identify random allocation methods, yet judged random allocation unacceptable, doubted the possibility of individual equipoise and saw no scientific benefits of random allocation over doctor/patient choice, are unlikely to draw upon contrasting views if invited to enter a real clinical trial. This suggests that many potential trial participants may have difficulty understanding and remembering trial information that conforms to current best practice in its descriptions of randomisation and equipoise. Given the extent of the disparity between the assumptions underlying trial design and the assumptions held by the lay public, the solution is unlikely to be simple. Nevertheless, the results suggest that including an accessible explanation of the scientific benefits of randomisation may be beneficial provided potential participants are also enabled to reflect on the trial's aim of advancing knowledge, and to think actively about the information presented. Further areas for consideration include: the identification of effective combinations of written and oral information; helping participants to reflect on the aim of advancing knowledge; and an evidence-based approach to leaflet construction.

  11. An exploratory investigation of real-world reasoning in paranoia.

    PubMed

    Huddy, V; Brown, G P; Boyd, T; Wykes, T

    2014-03-01

    Paranoid thinking has been linked to greater availability in memory of past threats to the self. However, remembered experiences may not always closely resemble events that trigger paranoia, so novel explanations must be elaborated for the likelihood of threat to be determined. We investigated the ability of paranoid individuals to construct explanations for everyday situations and whether these modulate their emotional impact. Twenty-one participants experiencing paranoia and 21 healthy controls completed a mental simulation task that yields a measure of the coherence of reasoning in everyday situations. When responses featured positive content, clinical participants produced less coherent narratives in response to paranoid themed scenarios than healthy controls. There was no significant difference between the groups when responses featured negative content. The current study suggests that difficulty in scenario construction may exacerbate paranoia by reducing access to non-threatening explanations for everyday events, and this consequently increases distress. © 2012 The British Psychological Society.

  12. Why the Difference Between Explanation and Argument Matters to Science Education

    NASA Astrophysics Data System (ADS)

    Brigandt, Ingo

    2016-05-01

    Contributing to the recent debate on whether or not explanations ought to be differentiated from arguments, this article argues that the distinction matters to science education. I articulate the distinction in terms of explanations and arguments having to meet different standards of adequacy. Standards of explanatory adequacy are important because they correspond to what counts as a good explanation in a science classroom, whereas a focus on evidence-based argumentation can obscure such standards of what makes an explanation explanatory. I provide further reasons for the relevance of not conflating explanations with arguments (and having standards of explanatory adequacy in view). First, what guides the adoption of the particular standards of explanatory adequacy that are relevant in a scientific case is the explanatory aim pursued in this context. Apart from explanatory aims being an important aspect of the nature of science, including explanatory aims in classroom instruction also promotes students seeing explanations as more than facts, and engages them in developing explanations as responses to interesting explanatory problems. Second, it is of relevance to science curricula that science aims at intervening in natural processes, not only for technological applications, but also as part of experimental discovery. Not any argument enables intervention in nature, as successful intervention specifically presupposes causal explanations. Students can fruitfully explore in the classroom how an explanatory account suggests different options for intervention.

  13. Improving the explanation capabilities of advisory systems

    NASA Technical Reports Server (NTRS)

    Porter, Bruce; Souther, Art

    1993-01-01

    A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology; and (2) developing general methods and tools for building similar explanation facilities in other domains.

  14. Improving the explanation capabilities of advisory systems

    NASA Technical Reports Server (NTRS)

    Porter, Bruce; Souther, Art

    1994-01-01

    A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology, and (2) developing general methods and tools for building similar explanation facilities in other domains.

  15. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  16. Award for Distinguished Scientific Early Career Contributions to Psychology: Tania Lombrozo.

    PubMed

    2016-11-01

    APA's Awards for Distinguished Scientific Early Career Contributions to Psychology recognize psychologists who have demonstrated excellence early in their careers. One of the 2016 award winners is Tania Lombrozo, whose "groundbreaking studies have shown just how, and why, explanations are so important to people." Lombrozo's award citation, biography, and bibliography are presented here. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. The War on Schools: NCLB, Nation Creation and the Educational Construction of Whiteness

    ERIC Educational Resources Information Center

    Leonardo, Zeus

    2007-01-01

    The study of whiteness in education is receiving increased attention. This essay argues that the No Child Left Behind Act is an example of color-blindness "par excellence." NCLB's hidden referent of whiteness makes a casual pass at racial explanation that sidesteps race as a causal explanation for educational disparities. In this sense,…

  18. Empirical Validation of Integrated Learning Performances for Hydrologic Phenomena: 3rd-Grade Students' Model-Driven Explanation-Construction

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Water is a crucial topic that spans the K-12 science curriculum, including the elementary grades. Students should engage in the articulation, negotiation, and revision of model-based explanations about hydrologic phenomena. However, past research has shown that students, particularly early learners, often struggle to understand hydrologic…

  19. The Impact of Interactive Computer Simulations on the Nature and Quality of Postgraduate Science Teachers' Explanations in Physics

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.

    2005-01-01

    This study investigated how individuals' construction of explanations--a way of ascertaining how well an individual understands a concept--develops from an interactive simulation. Specifically, the purpose was to investigate the effect of interactive computer simulations or science textbook assignments on the nature and quality of postgraduate…

  20. Changes in Students' Explanations for Gender Differences after Taking a Psychology of Women Class: More Constructionist and Less Essentialist

    ERIC Educational Resources Information Center

    Yoder, Janice D.; Fischer, Ann R.; Kahn, Arnold S.; Groden, Jessica

    2007-01-01

    We explored how students' endorsements of essential (biological and personality) and constructed (socialization and contextual) explanations for gender differences changed from the start to the end of Psychology of Women (POW) classes along with their feminist attitudes. Results from surveys of 120 POW students from three universities indicated…

  1. Formative Assessment Probes: Constructing Cl-Ev-R Explanations to Formative Assessment Probes

    ERIC Educational Resources Information Center

    Keeley, Page

    2015-01-01

    A distinguishing feature of all the formative assessment probes in the "Uncovering Student Ideas" series is that each probe has two parts: (1) a selected answer choice that usually mirrors the research on commonly held ideas students have about concepts or phenomena; and (2) an explanation that supports their answer choice. It is this…

  2. The integrity of science - lost in translation?

    PubMed

    Kaiser, Matthias

    2014-04-01

    This paper presents some selected issues currently discussed about the integrity of science, and it argues that there exist serious challenges to integrity in the various sciences. Due to the involved conceptual complexities, even core definitions of scientific integrity have been disputed, and core cases of scientific misconduct influenced the public discussion about them. It is claimed that ethics and law may not always go well together in matters of scientific integrity. Explanations of the causes of scientific misconduct vary, and defining good scientific practices is not a straightforward task. Even though the efficacy of ethics courses to improve scientific integrity can be doubted, and universities probably need to come up with more innovative formats to improve ethics in scientific training, ethics talk may be the only practical remedy. Copyright © 2014. Published by Elsevier Ltd.

  3. 43 CFR 45.71 - How do I propose an alternative?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... works for electricity production; (4) An explanation of how the alternative will affect: (i) Energy... quality; and (vi) Other aspects of environmental quality; and (5) Specific citations to any scientific...

  4. Contributing to Meaning Making: Facilitating Discourse in the High School Physics Classroom

    NASA Astrophysics Data System (ADS)

    Hovan, Scot Alan

    The Next Generation Science Standards (NGSS) identify eight practices as essential to science and engineering, and these practices include asking students to construct explanations, to engage in argumentation, and to communicate scientific information. However, few teacher-training programs instruct teachers how to facilitate such discourse in the classroom. Modeling Instruction is one movement in physics education that organizes high school physics content around a small number of student-derived scientific models, and it relies on student discourse for the design, development, and deployment of these models. This research is a self-study of one high school physics teacher's experience facilitating large group discourse in the high school modeling physics classroom. Whiteboard meetings and graded discussions were examined by applying the analytical framework created by Mortimer and Scott (2003) to characterize the classroom talk and the discourse facilitation moves that I employed. In addition, elements of discourse analysis were used to examine some of the tensions that I experienced in the facilitation of this discourse. The findings suggest that deliberate identification of the teaching purposes for the discussion can help determine the scaffolding needed for students to enter the Discourse (Gee, 2011) of being a participant in these large group conversations. In addition, connecting the dialogic dimension of exploring student ideas with the authoritative dimension of introducing the scientific view and supporting the internalization of that view is necessary to contribute to meaning making in the science classroom.

  5. Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of `floating and sinking'

    NASA Astrophysics Data System (ADS)

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-07-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.

  6. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    NASA Astrophysics Data System (ADS)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify their ideas, make claims, present arguments, and record and present findings. Students have acquired the skills to be considered scientifically literate and capable of learning. A poster demonstrating the tie between Scientific Literacy and Inquiry-Based Writing has been produced and distributed widely around campus.

  7. Creationism and intelligent design are incompatible with scientific progress: A response to Shanta and Vêdanta.

    PubMed

    Caetano-Anollés, Gustavo

    2016-01-01

    In a recent opinion paper, B.K. Shanta claims science leaves no room for the subjective aspect of consciousness, and in doing so, attacks both origin of life and evolutionary research. He claims Vêdanta, one of the 6 orthodox schools of Hindu philosophy, offers an explanation: "the origin of everything material and nonmaterial is sentient and absolute." Here I discuss how the pseudoscience of these creationist views, which are aligned with Intelligent Design, are incompatible with scientific progress and should not be published in scientific journals.

  8. Validity of peer grading using Calibrated Peer Review in a guided-inquiry, conceptual physics course

    NASA Astrophysics Data System (ADS)

    Price, Edward; Goldberg, Fred; Robinson, Steve; McKean, Michael

    2016-12-01

    Constructing and evaluating explanations are important science practices, but in large classes it can be difficult to effectively engage students in these practices and provide feedback. Peer review and grading are scalable instructional approaches that address these concerns, but which raise questions about the validity of the peer grading process. Calibrated Peer Review (CPR) is a web-based system that scaffolds peer evaluation through a "calibration" process where students evaluate sample responses and receive feedback on their evaluations before evaluating their peers. Guided by an activity theory framework, we developed, implemented, and evaluated CPR-based tasks in guided-inquiry, conceptual physics courses for future teachers and general education students. The tasks were developed through iterative testing and revision. Effective tasks had specific and directed prompts and evaluation instructions. Using these tasks, over 350 students at three universities constructed explanations or analyzed physical phenomena, and evaluated their peers' work. By independently assessing students' responses, we evaluated the CPR calibration process and compared students' peer reviews with expert evaluations. On the tasks analyzed, peer scores were equivalent to our independent evaluations. On a written explanation item included on the final exam, students in the courses using CPR outperformed students in similar courses using traditional writing assignments without a peer evaluation element. Our research demonstrates that CPR can be an effective way to explicitly include the science practices of constructing and evaluating explanations into large classes without placing a significant burden on the instructor.

  9. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of Experimental and Historical Science Topics

    ERIC Educational Resources Information Center

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during…

  10. Towards a Conceptual Profile: Rethinking Conceptual Mediation in the Light of Recent Cognitive and Neuroscientific Findings

    NASA Astrophysics Data System (ADS)

    Dawson, Chris

    2014-06-01

    One important focus for science education researchers over many years has been the attempts to replace students' commonsense and non-scientific explanations of various phenomena by scientific explanations. The approach we adopted almost three decades ago was conceptual mediation, and this was shown to have a considerable level of success with both conceptual and attitudinal change. However, since that time, advances have been made in the application of both cognitive science and neuroscience to science learning. In particular, evidence has accumulated that, rather than the replacement of the commonsense view, the reality is that learners develop a conceptual profile which includes both the commonsense and the scientific. If this is the case, instead of focussing on conceptual replacement, science educators need to aim more actively at strengthening the learner's executive processes which select contextually appropriate responses and inhibit inappropriate ones. In this paper, the initial development, theoretical basis and the practical applications of conceptual mediation are introduced, following which, these are re-examined in the light of more recent findings. Within this discussion, several potential links to recent cognitive and neuroscientific research are drawn, and these raise issues for further research into the most appropriate teaching approaches for tackling existing non-scientific conceptions.

  11. Students' Communicative Resources in Relation to Their Conceptual Understanding—The Role of Non-Conventionalized Expressions in Making Sense of Visualizations of Protein Function

    NASA Astrophysics Data System (ADS)

    Rundgren, Carl-Johan; Hirsch, Richard; Chang Rundgren, Shu-Nu; Tibell, Lena A. E.

    2012-10-01

    This study examines how students explain their conceptual understanding of protein function using visualizations. Thirteen upper secondary students, four tertiary students (studying chemical biology), and two experts were interviewed in semi-structured interviews. The interviews were structured around 2D illustrations of proteins and an animated representation of water transport through a channel in the cell membrane. In the analysis of the transcripts, a score, based on the SOLO-taxonomy, was given to each student to indicate the conceptual depth achieved in their explanations. The use of scientific terms and non-conventionalized expressions in the students' explanations were investigated based upon a semiotic approach. The results indicated that there was a positive relationship between use of scientific terms and level of education. However, there was no correlation between students' use of scientific terms and conceptual depth. In the interviews, we found that non-conventionalized expressions were used by several participants to express conceptual understanding and played a role in making sense of the visualizations of protein function. Interestingly, also the experts made use of non-conventionalized expressions. The results of our study imply that more attention should be drawn to students' use of scientific and non-conventionalized terms in relation to their conceptual understanding.

  12. Bipolar disorder: idioms of susceptibility and disease and the role of 'genes' in illness explanations.

    PubMed

    Baart, Ingrid; Widdershoven, Guy

    2013-11-01

    This qualitative study explores (1) how members of the Dutch Association for People with Bipolar Disorder explain the affliction of bipolar disorder; (2) the relationship between genetic, environmental and personal factors in these explanations and (3) the relationship between illness explanations, self-management and identity. A total of 40 participants took part in seven different focus group discussions. The results demonstrate that there are two different explanatory idioms, each one centred around an opposing concept, that is, susceptibility and disease. Individuals who construct explanations around the concept of 'disease' attach more importance to 'genes and chemicals' than to environmental components in the onset of the disorder, whereas individuals adhering to the central concept of 'susceptibility' tend to do this much less. Compared with individuals using the 'susceptibility' idiom, those who use a 'disease' idiom tend to observe fewer possibilities for self-management and are less inclined to construct normalcy through a quest for personal growth. Stories of suffering seem more integral to the 'disease' idiom than to the 'susceptibility' idiom. The 'disease' idiom seems less integrated in a contemporary surveillance psychiatric discourse than the 'susceptibility' idiom; however, both vocabularies can offer normative constraints.

  13. Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Tamar; Schneider, Bertrand; Blikstein, Paulo

    2018-05-01

    The Bifocal Modelling Framework (BMF) is an approach for science learning which links students' physical experimentation with computer modelling in real time, focusing on the comparison of the two media. In this paper, we explore how a Bifocal Modelling implementation supported learning outcomes related to both content and metamodeling knowledge, focusing on the role of designing models. Our study consisted of three conditions implemented with a total of 69 9th grade high-school students. The first and second classes were assigned two implementation modes of BMF: with and without a model design module. The third condition, employed as a control, consisted of a class that received instruction in the school's traditional approach. Our results indicate that students participating in both BMF implementations demonstrated improved content knowledge and a better understanding of metamodeling. However, only the 'BMF-with-design' group improved significantly in both content and metamodeling knowledge. Our qualitative analyses indicate that both BMF groups designed detailed models that included scientific explanations. However only students who engaged in the model design component: (1) completed a detailed model displaying molecular interaction; and (2) developed a critical perspective about models. We discuss the implications of those results for teaching scientific science concepts and metamodeling knowledge.

  14. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2015-01-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students (N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation…

  15. [Interpretative method as a synthesis of explicative, teleologic and analogic models].

    PubMed

    Yáñez Cortés, R

    1980-06-01

    To establish the basis of the interpretative method is congruous with finding a solid basis--epistemologically speaking--to the analytic theory. This basis would be the means to transform this theory into a real science with its necessary adecuation among method, act and object of knowledge. It is only from a scientific stand that the psychoanalytic theory will be able to face successfully the reductionisms that menace it, be it the biologist-naturalism with its explanations of the psychic phenomena by means of mechanisms and biologic models or be it the speculative ideologies with their nucleus of technical praxis which make it impossible for the social-factic sciences to become real sciences. We propose as interpretative method the union of two models: the teleologic one which makes possible the appearance of intelligible, contingent and variable explanations between an antecedent and a consequent on one side, and on the other, the analogic model with its two moments: the comparative and the symbolic one. These moments makes possible the comparison and the union between antecedent and consequent baring in mind the "natural" ambiguity of the subject-object in question. The principal objective of the method--as a regulative idea in the Kantian sense--would be the search of univocity as regards the choice of one and only one sense from all the possible senses that "explain" the motive relationship or motive-end relationship in order to make the interpretation scientific. This status of scientificity should obey the rules of explanation: that the interpretations be derived effectively from the presupposed theory, that they really explain what they claim to explain, that they are not contradictory or contrary in the same ontologic level. We postulate that the synthesis of the two mentioned models, the teleologic-explanative and the analogic one allows us to find a possibility to make clear the "dark" sense of the noun interpretation and in this way the factibility of speaking of an interpretative method that develops the real concrete object by producing the formal and abstract one--which for us is the behaviour of the subject--. In this way the interpretations come to be teleological explanations overdetermined by an analogical relationship. This means that they produce the formal and abstract object -the method--which is in itself an intelligible, continguent and variable relationship between an antecedent and a consequent permitting in this way the emergence of a symbolic comparison to explain the real concrete. The symbolic explanations and comparisons are strictly derived from the presupposed theory, the theoretical body of psychoanalysis.

  16. The Brain Revolution.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1998-01-01

    A cognitive-science revolution, reminiscent of Dewey's Progressive Education Movement, will profoundly affect future educational policy and practice. A comprehensive brain theory will emerge out of Darwin's discoveries about natural selection as a scientific explanation for biodiversity, Einstein's theoretical reconceptualization of…

  17. The status of the concept of 'phoneme' in psycholinguistics.

    PubMed

    Uppstad, Per Henning; Tønnessen, Finn Egil

    2010-10-01

    The notion of the phoneme counts as a break-through of modern theoretical linguistics in the early twentieth century. It paved the way for descriptions of distinctive features at different levels in linguistics. Although it has since then had a turbulent existence across altering theoretical positions, it remains a powerful concept of a fundamental unit in spoken language. At the same time, its conceptual status remains highly unclear. The present article aims to clarify the status of the concept of 'phoneme' in psycholinguistics, based on the scientific concepts of description, understanding and explanation. Theoretical linguistics has provided mainly descriptions. The ideas underlying this article are, first, that these descriptions may not be directly relevant to psycholinguistics and, second, that psycholinguistics in this sense is not a sub-discipline of theoretical linguistics. Rather, these two disciplines operate with different sets of features and with different orientations when it comes to the scientific concepts of description, understanding and explanation.

  18. Students' Perceptions of Roundhouse Diagramming: A Middle-School Viewpoint.

    ERIC Educational Resources Information Center

    Ward, Robin E.; Wandersee, James H.

    2002-01-01

    Explores the effects in a multiple case study of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th grade classroom. Concludes that the students typically gained a greater understanding of science explanations by constructing the diagrams. (Author/MM)

  19. [Meanings attributed to management as an explanation for clinician managers' attitudes and professional identity].

    PubMed

    Cascón-Pereira, Rosalía; Valverde, Mireia

    2014-01-01

    To understand the process by which clinician managers construct their professional identities and develop their attitudes toward managing. A qualitative study was performed, based on grounded theory, through in-depth interviews with 20 clinician managers selected through theoretical sampling in two public hospitals of Catalonia (Spain), participant observation, and documentation. Clinician managers' role meanings are constructed by comparing their roles with those of senior managers and clinicians. In this process, clinician managers seek to differentiate themselves from senior managers through the meanings constructed. In particular, they use proximity with reality and clinical knowledge as the main sources of differentiation. This study sheds light on why clinician managers develop adverse attitudes to managing and why they define themselves as clinicians rather than as managers. The explanation lies in the construction of the meanings they assign to managing as the basis of their attitudes to this role and professional identity. These findings have some practical implications for healthcare management. Copyright © 2014. Published by Elsevier Espana.

  20. Revisiting the imaginary audience and personal fable constructs of adolescent egocentrism: a conceptual review.

    PubMed

    Vartanian, L R

    2000-01-01

    Adolescents are thought to believe that others are always watching and evaluating them, and that they are special and unique, labeled the imaginary audience and the personal fable, respectively. These two constructs have been fixtures in textbooks on adolescent development, and have been offered as explanations for self-consciousness and risk-taking. However, their characterization of adolescent social cognition as biased has not been supported empirically, the measures used to assess them lack construct validity, and alternative explanations for both ideation patterns have not been explored. Despite these issues, the imaginary audience and personal fable constructs continue to be considered prototypical representations of social cognitive processes during adolescence. This paper (1) reviews theoretical models of the imaginary audience and the personal fable, and the empirical data pertaining to each model, (2) highlights problems surrounding the two most commonly used measures, and (3) outlines directions for future research, so that a better understanding of the imaginary audience and personal fable, and their roles in adolescent development, may be achieved.

  1. Explaining Verification Conditions

    NASA Technical Reports Server (NTRS)

    Deney, Ewen; Fischer, Bernd

    2006-01-01

    The Hoare approach to program verification relies on the construction and discharge of verification conditions (VCs) but offers no support to trace, analyze, and understand the VCs themselves. We describe a systematic extension of the Hoare rules by labels so that the calculus itself can be used to build up explanations of the VCs. The labels are maintained through the different processing steps and rendered as natural language explanations. The explanations can easily be customized and can capture different aspects of the VCs; here, we focus on their structure and purpose. The approach is fully declarative and the generated explanations are based only on an analysis of the labels rather than directly on the logical meaning of the underlying VCs or their proofs. Keywords: program verification, Hoare calculus, traceability.

  2. Enhancing Eight Grade Students' Scientific Conceptual Change and Scientific Reasoning through a Web-Based Learning Program

    ERIC Educational Resources Information Center

    Liao, Ya-Wen; She, Hsiao-Ching

    2009-01-01

    This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…

  3. Constructing Arguments: Investigating Pre-Service Science Teachers' Argumentation Skills in a Socio-Scientific Context

    ERIC Educational Resources Information Center

    Robertshaw, Brooke; Campbell, Todd

    2013-01-01

    As western society becomes increasingly reliant on scientific information to make decisions, citizens must be equipped to understand how scientific arguments are constructed. In order to do this, pre-service teachers must be prepared to foster students' abilities and understandings of scientific argumentation in the classroom. This study…

  4. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    NASA Astrophysics Data System (ADS)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  5. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    PubMed Central

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  6. A process for developing and revising a learning progression on sea level rise using learners' explanations

    NASA Astrophysics Data System (ADS)

    McDonald, Robert Christopher

    The purpose of this study was to explore the process of developing a learning progression (LP) on constructing explanations about sea level rise. I used a learning progressions theoretical framework informed by the situated cognition learning theory. During this exploration, I explicitly described my decision-making process as I developed and revised a hypothetical learning progression. Correspondingly, my research question was: What is a process by which a hypothetical learning progression on sea level rise is developed into an empirical learning progression using learners' explanations? To answer this question, I used a qualitative descriptive single case study with multiple embedded cases (Yin, 2014) that employed analytic induction (Denzin, 1970) to analyze data collected on middle school learners (grades 6-8). Data sources included written artifacts, classroom observations, and semi-structured interviews. Additionally, I kept a researcher journal to track my thinking about the learning progression throughout the research study. Using analytic induction to analyze collected data, I developed eight analytic concepts: participant explanation structures varied widely, global warming and ice melt cause sea level rise, participants held alternative conceptions about sea level rise, participants learned about thermal expansion as a fundamental aspect of sea level rise, participants learned to incorporate authentic scientific data, participants' mental models of the ocean varied widely, sea ice melt contributes to sea level rise, and participants held vague and alternative conceptions about how pollution impacts the ocean. I started with a hypothetical learning progression, gathered empirical data via various sources (especially semi-structured interviews), revised the hypothetical learning progression in response to those data, and ended with an empirical learning progression comprising six levels of learner thinking. As a result of developing an empirically based LP, I was able to compare two learning progressions on the same topic. By comparing my learning progression with the LP in Breslyn, McGinnis, McDonald, and Hestness (2016), I was able to confirm portions of the two learning progressions and explore different possible pathways for learners to achieve progress towards upper anchors of the LPs through targeted instruction. Implications for future LP research, curriculum, instruction, assessment, and policy related to learning progressions are presented.

  7. Why patients mutilate themselves.

    PubMed

    Favazza, A R

    1989-02-01

    Self-mutilation, the deliberate destruction or alteration of body tissue without conscious suicidal intent, occurs in a variety of psychiatric disorders. Major self-mutilation includes eye enucleation and amputation of limbs or genitals. Minor self-mutilation includes self-cutting and self-hitting. The author examines patients' explanations for self-mutilation which frequently focus on religions or sexual themes, and discusses scientific explanations that draw on biological, psychological, social, and cultural theories. Although no one approach adequately solves the riddle of such behaviors, habitual self-mutilation may best be thought of as a purposeful, if morbid, act of self-help.

  8. Creationism and intelligent design are incompatible with scientific progress: A response to Shanta and Vêdanta

    PubMed Central

    Caetano-Anollés, Gustavo

    2016-01-01

    ABSTRACT In a recent opinion paper, B.K. Shanta claims science leaves no room for the subjective aspect of consciousness, and in doing so, attacks both origin of life and evolutionary research. He claims Vêdanta, one of the 6 orthodox schools of Hindu philosophy, offers an explanation: “the origin of everything material and nonmaterial is sentient and absolute.” Here I discuss how the pseudoscience of these creationist views, which are aligned with Intelligent Design, are incompatible with scientific progress and should not be published in scientific journals. PMID:27066185

  9. Why Sketching May Aid Learning From Science Texts: Contrasting Sketching With Written Explanations.

    PubMed

    Scheiter, Katharina; Schleinschok, Katrin; Ainsworth, Shaaron

    2017-10-01

    The goal of this study was to explore two accounts for why sketching during learning from text is helpful: (1) sketching acts like other constructive strategies such as self-explanation because it helps learners to identify relevant information and generate inferences; or (2) that in addition to these general effects, sketching has more specific benefits due to the pictorial representation that is constructed. Seventy-three seventh-graders (32 girls, M = 12.82 years) were first taught how to either create sketches or self-explain while studying science texts. During a subsequent learning phase, all students were asked to read an expository text about the greenhouse effect. Finally, they were asked to write down everything they remembered and then answer transfer questions. Strategy quality during learning was assessed as the number of key concepts that had either been sketched or mentioned in the self-explanations. The results showed that at an overall performance level there were only marginal group differences. However, a more in-depth analysis revealed that whereas no group differences emerged for students implementing either strategy poorly, the sketching group clearly outperformed the self-explanation group for students who applied the strategies with higher quality. Furthermore, higher sketching quality was strongly related to better learning outcomes. Thus, the study's results are more in line with the second account: Sketching can have a beneficial effect on learning above and beyond generating written explanations; at least, if well deployed. Copyright © 2017 Cognitive Science Society, Inc.

  10. Diagnostic of students' misconceptions using the Biological Concepts Instrument (BCI): A method for conducting an educational needs assessment

    PubMed Central

    Champagne Queloz, Annie; Klymkowsky, Michael W.; Stern, Elsbeth; Hafen, Ernst; Köhler, Katja

    2017-01-01

    Concept inventories, constructed based on an analysis of students’ thinking and their explanations of scientific situations, serve as diagnostics for identifying misconceptions and logical inconsistencies and provide data that can help direct curricular reforms. In the current project, we distributed the Biological Concepts Instrument (BCI) to 17-18-year-old students attending the highest track of the Swiss school system (Gymnasium). Students’ performances on many questions related to evolution, genetics, molecular properties and functions were diverse. Important common misunderstandings were identified in the areas of evolutionary processes, molecular properties and an appreciation of stochastic processes in biological systems. Our observations provide further evidence that the BCI is efficient in identifying specific areas where targeted instruction is required. Based on these observations we have initiated changes at several levels to reconsider how biological systems are presented to university biology studies with the goal of improving student’s foundational understanding. PMID:28493960

  11. Increased scientific rigor will improve reliability of research and effectiveness of management

    USGS Publications Warehouse

    Sells, Sarah N.; Bassing, Sarah B.; Barker, Kristin J.; Forshee, Shannon C.; Keever, Allison; Goerz, James W.; Mitchell, Michael S.

    2018-01-01

    Rigorous science that produces reliable knowledge is critical to wildlife management because it increases accurate understanding of the natural world and informs management decisions effectively. Application of a rigorous scientific method based on hypothesis testing minimizes unreliable knowledge produced by research. To evaluate the prevalence of scientific rigor in wildlife research, we examined 24 issues of the Journal of Wildlife Management from August 2013 through July 2016. We found 43.9% of studies did not state or imply a priori hypotheses, which are necessary to produce reliable knowledge. We posit that this is due, at least in part, to a lack of common understanding of what rigorous science entails, how it produces more reliable knowledge than other forms of interpreting observations, and how research should be designed to maximize inferential strength and usefulness of application. Current primary literature does not provide succinct explanations of the logic behind a rigorous scientific method or readily applicable guidance for employing it, particularly in wildlife biology; we therefore synthesized an overview of the history, philosophy, and logic that define scientific rigor for biological studies. A rigorous scientific method includes 1) generating a research question from theory and prior observations, 2) developing hypotheses (i.e., plausible biological answers to the question), 3) formulating predictions (i.e., facts that must be true if the hypothesis is true), 4) designing and implementing research to collect data potentially consistent with predictions, 5) evaluating whether predictions are consistent with collected data, and 6) drawing inferences based on the evaluation. Explicitly testing a priori hypotheses reduces overall uncertainty by reducing the number of plausible biological explanations to only those that are logically well supported. Such research also draws inferences that are robust to idiosyncratic observations and unavoidable human biases. Offering only post hoc interpretations of statistical patterns (i.e., a posteriorihypotheses) adds to uncertainty because it increases the number of plausible biological explanations without determining which have the greatest support. Further, post hocinterpretations are strongly subject to human biases. Testing hypotheses maximizes the credibility of research findings, makes the strongest contributions to theory and management, and improves reproducibility of research. Management decisions based on rigorous research are most likely to result in effective conservation of wildlife resources. 

  12. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    NASA Astrophysics Data System (ADS)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the researchers involved in this complex solar system.

  13. Geometrical Constructions in Dynamic and Interactive Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Kondratieva, Margo

    2013-01-01

    This paper concerns teaching Euclidean geometry at the university level. It is based on the authors' personal experience. It describes a sequence of learning activities that combine geometrical constructions with explorations, observations, and explanations of facts related to the geometry of triangle. Within this approach, a discussion of the…

  14. On the Use of "Por" Plus Agent with "Se" Construction

    ERIC Educational Resources Information Center

    De Mello, George

    1978-01-01

    Two explanations for the role of "se" in such constructions as "Se construyen casas" are given by grammarians; one states that it is a passive interpretation ("Houses are built"), the other advocates an impersonal interpretation ("One builds houses"). Different views are presented and analyzed. (Author/NCR)

  15. Information-seeking strategies and science content understandings of sixth-grade students using on-line learning environments

    NASA Astrophysics Data System (ADS)

    Hoffman, Joseph Loris

    1999-11-01

    This study examined the information-seeking strategies and science content understandings learners developed as a result of using on-line resources in the University of Michigan Digital Library and on the World Wide Web. Eight pairs of sixth grade students from two teachers' classrooms were observed during inquiries for astronomy, ecology, geology, and weather, and a final transfer task assessed learners' capabilities at the end of the school year. Data included video recordings of students' screen activity and conversations, journals and completed activity sheets, final artifacts, and semi-structured interviews. Learners' information-seeking strategies included activities related to asking, planning, tool usage, searching, assessing, synthesizing, writing, and creating. Analysis of data found a majority of learners posed meaningful, openended questions, used technological tools appropriately, developed pertinent search topics, were thoughtful in queries to the digital library, browsed sites purposefully to locate information, and constructed artifacts with novel formats. Students faced challenges when planning activities, assessing resources, and synthesizing information. Possible explanations were posed linking pedagogical practices with learners' growth and use of inquiry strategies. Data from classroom-lab video and teacher interviews showed varying degrees of student scaffolding: development and critique of initial questions, utilization of search tools, use of journals for reflection on activities, and requirements for final artifacts. Science content understandings included recalling information, offering explanations, articulating relationships, and extending explanations. A majority of learners constructed partial understandings limited to information recall and simple explanations, and these occasionally contained inaccurate conceptualizations. Web site design features had some influence on the construction of learners' content understandings. Analysis of data suggests sites with high quality general design, navigation, and content helped to foster the construction of broad and accurate understandings, while context and interactivity had less impact. However, student engagement with inquiry strategies had a greater impact on the construction of understandings. Gaining accurate and in-depth understandings from on-line resources is a complex process for young learners. Teachers can support students by helping them engage in all phases of the information-seeking process, locate useful information with prescreened resources, build background understanding with off-line instruction, and process new information deeply through extending writing and conversation.

  16. Molecularization in nutritional science: a view from philosophy of science.

    PubMed

    Ströhle, Alexander; Döring, Frank

    2010-10-01

    Over the past decade, a trend toward molecularization, which could be observed in almost all bioscientific disciplines, now appears to have also developed in nutritional science. However, molecular nutrition research gives birth to a series of questions. Therefore, we take a look at the epistemological foundation of (molecular) nutritional science. We (i) analyze the scientific status of (molecular) nutritional science and its position in the canon of other scientific disciplines, (ii) focus on the cognitive aims of nutritional science in general and (iii) on the chances and limits of molecular nutrition research in particular. By taking up the thoughts of an earlier work, we are analyzing (molecular) nutritional science from a strictly realist and emergentist-naturalist perspective. Methodologically, molecular nutrition research is bound to a microreductive research approach. We emphasize, however, that it need not be a radical microreductionism whose scientific reputation is not the best. Instead we favor moderate microreductionism, which combines reduction with integration. As mechanismic explanations are one of the primary aims of factual sciences, we consider it as the task of molecular nutrition research to find profound, i.e. molecular-mechanismic, explanations for the conditions, characteristics and changes of organisms related to the organism-nutrition environment interaction.

  17. [Darwinism, materialism and the revolution of 1848 in Germany. On the interaction of politics and science].

    PubMed

    Junker, T

    1995-01-01

    In recent years, the question of national styles in science has received increasing attention. The different forms of Darwinism that emerged in the nineteenth century provide an impressive example of the role of non-scientific factors in the development of scientific ideas. Although the reception of Darwinian theory has been acknowledged to differ according to distinct national traditions even in Darwin's time, there have been few systematic efforts to understand the underlying causal factors. Usually these explanations have conceived of the relationship of science to its social and political context as a distortion of science by ideology. In contrast to this picture, I attempt to demonstrate here how a scientific research program was situated in a concrete historical context. The German tradition of Darwinism in the nineteenth century will be described as a coalition of political liberalism, materialism, and morphology. Whereas the liberals used Darwinism to give their anti-religious and progressive program a naturalistic foundation, the morphologists appreciated that Darwinian theory allowed them to dispense with the idealistic origins of their research program, and the materialist were provided with a naturalistic explanation of the origin of organic form.

  18. Vikings converge on Mars

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The scientific goals of the Viking mission are described. The science investigations to be carried out are explained and a timetable of planetary operations is outlined. Descriptions of the Viking orbiter and lander systems are presented including explanations of the Viking experimental instrument subsystems.

  19. Linear and nonlinear aspects of the tropical 30-60 day oscillation: A modeling study

    NASA Technical Reports Server (NTRS)

    Stevens, Duane E.; Stephens, Graeme L.

    1991-01-01

    The scientific problem focused on study of the tropical 30-60 day oscillation and explanation for this phenomenon is discussed. The following subject areas are covered: the scientific problem (the importance of low frequency oscillations; suggested mechanisms for developing the tropical 30-60 day oscillation); proposed research and its objective; basic approach to research; and results (satellite data analysis and retrieval development; thermodynamic model of the oscillation; the 5-level GCM).

  20. Munchausen Syndrome by Proxy/Fabricated and Induced Illness: does the diagnosis serve economic vested interests, rather than the interests of children?

    PubMed

    Wrennall, Lynne

    2007-01-01

    The discourse of Munchausen Syndrome by Proxy/Fabricated and Induced Illness posits the widespread incidence of a highly dangerous form of child abuse in which illness and developmental delay in children, is caused by their parents or carers. The discourse has been linked to false allegations of child abuse, hostile adoptions and miscarriages of justice. It has also stimulated concerns that the children's real medical and developmental needs are neglected when their conditions are misdiagnosed as child abuse. This study examines the critical claims that have been levelled against the Munchausen discourse. They provide explanations of the children's problems that compete with the discourse. The claim of the discourse to scientific validity is thereby shown to be questionable. The explanations have been distilled into specific hypotheses, to stimulate further research. The literature from which the hypotheses were derived, identifies problems in the MSbP/FII discourse in five broad areas of science, regarding: the test validity of techniques; construct validity; statistical methods; evidentiary standards and adverse impacts. The main conclusion is that the detailed critical hypotheses, cohere around the central claim that the discourse of Munchausen Syndrome by Proxy/Fabricated and Induced Illness serves economic vested interests, rather than the interests of children. The hypotheses predict adverse health and social outcomes, as a result of the discourse. Consequently, the continued deployment of the discourse would probably be "unsafe and therefore unwise".

  1. Investigating Students' Ideas About Buoyancy and the Influence of Haptic Feedback

    NASA Astrophysics Data System (ADS)

    Minogue, James; Borland, David

    2016-04-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of everyday experiences, a scientifically sound explanation of buoyancy remains difficult to construct for many. It requires the integration of domain-specific knowledge regarding density, fluid, force, gravity, mass, weight, and buoyancy. Prior studies suggest that novices often focus on only one dimension of the sinking and floating phenomenon. Our HES was designed to promote the integration of the subconcepts of density and buoyant forces and stresses the relationship between the object itself and the surrounding fluid. The study employed a randomized pretest-posttest control group research design and a suite of measures including an open-ended prompt and objective content questions to provide insights into the influence of haptic feedback on undergraduate students' thinking about buoyancy. A convenience sample (n = 40) was drawn from a university's population of undergraduate elementary education majors. Two groups were formed from haptic feedback (n = 22) and no haptic feedback (n = 18). Through content analysis, discernible differences were seen in the posttest explanations sinking and floating across treatment groups. Learners that experienced the haptic feedback made more frequent use of "haptically grounded" terms (e.g., mass, gravity, buoyant force, pushing), leading us to begin to build a local theory of language-mediated haptic cognition.

  2. Causal Conceptions in Social Explanation and Moral Evaluation: A Historical Tour.

    PubMed

    Alicke, Mark D; Mandel, David R; Hilton, Denis J; Gerstenberg, Tobias; Lagnado, David A

    2015-11-01

    Understanding the causes of human behavior is essential for advancing one's interests and for coordinating social relations. The scientific study of how people arrive at such understandings or explanations has unfolded in four distinguishable epochs in psychology, each characterized by a different metaphor that researchers have used to represent how people think as they attribute causality and blame to other individuals. The first epoch was guided by an "intuitive scientist" metaphor, which emphasized whether observers perceived behavior to be caused by the unique tendencies of the actor or by common reactions to the requirements of the situation. This metaphor was displaced in the second epoch by an "intuitive lawyer" depiction that focused on the need to hold people responsible for their misdeeds. The third epoch was dominated by theories of counterfactual thinking, which conveyed a "person as reconstructor" approach that emphasized the antecedents and consequences of imagining alternatives to events, especially harmful ones. With the current upsurge in moral psychology, the fourth epoch emphasizes the moral-evaluative aspect of causal judgment, reflected in a "person as moralist" metaphor. By tracing the progression from the person-environment distinction in early attribution theories to present concerns with moral judgment, our goal is to clarify how causal constructs have been used, how they relate to one another, and what unique attributional problems each addresses. © Her Majesty the Queen in Right of Canada, as represented by Defence Research and Development Canada 2015.

  3. The Contribution of the Human Body in Young Children's Explanations About Shadow Formation

    NASA Astrophysics Data System (ADS)

    Herakleioti, Evagelia; Pantidos, Panagiotis

    2016-02-01

    This paper begins with the view that the generation of meaning is a multimodal process. Props, drawings, graphs, gestures, as well as speech and written text are all mediators through which students construct new knowledge. Each semiotic context makes a unique contribution to the conceptualization of scientific entities. The human body, in particular, can function as a factor in both representation and explanation, serving as a link between verbal discourse and setting. Considering this perspective, a body-based activity was designed for kindergarten children, involving the concept of a shadow. The 3-D arrangement of the light from the light source, the human body (the obstacle), and the resulting shadow plays a central role. Using their own bodies as obstacles to the light, the children were able to explore the direction of the light and to change the relative positions of the light source and the obstacle. They formed hypotheses and were able to test them by moving on the stage. This body-centered activity explicitly incorporates the rectilinear movement of light into the process of shadow formation, while also providing learning through direct experience. Positive effects on learning were achieved for the group of children who participated in the activity, while the video analysis showed that many of the children were able to use their bodies to transfer to a different setting the embodied knowledge they acquired. This, according to researchers in the field of science education, is a powerful indication of conceptual change.

  4. Articulating uncertainty as part of scientific argumentation during model-based exoplanet detection tasks

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah

    2015-08-01

    Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of critiquing scientists' discovery encouraged students' articulation of scientific uncertainty sources in different ways.

  5. Sexing the brain: the science and pseudoscience of sex differences.

    PubMed

    Rogers, Lesley J

    2010-06-01

    A recent upsurge in unitary biological explanations for gender differences in behavior (i.e. that they are "hard-wired" in the genetic code), put forward not only in books written for a general audience but also in scientific papers, makes it important to examine the fallacies of these ideas. Such genetic and hormonal explanations of human behavior, formulated with little consideration of the influences of experience, and often without taking experience into account at all, are part of a new wave of genetic explanations for a broad range of human behavior, as explained in the paper. These ideas are far from new; moreover, they are pseudoscientific and are used for political influence under the guise of science. They are a conservative social force that maintains social and educational inequalities between women and men. This paper explains that causal explanations of differences between the sexes are of two completely different types: unitary (genetic determinist) versus interactive explanations. The false reasoning used to support genetic determinist explanations of sex differences in behavior is discussed. To illustrate what biology really tells us about gender differentiation, the paper discusses the interactive roles of genetic, hormonal and environmental influences on the development of gender differences. These interactions are illustrated using two model biological systems (e.g. the intertwined influences of genes, sex hormones and experience on the development of sex differences in behavior in rats, and sex differences in neuronal connections in chickens). There is plenty of scientific evidence to show the complex interactive, and ever changing, influences of experience and genes that take place as an organism develops and throughout its life. Malleability of brain and behavior can be shown clearly using animal models, and the processes involved apply also to the development of brain and behavior in humans. We diminish our understanding of the functions of a host of contributing factors to gender differentiation by parceling out the largest portion of control to the genes. The biology and behavior of humans is dynamic and flexible and need not restrict women to inferior positions in society. 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  6. [Discipline construction is the theme of the development of burn surgery].

    PubMed

    Jia, C Y

    2018-03-20

    Discipline construction is the core element of department development, including discipline structure setting, scale, equipment, medical workers structure, clinical feature and advantage, talent training, teaching level, scientific research level, management system, and cultural construction of department. As leader and engine of discipline construction, directors' ability is an important factor for discipline construction. Clinical characteristic is the basis of discipline construction; innovation actuation is the essence of discipline construction; talents training is the guarantee of discipline construction; scientific research is the wing of discipline construction; cultural construction is the hot spring of discipline construction. Discipline construction is the theme of the development of burn surgery.

  7. Students' Evaluations about Climate Change

    ERIC Educational Resources Information Center

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-01-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to…

  8. A Few Simple Questions about Colour in Art and Science.

    ERIC Educational Resources Information Center

    Harris, John

    1999-01-01

    Presents scientific explanations of primary colors and color mixing, black and white surfaces, the spectrum and the ability of the eye to distinguish color difference, the description of color, and the appearance and optical properties of metals. Contains 16 references. (Author)

  9. 43 CFR 7.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... remains of human life or activities which are at least 100 years of age, and which are of archaeological... of past human behavior, cultural adaptation, and related topics through the application of scientific..., analysis, interpretation and explanation. (2) Material remains means physical evidence of human habitation...

  10. 43 CFR 7.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... remains of human life or activities which are at least 100 years of age, and which are of archaeological... of past human behavior, cultural adaptation, and related topics through the application of scientific..., analysis, interpretation and explanation. (2) Material remains means physical evidence of human habitation...

  11. 25 CFR 700.805 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... remains of human life or activities which are at least 100 years of age, and which are of archaeological... of past human behavior, cultural adaptation, and related topics through the application of scientific..., analysis, interpretation and explanation. (2) Material remains means physical evidence of human habitation...

  12. 25 CFR 700.805 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... remains of human life or activities which are at least 100 years of age, and which are of archaeological... of past human behavior, cultural adaptation, and related topics through the application of scientific..., analysis, interpretation and explanation. (2) Material remains means physical evidence of human habitation...

  13. Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 1)

    ERIC Educational Resources Information Center

    Ulrich, Catherine

    2015-01-01

    This is the first of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. My explanation starts with the formation of arithmetical units, which presage…

  14. Communicating Scientific Research to Non-Specialists

    NASA Astrophysics Data System (ADS)

    Holman, Megan

    Public outreach to effectively communicate current scientific advances is an essential component of the scientific process. The challenge in making this information accessible is forming a clear, accurate, and concise version of the information from a variety of different sources, so that the information is understandable and compelling to non-specialists in the general public. We are preparing a magazine article about planetary system formation. This article will include background information about star formation and different theories and observations of planet formation to provide context. We will then discuss the latest research and theories describing how planetary systems may be forming in different areas of the universe. We demonstrate here the original professional-level scientific work alongside our public-level explanations and original graphics to demonstrate our editorial process.

  15. 'Man up!' Discursive constructions of non-drinkers among UK undergraduates.

    PubMed

    Conroy, Dominic; de Visser, Richard

    2013-11-01

    This study adopted a discursive approach to explore how not drinking alcohol (non-drinking) is construed in relation to masculine identity among 12 undergraduate interviewees. Three prominent discourses were revealed. First, non-drinking was constructed as something strange requiring explanation. Second, contradictory discourses constructed non-drinking as, simultaneously, unsociable yet reflective of greater sociability. Third, non-drinking was constructed as something which has greater negative social consequences for men than for women. Opportunities for challenging traditional gender role expectations are considered.

  16. Measuring scientific reasoning through behavioral analysis in a computer-based problem solving exercise

    NASA Astrophysics Data System (ADS)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    Developing scientific reasoning skills is a common learning objective for general-education science courses. However, effective assessments for such skills typically involve open-ended questions or tasks, which must be hand-scored and may not be usable online. Using computer-based learning environments, reasoning can be assessed automatically by analyzing student actions within the learning environment. We describe such an assessment under development and present pilot results. In our content-neutral instrument, students solve a problem by collecting and interpreting data in a logical, systematic manner. We then infer reasoning skill automatically based on student actions. Specifically, students investigate why Earth has seasons, a scientifically simple but commonly misunderstood topic. Students are given three possible explanations and asked to select a set of locations on a world map from which to collect temperature data. They then explain how the data support or refute each explanation. The best approaches will use locations in both the Northern and Southern hemispheres to argue that the contrasting seasonality of the hemispheres supports only the correct explanation. We administered a pilot version to students at the beginning of an online, introductory science course (n = 223) as an optional extra credit exercise. We were able to categorize students' data collection decisions as more and less logically sound. Students who choose the most logical measurement locations earned higher course grades, but not significantly higher. This result is encouraging, but not definitive. In the future, we will clarify our results in two ways. First, we plan to incorporate more open-ended interactions into the assessment to improve the resolving power of this tool. Second, to avoid relying on course grades, we will independently measure reasoning skill with one of the existing hand-scored assessments (e.g., Critical Thinking Assessment Test) to cross-validate our new assessment.

  17. Myths or theories? Alternative beliefs about HIV and AIDS in South African working class communities.

    PubMed

    Dickinson, David

    2013-09-01

    Despite three decades of public health promotion based on the scientific explanation of HIV/AIDS, alternative explanations of the disease continue to circulate. While these are seen as counter-productive to health education efforts, what is rarely analysed is their plurality and their tenacity. This article analyses the 'AIDS myths' collected by African HIV/AIDS workplace peer educators during an action research project. These beliefs about HIV/AIDS are organised, in this article, around core ideas that form the basis of 'folk' and 'lay theories' of HIV/AIDS. These constitute non-scientific explanations of HIV/AIDS, with folk theories drawing on bodies of knowledge that are independent of HIV/AIDS while lay theories are generated in response to the disease. A categorisation of alternative beliefs about HIV/AIDS is presented which comprises three folk theories - African traditional beliefs, Christian theology, and racial conspiracy - and three lay theories, all focused on avoiding HIV infection. Using this schema, the article describes how the plausibility of these alternative theories of HIV/AIDS lies not in their scientific validity, but in the robustness of the core idea at the heart of each folk or lay theory. Folk and lay theories of HIV/AIDS are also often highly palatable in that they provide hope and comfort in terms of prevention, cure, and the allocation of blame. This study argue that there is coherence and value to these alternative HIV/AIDS beliefs which should not be dismissed as ignorance, idle speculation or simple misunderstandings. A serious engagement with folk and lay theories of HIV/AIDS helps explain the continued circulation of alternative beliefs of HIV/AIDS and the slow uptake of behavioural change messages around the disease.

  18. 'It can do no harm': Body maintenance and modification in alternative medicine acknowledged as a non risk health regimen.

    PubMed

    Pedersen, Inge Kryger

    2013-08-01

    This article proposes the notion of a non-risk health regimen as a mode of recognising more dynamic aspects of risk-awareness in health care, in this case alternative medicine in Denmark. Danish users of alternative medicine are in an ambivalent position. They are responsible citizens who care about their own health. On the other hand, they are doing this by paying out of their own pockets for attending non-authorised treatments with very limited scientific evidence for their effects. This article draws on 138 qualitative in-depth interviews conducted in 2006-07 with 46 Danish users of different forms of session-based alternative medicine. A recurring theme throughout users' accounts is found to be that the treatments 'at least can do no harm'. Many of the users regard pharmaceuticals or surgery as an artificial impediment and a threat to overall health, whereas the energy-stimulating processes initiated by the alternative practitioner are not considered risky. The no harm discourse constitutes a sophisticated lay-explanation that brings together a wide range of explanations within which three themes are identified: responsibility; optimization; desperation. By informing these findings with the concept of reflexive body techniques, it is shown that use of alternative medicine is a process of working on the self and body in a spectrum between transition (i.e., pain relief or self-development) and continuity (i.e. well-being or prevention of illness) and not only a quest for cure. In this process 'non-risk' emerges as a lay explanation in the efforts of users to construct coherent self-narratives as agents in a risk-aware environment. The development of the notion of a non-risk health regimen invites and facilitates further studies on various lay motives within health care in general and contributes to explaining the popularity of alternative medicine in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A new twist to the No Miracles Argument for the success of science.

    PubMed

    Wray, K Brad

    2018-06-01

    J. D. Trout has recently developed a new defense of scientific realism, a new version of the No Miracles Argument. I critically evaluate Trout's novel defense of realism. I argue that Trout's argument for scientific realism and the related explanation for the success of science are self-defeating. In the process of arguing against the traditional realist strategies for explaining the success of science, he inadvertently undermines his own argument. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Reasoning with alternative explanations in physics: The cognitive accessibility rule

    NASA Astrophysics Data System (ADS)

    Heckler, Andrew F.; Bogdan, Abigail M.

    2018-06-01

    A critical component of scientific reasoning is the consideration of alternative explanations. Recognizing that decades of cognitive psychology research have demonstrated that relative cognitive accessibility, or "what comes to mind," strongly affects how people reason in a given context, we articulate a simple "cognitive accessibility rule", namely that alternative explanations are considered less frequently when an explanation with relatively high accessibility is offered first. In a series of four experiments, we test the cognitive accessibility rule in the context of consideration of alternative explanations for six physical scenarios commonly found in introductory physics curricula. First, we administer free recall and recognition tasks to operationally establish and distinguish between the relative accessibility and availability of common explanations for the physical scenarios. Then, we offer either high or low accessibility explanations for the physical scenarios and determine the extent to which students consider alternatives to the given explanations. We find two main results consistent across algebra- and calculus-based university level introductory physics students for multiple answer formats. First, we find evidence that, at least for some contexts, most explanatory factors are cognitively available to students but not cognitively accessible. Second, we empirically verify the cognitive accessibility rule and demonstrate that the rule is strongly predictive, accounting for up to 70% of the variance of the average student consideration of alternative explanations across scenarios. Overall, we find that cognitive accessibility can help to explain biases in the consideration of alternatives in reasoning about simple physical scenarios, and these findings lend support to the growing number of science education studies demonstrating that tasks relevant to science education curricula often involve rapid, automatic, and potentially predictable processes and outcomes.

  1. Using Students' Explanatory Models as Sources of Feedback: Conceptualizing Ocean Acidification and Its Impacts

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, A.; Stapleton, M.; Wolfson, J.

    2017-12-01

    This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.

  2. Spatially Resolved Measurements Of Plasma Density Irregularities In The Ionosphere F Region For Scintillation Studies.

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Russ, S.; Clark, D. C.; Latif, S.; Montalvo, C.

    2016-12-01

    This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.

  3. Communicating Science

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; McCaffrey, M. S.; Kiehl, J. T.; Schmidt, C.

    2010-12-01

    We are in an era of rapidly changing communication media, which is driving a major evolution in the modes of communicating science. In the past, a mainstay of scientific communication in popular media was through science “translators”; science journalists and presenters. These have now nearly disappeared and are being replaced by widespread dissemination through, e.g., the internet, blogs, YouTube and journalists who often have little scientific background and sharp deadlines. Thus, scientists are required to assume increasing responsibility for translating their scientific findings and calibrating their communications to non-technical audiences, a task for which they are often ill prepared, especially when it comes to controversial societal issues such as tobacco, evolution, and most recently climate change (Oreskes and Conway 2010). Such issues have been politicized and hi-jacked by ideological belief systems to such an extent that constructive dialogue is often impossible. Many scientists are excellent communicators, to their peers. But this requires careful attention to detail and logical explanation, open acknowledgement of uncertainties, and dispassionate delivery. These qualities become liabilities when communicating to a non-scientific audience where entertainment, attention grabbing, 15 second sound bites, and self assuredness reign (e.g. Olson 2009). Here we report on a program initiated by NCAR and UCAR to develop new approaches to science communication and to equip present and future scientists with the requisite skills. If we start from a sound scientific finding with general scientific consensus, such as the warming of the planet by greenhouse gases, then the primary emphasis moves from the “science” to the “art” of communication. The art cannot have free reign, however, as there remains a strong requirement for objectivity, honesty, consistency, and above all a resistance to advocating particular policy positions. Targeting audience attitudes and beliefs, which studies such as the Six Americas research help identify, is key to effective science communications (e.g. Leiserowitz, Maibach, et al, 2009). We argue that the impact of the scientific message can be substantially improved by targeting it to these additional factors. This does require an understanding of the audience and a repackaging of the message to different societal groups. Logical and dispassionate presentation of evidence works for a target scientific audience, but major decisions from the policy to the personal level are influenced by many factors including immediacy, economics, culture, community leaders, emotional framing, and ideological filters.

  4. Building up explanations in physics teaching

    NASA Astrophysics Data System (ADS)

    Pessoa de Carvalho, Anna Maria; Paulo, Sao

    2004-02-01

    The purpose of this research project was to study how students in the first years of elementary school (children from 7 to 10 years of age) are initiated into the construction of explanations of physical phenomena in the teaching of science. With this purpose in mind, we organized classes based on the proposition of investigative problems, where children, working in groups, could solve problems by raising and testing their own hypotheses. They would then attempt, by means of general discussion organized by the teacher, to discuss how each problem was solved and why it worked. We videotaped a series of classes in which the students solved 15 different investigative problems. We also analysed the teacher/student interactions that took place (in this paper, we present data on two of these classes). Based on our data we found that students construct their own causal explanations by following a sequence of stages that includes the appearance of novelties. We also discuss how our data relate to the teacher's role in the classroom and to the organization of science teaching at this level.

  5. Learning to Observe "and" Infer

    ERIC Educational Resources Information Center

    Hanuscin, Deborah L.; Park Rogers, Meredith A.

    2008-01-01

    Researchers describe the need for students to have multiple opportunities and social interaction to learn about the differences between observation and inference and their role in developing scientific explanations (Harlen 2001; Simpson 2000). Helping children develop their skills of observation and inference in science while emphasizing the…

  6. A Chemistry Concept Reasoning Test

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Hutchinson, John S.

    2011-01-01

    A Chemistry Concept Reasoning Test was created and validated providing an easy-to-use tool for measuring conceptual understanding and critical scientific thinking of general chemistry models and theories. The test is designed to measure concept understanding comparable to that found in free-response questions requiring explanations over…

  7. Cooking and Science. Ideas in Science. Notes for Teachers.

    ERIC Educational Resources Information Center

    Murphy, Pat, Ed.

    Presented are seven articles (reprinted from "The Exploratorium" magazine) which focus on the scientific explanations for the specific (and oftentimes peculiar) instructions and procedures called for in many recipes. "Baking, Boiling, and Other Hot Topics" (Joel Myerson) discusses different methods of cooking. "The…

  8. 42 CFR 426.400 - Procedure for filing an acceptable complaint concerning a provision (or provisions) of an LCD.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is needed and why the aggrieved party thinks that the provision(s) of the LCD is (are) not valid... scientific evidence that support the complaint and an explanation for why the aggrieved party thinks that...

  9. Creating Science Websites

    ERIC Educational Resources Information Center

    Trimble, Leslie

    2017-01-01

    Building a website allows students to find and evaluate resources, pose and answer scientific questions, and connect class content to real-world problems and possible solutions. Writing explanations for a particular audience, instead of only the teacher, requires students to state concepts clearly, leading to increased comprehension. Finding the…

  10. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    NASA Astrophysics Data System (ADS)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  11. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    NASA Astrophysics Data System (ADS)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  12. Can Science Explain the Human Mind? Intuitive Judgments About the Limits of Science.

    PubMed

    Gottlieb, Sara; Lombrozo, Tania

    2018-01-01

    Can science explain romantic love, morality, and religious belief? We documented intuitive beliefs about the limits of science in explaining the human mind. We considered both epistemic evaluations (concerning whether science could possibly fully explain a given psychological phenomenon) and nonepistemic judgments (concerning whether scientific explanations for a given phenomenon would generate discomfort), and we identified factors that characterize phenomena judged to fall beyond the scope of science. Across six studies, we found that participants were more likely to judge scientific explanations for psychological phenomena to be impossible and uncomfortable when, among other factors, they support first-person, introspective access (e.g., feeling empathetic as opposed to reaching for objects), contribute to making humans exceptional (e.g., appreciating music as opposed to forgetfulness), and involve conscious will (e.g., acting immorally as opposed to having headaches). These judgments about the scope of science have implications for science education, policy, and the public reception of psychological science.

  13. Sante De Sanctis (1862-1935), a forerunner of the 20th century research on sleep and dreaming.

    PubMed

    Foschi, Renato; Lombardo, Giovanni Pietro; Morgese, Giorgia

    2015-01-01

    This article aims to reconstruct the elements of continuity and/or discontinuity in Sante De Sanctis' (1862-1935) contributions in the scientific understanding of sleep and dreaming as compared to the scientific research of his time. An Italian psychologist and psychiatrist, De Sanctis, in his work conducted between the 19th and 20th centuries, has framed the study of dreams using multi-methodology. In addition, De Sanctis experimentally established the correspondence between the deep and desynchronization phases of sleep with respect to dreaming. In this context, De Sanctis' subjects described the periodicity of sleep and consciousness, influencing the explanations of the themes that modern sleep research has, after decades, systematically studied. We demonstrate that De Sanctis' work has been underestimated, and in our opinion, deserves to be reconsidered as a source of the psychophysiological explanation of dreams and sleep. Finally, we present a graphical representation of De Sanctis' psycho- and neurophysiological model of dreaming. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Epistemological Trade-Offs: Accounting for Context When Evaluating Epistemological Sophistication of Student Engagement in Scientific Practices

    ERIC Educational Resources Information Center

    Berland, Leema; Crucet, Kathleen

    2016-01-01

    Science education has long seen an emphasis on supporting students' epistemological understandings of how scientific knowledge is constructed and evaluated with the expectation that these understandings will support the students' own construction and evaluation of scientific knowledge. However, research has shown that this connection does not…

  15. Solar Cookers.

    ERIC Educational Resources Information Center

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  16. David Hull's generalized natural selection as an explanation for scientific change

    NASA Astrophysics Data System (ADS)

    Little, Michelle Yvette

    2001-10-01

    Philosophers of science such as Karl Popper and Thomas Kuhn have employed evolutionary idiom in describing scientific change. In Science as a Process (1988) Hull makes evolutionary theory explanatorily applicable. He modifies key evolutionary terms in order that both biological evolution and scientific change are instances of a general selection process. According to Hull, because of naturally-existing competition for credit among researchers and the professional lineages they constitute, scientists are constrained to cooperate and collaborate. This process entails two important philosophical consequences. First, it allows for a natural justification of why the sciences can provide objective empirical knowledge. Second, appreciating its strength means that a philosophical analysis of scientific change is solidly difficult features to combine. I work on strengthening two weaknesses in Hull's arguments. First, operating in his analysis is an unexplicated notion of ``information'' running parallel to the equally opaque notion of genetic information. My third chapter provides a clear account of ``genetic information'' whose usefulness extends beyond the assistance it can render Hull as a clear concept is needed in biological contexts as well. The fourth and fifth chapters submit evidence of scientific change from radio astronomy. Hull insists on empirical backing for philosophical theses but his own book stands to suffer from selection effects as it offers cases drawn from a single subspecialty in the biological sciences. I found that in the main scientists and the change they propel accords well with Hull's explanation. However, instances of major change reveal credit- and resource-sharing to a degree contrary with what Hull would expect. My conclusion is that the naturalness of competition, instantiated during the course of standardized and relatively ``normal'' scientific research, is not the norm during periods of new research and its uncertain standards of protocol. As such my position is an inversion of the relationship Hull views between cooperation and competition in scientific change. Cooperation is a precondition for competition, rather than the other way around.

  17. Collaborative Group Learning Approaches for Teaching Comparative Planetology

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Slater, T. F.

    2013-12-01

    Modern science education reform documents propose that the teaching of contemporary students should focus on doing science, rather than simply memorizing science. Duschl, Schweingruber, and Shouse (2007) eloquently argue for four science proficiencies for students. Students should: (i) Know, use, and interpret scientific explanations of the natural world; (ii) Generate and evaluate scientific evidence and explanations; (iii) Understand the nature and development of scientific knowledge; and (iv) Participate productively in scientific practices and discourse. In response, scholars with the CAPER Center for Astronomy & Physics Education Research are creating and field-tested two separate instructional approaches. The first of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction. Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to the most challenging part of inquiry - inventing scientifically appropriate questions. Planetary science databases and virtual environments used by students to conduct scientific investigations include the NASA and JPL Solar System Simulator and Eyes on the Solar System as well as the USGS Moon and Mars Global GIS Viewers. The second of these is known widely as a Lecture-Tutorial approach. Lecture-Tutorials are self-contained, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. Extensive evaluation results consistently suggest that both the backwards faded-scaffolding and the Lecture-Tutorials approaches are successful at engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by the Test Of Atronomy STandards (TOAST).

  18. Assessing the place of neurobiological explanations in accounts of a family member's addiction.

    PubMed

    Meurk, Carla; Fraser, Doug; Weier, Megan; Lucke, Jayne; Carter, Adrian; Hall, Wayne

    2016-07-01

    The brain disease model of addiction posits that addiction is a persistent form of neural dysfunction produced by chronic drug use, which makes it difficult for addicted persons to become and remain abstinent. As part of an anticipatory policy analysis of addiction neuroscience, we engaged family members of addicted individuals to assess their views on the place and utility of brain-based accounts of addiction. Fifteen in-depth qualitative interviews were conducted and used to develop a quantitative online survey that was completed by 55 family members. This article reports responses on what addiction is and how it is caused and responses to explanations of the brain disease model of addiction. Participants gave multiple reasons for their family members developing an addiction and there was no single dominant belief about the best way to describe addiction. Participants emphasised the importance of both scientific and non-scientific perspectives on addiction by providing multifactorial explanations of their family members' addictions. Most family members acknowledged that repeated drug use can cause changes to the brain, but they varied in their reactions to labelling addiction a 'brain disease'. They believed that understanding addiction, and how it is caused, could help them support their addicted relative. Participants' beliefs about neurobiological information and the brain disease model of addiction appeared to be driven by empathetic, utilitarian considerations rather than rationalist ones. We discuss the importance of providing information about the nature and causes of addiction. [Meurk C, Fraser D, Weier M, Lucke J, Carter A, Hall W. Assessing the place of neurobiological explanations in accounts of a family member's addiction. Drug Alcohol Rev 2016;35:461-469]. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  19. Constructions for Children: Projects in Design Technology.

    ERIC Educational Resources Information Center

    Eichelberger, Barbara; Larson, Connie

    This book helps children develop the capability and confidence to design, construct, and evaluate working models. Projects in this book are suitable for students in grades K-4, but may be adapted for older students. Step-by-step explanations for each project are meant as guidelines and completion of the project is not limited to a single correct…

  20. Purpose, Passion and Play: Exploring the Construct of Flourishing from the Perspective of School Principals

    ERIC Educational Resources Information Center

    Cherkowski, Sabre; Walker, Keith

    2016-01-01

    Purpose: The purpose of this paper is to identify and elaborate on the construct of flourishing in schools as understood through the stories and explanations provided by a small group of public school principals. Framed within a positive organizational perspective, the specific objectives of this study are: to identify how school leaders…

  1. The Multifaceted Ecology of Language Play in an Elementary School EFL Classroom

    ERIC Educational Resources Information Center

    Kang, Dae-Min

    2017-01-01

    Language play (LP) in second language (L2) classrooms has attracted increasing attention in recent years, but descriptions and explanations of LP construction in English as a foreign language (EFL) settings remain insufficient. This paper reports the discursive processes of LP construction in an elementary school EFL classroom in Korea. I found…

  2. The Future of Adaptive Learning: Does the Crowd Hold the Key?

    ERIC Educational Resources Information Center

    Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay

    2016-01-01

    Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…

  3. Testing Alternative Hypotheses about Animal Behavior.

    ERIC Educational Resources Information Center

    Baker, William P.; Lang, Michael; Lawson, Anton E.

    Research indicates that the effectiveness of instruction in the elementary classroom is enhanced when it incorporates materials that actively engage students in the generation of scientific explanations. To this end, this document describes an exercise that allows Kindergarten students to explore the basic principles of animal behavior in an…

  4. Scapegoating Public Schools

    ERIC Educational Resources Information Center

    Shaker, Paul S.; Heilman, Elizabeth E.

    2008-01-01

    In their popular explanation of No Child Left Behind, journalists and other public voices claim that unruly and inefficient public schools are being brought under the control of effective central authorities by scientific, test-driven accountability. Other popular themes of reform in media include mayoral control of schools, non-educators as…

  5. Understanding Variables & Hypotheses in Scientific Research.

    ERIC Educational Resources Information Center

    Charters, W. W., Jr.

    The hypothesis is the device scientists use to translate questions, theories, or proposed explanations into a form amenable to empirical research. This edition of W. W. Charter's treatise on clear, conceptual definitions and precise operational hypotheses, which was originally developed to assist students in educational policy and management…

  6. Classroom Analysis of Rotating Space Vehicles in 2001: A Space Odyssey.

    ERIC Educational Resources Information Center

    Borgwald, James M.; Schreiner, Serge

    1993-01-01

    This article describes the use of modern science fiction movies as a vehicle to teach scientific principles. The resulting artificial gravity from a spinning space station in movie "2001" is calculated from measurements taken off of the screen. A mathematical explanation is provided. (MVL)

  7. Addressing the Puzzle of Race

    ERIC Educational Resources Information Center

    Coleman, Samuel

    2011-01-01

    Although racial discrimination poses a devastating instrument of oppression, social work texts lack a clear and consistent definition of "race". The solution lies in according race the status of an "actor version" concept, while exploring the origins and variations of race ideas using "scientific observer version" explanations. This distinction…

  8. Explanations, explanations, explanations: how do patients with limited English construct narrative accounts in multi-lingual, multi-ethnic settings, and how can GPs interpret them?

    PubMed

    Moss, Becky; Roberts, Celia

    2005-08-01

    The gap is widening between understanding the subtle ways patients and GPs manage their talk, and superficial discussion of the 'language barrier' among linguistic minority patients. All patients have to explain themselves, not just those for whom English is their first or main language. Patients' explanations reflect how they want the doctor to perceive them as a patient and as a person: they reveal patients' identities. Yet interpretations are not easy when patients' style of talking English is influenced by their first language and cultural background. To explore in detail how patients with limited English and GPs jointly overcome misunderstandings in explanations. Using discourse analysis and conversation analysis, we examine how GPs and their patients with limited English negotiate explanations and collaborate to manage, repair or prevent understanding problems. 31% of patients said English was not their first language. Misunderstandings arise owing to a range of linguistic and cultural factors, including stress and intonation patterns, vocabulary, the way a patient sequences their narrative, and patient and GP pursuing different agendas. When talk itself is the problem, patients' explanations can lead to misunderstandings, which GPs have to repair if they cannot prevent. Careful interpretation by skillful GPs can reveal patients' knowledge, experience and perspective.

  9. Determination of diffusivities in the Rustler Formation from exploratory-shaft construction at the Waste Isolation Pilot Plant in southeastern New Mexico

    USGS Publications Warehouse

    Stevens, Ken; Beyeler, Walt

    1985-01-01

    The construction of an exploratory shaft 12 feet in diameter into the Salado Formation (repository horizon for transuranic waste material) at the Waste Isolation Pilot Plant site in southeastern New Mexico affected water-levels in water-bearing zones above the repository horizon. By reading the construction history of the exploratory shaft, an approximation of construction-generated hydraulic stresses at the shaft was made. The magnitude of the construction-generated stresses was calibrated using the hydrographs from one hydrologic test pad. Whereas flow rates from the Magenta Dolomite and Culebra Dolomite Members in the Rustler Formation into the exploratory shaft were unknown, the ratio of transmissivity to storage (diffusivity) was determined by mathematically simulating the aquifers and the hydrologic stresses with flood-wave-response digital model. These results indicate that the Magenta Dolomite and Culebra Dolomite Members of the Rustler Formation can be modeled as homogeneous, isotropic, and confined water-bearing zones. One simple and consistent explanation, but by no means the only explanation, of the lack of a single diffusivity value in the Culebra aquifer is that the open-hole observation wells at the hydrologic test pads dampen the amplitude of water-level changes. (USGS)

  10. How is the Ideal Gas Law Explanatory?

    NASA Astrophysics Data System (ADS)

    Woody, Andrea I.

    2013-07-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight insights from these investigations that are salient for pedagogical concerns. Perhaps most importantly, this essay argues that science teachers should be mindful of the normative and prescriptive components of explanatory discourse both in the classroom and in science more generally. Giving attention to this dimension of explanation not only will do justice to the nature of explanatory activity in science but also will support the development of robust reasoning skills in science students while helping them understand an important respect in which science is more than a straightforward collection of empirical facts, and consequently, science education involves more than simply learning them.

  11. Source Effects and Plausibility Judgments When Reading about Climate Change

    ERIC Educational Resources Information Center

    Lombardi, Doug; Seyranian, Viviane; Sinatra, Gale M.

    2014-01-01

    Gaps between what scientists and laypeople find plausible may act as a barrier to learning complex and/or controversial socioscientific concepts. For example, individuals may consider scientific explanations that human activities are causing current climate change as implausible. This plausibility judgment may be due-in part-to individuals'…

  12. Learning by Self-Explaining Causal Diagrams in High-School Biology

    ERIC Educational Resources Information Center

    Cho, Young Hoan; Jonassen, David H.

    2012-01-01

    Understanding scientific phenomena requires comprehension and application of the underlying causal relationships that describe those phenomena (Carey 2002). The current study examined the roles of self-explanation and meta-level feedback for understanding causal relationships described in a causal diagram. In this study, 63 Korean high-school…

  13. Probing Year 11 Physics Students' Understandings of Gravitation

    ERIC Educational Resources Information Center

    Moore, Simon; Dawson, Vaille

    2015-01-01

    Science education involves students learning explanations of natural phenomena which are neither obvious nor intuitive. Generally, they have been arrived at and refined by years of dedicated inquiry on the part of large scientific communities. At the same time, these phenomena often concern the objects of everyday experience regarding which…

  14. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  15. The Really Useful Elementary Science Book

    ERIC Educational Resources Information Center

    Bloom, Jeffrey W.

    2010-01-01

    Amongst the challenges that elementary teachers may often face as they introduce their students to science is the need to maintain a solid understanding of the many scientific concepts and details themselves. This indispensible resource, intended for pre- and in-service elementary school teachers, provides concise and comprehensible explanation of…

  16. [Neither Descartes nor Freud? current pain models in psychosomatic medicine].

    PubMed

    Egloff, N; Egle, U T; von Känel, R

    2008-05-14

    Models explaining chronic pain based on the mere presence or absence of peripheral somatic findings or which view pain of psychological origin when there is no somatic explanation, have their shortcomings. Current scientific knowledge calls for distinct pain concepts, which integrate neurobiological and neuropsychological aspects of pain processing.

  17. Design of Automated Guidance to Support Effortful Revisions and Knowledge Integration in Science Learning

    ERIC Educational Resources Information Center

    Tansomboon, Charissa

    2017-01-01

    Students studying complex science topics can benefit from receiving immediate, personalized guidance. Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student…

  18. Epistemology & the Nature of Science: A Classroom Strategy

    ERIC Educational Resources Information Center

    Viney, Mike

    2007-01-01

    Efforts to enact balanced treatment laws represent an attempt to wedge the supernatural into scientific explanations. Current attempts to displace methodological naturalism from science indicate a need to make the nature of science a central theme in our instruction. This article utilizes constructivist listening to introduce students to five…

  19. Virus Hunters: The Science of Applied Research

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn J.

    2006-01-01

    Virology is an integral part of introductory biology courses. Research and experience indicate that, although the topic is a difficult one for many students, the effectiveness of instruction is enhanced when assignments actively engage the students in the generation of scientific explanations. These authors have found that the methods and…

  20. Arguing over Life and Death

    ERIC Educational Resources Information Center

    Nageotte, Nichole; Buck, Gayle; Kirk, Holly

    2018-01-01

    Imagine saving just one of the 23,000 species threatened with extinction. Students studying endangered species in a general life science course faced the decision of which species to save as a summative assignment in a unit on scientific explanation and argumentation. They used the claim, evidence, and reasoning (CER) framework in which students…

  1. Secondary Students' Accounts of Carbon-Transforming Processes before and after Instruction

    ERIC Educational Resources Information Center

    Onyancha, Kennedy M.; Anderson, Charles W.

    2012-01-01

    The purpose of this study is to examine the extent to which more targeted instruction is helpful in eliciting students' scientific explanations of six selected carbon-transforming processes of combustion, cross processes, decomposition, growth, photosynthesis and respiration. We also examined these students' accounts regarding the corresponding…

  2. Problems with IQ Gains: The Huge Vocabulary Gap

    ERIC Educational Resources Information Center

    Flynn, James R.

    2010-01-01

    Despite Kaufman, Raven's Progressive Matrices and the Wechsler subtest Similarities are tests whose gains call for special explanation. The spread of "scientific spectacles" is the key, but its explanatory potential has been exhausted. Three trends force us to look elsewhere: (a) gains on Wechsler subtests such as Picture Arrangement,…

  3. Inference or Observation?

    ERIC Educational Resources Information Center

    Finson, Kevin D.

    2010-01-01

    Learning about what inferences are, and what a good inference is, will help students become more scientifically literate and better understand the nature of science in inquiry. Students in K-4 should be able to give explanations about what they investigate (NSTA 1997) and that includes doing so through inferring. This article provides some tips…

  4. Red Hair, Hot Tempers, and Hasty Assertions.

    ERIC Educational Resources Information Center

    Kelly, Ivan; Ryan, Alan

    1983-01-01

    Explains the use of contingency tables as a tool in assessing variables to determine whether a relationship exists. Develops an example hypothesis step-by-step, noting the scientific processes and attitudes being addressed. Cautions that a large difference, which suggests a relationship, is not explanation since correlation does not guarantee…

  5. Life science teachers' decision making on sex education

    NASA Astrophysics Data System (ADS)

    Gill, Puneet Singh

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and medically accurate information about sex education. Through this research, I hope to extend the discussion about sex education to life science classrooms, where youth can discuss how sex occurs according to scientific concepts and processes. However, science classrooms are caught in a double bind: They maintain positivist methods of teaching science while paying little attention to the nature of science or the nature and function of science that offer explanations of scientific phenomena. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive frameworks that shaped these decisions. I also analyzed the ways that these relationships functioned to produce certain truths, or discourses. The current trends in research concerning SSI are pointing to understanding how controversial issues are framed according to personal philosophies, identities, and teaching approaches. If we can understand science teachers' inner aspects as they relate to sexuality education, we can also understand the deep-seeded motivations behind how these specific issues are being taught. In science classrooms where a discussion of the body is part of the curriculum, specific discourses of the body and sex/sexuality are excluded. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive practices that shaped these decisions.

  6. A toolbox and a record for scientific model development

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.

  7. Science in the liberal arts curriculum - A personal view

    NASA Astrophysics Data System (ADS)

    Young, A.

    1983-12-01

    A discussion concerning the character and importance of the epistemological structure of science notes that contemporary textbooks and traditional courses used in the scientific component of the liberal arts curriculum do not communicate that structure. A course, designated 'The Structure of Scientific Thought', is suggested as a vehicle for communicating to nonscientists the fundamental aspects of scientific inquiry, and the shortcommings of traditional textbooks and courses are illustrated by contrast to its contents. Attention is given to such aspects of the structure of science as empiricism, conceptualization, the relationships among science, truth and reality, theoretical hierarchies, the distinction between explanation and understanding, and the centrality of abstraction and mathematical formalism in science.

  8. [Explaining and understanding in psychiatry].

    PubMed

    Wölk, W

    1998-05-01

    The philosophical debate on explanation and understanding also led to basic methodological reflections in psychiatry. Subsuming one fact under a general law is the characteristic feature of scientific explanations. In this way, deductive conclusions can be achieved with a high degree of objectivity. Hermeneutical understanding makes way for interpretations in front of a given theoretical matrix. On the other hand, sympathetic understanding is a matter of conceiving single-part items as a consequence of other singular aspects (e.g., tracing back an action to an intention). If one understands the growth of knowledge as a rational and critical process, it seems no more justified to insist on exclusive methodologically based positions.

  9. Learning and teaching with a computer scanner

    NASA Astrophysics Data System (ADS)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-09-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like scientists. They will conduct simple experiments, construct different explanations for their observations, test their explanations in new experiments and represent their ideas in multiple ways.

  10. Narrative insight in psychosis: The relationship with spiritual and religious explanatory frameworks.

    PubMed

    Marriott, Michael R; Thompson, Andrew R; Cockshutt, Graham; Rowse, Georgina

    2018-03-25

    When considering psychosis, the concept of narrative insight has been offered as an alternative to clinical insight in determining individuals' responses to their difficulties, as it allows for a more holistic and person-centred framework to be embraced within professional practice. This study aims to explore the validity of the narrative insight construct within a group of people who have experienced psychosis. Inductive qualitative methods were used to explore how eight participants utilized spiritual or religious explanatory frameworks for their experiences of psychosis and to consider these in relation to the construct of narrative insight. Semi-structured interviews were undertaken with individuals who identified themselves as interested in spiritual or religious ideas and whose self-reported experiences which were identified as akin to psychosis by experienced academic clinicians. Transcriptions from these interviews were subject to interpretative phenomenological analysis within a broader research question; a selection of themes and data from the resultant phenomenological structure are explored here for their relevance to narrative insight. Participants discussed spiritual and biological explanations for their experiences and were able to hold alternative potential explanations alongside each other. They were reflective regarding the origins of their explanations and would describe a process of testing and proof in relation to them. These findings suggest that the narrative insight construct has the potential to be a valid approach to understanding experiences of psychosis, and challenge the dominance of the clinical insight construct within clinical practice. Clinicians should value the explanatory framework for experiences which are provided by individuals experiencing psychosis, and encourage them to develop a framework which is coherent to their own world view rather than predominantly pursuing a biomedical explanation. Assessments of psychosis should be adapted to include an understanding of the cohesiveness of the individual's explanatory framework and personal value to them, with a reduced focus on their acceptance of biomedical models of 'illness'. Care and care research for individuals experiencing psychosis should consider the value of narrative insight within future developments. © 2018 The Authors. Psychology and Psychotherapy: Theory, Research and Practice published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  11. Assessing Learning Progression of Energy Concepts across Middle School Grades: The Knowledge Integration Perspective

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Liu, Ou Lydia

    2010-01-01

    We use a construct-based assessment approach to measure learning progression of energy concepts across physical, life, and earth science contexts in middle school grades. We model the knowledge integration construct in six levels in terms of the numbers of ideas and links used in student-generated explanations. For this study, we selected 10 items…

  12. [Talking about the discipline construction and development of burn from five ideas].

    PubMed

    Guo, G H

    2018-03-20

    Discipline construction is an important aspect of hospital modernization management and construction. The level of medical treatment, education, and scientific research could be assured and improved through discipline construction, which could speed up the talent training, promote science and technology innovation, and realize the sustainable development of hospital. At present, most of the hospital management models adopt the two ranks of the hospital and department. The manager of a department must grasp medical treatment, education, scientific research, and discipline construction steadily. The author talks about the discipline construction and development of burn from " five ideas" for the readers.

  13. Elaboration of technology organizational models of constructing high-rise buildings in plans of construction organization

    NASA Astrophysics Data System (ADS)

    Osipenkova, Irina; Simankina, Tatyana; Syrygina, Taisiia; Lukinov, Vitaliy

    2018-03-01

    This article represents features of the elaboration of technology organizational models of high-rise building construction in technology organizational documentation on the example of the plan of construction organization. Some examples of enhancing the effectiveness of high-rise building construction based on developments of several options of the organizational and technological plan are examined. Qualitative technology organizational documentation allows to increase the competitiveness of construction companies and provides prime cost of construction and assembly works reductions. Emphasis is placed on the necessity to comply with the principle of comprehensiveness of engineering, scientific and research works, development activities and scientific and technical support.

  14. A science confidence gap: Education, trust in scientific methods, and trust in scientific institutions in the United States, 2014.

    PubMed

    Achterberg, Peter; de Koster, Willem; van der Waal, Jeroen

    2017-08-01

    Following up on suggestions that attitudes toward science are multi-dimensional, we analyze nationally representative survey data collected in the United States in 2014 ( N = 2006), and demonstrate the existence of a science confidence gap: some people place great trust in scientific methods and principles, but simultaneously distrust scientific institutions. This science confidence gap is strongly associated with level of education: it is larger among the less educated than among the more educated. We investigate explanations for these educational differences. Whereas hypotheses deduced from reflexive-modernization theory do not pass the test, those derived from theorizing on the role of anomie are corroborated. The less educated are more anomic (they have more modernity-induced cultural discontents), which not only underlies their distrust in scientific institutions, but also fuels their trust in scientific methods and principles. This explains why this science confidence gap is most pronounced among the less educated.

  15. Drawing the battle lines: tracing the "Science War" in the construction of the chloroform and human health risks debate.

    PubMed

    Driedger, S Michelle; Eyles, John

    2003-04-01

    The United States Environmental Protection Agency (US EPA) and the Chlorine Chemistry Council, the Chemical Manufacturers Association, and others have been embroiled in a legal challenge concerning the US EPA's "reversal" regarding the scientific assessment of chloroform's carcinogenicity. This issue arose during the US EPA's November 1998 promulgation of a Maximum Contaminant Level Goal for chloroform in the Stage 1 Final Rules for Disinfectants and Disinfection Byproducts in drinking water. In this paper we adopt a claimsmaking approach: to trace the development and outcome of the chloroform court challenge in the USA, to examine the construction of scientific knowledge claims concerning chloroform risk assessments, and to investigate how different interpretations of scientific uncertainties regarding the evidence are contested when such uncertainties are brought into a regulatory and judicial arena. This "science war" (Chlorine Chemistry Council and others v. US EPA and others) took place in the US Court of Appeals for the District of Columbia Circuit. The scientific "authority" in the construction of scientific claims in this dispute is based on the International Life Sciences Institute expert panel report on chloroform. Examining these science wars is important because they signal critical shifts in science policy agendas. The regulatory outcome of the chloroform science war in the United States can have profound implications for the construction and acceptance of scientific claims regarding drinking water in other jurisdictions (e.g., Canada). In this challenge, we argue that the actors involved in the dispute constructed "boundaries" around accepted and credible scientific claims.

  16. Battling demons with medical authority: werewolves, physicians and rationalization.

    PubMed

    Metzger, Nadine

    2013-09-01

    Werewolves and physicians experienced their closest contact in the context of early modern witch and werewolf trials. For medical critics of the trials, melancholic diseases served as reference points for medical explanations of both individual cases and werewolf beliefs in general. This paper attempts to construct a conceptual history of werewolf beliefs and their respective medical responses. After differentiating the relevant terms, pre-modern werewolf concepts and medical lycanthropy are introduced. The early modern controversy between medical and demonological explanations forms the main part of this study. The history of werewolves and their medical explanations is then traced through to present times. An important point of discussion is to what extent the physicians' engagements with werewolves can be characterized as rationalization.

  17. Battling demons with medical authority: werewolves, physicians and rationalization

    PubMed Central

    Metzger, Nadine

    2014-01-01

    Werewolves and physicians experienced their closest contact in the context of early modern witch and werewolf trials. For medical critics of the trials, melancholic diseases served as reference points for medical explanations of both individual cases and werewolf beliefs in general. This paper attempts to construct a conceptual history of werewolf beliefs and their respective medical responses. After differentiating the relevant terms, pre-modern werewolf concepts and medical lycanthropy are introduced. The early modern controversy between medical and demonological explanations forms the main part of this study. The history of werewolves and their medical explanations is then traced through to present times. An important point of discussion is to what extent the physicians’ engagements with werewolves can be characterized as rationalization. PMID:24573449

  18. Making KYTC geotechnical reports available on the web.

    DOT National Transportation Integrated Search

    2006-06-01

    The Geotechnical Branch of the Kentucky Transportation Cabinet (KYTC) prepares technical reports that contain drawings, explanations, and recommendations for road and structure construction projects in Kentucky. These design reports, once complete, a...

  19. Negotiating boundaries: Encyclopédie, romanticism, and the construction of science.

    PubMed

    Fetz, Marcelo

    2017-01-01

    Natural history in the eighteenth and nineteenth centuries has been widely debated in the field of the social sciences. This paper explores the social negotiation of boundaries in the Encyclopédie and romantic science. Highlighting the importance of imagination and aesthetics to the scientific realms, we perceive a different comprehension of the scientific field through the empirical study of how scientific demarcation is constructed. Works by Erasmus Darwin, Goethe, and Humboldt illustrate how reliable science was performed through atypical scientific methods. After pointing out the links between literary, artistic, and scientific works, we then debate a series of changes that framed the scientific imagery of romantic and encyclopaedic sciences.

  20. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  1. Explanation and Quantification in Educational Research: The Arguments of Critical and Scientific Realism

    ERIC Educational Resources Information Center

    Nash, Roy

    2005-01-01

    The influence of Bhaskar's critical realism has become increasingly evident in the debate on the nature of educational research. This philosophy, dedicated to the overthrow of positivist doctrines, in particular those of empiricism, nominalism, and causation as constant conjunction, is the foundation of contemporary proposals for new perspectives…

  2. 32 CFR Appendix A to Part 197 - Explanation of Freedom of Information Act (5 U.S.C. 552) Exemptions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of a right to a fair trial or impartial adjudication; could reasonably be expected to constitute an... information; (c) Intelligence activities (including special activities), intelligence sources or methods, or...; (e) Scientific, technological, or economic matters relating to the national security, which includes...

  3. The Beaks of Finches & the Tool Analogy: Use with Care

    ERIC Educational Resources Information Center

    Milne, Catherine

    2008-01-01

    Analogies are an integral feature of scientific theories, like evolution. They are developed to support explanations, proposed on the basis of evidence collected from experimental studies, field studies, and other observational studies. They map a known source or process to an unknown or target with the goal of helping educators understand the…

  4. The Inter-Relationship of Science and Religion: A Typology of Engagement

    ERIC Educational Resources Information Center

    Hanley, Pam; Bennett, Judith; Ratcliffe, Mary

    2014-01-01

    This study explores whether the religious background of students affects their opinions about and attitudes to engaging with scientific explanations of the origins of the universe and of life. The study took place in four English secondary schools representing three different contexts (Christian faith-based; non-faith with majority Muslim…

  5. Designing Guidance for Interpreting Dynamic Visualizations: Generating versus Reading Explanations

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Linn, Marcia C.

    2014-01-01

    We compared designs of guidance to support students while interacting with dynamic visualizations of complex scientific phenomena in inquiry instruction. Three hundred thirty-two 7th-grade students were randomly assigned to either a reading or a generating condition and completed a web-based inquiry unit focusing on energy concepts in…

  6. Norms Inform Mental State Ascriptions: A Rational Explanation for the Side-Effect Effect

    ERIC Educational Resources Information Center

    Uttich, Kevin; Lombrozo, Tania

    2010-01-01

    Theory of mind, the capacity to understand and ascribe mental states, has traditionally been conceptualized as analogous to a scientific theory. However, recent work in philosophy and psychology has documented a "side-effect effect" suggesting that moral evaluations influence mental state ascriptions, and in particular whether a behavior is…

  7. Cyberbullying from the Perspective of Choice Theory

    ERIC Educational Resources Information Center

    Tanrikulu, Taskin

    2014-01-01

    This study aims to propose a theoretical explanation for the cyberbullying problem, which is the use of cyber communication tools to endanger other people. In recent years, the cyberbullying problem, which is widespread especially among the young, has been the subject of scientific studies. These studies have mostly focused on the issues of causes…

  8. Social Meanings of Disease: Changing Concepts of Addiction in the Twentieth Century.

    ERIC Educational Resources Information Center

    Acker, Caroline J.

    1991-01-01

    Compares scientific explanations of addiction of the 1920s and 1930s to today's. Details the history of addiction testing and research, the development of criteria for defining addiction, and both physiological and psychological definitions of addiction. Suggests that the changing status of addiction as a disease reflects different meanings…

  9. A Manifesto on Psychology as Idiographic Science: Bringing the Person Back into Scientific Psychology, This Time Forever

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.

    2004-01-01

    Psychology is focused on variation between cases (interindividual variation). Results thus obtained are considered to be generalizable to the understanding and explanation of variation within single cases (intraindividual variation). It is indicated, however, that the direct consequences of the classical ergodic theorems for psychology and…

  10. Jump-Start Your Middle School Students' Background Knowledge and Vocabulary Skills

    ERIC Educational Resources Information Center

    Ward, Elizabeth; Williams-Rossi, Dara

    2012-01-01

    One of the most challenging tasks in increasingly diverse classrooms is helping students develop the "knowledge and language of science to communicate scientific explanations and ideas" (NRC 1996, p. 144). In this article, the authors share one of their favorite methods for incorporating and reinforcing science vocabulary instruction in…

  11. Darwin's Difficulties and Students' Struggles with Trait Loss: Cognitive-Historical Parallelisms in Evolutionary Explanation

    ERIC Educational Resources Information Center

    Ha, Minsu; Nehm, Ross H.

    2014-01-01

    Although historical changes in scientific ideas sometimes display striking similarities with students' conceptual progressions, some scholars have cautioned that such similarities lack meaningful commonalities. In the history of evolution, while Darwin and his contemporaries often used natural selection to explain evolutionary trait gain or…

  12. Essential Shift: Scientific Revolution in the 20th Century

    DTIC Science & Technology

    1993-05-17

    be one of the most successful in the history of science . Its explanation of experimental results and observations was comparable to that with which...Newton’s laws of force and gravity had achieved three centuries before.5 3 Bohr wrote, "in the history of science there are few events which, in the

  13. Learning to Understand the Forms of Causality Implicit in Scientifically Accepted Explanations

    ERIC Educational Resources Information Center

    Grotzer, Tina A.

    2003-01-01

    Considerable research illuminates the development of causal understanding. However, the research base is hardly a coherent whole. Some is based in research on children's understanding of particular science concepts. Some grows out of social psychology and considers how one attributes intentions and behaviors. Some comes from the developmental…

  14. The Use of Video Technology in Science Teaching: A Vehicle for Alternative Assessment.

    ERIC Educational Resources Information Center

    Lawrence, Michael

    1994-01-01

    A secondary physics teacher used video assessments in science as an economical assessment form that required students to use the scientific method, explanation, feedback, critical thinking, and metacognition. When using video assessment in optics, he found his scoring was not biased and that students improved their performance following video…

  15. Science 101: Q--What Is the Physics behind Simple Machines?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Bill Robertson thinks that questioning the physics behind simple machines is a great idea because when he encounters the subject of simple machines in textbooks, activities, and classrooms, he seldom encounters, a scientific explanation of how they work. Instead, what one often sees is a discussion of load, effort, fulcrum, actual mechanical…

  16. Spatial Thinking as the Dimension of Progress in an Astronomy Learning Progression

    ERIC Educational Resources Information Center

    Plummer, Julia D.

    2014-01-01

    The big idea of "celestial motion", observational astronomy phenomena explained by the relative position and motion of objects in the solar system and beyond, is central to astronomy in primary and secondary education. In this paper, I argue that students' progress in developing productive, scientific explanations for this class of…

  17. The TRIPSE: A Process-Oriented Exam for Large Undergraduate Classes

    ERIC Educational Resources Information Center

    Nastos, Stash; Rangachari, P. K.

    2013-01-01

    The TRIPSE (tri-partite problem solving exercise), a process-oriented exam that mimics the scientific process, was used previously in small classes (15-25). Provided limited data, students frame explanations and design experimental tests that they later revise with additional information. Our 6-year experience using it with larger numbers…

  18. The Heat Is On! Using Particle Models to Change Students' Conceptions of Heat and Temperature

    ERIC Educational Resources Information Center

    Hitt, Austin Manning; Townsend, J. Scott

    2015-01-01

    Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…

  19. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    ERIC Educational Resources Information Center

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  20. Engaging Students in the Scientific Practices of Explanation and Argumentation

    ERIC Educational Resources Information Center

    Reiser, Brian J.; Berland, Leema K.; Kenyon, Lisa

    2012-01-01

    "A Framework for K-12 Science Education" identifies eight science and engineering practices for K-12 classrooms. These practices, along with core ideas and crosscutting concepts, define the nation's learning goals for science. An important advance from earlier standards (AAAS 1993, NRC 1996), these practices are clearly identified "not" as…

  1. Developing a Scientific Argument

    ERIC Educational Resources Information Center

    Fulton, Lori; Poeltler, Emily

    2013-01-01

    Arguing an idea from evidence is not an easy task. Lori Fulton and Emily Poeltler found that their second grade students could make claims about an idea and sometimes provide some sort of an explanation, but they struggled to support their claims with evidence. They noticed that as students were talking and writing about science, they were focused…

  2. Intentions and Actions in Molecular Self-Assembly: Perspectives on Students' Language Use

    ERIC Educational Resources Information Center

    Höst, Gunnar E.; Anward, Jan

    2017-01-01

    Learning to talk science is an important aspect of learning to do science. Given that scientists' language frequently includes intentions and purposes in explanations of unobservable objects and events, teachers must interpret whether learners' use of such language reflects a scientific understanding or inaccurate anthropomorphism and teleology.…

  3. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Treesearch

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  4. "Slow Science": Building Scientific Concepts in Physics in High School

    ERIC Educational Resources Information Center

    Bigozzi, Lucia; Tarchi, Christian; Falsini, Paola; Fiorentini, Carlo

    2014-01-01

    In this study, a progressive-learning approach to physics, based on knowledge-building pedagogy, was compared to a content-centered approach in which explanations, experiments, and discussions are centered on the transmission of knowledge. Forty-six students attending the first year of high school participated in this study over a whole school…

  5. Planning Science Instruction for Critical Thinking: Two Urban Elementary Teachers' Responses to a State Science Assessment

    ERIC Educational Resources Information Center

    Mangiante, Elaine Silva

    2013-01-01

    Science education reform standards have shifted focus from exploration and experimentation to evidence-based explanation and argumentation to prepare students with knowledge for a changing workforce and critical thinking skills to evaluate issues requiring increasing scientific literacy. However, in urban schools serving poor, diverse populations,…

  6. Intelligence and Scientific-Creative Thinking: Their Convergence in the Explanation of Students' Academic Performance

    ERIC Educational Resources Information Center

    Ruiz, Maria Jose; Bermejo, Rosario; Ferrando, Mercedes; Prieto, Maria Dolores; Sainz, Marta

    2014-01-01

    Introduction: Academic performance is usually generally explained by student's intelligence, although other factors such as personality and motivation also account for it. Factors associated with a more complex thought process in adolescence are also beginning to gain importance in the prediction of academic performance. Among these forms of…

  7. Looking through Flynn's Rose-Colored Scientific Spectacles

    ERIC Educational Resources Information Center

    Kaufman, Alan S.

    2010-01-01

    In the first article of this special issue of the "Journal of Psychoeducational Assessment", I critiqued Flynn's theoretical explanation of the Flynn effect because he depended too heavily on an apparently huge generational gain on the WISC Similarities subtest; I claimed he was comparing apples with oranges because that subtest changed too much…

  8. Health Promotion and Preventive Contents Performed During Reproduction System Learning; Observation in Senior High School

    NASA Astrophysics Data System (ADS)

    Yuniarti, E.; Fadilah, M.; Darussyamsu, R.; Nurhayati, N.

    2018-04-01

    The higher numbers of cases around sexual behavioral deviance on adolescence are significantly related to their knowledge level about the health of the reproduction system. Thus, teenagers, especially school-aged, have to receive the complete information which emphasizes on recognize promotion and prevention knowledge. This article aims to describe information about health promotion and prevention, which delivered by the teacher in Senior High School learning process on topic reproduction system. The data gained through focused observation using observation sheet and camera recorder. Further, data analyzed descriptively. The result show promotion and preventive approach have been inadequately presented. There are two reasons. Firstly, the promotion and preventive value are not technically requested in the final assessment. The second, the explanation tend to refer to consequences existed in the term of the social and religious norm rather than a scientific basis. It can be concluded suggestion to promote health reproduction and prevent the risk of health reproduction need to be implemented more practice with a scientific explanation which is included in a specific program for adolescence reproductive health improvement.

  9. The Pythagorean table of opposites, symbolic classification, and Aristotle.

    PubMed

    Goldin, Owen

    2015-06-01

    At Metaphysics A 5 986a22-b2, Aristotle refers to a Pythagorean table, with two columns of paired opposites. I argue that 1) although Burkert and Zhmud have argued otherwise, there is sufficient textual evidence to indicate that the table, or one much like it, is indeed of Pythagorean origin; 2) research in structural anthropology indicates that the tables are a formalization of arrays of "symbolic classification" which express a pre-scientific world view with social and ethical implications, according to which the presence of a principle on one column of the table will carry with it another principle within the same column; 3) a close analysis of Aristotle's arguments shows that he thought that the table expresses real causal relationships; and 4) Aristotle faults the table of opposites with positing its principles as having universal application and with not distinguishing between those principles that are causally prior and those that are posterior. Aristotle's account of scientific explanation and his own explanations that he developed in accordance with this account are in part the result of his critical encounter with this prescientific Pythagorean table.

  10. When stereotypes become 'scientific' statements: dealing with gender issues.

    PubMed

    Madureira, Ana Flávia do Amaral

    2009-06-01

    The theoretical analysis by Watzlawik (Integrative Psychological & Behavioral Science 2009) demonstrates the scientific fragility of the constructs of masculinity and femininity based on the oversimplification and overlapping between three levels of analysis: group differences, inter-individual differences and intra-individual differences. Watzlawik presents fresh and relevant contributions in terms of methodological issues, especially about the construction of scientific generalizations. Here I focus on issues related to the transformation of stereotypes in statements about gender differences that claim to be 'scientific'--outlining the socio-political agendas of such statements.

  11. Evolutionary tree design: An exploratory study of the influence of linear versus branching format on visitors' interpretation and understanding across age groups

    NASA Astrophysics Data System (ADS)

    MacDonald, Teresa Elise

    This exploratory study sought to investigate the influence of tree graphic design---specifically linear versus branching depictions of taxa---on visitors in three different age groups (aged 11-13, 14-18, adults) interpretation and understanding using a multiple-case study strategy. The findings from this research indicate that linear and branched depictions elicit qualitatively different narratives and explanations about the relationships between the taxa in all age groups. Branched tree graphics support scientifically appropriate explanations of evolutionary relationships, i.e. that taxa are related via shared or common ancestry; while linear representations reinforce intuitive interpretations of ancestor-descendant or anagenic relationships. Furthermore, differences in the language used for linear and branched trees suggests that there is a spectrum within an analogy of developmental change that is thought to serve as a transitional concept between intuitive and scientific understanding--with 'evolved from' for branched depictions of taxa representing a shift towards an interpretation of shared ancestry rather than an individual transformation from one thing into another. In addition, branched graphics appear to support the correct reading and interpretation of shared or common ancestry in tree diagrams. Mixed reasoning was common and overall reasoning patterns were broadly similar among participants in all age groups, however, older youth (aged 14 to 18) and adults often provided more detail in their explanations and sometimes included references to evolutionary ideas such as variation, inheritance and selection.

  12. The rise of a science in the early twentieth century: the forgotten voice of Gualtiero Sarfatti and the first "social psychology" volumes in Italy.

    PubMed

    Sensales, Gilda; Dal Secco, Alessandra

    2014-02-01

    Establishing social psychology as a distinct field of study has been the object of heated debate over the first decades of the 20th century. Entrenched in different theoretical traditions, such as philosophy, sociology, psychology, and criminology, the development of the conceptual boundaries of social psychology as an autonomous science was the result of a historic effort. Resulting from a negotiation process between competing stances, some voices relevant to the identity construction of social psychology have been lost over time. Within the framework of a "polycentric" historical perspective valorizing local histories, the present study aims to scrutinize those early voices, which were later marginalized. To this scope, we conducted a narrative analysis on the first volumes explicitly naming social psychology in their titles and identified the main themes, conceptual frameworks, and scientific advancements. The analysis illustrates the work of Gualtiero Sarfatti and articulates his forgotten contribution to drawing social psychology as a distinct discipline, built on the scientific method and positioned within the psychological sociocentric tradition. Our analysis reveals the leading role of Sarfatti in the disciplinary foundation of social psychology as a psychological science based on the concept of social psyche. Yet despite the fact his contribution was influential in the scholarly community of his time, our work highlights how his voice vanished from the subsequent disciplinary developments to date, and suggests some explanations behind this neglect.

  13. Deoxyribonucleic Acid and Other Words Students Avoid Speaking Aloud: Evaluating the Role of Pronunciation on Participation in Secondary School Science Classroom Conversations

    NASA Astrophysics Data System (ADS)

    Beck, Stacie Elizabeth

    Student's verbal participation in science classrooms is an essential element in building the skills necessary for proficiency in scientific literacy and discourse. The myriad of new, multisyllabic vocabulary terms introduced in one year of secondary school biology instruction can overwhelm students and further impede the self-efficacy needed for concise constructions of scientific explanations and arguments. Factors inhibiting students' inclination to answer questions, share ideas and respond to peers in biology classrooms include confidence and self-perceived competence in appropriately speaking the language of science. Providing students with explicit, engaging instruction in methods to develop vocabulary for use in expressing conclusions is critical for expanding comprehension of science concepts. This study fused the recommended strategies for engaging vocabulary instruction with linguistic practices for teaching pronunciation to examine the relationship between a student's ability to pronounce challenging bio-terminology and their propensity to speak in teacher-led, guided classroom discussions. Interviews, surveys, and measurements quantifying and qualifying students' participation in class discussions before and after explicit instruction in pronunciation were used to evaluate the potential of this strategy as an appropriate tool for increasing students' self-efficacy and willingness to engage in biology classroom conversations. The findings of this study showed a significant increase in student verbal participation in classroom discussions after explicit instruction in pronunciation combined with vocabulary literacy strategies. This research also showed an increase in the use of vocabulary words in student comments after the intervention.

  14. The Effect of Scaffolding Strategies for Inscriptions and Argumentation in a Science Cyberlearning Environment

    NASA Astrophysics Data System (ADS)

    Kern, Cindy L.; Crippen, Kent J.

    2017-02-01

    Scientific inscriptions—graphs, diagrams, and data—and argumentation are integral to learning and communicating science and are common elements in cyberlearning environments—those involving the use of networked learning technologies. However, previous research has indicated that learners struggle to use inscriptions and when they engage in argumentation, the learning of science content becomes secondary to the learning of argumentation skills. The purpose of this study was to evaluate two scaffolding strategies for these elements in a secondary school context: (1) self- explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific arguments. Participants consisted of ninth and tenth grade students (age 13-16 years; N = 245) enrolled in state-mandated biology courses taught by four different teachers. A three-factor mixed model analysis of variance with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre-, post-, delayed posttest) was used to evaluate the effects on the acquisition and retention of domain-specific content knowledge. Results indicated that neither strategy influenced the acquisition and retention of science content in a positive (i.e., learning) or negative (i.e., expertise reversal effect) way. Thus, general prompts were as effective as either of the scaffolding conditions. These unanticipated results suggest that additional research is warranted for learning scaffolds with pre-college populations where the gains were established with college-aged participants.

  15. The Explanation of the Pauli Exclusion Principle

    NASA Astrophysics Data System (ADS)

    Vasiliev, Victor; Moon, Russell

    2006-11-01

    Using the principles of the Vortex Theory, the construction of the alpha particle, and the theory that the nucleus is constructed out of alpha particles, the explanation of the Pauli Exclusion Principle is explained. If protons and electrons are connected to each other via fourth dimensional vortices, they spin in opposite directions. Since the alpha particle possesses two protons possessing opposite spins, their electrons also possess opposite spins. With a nucleus constructed out of alpha particles, all paired electrons in shells and sub-shells will spin in opposite directions. 1. Victor Vasiliev, Russell Moon. Controversy surrounding the Experiment conducted to prove the Vortex Theory, 2006 8th Annual Meeting of the Northwest Section, May 18-20, 2006, University of Puget Sound, Tacoma, Washington, USA, Abstract C1.00009. 2. Russell Moon. To the Photon Acceleration Effect, 2006 Texas Section APS/AAPT/SPS Joint Spring Meeting, Thursday--Saturday, March 23--25, 2006; San Angelo, Texas, Abstract: POS.00008. 3. Russell Moon, Fabian Calvo, Victor Vasiliev. The Neutral Pentaquark, 2006 APS March Meeting, March 13-17, Baltimore, MD, USA, Session Q1: GENERAL POSTER SESSION, Abstract Q1.00147.

  16. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials, in which students use real-time-data (RTD) to generate explanations about important ocean phenomena. We will discuss our use of an Instructional Design Model (Gauge 1987) to: 1) assess our audience need, 2) develop an effective collaborative design team, 3) develop and evaluate the instructional product, and 4) implement professional development designed to familiarize teachers with oceans sciences as a context for scientific inquiry.

  17. LETTERS AND COMMENTS: Comment on 'The effects of students' reasoning abilities on conceptual understanding and problem-solving skills in introductory mechanics'

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, Jeffrey A.; Savinainen, Antti; Steinert, Jeffrey J.

    2008-09-01

    In a recent article, Ates and Cataloglu (2007 Eur. J. Phys. 28 1161-71), in analysing results for a course in introductory mechanics for prospective science teachers, found no statistically significant correlation between students' pre-instruction scores on the Lawson classroom test of scientific reasoning ability (CTSR) and post-instruction scores on the force concept inventory (FCI). As a possible explanation, the authors suggest that the FCI does not probe for skills required to determine reasoning abilities. Our previously published research directly contradicts the authors' finding. We summarize our research and present a likely explanation for their observation of no correlation.

  18. Selective effects of explanation on learning during early childhood.

    PubMed

    Legare, Cristine H; Lombrozo, Tania

    2014-10-01

    Two studies examined the specificity of effects of explanation on learning by prompting 3- to 6-year-old children to explain a mechanical toy and comparing what they learned about the toy's causal and non-causal properties with children who only observed the toy, both with and without accompanying verbalization. In Study 1, children were experimentally assigned to either explain or observe the mechanical toy. In Study 2, children were classified according to whether the content of their response to an undirected prompt involved explanation. Dependent measures included whether children understood the toy's functional-mechanical relationships, remembered perceptual features of the toy, effectively reconstructed the toy, and (for Study 2) generalized the function of the toy when constructing a new one. Results demonstrate that across age groups, explanation promotes causal learning and generalization but does not improve (and in younger children can even impair) memory for causally irrelevant perceptual details. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  20. Poster Presentations: Conceptualizing, Constructing and Critiquing

    ERIC Educational Resources Information Center

    Newbrey, Michael G.; Baltezore, Joan M.

    2006-01-01

    Posters are commonly used as tools for disseminating information at scientific meetings, but many students lack an understanding of "good" poster characteristics. We present a set of characteristics for use in constructing posters for scientific meetings and classroom presentations along with tips on critiquing posters to enhance their…

  1. Constructing and Critiquing Arguments

    ERIC Educational Resources Information Center

    Chen, Ying-Chih; Park, Soonhye; Hand, Brian

    2013-01-01

    This article reports that as the need for students to be able to construct and critique scientific argumentation as emphasized in "A Framework for K-12 Science Education" (National Research Council 2012), teachers are wondering how to support students in this process. Scientific argumentation is defined as the interplay between…

  2. Zilsel's Thesis, Maritime Culture, and Iberian Science in Early Modern Europe.

    PubMed

    Leitão, Henrique; Sánchez, Antonio

    2017-01-01

    Zilsel's thesis on the artisanal origins of modern science remains one of the most original proposals about the emergence of scientific modernity. We propose to inspect the scientific developments in Iberia in the early modern period using Zilsel's ideas as a guideline. Our purpose is to show that his ideas illuminate the situation in Iberia but also that the Iberian case is a remarkable illustration of Zilsel's thesis. Furthermore, we argue that Zilsel's thesis is essentially a sociological explanation that cannot be applied to isolated cases; its use implies global events that involve extended societies over large periods of time.

  3. The first scientific description of aurora borealis: the 10 September 1580 event in Transylvania, recorded by Marcello Squarcialupi

    NASA Astrophysics Data System (ADS)

    Kázmér, Miklós; Timár, Gábor

    2016-12-01

    The first scientific treatise on aurora borealis was published by Marcello Squarcialupi, an Italian medical doctor working in the court of the Hungarian Prince of Transylvania. His book, De coelo ardore, described the aurora of 10 September 1580 in great detail, providing exact data from his personal observations on the time, direction, shape, colour, and variability. He invoked a rational explanation, bringing up only natural causes, and confronted these with the ruling Aristotelian view. The original Latin text describing the aurora is provided, with an English translation.

  4. The Frenkel Kontorova Model

    NASA Astrophysics Data System (ADS)

    Floría, L. M.; Baesens, C.; Gómez-Gardeñes, J.

    In the preface to his monograph on the structure of Evolutionary Theory [1], the late professor Stephen Jay Gould attributes to the philosopher Immanuel Kant the following aphorism in Science Philosophy: "Percepts without concepts are blind; concepts without percepts are empty". Using with a bit of freedom these Kantian terms, one would say that a scientific model is a framework (or network) of interrelated concepts and percepts where experts build up scientific consistent explanations of a given set of observations. Good models are those which are both, conceptually simple and universal in their perceptions. Let us illustrate with examples the meaning of this statement.

  5. A model of how different biology experts explain molecular and cellular mechanisms.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. © 2015 C. M. Trujillo et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  7. Scientific knowledge and modern prospecting

    USGS Publications Warehouse

    Neuerburg, G.J.

    1985-01-01

    Modern prospecting is the systematic search for specified and generally ill-exposed components of the Earth's crust known as ore. This prospecting depends entirely on reliable, or scientific knowledge for guidance and for recognition of the search objects. Improvement in prospecting results from additions and refinements to scientific knowledge. Scientific knowledge is an ordered distillation of observations too numerous and too complex in themselves for easy understanding and for effective management. The ordering of these observations is accomplished by an evolutionary hierarchy of abstractions. These abstractions employ simplified descriptions consisting of characterization by selected properties, sampling to represent much larger parts of a phenomenon, generalized mappings of patterns of geometrical and numerical relations among properties, and explanation (theory) of these patterns as functional relations among the selected properties. Each abstraction is predicated on the mode of abstraction anticipated for the next higher level, so that research is a deductive process in which the highest level, theory, is indispensible for the growth and refinement of scientific knowledge, and therefore of prospecting methodology. ?? 1985 Springer-Verlag.

  8. Metaphor, Multiplicative Meaning and the Semiotic Construction of Scientific Knowledge

    ERIC Educational Resources Information Center

    Liu, Yu; Owyong, Yuet See Monica

    2011-01-01

    Scientific discourse is characterized by multi-semiotic construction and the resultant semantic expansions. To date, there remains a lack of analytical methods to explicate the multiplicative nature of meaning. Drawing on the theories of systemic functional linguistics, this article examines the meaning-making processes across language and…

  9. Information performances and illative sequences: Sequential organization of explanations of chemical phase equilibrium

    NASA Astrophysics Data System (ADS)

    Brown, Nathaniel James Swanton

    While there is consensus that conceptual change is surprisingly difficult, many competing theories of conceptual change co-exist in the literature. This dissertation argues that this discord is partly the result of an inadequate account of the unwritten rules of human social interaction that underlie the field's preferred methodology---semi-structured interviewing. To better understand the contributions of interaction during explanations, I analyze eight undergraduate general chemistry students as they attempt to explain to various people, for various reasons, why phenomena involving chemical phase equilibrium occur. Using the methods of interaction analysis, I characterize the unwritten, but systematic, rules that these participants follow as they explain. The result is a description of the contributions of interaction to explaining. Each step in each explanation is a jointly performed expression of a subject-predicate relation, an interactive accomplishment I call an information performance (in-form, for short). Unlike clauses, in-forms need not have a coherent grammatical structure. Unlike speaker turns, in-forms have the clear function of expressing information. Unlike both clauses and speaker turns, in-forms are a co-construction, jointly performed by both the primary speaker and the other interlocutor. The other interlocutor strongly affects the form and content of each explanation by giving or withholding feedback at the end of each in-form, moments I call feedback-relevant places. While in-forms are the bricks out of which the explanation is constructed, they are secured by a series of inferential links I call an illative sequence. Illative sequences are forward-searching, starting with a remembered fact or observation and following a chain of inferences in the hope it leads to the target phenomenon. The participants treat an explanation as a success if the illative sequence generates an in-form that describes the phenomenon. If the illative sequence does not, it is partly or entirely scrubbed, a new in-form is introduced as a starting point, and the illative sequence begins anew. Knowledge of these interactional contributions to the production of explanations could allow researchers to better characterize conceptual understanding, be in a stronger position to support particular theories of conceptual change over others, improve assessments of conceptual understanding, and improve interviewing practices.

  10. Examining Pre-Service Teachers' Use of Atomic Models in Explaining Subsequent Ionisation Energy Values

    ERIC Educational Resources Information Center

    Wheeldon, Ruth

    2012-01-01

    Chemistry students' explanations of ionisation energy phenomena often involve a number of non-scientific or inappropriate ideas being used to form causality arguments. Research has attributed this to many science teachers using these ideas themselves (Tan and Taber, in "J Chem Educ" 86(5):623-629, 2009). This research extends this work by…

  11. How Do High School Science Textbooks in Korea, Japan, and the U.S. Explain Bioaccumulation-Related Concepts?

    ERIC Educational Resources Information Center

    Kim, Heung-Tae; Kim, Jae Geun

    2013-01-01

    Although bioaccumulation-related concepts are important scientific knowledge, a study on whether high school textbooks include appropriate explanations has not been conducted. The present study investigated science and biology textbooks from Korea, Japan, and the U.S., focusing on how bioaccumulation-related concepts were defined, what types of…

  12. Using Narrative-Based Design Scaffolds within a Mobile Learning Environment to Support Learning Outdoors with Young Children

    ERIC Educational Resources Information Center

    Seely, Brian J.

    2015-01-01

    This study aims to advance learning outdoors with mobile devices. As part of the ongoing Tree Investigators design-based research study, this research investigated a mobile application to support observation, identification, and explanation of the tree life cycle within an authentic, outdoor setting. Recognizing the scientific and conceptual…

  13. Science and Non-Science Undergraduate Students' Critical Thinking and Argumentation Performance in Reading a Science News Report

    ERIC Educational Resources Information Center

    Lin, Shu-Sheng

    2014-01-01

    A scientifically literate person should be able to engage and critique science news reports about socioscientific issues from a variety of information sources. Such engagement involves critical thinking and argumentation skills to determine if claims made are justified by evidence and explained by reasonable explanations. This study explored…

  14. Management and land use implications of continuous nitrogen and phosphorus monitoring in a small non-karst catchment in southeastern PA

    USDA-ARS?s Scientific Manuscript database

    Long-term climate and water quality monitoring data provide some of the most essential and informative information to the scientific community. These datasets however, are often incomplete and do not have frequent enough sampling to provide full explanations of trends. With the advent of continuous ...

  15. The Impact of Misspelled Words on Automated Computer Scoring: A Case Study of Scientific Explanations

    ERIC Educational Resources Information Center

    Ha, Minsu; Nehm, Ross H.

    2016-01-01

    Automated computerized scoring systems (ACSSs) are being increasingly used to analyze text in many educational settings. Nevertheless, the impact of misspelled words (MSW) on scoring accuracy remains to be investigated in many domains, particularly jargon-rich disciplines such as the life sciences. Empirical studies confirm that MSW are a…

  16. Energy and Matter: Differences in Discourse in Physical and Biological Sciences Can Be Confusing for Introductory Biology Students

    ERIC Educational Resources Information Center

    Hartley, Laurel M.; Momsen, Jennifer; Maskiewicz, April; D'Avanzo, Charlene

    2012-01-01

    Biology majors often take introductory biology, chemistry, and physics courses during their first two years of college. The various and sometimes conflicting discourse about and explanations of matter and energy in these courses may contribute to confusion and alternative conceptions (those that differ from scientific consensus) in biology…

  17. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  18. The Emergence of the Controversy around the Theory of Evolution and Creationism in UK Newspaper Reports

    ERIC Educational Resources Information Center

    Allgaier, Joachim; Holliman, Richard

    2006-01-01

    The question of whether religious explanations about the origin of life should be taught alongside scientific accounts in compulsory science education has sparked controversy in several countries for decades. An important site for these controversies is media reporting. This article presents the results of a quantitative and qualitative analysis…

  19. Elementary Teachers' Curriculum Design and Pedagogical Reasoning for Supporting Students' Comparison and Evaluation of Evidence-Based Explanations

    ERIC Educational Resources Information Center

    Biggers, Mandy; Forbes, Cory T.; Zangori, Laura

    2013-01-01

    Previous research suggests that elementary teachers vary in their enactment of science curriculum materials and may not always engage students in substantive sense making. This mixed-methods study investigates elementary teachers' use of science curriculum materials to engage students in the scientific practice of comparing and evaluating…

  20. Toward a Model of Journal Economics in the Language Sciences. LINCS Project Document Series.

    ERIC Educational Resources Information Center

    Berg, Sanford; Campion, Douglas

    This study outlines some considerations for an economic model of the scientific journal market. The model provides an explanation of journal market structure and the dynamics of market behavior, as well as a description of journal market development. Three types of periodicals are discussed: (1) primary, archival journals serving a current…

  1. How Do You Know That?: Guiding Early Elementary Students to Develop Evidence-Based Explanations about Animals

    ERIC Educational Resources Information Center

    Folsom, Jennifer; Hunt, Catherine; Cavicchio, Maria; Schoenemann, Anne; D'Amato, Matthew

    2007-01-01

    The purpose of many animal studies at early grades is to build observation skills, develop a knowledge base, and practice age-appropriate science skills like comparing, describing, and drawing. While these are important learning experiences, the National Science Education Standards also recommend that students engage in scientific inquiry (NRC…

  2. The American Psychological Association's Response to Brown v. Board of Education: The Case of Kenneth B. Clark.

    ERIC Educational Resources Information Center

    Benjamin, Ludy T., Jr.; Crouse, Ellen M.

    2002-01-01

    Describes African American psychologist Kenneth B. Clark's role in the 1954 Brown v. Board of Education and the American Psychological Association's (APA's) lack of response to scientific psychology's moment in this spotlight. Offers some explanations for why no official recognition was forthcoming, noting the subsequent foundation of the…

  3. Comment on linking the sex difference in PCB concentrations of fish to release of eggs at spawning: Time to jettison the dogma

    USGS Publications Warehouse

    Madenjian, Charles P.

    2017-01-01

    For the past 20 years or so, a commonly used explanation in the scientific literature for higher polychlorinated biphenyl (PCB) concentrations in male fish than in female fish has been that females lose a high proportion of their PCB body burden by releasing eggs at spawning time, and therefore the females undergo a substantial decrease in their PCB concentration immediately after spawning due to shedding of their eggs [1]. Indeed, this explanation can be viewed as the conventional wisdom used by toxicologists to account for differences in PCB concentrations between the sexes of fish. On the surface, this explanation seems plausible. PCBs are lipid soluble, and eggs are thought to be relatively high in lipid concentration. If a sufficiently high proportion of the PCB body burden within a female fish is transferred to the eggs, then the release of eggs at spawning would be expected to result in a dramatic decrease in the PCB concentration of the female.

  4. Did the Food Environment Cause the Obesity Epidemic?

    PubMed

    Hall, Kevin D

    2018-01-01

    Several putative explanations of the obesity epidemic relate to the changing food environment. Individual dietary macronutrients have each been theorized to be the prime culprit for population obesity, but these explanations are unlikely. Rather, obesity probably resulted from changes in the caloric quantity and quality of the food supply in concert with an industrialized food system that produced and marketed convenient, highly processed foods from cheap agricultural inputs. Such foods often contain high amounts of salt, sugar, fat, and flavor additives and are engineered to have supernormal appetitive properties driving increased consumption. Ubiquitous access to convenient and inexpensive food also changed normative eating behavior, with more people snacking, eating in restaurants, and spending less time preparing meals at home. While such changes in the food environment provide a likely explanation of the obesity epidemic, definitive scientific demonstration is hindered by the difficulty in experimentally isolating and manipulating important variables at the population level. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Epistemological pluralism and scientific development: an argument against authoritative nosologies.

    PubMed

    Markon, Kristian E

    2013-10-01

    The author examines the influence of authoritative nosological systems--those developed by an authoritative body or organization (e.g., the DSM, ICD, RDoC)--on the development of scientific theory and research. Although there has been extensive discussion of how such systems should be organized, and of the historical role of such systems, little focus has been placed on whether these systems impede or facilitate scientific progress. The author reviews the nature and role of constructs in scientific theory and the role of authoritative taxonomy in science. He presents an argument that, although authoritative classification systems clearly have value for nonscientific purposes, or for specific scientific purposes, the systems themselves, at least as they have been constructed thus far, likely impede scientific development by constraining competitive discourse. Implications and recommendations are discussed.

  6. Unpacking Sensemaking

    ERIC Educational Resources Information Center

    Kapon, Suulamit

    2017-01-01

    Learning science involves an ongoing process in which learners construct and reconstruct self-explanations and evaluate their relative soundness. This work coordinates and aligns complementary methodological and theoretical approaches to learning to both unpack sensemaking and better understand the conditions that facilitate it. I conceptualize…

  7. Discovery and explanation of drug-drug interactions via text mining.

    PubMed

    Percha, Bethany; Garten, Yael; Altman, Russ B

    2012-01-01

    Drug-drug interactions (DDIs) can occur when two drugs interact with the same gene product. Most available information about gene-drug relationships is contained within the scientific literature, but is dispersed over a large number of publications, with thousands of new publications added each month. In this setting, automated text mining is an attractive solution for identifying gene-drug relationships and aggregating them to predict novel DDIs. In previous work, we have shown that gene-drug interactions can be extracted from Medline abstracts with high fidelity - we extract not only the genes and drugs, but also the type of relationship expressed in individual sentences (e.g. metabolize, inhibit, activate and many others). We normalize these relationships and map them to a standardized ontology. In this work, we hypothesize that we can combine these normalized gene-drug relationships, drawn from a very broad and diverse literature, to infer DDIs. Using a training set of established DDIs, we have trained a random forest classifier to score potential DDIs based on the features of the normalized assertions extracted from the literature that relate two drugs to a gene product. The classifier recognizes the combinations of relationships, drugs and genes that are most associated with the gold standard DDIs, correctly identifying 79.8% of assertions relating interacting drug pairs and 78.9% of assertions relating noninteracting drug pairs. Most significantly, because our text processing method captures the semantics of individual gene-drug relationships, we can construct mechanistic pharmacological explanations for the newly-proposed DDIs. We show how our classifier can be used to explain known DDIs and to uncover new DDIs that have not yet been reported.

  8. How can the English-language scientific literature be made more accessible to non-native speakers? Journals should allow greater use of referenced direct quotations in 'component-oriented' scientific writing.

    PubMed

    Charlton, Bruce G

    2007-01-01

    In scientific writing, although clarity and precision of language are vital to effective communication, it seems undeniable that content is more important than form. Potentially valuable knowledge should not be excluded from the scientific literature merely because the researchers lack advanced language skills. Given that global scientific literature is overwhelmingly in the English-language, this presents a problem for non-native speakers. My proposal is that scientists should be permitted to construct papers using a substantial number of direct quotations from the already-published scientific literature. Quotations would need to be explicitly referenced so that the original author and publication should be given full credit for creating such a useful and valid description. At the extreme, this might result in a paper consisting mainly of a 'mosaic' of quotations from the already existing scientific literature, which are linked and extended by relatively few sentences comprising new data or ideas. This model bears some conceptual relationship to the recent trend in computing science for component-based or component-oriented software engineering - in which new programs are constructed by reusing programme components, which may be available in libraries. A new functionality is constructed by linking-together many pre-existing chunks of software. I suggest that journal editors should, in their instructions to authors, explicitly allow this 'component-oriented' method of constructing scientific articles; and carefully describe how it can be accomplished in such a way that proper referencing is enforced, and full credit is allocated to the authors of the reused linguistic components.

  9. Non-Scientific Criteria for Belief Sustain Counter-Scientific Beliefs.

    PubMed

    Metz, S Emlen; Weisberg, Deena S; Weisberg, Michael

    2018-02-01

    Why is evolutionary theory controversial among members of the American public? We propose a novel explanation: allegiance to different criteria for belief. In one interview study, two online surveys, and one nationally representative phone poll, we found that evolutionists and creationists take different justifications for belief as legitimate. Those who accept evolution emphasize empirical evidence and scientific consensus. Creationists emphasize not only the Bible and religious authority, but also knowledge of the heart. These criteria for belief remain predictive of views about evolution even when taking into account other related factors like religion, political affiliation, and education. Each view is supported by its own internally specified criteria for what constitutes a justified belief. Changing minds may thus require changing epistemic norms. Copyright © 2018 Cognitive Science Society, Inc.

  10. Genomics, "Discovery Science," Systems Biology, and Causal Explanation: What Really Works?

    PubMed

    Davidson, Eric H

    2015-01-01

    Diverse and non-coherent sets of epistemological principles currently inform research in the general area of functional genomics. Here, from the personal point of view of a scientist with over half a century of immersion in hypothesis driven scientific discovery, I compare and deconstruct the ideological bases of prominent recent alternatives, such as "discovery science," some productions of the ENCODE project, and aspects of large data set systems biology. The outputs of these types of scientific enterprise qualitatively reflect their radical definitions of scientific knowledge, and of its logical requirements. Their properties emerge in high relief when contrasted (as an example) to a recent, system-wide, predictive analysis of a developmental regulatory apparatus that was instead based directly on hypothesis-driven experimental tests of mechanism.

  11. The effect of mathematical model development on the instruction of acceleration to introductory physics students

    NASA Astrophysics Data System (ADS)

    Sauer, Tim Allen

    The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.

  12. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    ERIC Educational Resources Information Center

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that…

  13. Teacher Argumentation in the Secondary Science Classroom: Images of Two Modes of Scientific Inquiry

    ERIC Educational Resources Information Center

    Gray, Ron E.

    2009-01-01

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally…

  14. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science Teaching (NARST) Zangori, L., & Forbes, C. T. (2015). Exploring 3rd-grade student model-based explanations about plant process interactions within the hydrosphere Portions of this paper are based on that work.

  15. A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school

    NASA Astrophysics Data System (ADS)

    Yusliana Ekawati, Elvin

    2017-01-01

    This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)

  16. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  17. Complexity and demographic explanations of cumulative culture.

    PubMed

    Querbes, Adrien; Vaesen, Krist; Houkes, Wybo

    2014-01-01

    Formal models have linked prehistoric and historical instances of technological change (e.g., the Upper Paleolithic transition, cultural loss in Holocene Tasmania, scientific progress since the late nineteenth century) to demographic change. According to these models, cumulation of technological complexity is inhibited by decreasing--while favoured by increasing--population levels. Here we show that these findings are contingent on how complexity is defined: demography plays a much more limited role in sustaining cumulative culture in case formal models deploy Herbert Simon's definition of complexity rather than the particular definitions of complexity hitherto assumed. Given that currently available empirical evidence doesn't afford discriminating proper from improper definitions of complexity, our robustness analyses put into question the force of recent demographic explanations of particular episodes of cultural change.

  18. Text Processing Differences among Readers.

    ERIC Educational Resources Information Center

    Garner, Ruth

    Explanations for differences in reading proficiency should be constructed around an atlas of reading-related individual differences in cognition. Such an atlas should include well-documented "bottom-up", text-driven reading strategies and less thoroughly investigated "top-down", schema-driven reading strategies. Research…

  19. Mapping of Outdoor Classrooms.

    ERIC Educational Resources Information Center

    Horvath, Victor G.

    Mapping symbols adopted by the Michigan Department of Natural Resources are presented with their explanations. In an effort to provide standardization and familiarity teachers and other school people involved in an outdoor education program are encouraged to utilize the same symbols in constructing maps. (DK)

  20. How Source Information Shapes Lay Interpretations of Science Conflicts: Interplay between Sourcing, Conflict Explanation, Source Evaluation, and Claim Evaluation

    ERIC Educational Resources Information Center

    Thomm, Eva; Bromme, Rainer

    2016-01-01

    When laypeople read controversial scientific information in order to make a personally relevant decision, information on the source is a valuable resource with which to evaluate multiple, competing claims. Due to their bounded understanding, laypeople rely on the expertise of others and need to identify whether sources are credible. The present…

  1. The Role of Knowledge Structures in the Ability of Preservice Elementary Teachers to Diagnose a Child's Understanding of Molecular Kinetics

    ERIC Educational Resources Information Center

    Bischoff, Paul J.

    2006-01-01

    This study explored preservice teachers' (n = 25) knowledge structures and their mastery of content knowledge in relation to their ability to diagnose the strengths and weaknesses of a fourth grader's videotaped explanations of a scientific phenomenon, i.e., molecular kinetic properties of air. Participants' knowledge structures were analyzed…

  2. A Research-Informed Instructional Unit to Teach the Nature of Science to Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Aduriz-Bravo, Agustin; Izquierdo-Aymerich, Merce

    2009-01-01

    In this paper we discuss the foundations and process of design of a research-informed instructional unit aimed for pre-service science teacher education. The unit covers some key ideas on the nature of science (around methodology, theory change, scientific inference and explanation, values, gender issues) anchoring them in a well-known episode…

  3. [The aesthetic character of caring knowledge].

    PubMed

    Tsai, Cheng-Yun

    2013-08-01

    The identity of nursing is founded on caring knowledge, which is derived from our understanding of its experience-revealed essence. This purposive knowledge differs from scientific knowledge because validity guides the latter and ethics guides the former. Therefore, justifying the objectivity of caring knowledge should be based on the aesthetic character of this knowledge rather than on a general social-science explanation.

  4. Art appreciation and aesthetic feeling as objects of explanation.

    PubMed

    Hogan, Patrick Colm

    2013-04-01

    The target article presents a thought-provoking approach to the relation of neuroscience and art. However, at least two issues pose potential difficulties. The first concerns whether "art appreciation" is a coherent topic for scientific study. The second concerns the degree to which processing fluency can explain aesthetic feeling or may simply be one component of a more complex account.

  5. Teaching for Hot Conceptual Change: Towards a New Model, beyond the Cold and Warm Ones

    ERIC Educational Resources Information Center

    Kural, Mehmet; Kocakülah, M. Sabri

    2016-01-01

    At the beginning of the 1980s, one of the most striking explanations of conceptual change was made by Posner, Strike, Hewson & Gertzog (1982) with a Conceptual Change Theory based on a Scientific Revolution Theory of Kuhn (1970). In Conceptual Change Theory, learning was explained with the Piaget (1970)'s concepts such as assimilation and…

  6. Students' Conceptions about Climate Change: Using Critical Evaluation to Influence Plausibility Reappraisals and Knowledge Reconstruction

    ERIC Educational Resources Information Center

    Lombardi, Douglas Adler

    2012-01-01

    The Intergovernmental Panel on Climate Change (2007) reported a greater than 90% chance that human activities are responsible for global temperature increases over the last 50 years, as well as other climatic changes. The scientific report also states that alternative explanations (e.g., increasing energy received from the Sun) are less plausible…

  7. The Science Classroom as a Site of Epistemic Talk: A Case Study of a Teacher's Attempts to Teach Science Based on Argument

    ERIC Educational Resources Information Center

    Christodoulou, Andri; Osborne, Jonathan

    2014-01-01

    Current science education research and policy highlight the need to conceptualize scientific disciplines not only based on a view of "science-as-knowledge" but also on a perspective of "science-as-practice," placing an emphasis on practices such as explanation, argumentation, modeling, and communication. However, classroom…

  8. Inference to the Best Explanation (IBE) versus Explaining for the Best Inference (EBI)

    ERIC Educational Resources Information Center

    Wilkenfeld, Daniel A.; Lombrozo, Tania

    2015-01-01

    In pedagogical contexts and in everyday life, we often come to believe something because it would best explain the data. What is it about the explanatory endeavor that makes it essential to everyday learning and to scientific progress? There are at least two plausible answers. On one view, there is something special about having true…

  9. Rocket investigations of the auroral electrojet

    NASA Technical Reports Server (NTRS)

    Davis, T. N.

    1973-01-01

    Five Nike-Tomahawk rockets were flown to measure perturbations in the magnitude of the geomagnetic field due to auroral electrojets. The dates and locations of the rocket launches are given along with a brief explanation of payloads and instrumentation. Papers published as a result of the project are listed. An abstract is included which outlines the scientific results from one of the flights.

  10. Intentions and actions in molecular self-assembly: perspectives on students' language use

    NASA Astrophysics Data System (ADS)

    Höst, Gunnar E.; Anward, Jan

    2017-04-01

    Learning to talk science is an important aspect of learning to do science. Given that scientists' language frequently includes intentions and purposes in explanations of unobservable objects and events, teachers must interpret whether learners' use of such language reflects a scientific understanding or inaccurate anthropomorphism and teleology. In the present study, a framework consisting of three 'stances' (Dennett, 1987) - intentional, design and physical - is presented as a powerful tool for analysing students' language use. The aim was to investigate how the framework can be differentiated and used analytically for interpreting students' talk about a molecular process. Semi-structured group discussions and individual interviews about the molecular self-assembly process were conducted with engineering biology/chemistry (n = 15) and biology/chemistry teacher students (n = 6). Qualitative content analysis of transcripts showed that all three stances were employed by students. The analysis also identified subcategories for each stance, and revealed that intentional language with respect to molecular movement and assumptions about design requirements may be potentially problematic areas. Students' exclusion of physical stance explanations may indicate literal anthropomorphic interpretations. Implications for practice include providing teachers with a tool for scaffolding their use of metaphorical language and for supporting students' metacognitive development as scientific language users.

  11. Reifying human difference: the debate on genetics, race, and health.

    PubMed

    Braun, Lundy

    2006-01-01

    The causes of racial and ethnic inequalities in health and the most appropriate categories to use to address health inequality have been the subject of heated debate in recent years. At the same time, genetic explanations for racial disparities have figured prominently in the scientific and popular press since the announcement of the sequencing of the human genome. To understand how such explanations assumed prominence, this essay analyzes the circulation of ideas about race and genetics and the rhetorical strategies used by authors of key texts to shape the debate. The authority of genetic accounts for racial and ethnic difference in disease, the author argues, is rooted in a broad cultural faith in the promise of genetics to solve problems of human disease and the inner truth of human beings that is intertwined with historical meanings attached to race. Such accounts are problematic for a variety of reasons. Importantly, they produce, reify, and naturalize notions of racial difference, provide a scientific rationale for racially targeted medical care, and distract attention from research that probes the complex ways in which political, economic, social, and biological factors, especially those of inequality and racism, cause health disparities.

  12. Inventing Homo gardarensis: prestige, pressure, and human evolution in interwar Scandinavia.

    PubMed

    Kjaergaard, Peter C

    2014-06-01

    In the 1920s there were still very few fossil human remains to support an evolutionary explanation of human origins. Nonetheless, evolution as an explanatory framework was widely accepted. This led to a search for ancestors in several continents with fierce international competition. With so little fossil evidence available and the idea of a Missing Link as a crucial piece of evidence in human evolution still intact, many actors participated in the scientific race to identify the human ancestor. The curious case of Homo gardarensis serves as an example of how personal ambitions and national pride were deeply interconnected as scientific concerns were sometimes slighted in interwar palaeoanthropology.

  13. Web life: Just A Theory

    NASA Astrophysics Data System (ADS)

    2010-04-01

    After a few months of physics videos, amateur science sites and educational games, the website we are highlighting in this month's column is a straightforward blog. Just A Theory was started in 2008 by freelance science journalist Jacob Aron while he was studying for a Master's degree in science communication at Imperial College London. The blog's title, Aron explains, reflects a popular misconception that scientific theories are "dreamed up by mad scientists in laboratories somewhere" rather than well-crafted explanations based on observations and experiments. To combat this impression, the site aims to highlight good and bad science coverage in the mainstream media, and to provide original commentary on current scientific events.

  14. Assessment of Evidence in University Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Kelly, Gregory J.

    2003-01-01

    Examines uses of evidence in university students' writing of scientific argument in an introductory-level oceanography course. Provides students with an interactive CD-ROM entitled 'Our Dynamic Planet' to write a scientific technical paper. Discusses ways of teaching students the construction of argument in scientific writing. (KHR)

  15. Comparative and Contrastive Observations on Scientific Titles Written in English and Spanish

    ERIC Educational Resources Information Center

    Soler, Viviana

    2011-01-01

    This research focuses on the structural construction of scientific titles in English and Spanish in research papers (RP) and review papers (RVP) in the biological and social sciences. The questions raised were (i) whether structural construction is a key distinctive feature between RP and RVP titles; (ii) whether the inherent peculiarities of…

  16. Reconceptualizing Science Classroom Discourse towards Doing Science through a Game-Based Learning Program

    ERIC Educational Resources Information Center

    Jan, Mingfong; San, Chee Yam; Tan, Ek Ming

    2011-01-01

    There is a need for schools to engage students in constructing scientific theories like practicing scientists in order to excel in the 21st century knowledge economy. An approach to engage students in constructing scientific theories is to enculturate students in doing science with language, which differs from the mainstream classroom…

  17. Anomalies as a Catalyst for Middle School Students' Knowledge Construction and Scientific Reasoning during Science Inquiry.

    ERIC Educational Resources Information Center

    Echevarria, Marissa

    2003-01-01

    Knowledge construction and scientific reasoning were examined during a unit in genetics, in which anomalies were used as a catalyst for student learning. Students used genetics simulation software to develop hypotheses and run tests of fruit fly crosses to develop mental models of simple dominance trait transmission. Instruction was intended to…

  18. Economy of Command

    ERIC Educational Resources Information Center

    Medeiros, David Peter

    2012-01-01

    This dissertation proposes a principle of "economy of command", arguing that it provides a simple and natural explanation for some well-known properties of human language syntax. The focus is on the abstract combinatorial system that constructs the hierarchical structure of linguistic expressions, with long-distance dependencies…

  19. Infrared thermography-driven flaw detection and evaluation of hot mix asphalt pavements.

    DOT National Transportation Integrated Search

    2010-01-01

    This research was conducted to study more realistic explanations of how variables are created and : dealt with during hot mix asphalt (HMA) paving construction. Several paving projects across the : state of Nebraska have been visited where sensory de...

  20. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  1. Precast-Prestressed Schools.

    ERIC Educational Resources Information Center

    Basalt Rock Co., Inc., Napa, CA.

    Diagrammatic explanations of various concepts, processes, details, and potential material usages are presented. Specific material and element topics include--(1) the fabrication process, (2) basic structural components, (3) element usage, and (4) building construction procedures. Examples of the use of related elements are shown for typical school…

  2. Transfer in Pieces

    ERIC Educational Resources Information Center

    Wagner, Joseph F.

    2006-01-01

    The theoretical perspective outlined here offers an alternative to explanations of knowledge transfer that posit its source in the construction and application of abstract, context-independent knowledge structures. A case study analysis of an undergraduate student's attempt to solve a series of problems related to an elementary statistical…

  3. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    PubMed Central

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students’ written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors’ and nonmajors’ written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of “near-perfect” agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations. PMID:22135372

  4. Applying computerized-scoring models of written biological explanations across courses and colleges: prospects and limitations.

    PubMed

    Ha, Minsu; Nehm, Ross H; Urban-Lurain, Mark; Merrill, John E

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors' and nonmajors' written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of "near-perfect" agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations.

  5. Are evolutionary hypotheses for motion sickness "just-so" stories?

    PubMed

    Oman, Charles M

    2012-01-01

    Vertebrates have evolved rapidly conditionable nausea and vomiting reflexes mediated by gut and brainstem receptors, clearly as a defense against neurotoxin ingestion. In 1977 Treisman proposed that sensory orientation linkages to emetic centers evolved for the same reason, and that motion sickness was an accidental byproduct. It was an "adaptationist" explanation for motion sickness, since it assumed that evolution has shaped all phenotypic traits for survival advantage. Treisman's "poison" theory is plausible, and frequently cited as the accepted scientific explanation for motion sickness. However, alternative explanations have been proposed. The creation of hypotheses is an essential part of science - provided they are testable. This paper reviews the evidence for the Poison theory and several other adaptationist explanations. These hypotheses are certainly not "just-so stories", but supporting evidence is equivocal, and contradictory evidence exists Parsimony suggests an alternative "pluralistic" view: The vertebrate reticular formation maintains oxygenated blood flow to the brain, discriminates unexpected sensory stimuli- including postural disturbances, and detects and expels ingested neurotoxins. The three systems share neuroarchitectural elements but normally function independently. Brainstem sensory conflict neurons normally discriminate brief postural disturbances, but can be abnormally stimulated during prolonged passive transport (e.g. by boat, beginning about 150-200 generations ago). Sensory conflict signals cross couple into the neurotoxin expulsion and avoidance system, producing an arguably maladaptive emetic phenotype.

  6. Theory, explanation, and a third generation of theoretical development in social gerontology.

    PubMed

    Bengtson, V L; Burgess, E O; Parrott, T M

    1997-03-01

    Efforts at cumulative knowledge building in social gerontology have been lax, judging from research articles published in journals between 1990 and 1994. Too little attention has been paid to the cumulative development of theory; readers are left with many empirical generalizations but underdeveloped explanations by which to interpret findings and build upon them in subsequent research. To assist future theory development in social gerontology, we review seven theoretical perspectives referenced most frequently in recent journals: (1) social constructionist, (2) social exchange, (3) life course, (4) feminist, (5) age stratification (age and society), (6) political economy of aging, and (7) critical theory. We suggest that, taken together, these represent a "third generation" of explanation in social gerontology, noting their debt to older and more established traditions in social science theory. We argue that authors and journal reviewers should place more emphasis on theory development - which means, most simply, the construction of explicit explanations in accounting for empirical findings - if knowledge development about social aspects of aging is to be cumulative, systematic, and incremental.

  7. Developmental Origins of Biological Explanations: The case of infants' internal property bias.

    PubMed

    Taborda-Osorio, Hernando; Cheries, Erik W

    2017-10-01

    People's explanations about the biological world are heavily biased toward internal, non-obvious properties. Adults and children as young as 5 years of age find internal properties more causally central than external features for explaining general biological processes and category membership. In this paper, we describe how this 'internal property bias' may be grounded in two different developmental precursors observed in studies with infants: (1) an early understanding of biological agency that is apparent in infants' reasoning about animals, and (2) the acquisition of kind-based representations that distinguish between essential and accidental properties, spanning from animals to artifacts. We argue that these precursors may support the progressive construction of the notion of biological kinds and explanations during childhood. Shortly after their first year of life, infants seem to represent the internal properties of animates as more central and identity-determining that external properties. Over time, this skeletal notion of biological kinds is integrated into diverse explanations about kind membership and biological processes, with an increasingly better understanding of the causal role of internal properties.

  8. Linear Sigma Model Toolshed for D-brane Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellerman, Simeon

    Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.

  9. The Structure of Scientific Evolution

    PubMed Central

    2013-01-01

    Science is the construction and testing of systems that bind symbols to sensations according to rules. Material implication is the primary rule, providing the structure of definition, elaboration, delimitation, prediction, explanation, and control. The goal of science is not to secure truth, which is a binary function of accuracy, but rather to increase the information about data communicated by theory. This process is symmetric and thus entails an increase in the information about theory communicated by data. Important components in this communication are the elevation of data to the status of facts, the descent of models under the guidance of theory, and their close alignment through the evolving retroductive process. The information mutual to theory and data may be measured as the reduction in the entropy, or complexity, of the field of data given the model. It may also be measured as the reduction in the entropy of the field of models given the data. This symmetry explains the important status of parsimony (how thoroughly the data exploit what the model can say) alongside accuracy (how thoroughly the model represents what can be said about the data). Mutual information is increased by increasing model accuracy and parsimony, and by enlarging and refining the data field under purview. PMID:28018043

  10. Essential methodological considerations when using grounded theory.

    PubMed

    Achora, Susan; Matua, Gerald Amandu

    2016-07-01

    To suggest important methodological considerations when using grounded theory. A research method widely used in nursing research is grounded theory, at the centre of which is theory construction. However, researchers still struggle with some of its methodological issues. Although grounded theory is widely used to study and explain issues in nursing practice, many researchers are still failing to adhere to its rigorous standards. Researchers should articulate the focus of their investigations - the substantive area of interest as well as the focal population. This should be followed by a succinct explanation of the strategies used to collect and analyse data, supported by clear coding processes. Finally, the resolution of the core issues, including the core category and related categories, should be explained to advance readers' understanding. Researchers should endeavour to understand the tenets of grounded theory. This enables 'neophytes' in particular to make methodological decisions that will improve their studies' rigour and fit with grounded theory. This paper complements the current dialogue on improving the understanding of grounded theory methodology in nursing research. The paper also suggests important procedural decisions researchers need to make to preserve their studies' scientific merit and fit with grounded theory.

  11. Leaping from brain to mind: a critique of mirror neuron explanations of countertransference.

    PubMed

    Vivona, Jeanine M

    2009-06-01

    In the current vigorous debate over the value of neuroscience to psychoanalysis, the epistemological status of the links between the data of brain research and the constructs of interest to psychoanalysts has rarely been examined. An inspection of recent discussions of mirror neuron research, particularly regarding countertransference, reveals gaps between psychoanalytic processes and the available brain activation data, and allows the evaluation of evidence for three implicit assumptions frequently made to bridge these gaps: (1) there is a straightforward correspondence between observed brain activity and mental activity; (2) similarity of localized brain activity across individuals signifies a shared interpersonal experience; (3) an automatic brain mechanism enables direct interpersonal sharing of experiences in the absence of inference and language. Examination of mirror neuron research findings reveals that these assumptions are either untested or questionable. Moreover, within neuroscience there are competing interpretations of mirror neuron findings, with diverse implications for psychoanalysis. The present state of mirror neuron research may offer us new hypotheses or metaphors, but does not provide empirical validation of the proposed models. More generally, as we attempt to learn from research findings generated outside psychoanalysis, we must strive to think scientifically, by minding the difference between data and interpretation.

  12. Natural attenuation of metals and radionuclides: Report from a workshop held by Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, P.V.; Borns, D.J.

    1997-11-01

    Natural attenuation is increasingly applied to remediate contaminated soils and ground waters. Roughly 25% of Superfund groundwater remedies in 1995 involved some type of monitored natural attenuation, compared to almost none 5 years ago. Remediation by natural attenuation (RNA) requires clear evidence that contaminant levels are decreasing sufficiently over time, a defensible explanation of the attenuation mechanism, long-term monitoring, and a contingency plan at the very least. Although the primary focus of implementation has to date been the biodegradation of organic contaminants, there is a wealth of scientific evidence that natural processes reduce the bioavailability of contaminant metals and radionuclides.more » Natural attenuation of metals and radionuclides is likely to revolve around sorption, solubility, biologic uptake and dilution controls over contaminant availability. Some of these processes can be applied to actively remediate sites. Others, such as phytoremediation, are likely to be ineffective. RNA of metals and radionuclides is likely to require specialized site characterization to construct contaminant and site-specific conceptual models of contaminant behavior. Ideally, conceptual models should be refined such that contaminant attenuation can be confidently predicted into the future. The technical approach to RNA of metals and radionuclides is explored here.« less

  13. Modeling as an Anchoring Scientific Practice for Explaining Friction Phenomena

    NASA Astrophysics Data System (ADS)

    Neilson, Drew; Campbell, Todd

    2017-12-01

    Through examining the day-to-day work of scientists, researchers in science studies have revealed how models are a central sense-making practice of scientists as they construct and critique explanations about how the universe works. Additionally, they allow predictions to be made using the tenets of the model. Given this, alongside research suggesting that engaging students in developing and using models can have a positive effect on learning in science classrooms, the recent national standards documents in science education have identified developing and using models as an important practice students should engage in as they apply and refine their ideas with peers and teachers in explaining phenomena or solving problems in classrooms. This article details how students can be engaged in developing and using models to help them make sense of friction phenomena in a high school conceptual physics classroom in ways that align with visions for teaching and learning outlined in the Next Generation Science Standards. This particular unit has been refined over several years to build on what was initially an inquiry-based unit we have described previously. In this latest iteration of the friction unit, students developed and refined models through engaging in small group and whole class discussions and investigations.

  14. The Future of Psychology: Connecting Mind to Brain

    PubMed Central

    Barrett, Lisa Feldman

    2009-01-01

    Psychological states such as thoughts and feelings are real. Brain states are real. The problem is that the two are not real in the same way, creating the mind–brain correspondence problem. In this article, I present a possible solution to this problem that involves two suggestions. First, complex psychological states such as emotion and cognition an be thought of as constructed events that can be causally reduced to a set of more basic, psychologically primitive ingredients that are more clearly respected by the brain. Second, complex psychological categories like emotion and cognition are the phenomena that require explanation in psychology, and, therefore, they cannot be abandoned by science. Describing the content and structure of these categories is a necessary and valuable scientific activity. Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world.—Einstein & Infeld (1938, p. 33) The cardinal passions of our life, anger, love, fear, hate, hope, and the most comprehensive divisions of our intellectual activity, to remember, expect, think, know, dream (and he goes on to say, feel) are the only facts of a subjective order…—James (1890, p. 195) PMID:19844601

  15. The emergence of human population genetics and narratives about the formation of the Brazilian nation (1950-1960).

    PubMed

    de Souza, Vanderlei Sebastião; Santos, Ricardo Ventura

    2014-09-01

    This paper discusses the emergence of human population genetics in Brazil in the decades following World War II, and pays particular attention to narratives about the formation of the Brazilian nation. We analyze the institutionalization of this branch of genetics in the 1950s and 1960s, and look at research on the characteristics of the population of Brazil, which made use of new explanatory models of evolutionary dynamics. These developments were greatly influenced by the activities of the Rockefeller Foundation and by the presence of North American geneticists in Brazil, especially Theodosius Dobzhansky. One of the main points of this paper is to show that explanations of Brazilian human genetic diversity constructed in the mid-twentieth century closely followed interpretations that had been produced since the end of the nineteenth century, in which notions of 'racial mixing' played a central role. Even as population genetics was conditioned by nationalist concerns that had long marked Brazilian history, we argue that its emergence and institutionalization was closely associated with global, post-World War II socio-political contexts, especially with regards to modernization projects and growing scientific internationalization. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1993-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a testbed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  17. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1992-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  18. In defence of story-telling.

    PubMed

    Currie, Adrian; Sterelny, Kim

    2017-04-01

    We argue that narratives are central to the success of historical reconstruction. Narrative explanation involves tracing causal trajectories across time. The construction of narrative, then, often involves postulating relatively speculative causal connections between comparatively well-established events. But speculation is not always idle or harmful: it also aids in overcoming local underdetermination by forming scaffolds from which new evidence becomes relevant. Moreover, as our understanding of the past's causal milieus become richer, the constraints on narrative plausibility become increasingly strict: a narrative's admissibility does not turn on mere logical consistency with background data. Finally, narrative explanation and explanation generated by simple, formal models complement one another. Where models often achieve isolation and precision at the cost of simplification and abstraction, narratives can track complex changes in a trajectory over time at the cost of simplicity and precision. In combination both allow us to understand and explain highly complex historical sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Finding meaning in first episode psychosis: experience, agency, and the cultural repertoire.

    PubMed

    Larsen, John Aggergaard

    2004-12-01

    The article examines individuals' attempts to generate meaning following their experiences with psychosis. The inquiry is based on a person-centered ethnographic study of a Danish mental health community program for early intervention in schizophrenia and involves longitudinal interviews with 15 of its participants. The article takes an existential anthropological perspective emphasizing agency and cultural phenomenology to investigate how individuals draw on resources from the cultural repertoire to make sense of personally disturbing experiences during their psychosis. It is suggested that the concept of "system of explanation" has advantages over, for example, "illness narrative" and "explanatory model" when demonstrating how some individuals engage in the creative analytic and theory-building work of bricolage, selecting, adding, and combining various systems of explanation. Delusions are equally derived from the cultural repertoire but are constructed as dogmatic explanations that are idiosyncratic to the individual who holds them.

  20. Understanding Student Motivation

    ERIC Educational Resources Information Center

    Seifert, Timothy

    2004-01-01

    Contemporary theories of academic motivation seek to explain students' behaviours in academic settings. While each theory seems to possess its own constructs and unique explanations, these theories are actually closely tied together. In this theoretical study of motivation, several theories of motivation were described and an underlying theme of…

Top