An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
Adiabatic pumping solutions in global AdS
NASA Astrophysics Data System (ADS)
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubrovsky, V. G.; Topovsky, A. V.
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums ofmore » special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.« less
NASA Astrophysics Data System (ADS)
Grundland, A. M.; Lalague, L.
1996-04-01
This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul
2018-02-01
We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.
Stationary solutions for the one-dimensional Frémond model of shape memory Effects
NASA Astrophysics Data System (ADS)
Horn, W.
1991-12-01
The objective of this article is to investigate steady state solutions for the Fr'emond theory of shape memory alloys. Special attention is paid to the temperature range where both martensite and austenite appear. We will give a construction of solutions, which involves only elementary mathematical tools.
Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M
2017-05-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).
Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.
2017-01-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513
Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela
Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as themore » original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.« less
Dynamics of a stochastic HIV-1 infection model with logistic growth
NASA Astrophysics Data System (ADS)
Jiang, Daqing; Liu, Qun; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed; Xia, Peiyan
2017-03-01
This paper is concerned with a stochastic HIV-1 infection model with logistic growth. Firstly, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the HIV-1 infection model. Then we obtain sufficient conditions for extinction of the infection. The stationary distribution shows that the infection can become persistent in vivo.
NASA Astrophysics Data System (ADS)
Toropova, L. V.; Alexandrov, D. V.
2018-05-01
The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.
Kleihaus, B; Kunz, J
2001-04-23
We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
The theory of nonstationary thermophoresis of a solid spherical particle
NASA Astrophysics Data System (ADS)
Kuzmin, M. K.; Yalamov, Yu. I.
2007-06-01
The theory of nonstationary thermophoresis of a solid spherical particle in a viscous gaseous medium is presented. The theory is constructed on the solutions of fluid-dynamics and thermal problems, each of which is split into stationary and strictly nonstationary parts. The solution of the stationary parts of the problems gives the final formula for determining the stationary component of the thermophoretic velocity of this particle. To determine the nonstationary component of the thermophoretic velocity of the particle, the corresponding formula in the space of Laplace transforms is derived. The limiting value theorems from operational calculus are used for obtaining the dependence of the nonstationary component of the thermophoretic velocity of the spherical particle on the strictly nonstationary temperature gradient for large and small values of time. The factors determining the thermophoretic velocity of the particle under investigation are determined.
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.
2018-05-01
A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.
NASA Astrophysics Data System (ADS)
Ryzhikova, O.; Naumov, N.; Sergienko, V.; Kostylev, V.
2017-01-01
Positron emission tomography is the most promising technology to monitor cancer and heart disease treatment. Stationary PET center requires substantial financial resources and time for construction and equipping. The developed mobile solution will allow introducing PET technology quickly without major investments.
Black hole and cosmos with multiple horizons and multiple singularities in vector-tensor theories
NASA Astrophysics Data System (ADS)
Gao, Changjun; Lu, Youjun; Yu, Shuang; Shen, You-Gen
2018-05-01
A stationary and spherically symmetric black hole (e.g., Reissner-Nordström black hole or Kerr-Newman black hole) has, at most, one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? The de Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves or the black hole continuum spectrum.
Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay
NASA Astrophysics Data System (ADS)
Ji, Chunyan; Liu, Qun; Jiang, Daqing
2018-02-01
In this paper, we consider a stochastic cell-to-cell HIV-1 model with distributed delay. Firstly, we show that there is a global positive solution of this model before exploring its long-time behavior. Then sufficient conditions for extinction of the disease are established. Moreover, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the model by constructing a suitable stochastic Lyapunov function. The stationary distribution implies that the disease is persistent in the mean. Finally, we provide some numerical examples to illustrate theoretical results.
Anomaly General Circulation Models.
NASA Astrophysics Data System (ADS)
Navarra, Antonio
The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the dominant response. The most sensitive areas are identified; they correspond to north Japan, the Pole and Greenland regions. A limited set of higher resolution (R15) experiments indicate that this situation is still present and enhanced at higher resolution. The linear anomaly model is also applied to a realistic case. (Abstract shortened with permission of author.).
Nonlinear relativistic plasma resonance: Renormalization group approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metelskii, I. I., E-mail: metelski@lebedev.ru; Kovalev, V. F., E-mail: vfkvvfkv@gmail.com; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy ofmore » the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.« less
NASA Astrophysics Data System (ADS)
Pástor, P.
2016-07-01
The equations of secular evolution for dust grains in mean motion resonances with a planet are solved for stationary points. Non-gravitational effects caused by stellar radiation (the Poynting-Robertson effect and the stellar wind) are taken into account. The solutions are stationary in the semimajor axis, eccentricity and resonant angle, but allow the pericentre to advance. The semimajor axis of stationary solutions can be slightly shifted from the exact resonant value. The periodicity of the stationary solutions in a reference frame orbiting with the planet is proved analytically. The existence of periodic solutions in mean motion resonances means that analytical theory enables infinitely long capture times for dust particles. The stationary solutions are periodic motions to which the eccentricity asymptotically approaches and around which the libration occurs. Initial conditions corresponding to the stationary solutions are successfully found by numerically integrating the equation of motion. Numerically and analytically determined shifts of the semimajor axis from the exact resonance for the stationary solutions are in excellent agreement. The stationary solutions can be plotted by the locations of pericentres in the reference frame orbiting with the planet. The pericentres are distributed in space according to the properties of the dust particles.
A numerical approach to finding general stationary vacuum black holes
NASA Astrophysics Data System (ADS)
Adam, Alexander; Kitchen, Sam; Wiseman, Toby
2012-08-01
The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.
Mitavskiy, Boris; Cannings, Chris
2009-01-01
The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
On Chorin's Method for Stationary Solutions of the Oberbeck-Boussinesq Equation
NASA Astrophysics Data System (ADS)
Kagei, Yoshiyuki; Nishida, Takaaki
2017-06-01
Stability of stationary solutions of the Oberbeck-Boussinesq system (OB) and the corresponding artificial compressible system is considered. The latter system is obtained by adding the time derivative of the pressure with small parameter ɛ > 0 to the continuity equation of (OB), which was proposed by A. Chorin to find stationary solutions of (OB) numerically. Both systems have the same sets of stationary solutions and the system (OB) is obtained from the artificial compressible one as the limit ɛ \\to 0 which is a singular limit. It is proved that if a stationary solution of the artificial compressible system is stable for sufficiently small ɛ > 0, then it is also stable as a solution of (OB). The converse is proved provided that the velocity field of the stationary solution satisfies some smallness condition.
Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow
NASA Astrophysics Data System (ADS)
Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.
2018-03-01
We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0
Stationary to nonstationary transition in crossed-field devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, Samuel; Rizzato, Felipe B.; Pakter, Renato
2016-03-15
The previous results based on numerical simulations showed that a cold electron beam injected in a crossed field gap does not reach a time independent stationary state in the space charge limited regime [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)]. In this work, the effect of finite injection temperature in the transition from stationary to nonstationary states is investigated. A fully kinetic model for the electron flow is derived and used to determine the possible stationary states of the system. It is found that although there is always a stationary solution for any set ofmore » parameters, depending on the injection temperature the electron flow becomes very sensitive to fluctuations and the stationary state is never reached. By investigating the nonlinear dynamics of a characteristic electron, a theory based on a single free parameter is constructed to predict when the transition between stationary and nonstationary states occurs. In agreement with the previous numerical results, the theory indicates that for vanishing temperatures the system never reaches the time independent stationary state in the space charge limited regime. Nevertheless, as the injection temperature is raised it is found a broad range of system parameters for which the stationary state is indeed attained. By properly adjusting the free parameter in the theory, one can be able to describe, to a very good accuracy, when the transition occurs.« less
NASA Astrophysics Data System (ADS)
Gavish, Nir
2018-04-01
We study the existence and stability of stationary solutions of Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) with two counter-charged species. We show that within a range of parameters, steric effects give rise to multiple solutions of the corresponding stationary equation that are smooth. The PNP-steric equation, however, is found to be ill-posed at the parameter regime where multiple solutions arise. Following these findings, we introduce a novel PNP-Cahn-Hilliard model, show that it is well-posed and that it admits multiple stationary solutions that are smooth and stable. The various branches of stationary solutions and their stability are mapped utilizing bifurcation analysis and numerical continuation methods.
Charged black rings at large D
NASA Astrophysics Data System (ADS)
Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi
2017-04-01
We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
Stability of Bifurcating Stationary Solutions of the Artificial Compressible System
NASA Astrophysics Data System (ADS)
Teramoto, Yuka
2018-02-01
The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.
Mean Field Limits for Interacting Diffusions in a Two-Scale Potential
NASA Astrophysics Data System (ADS)
Gomes, S. N.; Pavliotis, G. A.
2018-06-01
In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.
A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel
2006-01-15
Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations.
NASA Astrophysics Data System (ADS)
Bykov, V. G.; Kovachev, A. S.
2018-05-01
A statically unbalanced rotor in viscoelastic orthotropic supports equipped with an automatic ball balancer (ABB), the axis of symmetry of which does not coincide with the symmetry axis of the rotor, is considered. Based on an analysis of the equations describing the stationary modes of motion of the system, the principal impossibility of complete balancing of the rotor is shown. The possibility of the existence of two types of stationary modes is established, one of which has a constant average amplitude of residual vibration equal to the eccentricity of the ABB. The solution corresponding to this almost balanced mode is constructed analytically. A study is made of its asymptotic stability.
Supersymmetric solutions of N =(1 ,1 ) general massive supergravity
NASA Astrophysics Data System (ADS)
Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.
2018-05-01
We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.
Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
Ma, Li-Yuan; Zhu, Zuo-Nong
2014-09-01
In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.
Breathing chimera in a system of phase oscillators
NASA Astrophysics Data System (ADS)
Bolotov, M. I.; Smirnov, L. A.; Osipov, G. V.; Pikovsky, A. S.
2017-09-01
Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability.
Stationary axisymmetric four dimensional space-time endowed with Einstein metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanuddin; Departments of Physics, Tanjungpura University, Jl Ahmad Yani Pontianak 78124 Indonesia bobby@fi.itb.ac.id; Azwar, A.
In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.
Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation
NASA Astrophysics Data System (ADS)
Pikulin, S. V.
2018-02-01
We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov-Petrovskii-Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction-diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.
Multiple stationary solutions of an irradiated slab
NASA Astrophysics Data System (ADS)
Taylor, P. D.; Feltham, D. L.
2005-04-01
A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer's law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.
2018-04-01
We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.
Stationary Solutions of A One-dimensional Thermodynamic Radiative Sea Ice Model
NASA Astrophysics Data System (ADS)
Taylor, P. D.; Feltham, D. L.
A one-dimensional thermodynamic model of sea ice is coupled to a two-stream radi- ation model and the stationary (time-independent) solutions analysed. The stationary model represents the state of the sea ice subjected to persistent or slowly varying forc- ing. Two physically realisable stationary solutions (real and positive ice thickness) occur for a large range of positive oceanic heat flux ( 20,Wm-2). The two station- ary solutions are due to the two-stream radiation model, which allows radiation to be reflected at the ice-ocean interface. Thick ice ( 1,m) only absorbs radiation near its surface, whereas thin ice ( 0.1,m) absorbs radiation across its entire depth. The two stationary solutions are caused by these two different radiative regimes. The results of this analysis have relevance to the interpretation and implementation of thermody- namic models of sea ice and the interpretation of thickness data.
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2011-11-01
A largely unsolved theoretical issue in controlled fusion research is the consistent kinetic treatment of slowly-time varying plasma states occurring in collisionless and magnetized axisymmetric plasmas. The phenomenology may include finite pressure anisotropies as well as strong toroidal and poloidal differential rotation, characteristic of Tokamak plasmas. Despite the fact that physical phenomena occurring in fusion plasmas depend fundamentally on the microscopic particle phase-space dynamics, their consistent kinetic treatment remains still essentially unchallenged to date. The goal of this paper is to address the problem within the framework of Vlasov-Maxwell description. The gyrokinetic treatment of charged particles dynamics is adopted for the construction of asymptotic solutions for the quasi-stationary species kinetic distribution functions. These are expressed in terms of the particle exact and adiabatic invariants. The theory relies on a perturbative approach, which permits to construct asymptotic analytical solutions of the Vlasov-Maxwell system. In this way, both diamagnetic and energy corrections are included consistently into the theory. In particular, by imposing suitable kinetic constraints, the existence of generalized bi-Maxwellian asymptotic kinetic equilibria is pointed out. The theory applies for toroidal rotation velocity of the order of the ion thermal speed. These solutions satisfy identically also the constraints imposed by the Maxwell equations, i.e., quasi-neutrality and Ampere's law. As a result, it is shown that, in the presence of nonuniform fluid and EM fields, these kinetic equilibria can sustain simultaneously toroidal differential rotation, quasi-stationary finite poloidal flows and temperature anisotropy.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed
2018-01-01
In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed
2018-06-01
In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Generalized master equations for non-Poisson dynamics on networks
NASA Astrophysics Data System (ADS)
Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
NASA Astrophysics Data System (ADS)
Hong, Guangyi; Luo, Tao; Zhu, Changjiang
2018-07-01
This paper is concerned with spherically symmetric motions of non-isentropic viscous gaseous stars with self-gravitation. When the stationary entropy S ‾ (x) is spherically symmetric and satisfies a suitable smallness condition, the existence and properties of the stationary solutions are obtained for 6/5 < γ < 2 with weaker constraints upon S ‾ (x) compared with the one in [26], where γ is the adiabatic exponent. The global existence of strong solutions capturing the physical vacuum singularity that the sound speed is C 1/2 -Hölder continuous across the vacuum boundary to a simplified system for non-isentropic viscous flow with self-gravitation and the nonlinear asymptotic stability of the stationary solution are proved when 4/3 < γ < 2 with the detailed convergence rates, motivated by the results and analysis of the nonlinear asymptotic stability of Lane-Emden solutions for isentropic flows in [29,30].
Approach to the vadose zone monitoring in hazardous and solid waste disposal facilities
NASA Astrophysics Data System (ADS)
Twardowska, Irena
2004-03-01
In the solid waste (SW)disposal sites, in particular at the unlined facilities, at the remediated or newly-constructed units equipped with novel protective/reactive permeable barriers or at lined facilities with leachate collection systems that are prone to failure, the vadose zone monitoring should comprise besides the natural soil layer beneath the landfill, also the anthropogenic vadose zone, i.e. the waste layer and pore solutions in the landfill. The vadose zone screening along the vertical profile of SW facilities with use of direct invasive soil-core and soil-pore liquid techniques shows vertical downward redistribution of inorganic (macroconstituents and heavy metals) and organic (PAHs) contaminant loads in water infiltrating through the waste layer. These loads can make ground water down-gradient of the dump unfit for any use. To avoid damage of protective/reactive permeable barriers and liners, an installation of stationary monitoring systems along the waste layer profile during the construction of a landfill, which are amenable to generate accurate data and information in a near-real time should be considered including:(i) permanent samplers of pore solution, with a periodic pump-induced transport of collected solution to the surface, preferably with instant field measurements;(ii)chemical sensors with continuous registration of critical parameters. These techniques would definitely provide an early alert in case when the chemical composition of pore solution percolating downward the waste profile shows unfavorable transformations, which indicate an excessive contaminant load approaching ground water. The problems concerning invasive and stationary monitoring of the vadose zone in SW disposal facilities will be discussed at the background of results of monitoring data and properties of permeable protective/reactive barriers considered for use.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing
2018-04-01
In this paper, two stochastic predator-prey models with general functional response and higher-order perturbation are proposed and investigated. For the nonautonomous periodic case of the system, by using Khasminskii's theory of periodic solution, we show that the system admits a nontrivial positive T-periodic solution. For the system disturbed by both white and telegraph noises, sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution to the solutions are established. The existence of stationary distribution implies stochastic weak stability to some extent.
Gauge invariant gluon spin operator for spinless nonlinear wave solutions
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.
2017-04-01
We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.
Water waves generated by impulsively moving obstacle
NASA Astrophysics Data System (ADS)
Makarenko, Nikolay; Kostikov, Vasily
2017-04-01
There are several mechanisms of tsunami-type wave formation such as piston displacement of the ocean floor due to a submarine earthquake, landslides, etc. We consider simplified mathematical formulation which involves non-stationary Euler equations of infinitely deep ideal fluid with submerged compact wave-maker. We apply semi-analytical method [1] based on the reduction of fully nonlinear water wave problem to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Recently, small-time asymptotic solutions were constructed by this method for submerged piston modeled by thin elliptic cylinder which starts with constant acceleration from rest [2,3]. By that, the leading-order solution terms describe several regimes of non-stationary free surface flow such as formation of inertial fluid layer, splash jets and diverging waves over the obstacle. Now we construct asymptotic solution taking into account higher-order nonlinear terms in the case of submerged circular cylinder. The role of non-linearity in the formation mechanism of surface waves is clarified in comparison with linear approximations. This work was supported by RFBR (grant No 15-01-03942). References [1] Makarenko N.I. Nonlinear interaction of submerged cylinder with free surface, JOMAE Trans. ASME, 2003, 125(1), 75-78. [2] Makarenko N.I., Kostikov V.K. Unsteady motion of an elliptic cylinder under a free surface, J. Appl. Mech. Techn. Phys., 2013, 54(3), 367-376. [3] Makarenko N.I., Kostikov V.K. Non-linear water waves generated by impulsive motion of submerged obstacle, NHESS, 2014, 14(4), 751-756.
Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno
2008-01-01
We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. PMID:19255631
Persistent superconductor currents in holographic lattices.
Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo
2014-07-04
We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.
The unidirectional motion of two heat-conducting liquids in a flat channel
NASA Astrophysics Data System (ADS)
Andreev, V. K.; Cheremnykh, E. N.
2017-10-01
The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.
Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow
NASA Astrophysics Data System (ADS)
Pausch, Marina; Grossmann, Florian; Eckhardt, Bruno; Romanovski, Valery G.
2014-10-01
We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.
30 CFR 57.4561 - Stationary diesel equipment underground.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and (b...
Current sheet in plasma as a system with a controlling parameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridman, Yu. A., E-mail: yulya-fridman@yandex.ru; Chukbar, K. V., E-mail: Chukbar-KV@nrcki.ru
2015-08-15
A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.
New Patterns of Activity in a Pair of Interacting Excitatory-Inhibitory Neural Fields
NASA Astrophysics Data System (ADS)
Folias, S. E.; Ermentrout, G. B.
2011-11-01
In this Letter, we study stationary bump solutions in a pair of interacting excitatory-inhibitory (E-I) neural fields in one dimension. We demonstrate the existence of localized bump solutions of persistent activity that can be maintained by the pair of interacting layers when a stationary bump is not supported by either layer in isolation—a scenario which may be relevant as a mechanism for the persistent activity associated with working memory in the prefrontal cortex and may explain why bumps are not seen in in vitro slice preparations. Furthermore, we describe a new type of stationary bump solution arising from a pitchfork bifurcation which produces a stationary bump in each layer with a spatial offset that increases with the bifurcation parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: Robert.VanGorder@maths.ox.ac.uk
2015-09-15
In a recent paper, we give a study of the purely rotational motion of general stationary states in the two-dimensional local induction approximation (2D-LIA) governing superfluid turbulence in the low-temperature limit [B. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)]. Such results demonstrated that variety of stationary configurations are possible from vortex filaments exhibiting purely rotational motion in addition to commonly discussed configurations such as helical or planar states. However, the filaments (or, more properly, waves along these filaments) can also exhibit translational motion along the axis of orientation. In contrast to the study onmore » vortex configurations for purely rotational stationary states, the present paper considers non-stationary states which exhibit a combination of rotation and translational motions. These solutions can essentially be described as waves or disturbances which ride along straight vortex filament lines. As expected from our previous work, there are a number of types of structures that can be obtained under the 2D-LIA. We focus on non-stationary states, as stationary states exhibiting translation will essentially take the form of solutions studied in [R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)], with the difference being translation along the reference axis, so that qualitative appearance of the solution geometry will be the same (even if there are quantitative differences). We discuss a wide variety of general properties of these non-stationary solutions and derive cases in which they reduce to known stationary states. We obtain various routes to Kelvin waves along vortex filaments and demonstrate that if the phase and amplitude of a disturbance both propagate with the same wave speed, then Kelvin waves will result. We also consider the self-similar solutions to the model and demonstrate that these types of solutions can model vortex kinks that gradually smooth and radiate Kelvin waves as time increases. Such solutions qualitatively agree with what one might expect from post-reconnection events.« less
NASA Astrophysics Data System (ADS)
Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun
2017-01-01
A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.
EPA Approved Iowa Regulations - 40 CFR 52.820(c) Chapter 33 - Special Regulations and Construction Permit Requirements for Major Stationary Sources - Prevention of Significant Deterioration (PSD) of Air Quality
NASA Astrophysics Data System (ADS)
Khristoforov, Mikhail; Kleptsyn, Victor; Triestino, Michele
2016-07-01
This paper is inspired by the problem of understanding in a mathematical sense the Liouville quantum gravity on surfaces. Here we show how to define a stationary random metric on self-similar spaces which are the limit of nice finite graphs: these are the so-called hierarchical graphs. They possess a well-defined level structure and any level is built using a simple recursion. Stopping the construction at any finite level, we have a discrete random metric space when we set the edges to have random length (using a multiplicative cascade with fixed law {m}). We introduce a tool, the cut-off process, by means of which one finds that renormalizing the sequence of metrics by an exponential factor, they converge in law to a non-trivial metric on the limit space. Such limit law is stationary, in the sense that glueing together a certain number of copies of the random limit space, according to the combinatorics of the brick graph, the obtained random metric has the same law when rescaled by a random factor of law {m} . In other words, the stationary random metric is the solution of a distributional equation. When the measure m has continuous positive density on {mathbf{R}+}, the stationary law is unique up to rescaling and any other distribution tends to a rescaled stationary law under the iterations of the hierarchical transformation. We also investigate topological and geometric properties of the random space when m is log-normal, detecting a phase transition influenced by the branching random walk associated to the multiplicative cascade.
Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.
2018-04-01
We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.
NASA Astrophysics Data System (ADS)
Kan-On, Yukio
2007-04-01
This paper is concerned with the bifurcation structure of positive stationary solutions for a generalized Lotka-Volterra competition model with diffusion. To establish the structure, the bifurcation theory and the interval arithmetic are employed.
Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.
Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui
2009-05-15
With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
The problem of obtaining an explicit representation for the fourth invariant of geodesic motion (generalized Carter constant) of an arbitrary stationary axisymmetric vacuum spacetime generated from an Ernst potential is considered. The coupling between the nonlocal curvature content of the spacetime as encoded in the Weyl tensor, and the existence of a Killing tensor is explored and a constructive, algebraic test for a fourth-order Killing tensor suggested. The approach used exploits the variables defined for the Baecklund transformations to clarify the relationship between Weyl curvature, constants of geodesic motion, expressed as Killing tensors, and the solution-generation techniques. A new symmetricmore » noncovariant formulation of the Killing equations is given. This formulation transforms the problem of looking for fourth-order Killing tensors in 4D into one of looking for four interlocking two-manifolds admitting fourth-order Killing tensors in 2D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klan, F.
1961-01-01
A radiometer for 3-cm waves with mechanical signal modulation was constructed for measurements on lowtemperature, stationary plasmas. The sensitivity limit of the device was also calculated in good agreement with experiment. The theory used for the calculation is presented, and the radiometer is described. (D.C.W.)
Application of Hamilton's Law of Varying Action
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1973-01-01
The application of Hamilton's Law to the direct solution of nonstationary as well as stationary problems in mechanics of solids is discussed. Solutions are demonstrated for conservative and monconservative, stationary and/or nonstationary particle motion. Mathematical models are developed to establish the relationships of the parameters.
Linear Augmentation for Stabilizing Stationary Solutions: Potential Pitfalls and Their Application
Karnatak, Rajat
2015-01-01
Linear augmentation has recently been shown to be effective in targeting desired stationary solutions, suppressing bistablity, in regulating the dynamics of drive response systems and in controlling the dynamics of hidden attractors. The simplicity of the procedure is the main highlight of this scheme but questions related to its general applicability still need to be addressed. Focusing on the issue of targeting stationary solutions, this work demonstrates instances where the scheme fails to stabilize the required solutions and leads to other complicated dynamical scenarios. Examples from conservative as well as dissipative systems are presented in this regard and important applications in dissipative predator—prey systems are discussed, which include preventative measures to avoid potentially catastrophic dynamical transitions in these systems. PMID:26544879
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... permit program for pre- construction review of certain new and modified major stationary sources in... program as required by section 165 of the CAA for certain new and modified major stationary sources... the CAA requires states to adopt a pre-construction permitting program for certain new and modified...
Group invariant solutions of the Ernst equation of general relativity theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryse, P.V.
The local symmetry group of the Ernst Equation for stationary, axisymmetric, vacuum space-time manifolds is computed by application of the method of Olver. Several implicit solutions of the equation are found by use of this group. Each of these solutions is given in terms of a function defined as a solution of an ordinary differential equation. One of these equations is integrated by quadratures by use of its own local symmetry group, the result being three explicit solutions of the Ernst Equation. For one of these solutions the metric of the space-time manifold is constructed and studied. The solutions hasmore » a ring curvature singularity and it is asymptotically flat in the sense that the curvature invariants approach zero at spatial infinity. The timelike and null geodesics on the symmetry axis and in the plane of the ring singularity are described. The test particles following these geodesics are seen to be repelled by the ring, which suggests the interpretation of this solution as representing the exterior gravitational field of a rotating ring of matter with negative gravitational mass.« less
Method 101A (M101A) is similar to Method 101 for the determination of mercury (Hg) from stationary sources. n M101A, however, acidic potassium permanganate solution is used for sample collection instead of acidic iodine monochloride solution. his method applies to the determinati...
Evolution of thick domain walls in de Sitter universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su
We consider thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we are interested not only in stationary solutions found therein, but also investigate the general case of domain wall evolution with time. When the wall thickness parameter, δ{sub 0}, is smaller than H {sup −1}/√2, where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ{sub 0} ≥ H {sup −1}/√2. We have calculated numerically the rate of the wallmore » expansion in this case and have found that the width of the wall grows exponentially fast for δ{sub 0} >> H {sup −1}. An explanation for the critical value δ{sub 0} {sub c} = H {sup −1}/√2 is also proposed.« less
Propagation of Boundary-Induced Discontinuity in Stationary Radiative Transfer
NASA Astrophysics Data System (ADS)
Kawagoe, Daisuke; Chen, I.-Kun
2018-01-01
We consider the boundary value problem of the stationary transport equation in the slab domain of general dimensions. In this paper, we discuss the relation between discontinuity of the incoming boundary data and that of the solution to the stationary transport equation. We introduce two conditions posed on the boundary data so that discontinuity of the boundary data propagates along positive characteristic lines as that of the solution to the stationary transport equation. Our analysis does not depend on the celebrated velocity averaging lemma, which is different from previous works. We also introduce an example in two dimensional case which shows that piecewise continuity of the boundary data is not a sufficient condition for the main result.
Uniqueness of the Stationary Wave for the Extended Fisher-Kolmogorov Equation
NASA Astrophysics Data System (ADS)
Kwapisz, Jaroslaw
2000-07-01
The extended Fisher-Kolmogorov equation, ut=-βuxxxx+uxx+u-u3, β>0, models a binary system near the Lifshitz critical point and is known to exhibit a stationary heteroclinic solution joining the equilibria ±1. For the classical case, β=0, the heteroclinic is u(x)=tanh(x/2) and is unique up to the obvious symmetries. We prove the conjecture that the uniqueness persists all the way to β=1/8, where the onset of spatial chaos associated with the loss of monotonicity of the stationary wave is known to occur. Our methods are non-perturbative and employ a global cross-section to the Hamiltonian flow of the stationary fourth order equation on the energy level of ±1. We also prove uniform a priori bounds on all bounded stationary solutions, valid for any β>0.
40 CFR 60.4200 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1... date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE with a..., for fire pump engines. (2) Owners and operators of stationary CI ICE that commence construction after...
40 CFR 60.4200 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1... date the engine is ordered by the owner or operator. (1) Manufacturers of stationary CI ICE with a..., for fire pump engines. (2) Owners and operators of stationary CI ICE that commence construction after...
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
A finite state projection algorithm for the stationary solution of the chemical master equation
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Yong
2018-04-01
In this paper, we extend the one-component Gross-Pitaevskii (GP) equation to the two-component coupled GP system including damping term, linear and parabolic density profiles. The Lax pair with nonisospectral parameter and infinitely-many conservation laws of this coupled GP system are presented. Actually, the Darboux transformation (DT) for this kind of nonautonomous system is essentially different from the autonomous case. Consequently, we construct the DT of the coupled GP equations, besides, nonautonomous multi-solitons, one-breather and the first-order rogue wave are also obtained. Various kinds of one-soliton solution are constructed, which include stationary one-soliton and nonautonomous one-soliton propagating along the negative (positive) direction of x-axis. The interaction of two solitons and two-soliton bound state are demonstrated respectively. We get the nonautonomous one-breather on a curved background and this background is completely controlled by the parameter β. Using a limiting process, the nonautonomous first-order rogue wave can be obtained. Furthermore, some dynamic structures of these analytical solutions are discussed in detail. In addition, the multi-component generalization of GP equations are given, then the corresponding Lax pair and DT are also constructed.
Vacillations induced by interference of stationary and traveling planetary waves
NASA Technical Reports Server (NTRS)
Salby, Murry L.; Garcia, Rolando R.
1987-01-01
The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.
An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.
Burden, Conrad J; Tang, Yurong
2016-12-01
We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Li; Li, YanYan; Yan, Xukai
2018-05-01
We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.
Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks
NASA Astrophysics Data System (ADS)
Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.
2018-01-01
This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.
Self-similar solutions of stationary Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Shi, Zuoshunhua
2018-02-01
In this paper, we mainly study the existence of self-similar solutions of stationary Navier-Stokes equations for dimension n = 3 , 4. For n = 3, if the external force is axisymmetric, scaling invariant, C 1 , α continuous away from the origin and small enough on the sphere S2, we shall prove that there exists a family of axisymmetric self-similar solutions which can be arbitrarily large in the class Cloc3 , α (R3 0). Moreover, for axisymmetric external forces without swirl, corresponding to this family, the momentum flux of the flow along the symmetry axis can take any real number. However, there are no regular (U ∈ Cloc3 , α (R3 0)) axisymmetric self-similar solutions provided that the external force is a large multiple of some scaling invariant axisymmetric F which cannot be driven by a potential. In the case of dimension 4, there always exists at least one self-similar solution to the stationary Navier-Stokes equations with any scaling invariant external force in L 4 / 3 , ∞ (R4).
NASA Astrophysics Data System (ADS)
Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.
2018-04-01
We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.
Gibbsian Stationary Non-equilibrium States
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gabrielli, Davide
2017-09-01
We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
On the asymptotic behaviour of 2D stationary Navier-Stokes solutions with symmetry conditions
NASA Astrophysics Data System (ADS)
Decaster, Agathe; Iftimie, Dragoş
2017-10-01
We consider the 2D stationary incompressible Navier-Stokes equations in ℝ2. Under suitable symmetry, smallness and decay at infinity conditions on the forcing we determine the behaviour at infinity of the solutions. Moreover, when the forcing is small, satisfies suitable symmetry conditions and decays at infinity like a vector field homogeneous of degree -3, we show that there exists a unique small solution whose asymptotic behaviour at infinity is homogeneous of degree -1.
Symbolic Computational Approach to the Marangoni Convection Problem With Soret Diffusion
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond
1998-01-01
A recently reported solution for stationary stability of a thermosolutal system with Soret diffusion is re-derived and examined using a symbolic computational package. Symbolic computational languages are well suited for such an analysis and facilitate a pragmatic approach that is adaptable to similar problems. Linearization of the equations, normal mode analysis, and extraction of the final solution are performed in a Mathematica notebook format. An exact solution is obtained for stationary stability in the limit of zero gravity. A closed form expression is also obtained for the location of asymptotes in relevant parameter, (Sm(sub c), Mac(sub c)), space. The stationary stability behavior is conveniently examined within the symbolic language environment. An abbreviated version of the Mathematica notebook is given in the Appendix.
Exact Solutions in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
Exponential asymptotics of homoclinic snaking
NASA Astrophysics Data System (ADS)
Dean, A. D.; Matthews, P. C.; Cox, S. M.; King, J. R.
2011-12-01
We study homoclinic snaking in the cubic-quintic Swift-Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319-54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement.
Charged black holes in compactified spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlovini, Max; Unge, Rikard von
2005-11-15
We construct and investigate a compactified version of the four-dimensional Reissner-Nordstroem-Taub-NUT solution, generalizing the compactified Schwarzschild black hole that has been previously studied by several workers. Our approach to compactification is based on dimensional reduction with respect to the stationary Killing vector, resulting in three-dimensional gravity coupled to a nonlinear sigma model. Knowing that the original noncompactified solution corresponds to a target space geodesic, the problem can be linearized much in the same way as in the case of no electric or Taub-NUT charge. An interesting feature of the solution family is that, for nonzero electric charge but vanishing Taub-NUTmore » charge, the solution has a curvature singularity on a torus that surrounds the event horizon, but this singularity is removed when the Taub-NUT charge is switched on. We also treat the Schwarzschild case in a more complete way than has been done previously. In particular, the asymptotic solution (the Levi-Civita solution with the height coordinate made periodic) has to our knowledge only been calculated up to a determination of the mass parameter. The periodic Levi-Civita solution contains three essential parameters, however, and the remaining two are explicitly calculated here.« less
Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.
Berthod, A; Faure, K
2015-04-17
A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Karel, S.
1975-01-01
An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.
Amplified crossflow disturbances in the laminar boundary layer on swept wings with suction
NASA Technical Reports Server (NTRS)
Dagenhart, J. R.
1981-01-01
Solution charts of the Orr-Sommerfeld equation for stationary crossflow disturbances are presented for 10 typical velocity profiles on a swept laminar flow control wing. The critical crossflow Reynolds number is shown to be a function of a boundary layer shape factor. Amplification rates for crossflow disturbances are shown to be proportional to the maximum crossflow velocity. A computer stability program called MARIA, employing the amplification rate data for the 10 crossflow velocity profiles, is constructed. This code is shown to adequately approximate more involved computer stability codes using less than two percent as much computer time while retaining the essential physical disturbance growth model.
NASA Technical Reports Server (NTRS)
Seddougui, Sharon O.
1989-01-01
The effects of compressibility on a stationary mode of instability of the 3-D boundary layer due to a rotating disc are investigated. The aim is to determine whether this mode will be important in the finite amplitude destabilization of the boundary layer. This stationary mode is characterized by the effective velocity profile having zero shear stress at the wall. Triple-deck solutions are presented for an adiabatic wall and an isothermal wall. It is found that this stationary mode is only possible over a finite range of Mach numbers. Asymptotic solutions are obtained which describe the structure of the wavenumber and the orientation of these modes as functions of the local Mach number. The effects of nonlinearity are investigated allowing the finite amplitude growth of a disturbance close to the neutral location to be described.
NASA Astrophysics Data System (ADS)
Ibrahim, R. S.; El-Kalaawy, O. H.
2006-10-01
The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painlevé expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model.
30 CFR 57.4561 - Stationary diesel equipment underground.
Code of Federal Regulations, 2010 CFR
2010-07-01
....4561 Section 57.4561 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment...
Čolović, Jelena; Rmandić, Milena; Malenović, Anđelija
2018-05-17
Numerous stationary phases have been developed with the aim to provide desired performances during chromatographic analysis of the basic solutes in their protonated form. In this work, the procedure for the characterization of bonded stationary phase performance, when both qualitative and quantitative chromatographic factors were varied in chaotropic chromatography, was proposed. Risperidone and its three impurities were selected as model substances, while acetonitrile content in the mobile phase (20-30%), the pH of the aqueous phase (3.00-5.00), the content of chaotropic agents in the aqueous phase (10-100 mM), type of chaotropic agent (NaClO 4 , CF 3 COONa), and stationary phase type (Zorbax Eclipse XDB, Zorbax Extend) were studied as chromatographic factors. The proposed procedure implies the combination of D-optimal experimental design, indirect modeling, and polynomial-modified Gaussian model, while grid point search method was selected for the final choice of the experimental conditions which lead to the best possible stationary phase performance for basic solutes. Good agreement between experimentally obtained chromatogram and simulated chromatogram for chosen experimental conditions (25% acetonitrile, 75 mM of NaClO 4 , pH 4.00 on Zorbax Eclipse XDB column) confirmed the applicability of the proposed procedure. The additional point was selected for the verification of proposed procedure ability to distinguish changes in solutes' elution order. Simulated chromatogram for 21.5% acetonitrile, 85 mM of NaClO 4 , pH 5.00 on Zorbax Eclipse XDB column was in line with experimental data. Furthermore, the values of left and right peak half-widths obtained from indirect modeling were used in order to evaluate performances of differently modified stationary phases applying a half-width plots approach. The results from half-width plot approach as well as from the proposed procedure indicate higher efficiency and better separation performance of the stationary phase extra densely bonded and double end-capped with trimethylsilyl group than the stationary phase with the combination of end-capping and bidentate silane bonding for chromatographic analysis of basic solutes in RP-HPLC systems with chaotropic agents. Graphical abstract ᅟ.
Stability of stationary solutions for inflow problem on the micropolar fluid model
NASA Astrophysics Data System (ADS)
Yin, Haiyan
2017-04-01
In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the micropolar fluid model in a half-line R+:=(0,∞). We prove that the corresponding stationary solutions of the small amplitude to the inflow problem for the micropolar fluid model are time asymptotically stable under small H1 perturbations in both the subsonic and degenerate cases. The microrotation velocity brings us some additional troubles compared with Navier-Stokes equations in the absence of the microrotation velocity. The proof of asymptotic stability is based on the basic energy method.
NASA Astrophysics Data System (ADS)
Prosviryakov, E. Yu; Spevak, L. F.
2017-06-01
The layered convective flow of a viscous incompressible fluid is considered with the specified velocities at the bottom of an infinite layer. A new exact stationary and nonstationary solution of the Oberbeck-Boussinesq system is presented. The account of fluid velocity at the bottom is characterized by the presence of two stagnant points, this being indicative of the nonmonotonic kinetic energy profile with two local extrema.
NASA Astrophysics Data System (ADS)
Galenko, Peter K.; Alexandrov, Dmitri V.; Titova, Ekaterina A.
2018-01-01
The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay-Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. The modelling makes it possible to obtain selected structures in the form of dendritic, fractal or planar crystals. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Numerical simulation of fire vortex
NASA Astrophysics Data System (ADS)
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.
Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N
2015-10-30
A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes.
Existence of frozen-in coordinate systems
NASA Technical Reports Server (NTRS)
Chertkov, A. D.
1995-01-01
The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.
Higher spin black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo
2016-10-01
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
... review programs for new or modified stationary sources of air pollution. In addition, the provisions of... the emissions from the construction and modification of any stationary source of air pollution to.... Partially counteracting these increases, the Flexible Air Permitting Rule had the effect of reducing the...
Stationary Engineers Apprenticeship. Related Training Modules. 20.1-23.1 Miscellaneous.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with miscellaneous job skills needed by persons working in power plants. Addressed in the individual instructional packages included in the module are the following topics: transformers, circuit protection, construction of foundations…
40 CFR 52.1037 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation of new and modified major stationary sources of pollution in attainment areas. (11) Attainment... review of construction and operation of new and modified major stationary sources of pollution in non... involvement in federally funded air pollution control activities was submitted on May 28, 1980. (13) Revisions...
40 CFR 52.1037 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operation of new and modified major stationary sources of pollution in attainment areas. (11) Attainment... review of construction and operation of new and modified major stationary sources of pollution in non... involvement in federally funded air pollution control activities was submitted on May 28, 1980. (13) Revisions...
Quantum electron levels in the field of a charged black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokuchaev, V. I.; Eroshenko, Yu. N., E-mail: eroshenko@ms2.inr.ac.ru
2015-12-15
Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.
Simple metric for a magnetized, spinning, deformed mass
NASA Astrophysics Data System (ADS)
Manko, V. S.; Ruiz, E.
2018-05-01
We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks, and we write it in a concise explicit form that is very suitable for concrete applications. An interesting peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial extreme limit, which we elaborate completely in terms of four polynomial factors.
NASA Astrophysics Data System (ADS)
Dovetta, Simone
2018-04-01
We investigate the existence of stationary solutions for the nonlinear Schrödinger equation on compact metric graphs. In the L2-subcritical setting, we prove the existence of an infinite number of such solutions, for every value of the mass. In the critical regime, the existence of infinitely many solutions is established if the mass is lower than a threshold value, while global minimizers of the NLS energy exist if and only if the mass is lower or equal to the threshold. Moreover, the relation between this threshold and the topology of the graph is characterized. The investigation is based on variational techniques and some new versions of Gagliardo-Nirenberg inequalities.
Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.
Djordjevic, N M; Fitzpatrick, F; Houdiere, F
2001-04-01
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.
Gnutzmann, Sven; Waltner, Daniel
2016-12-01
We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.
Thermal analysis of a growing crystal in an aqueous solution
NASA Astrophysics Data System (ADS)
Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya
1980-10-01
The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.
A stationary bulk planar ideal flow solution for the double shearing model
NASA Astrophysics Data System (ADS)
Lyamina, E. A.; Kalenova, N. V.; Date, P. P.
2018-04-01
This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.
Stationary Engineers Apprenticeship. Related Training Modules. 13.1-13.7 Pumps.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with pumps. Addressed in the individual instructional packages included in the module are the following topics: types, classifications, and applications of pumps; pump construction; procedures for calculating pump heat and pump flow;…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... review programs for new or modified stationary sources of air pollution. In addition, the provisions of... the emissions from the construction and modification of any stationary source of air pollution to... Flexible Air Permitting Rule also slightly reduced the burden per minor NSR permit. As a result of all...
Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…
Mallory, Kristina; Van Gorder, Robert A
2015-07-01
Stationary solutions for the cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied through a perturbation method and also numerically. Note that we study both repulsive and attractive BECs under similar frameworks in order to deduce the effects of the potentials in each case. After outlining the general framework, solutions for a collection of specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular potentials on the behavior of the BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repulsive BECs for potentials of various strengths and forms. Finally, we consider the nonperturbative where the potential or the amplitude of the solutions is large, obtaining various qualitative results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this also occurs in the large mass limit. Through all of these results, we are able to understand the qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining potentials.
On Stationary Navier-Stokes Flows Around a Rotating Obstacle in Two-Dimensions
NASA Astrophysics Data System (ADS)
Higaki, Mitsuo; Maekawa, Yasunori; Nakahara, Yuu
2018-05-01
We study the two-dimensional stationary Navier-Stokes equations describing the flows around a rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial infinity are established when the rotation speed of the obstacle and the given exterior force are sufficiently small.
Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz
NASA Astrophysics Data System (ADS)
Vanicat, Matthieu
2018-04-01
We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
Van Meter, David S; Sun, Yaqin; Parker, Kevin M; Stalcup, Apryll M
2008-02-01
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.
An abstract approach to evaporation models in rarefied gas dynamics
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
1984-03-01
Strong evaporation models involving 1D stationary problems with linear self-adjoint collision operators and solutions in abstract Hilbert spaces are investigated analytically. An efficient algorithm for locating the transition from existence to nonexistence of solutions is developed and applied to the 1D and 3D BGK model equations and the 3D BGK model in moment form, demonstrating the nonexistence of stationary evaporation states with supersonic drift velocities. Applications to similar models in electron and phonon transport, radiative transfer, and neutron transport are suggested.
Technical trends in industrial lead/acid batteries in Japan
NASA Astrophysics Data System (ADS)
Iwata, Masashi; Tagawa, Yahachiro
1994-02-01
Although there have been only a few major technological changes in stationary lead/acid batteries in the past, some rapid and remarkable developments have occurred recently. The latter have included the introduction of catalyst plugs and valve-regulated lead/acid batteries (VRBs). Catalyst plugs have been used to avoid water addition with stationary lead/acid batteries. By virtue of their advantages (i.e., the elements retain electrolyte and equalizing charging and water addition are unnecessary), VRBs are being developed up to a maximum capacity of 3000 Ah. These designs have now captured about 50% of the stationary lead/acid battery market. The VRB technology has excellent characteristics, such as plate construction that can accommodate grid growth, explosion-resistant plugs, good discharge characteristics, and minimal electrolyte stratification. In addition, by utilizing the benefits of VRBs, horizontal and multistoried systems can be assembled, though in early stages of development the construction was only for interchangeability with flooded-electrolyte type batteries.
Exact solution of two interacting run-and-tumble random walkers with finite tumble duration
NASA Astrophysics Data System (ADS)
Slowman, A. B.; Evans, M. R.; Blythe, R. A.
2017-09-01
We study a model of interacting run-and-tumble random walkers operating under mutual hardcore exclusion on a one-dimensional lattice with periodic boundary conditions. We incorporate a finite, poisson-distributed, tumble duration so that a particle remains stationary whilst tumbling, thus generalising the persistent random walker model. We present the exact solution for the nonequilibrium stationary state of this system in the case of two random walkers. We find this to be characterised by two lengthscales, one arising from the jamming of approaching particles, and the other from one particle moving when the other is tumbling. The first of these lengthscales vanishes in a scaling limit where the continuous-space dynamics is recovered whilst the second remains finite. Thus the nonequilibrium stationary state reveals a rich structure of attractive, jammed and extended pieces.
Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.
Page, Don N; Shoom, Andrey A
2015-04-10
Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime.
Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare
NASA Astrophysics Data System (ADS)
Unverferth, John; Longcope, Dana
2018-06-01
Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.
General Construction Trades. Volume 1. Teacher's Guide.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Occupational Curriculum Lab.
Ten units on the world of construction and twelve units on carpentry are presented in this teacher's guide. The construction units include the following: safety; human relations in the shop; grooming and hygiene; hand tools; measurement; portable power tools, stationary power tools; fastening devices; and job application and interview. The…
A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.
Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei
2015-09-01
A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.
NASA Astrophysics Data System (ADS)
Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang
2010-10-01
Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.
Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas.
Brey, J Javier; Maynar, Pablo; García de Soria, M I
2016-10-01
A kinetic equation for a dilute gas of hard spheres confined between two parallel plates separated a distance smaller than two particle diameters is derived. It is a Boltzmann-like equation, which incorporates the effect of the confinement on the particle collisions. A function S(t) is constructed by adding to the Boltzmann expression a confinement contribution. Then it is shown that for the solutions of the kinetic equation, S(t) increases monotonically in time, until the system reaches a stationary inhomogeneous state, when S becomes the equilibrium entropy of the confined system as derived from equilibrium statistical mechanics. From the entropy, other equilibrium properties are obtained, and molecular dynamics simulations are used to verify some of the theoretical predictions.
Evolutionary squeaky wheel optimization: a new framework for analysis.
Li, Jingpeng; Parkes, Andrew J; Burke, Edmund K
2011-01-01
Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing.
Rathnasekara, Renuka; El Rassi, Ziad
2017-07-28
Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.
Only adding stationary storage to vaccine supply chains may create and worsen transport bottlenecks.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Claypool, Erin G; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints.
Only Adding Stationary Storage to Vaccine Supply Chains May Create and Worsen Transport Bottlenecks
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Claypool, Erin G.; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y.
2015-01-01
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints. PMID:23903398
NASA Astrophysics Data System (ADS)
Munoz Burgos, J. M.; Schmitz, O.; Unterberg, E. A.; Loch, S. D.; Balance, C. P.
2010-11-01
We developed a time dependent solution for the He I line ratio diagnostic. Stationary solution is applied for L-mode at TEXTOR. The radial range is typically limited to a region near the separatrix due to metastable effects, and the atomic data used. We overcome this problem by applying a time dependent solution and thus avoid unphysical results. We use a new R-Matrix with Pseudostates and Convergence Cross-Coupling electron impact excitation and ionization atomic data set into the Collisional Radiative Model (CRM). We include contributions from higher Rydberg states into the CRM by means of the projection matrix. By applying this solution (to the region near the wall) and the stationary solution (near the separatrix), we triple the radial range of the current diagnostic. We explore the possibility of extending this approach to H-mode plasmas in DIII-D by estimating line emission profiles from electron temperature and density Thomson scattering data.
Dai, Xiaojun; He, Yuan; Wei, Yinmao; Gong, Bolin
2011-11-01
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... inventories for primary PM 2.5 ,\\1\\ NO X , and Sulfur Dioxide (SO 2 ),\\2\\ documented in Indiana's May 31, 2011... quantification of allowable emissions for major new and modified stationary sources in an area, and section 172(c)(5) requires source permits for the construction and operation of new and modified major stationary...
A new geometric invariant on initial data for the Einstein equations.
Dain, Sergio
2004-12-03
For a given asymptotically flat initial data set for Einstein equations a new geometric invariant is constructed. This invariant measures the departure of the data set from the stationary regime; it vanishes if and only if the data are stationary. In vacuum, it can be interpreted as a measure of the total amount of radiation contained in the data.
An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave
NASA Astrophysics Data System (ADS)
Molotkov, I. A.; Atamaniuk, B.
2018-05-01
A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.
The reliable solution and computation time of variable parameters logistic model
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Pan, Xinnong
2018-05-01
The study investigates the reliable computation time (RCT, termed as T c) by applying a double-precision computation of a variable parameters logistic map (VPLM). Firstly, by using the proposed method, we obtain the reliable solutions for the logistic map. Secondly, we construct 10,000 samples of reliable experiments from a time-dependent non-stationary parameters VPLM and then calculate the mean T c. The results indicate that, for each different initial value, the T cs of the VPLM are generally different. However, the mean T c trends to a constant value when the sample number is large enough. The maximum, minimum, and probable distribution functions of T c are also obtained, which can help us to identify the robustness of applying a nonlinear time series theory to forecasting by using the VPLM output. In addition, the T c of the fixed parameter experiments of the logistic map is obtained, and the results suggest that this T c matches the theoretical formula-predicted value.
Nonlinear water waves generated by impulsive motion of submerged obstacle
NASA Astrophysics Data System (ADS)
Makarenko, N.; Kostikov, V.
2012-04-01
The fully nonlinear problem on generation of unsteady water waves by impulsively moving obstacle is studied analytically. The method involves the reduction of basic Euler equations to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Exact model equations are derived in explicit form when the isolated obstacle is presented by totally submerged circular- or elliptic cylinder. Small-time asymptotic solution is constructed for the cylinder which starts moving with constant acceleration from rest. It is demonstrated that the leading-order solution terms describe several wave regimes such as the formation of non-stationary splash jets by vertical rising or vertical submersion of the obstacle, as well as the generation of diverging waves by horizontal- and combined motion of the obstacle under free surface. This work was supported by RFBR (grant No 10-01-00447) and by Research Program of the Russian Government (grant No 11.G34.31.0035).
NASA Astrophysics Data System (ADS)
Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhiev, Todor N.
2018-05-01
In this paper we study the transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation (CCQGLE) under the influence of nonlinear gain, its saturation, and higher-order effects: self-steepening, third-order of dispersion, and intrapulse Raman scattering in the anomalous dispersion region. The variation method and the method of moments are applied in order to obtain the dynamic models with finite degrees of freedom for the description of stationary and pulsating solutions. Having applied the first model and its bifurcation analysis we have discovered the existence of families of subcritical Poincaré-Andronov-Hopf bifurcations due to the intrapulse Raman scattering, as well as some small nonlinear gain and the saturation of the nonlinear gain. A phenomenon of nonlinear stability has been studied and it has been shown that long living pulsating solutions with relatively small fluctuations of amplitude and frequencies exist at the bifurcation point. The numerical analysis of the second model has revealed the existence of Poincaré-Andronov-Hopf bifurcations of Raman dissipative soliton under the influence of the self-steepening effect and large nonlinear gain. All our theoretical predictions have been confirmed by the direct numerical solution of the full perturbed CCQGLE. The detailed comparison between the results obtained by both dynamic models and the direct numerical solution of the perturbed CCQGLE has proved the applicability of the proposed models in the investigation of the solutions of the perturbed CCQGLE.
Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.
Lira, Sérgio A; Miranda, José A
2016-01-01
We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.
Estimates of green tensors for certain boundary value problems
NASA Technical Reports Server (NTRS)
Solonnikov, V.
1988-01-01
Consider the first boundary value problem for a stationary Navier-Stokes system in a bounded three-dimensional region Omega with the boundary S: delta v = grad p+f, div v=0, v/s=0. Odqvist (1930) developed the potential theory and formulated the Green tensor for the above problem. The basic singular solution used by Odqvist to express the Green tensor is given. A theorem generalizing his results is presented along with four associated theorems. A specific problem associated with the study of the differential properties of the solution of stationary problems of magnetohydrodynamics is examined.
The Dirac equation in Schwarzschild black hole coupled to a stationary electromagnetic field
NASA Astrophysics Data System (ADS)
Al-Badawi, A.; Owaidat, M. Q.
2017-08-01
We study the Dirac equation in a spacetime that represents the nonlinear superposition of the Schwarzschild solution to an external, stationary electromagnetic field. The set of equations representing the uncharged Dirac particle in the Newman-Penrose formalism is decoupled into a radial and an angular parts. We obtain exact analytical solutions of the angular equations. We manage to obtain the radial wave equations with effective potentials. Finally, we study the potentials by plotting them as a function of radial distance and examine the effect of the twisting parameter and the frequencies on the potentials.
Peak-power limits on fiber amplifiers imposed by self-focusing
NASA Astrophysics Data System (ADS)
Farrow, Roger L.; Kliner, Dahv A. V.; Hadley, G. Ronald; Smith, Arlee V.
2006-12-01
We have numerically investigated the behavior of the fundamental mode of a step-index, multimode (MM) fiber as the optical power approaches the self-focusing limit (Pcrit). The analysis includes the effects of gain and bending (applicable to coiled fiber amplifiers). We find power-dependent, stationary solutions that propagate essentially without change at beam powers approaching Pcrit in straight and bent fibers. We show that in a MM fiber amplifier seeded with its fundamental eigenmode at powers ≪Pcrit, the transverse spatial profile adiabatically evolves through a continuum of stationary solutions as the beam is amplified toward Pcrit.
The rotation axis for stationary and axisymmetric space-times
NASA Astrophysics Data System (ADS)
van den Bergh, N.; Wils, P.
1985-03-01
A set of 'extended' regularity conditions is discussed which have to be satisfied on the rotation axis if the latter is assumed to be also an axis of symmetry. For a wide class of energy-momentum tensors these conditions can only hold at the origin of the Weyl canonical coordinate. For static and cylindrically symmetric space-times the conditions can be derived from the regularity of the Riemann tetrad coefficients on the axis. For stationary space-times, however, the extended conditions do not necessarily hold, even when 'elementary flatness' is satisfied and when there are no curvature singularities on the axis. The result by Davies and Caplan (1971) for cylindrically symmetric stationary Einstein-Maxwell fields is generalized by proving that only Minkowski space-time and a particular magnetostatic solution possess a regular axis of rotation. Further, several sets of solutions for neutral and charged, rigidly and differentially rotating dust are discussed.
Prebifurcation periodic ghost orbits in semiclassical quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kus, M.; Haake, F.; Delande, D.
1993-10-04
Classical periodic orbits are stationary-phase points in path integral representations of quantum propagators. We show that complex solutions of the stationary-phase equation, not corresponding to real classical periodic orbits, give additional contributions to the propagator which can be important, especially near bifurcations. We reveal the existence and relevance of such periodic ghost orbits for a kicked top.
NASA Astrophysics Data System (ADS)
Ginzburg, Irina; Vikhansky, Alexander
2018-05-01
The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.
Glenne, Emelie; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny
2017-05-05
Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.
Deep liquid-chromatographic purification of uranium extract from technetium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volk, V.; Dvoeglazov, K; Podrezova, L.
The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silicamore » gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)« less
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Assessment of ALEGRA Computation for Magnetostatic Configurations
Grinfeld, Michael; Niederhaus, John Henry; Porwitzky, Andrew
2016-03-01
Here, a closed-form solution is described here for the equilibrium configurations of the magnetic field in a simple heterogeneous domain. This problem and its solution are used for rigorous assessment of the accuracy of the ALEGRA code in the quasistatic limit. By the equilibrium configuration we understand the static condition, or the stationary states without macroscopic current. The analysis includes quite a general class of 2D solutions for which a linear isotropic metallic matrix is placed inside a stationary magnetic field approaching a constant value H i° at infinity. The process of evolution of the magnetic fields inside and outsidemore » the inclusion and the parameters for which the quasi-static approach provides for self-consistent results is also explored. Lastly, it is demonstrated that under spatial mesh refinement, ALEGRA converges to the analytic solution for the interior of the inclusion at the expected rate, for both body-fitted and regular rectangular meshes.« less
Stationary spiral flow in polytropic stellar models
Pekeris, C. L.
1980-01-01
It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models. PMID:16592825
Bacteriorhodopsin-based photo-electrochemical cell.
Chu, Li-Kang; Yen, Chun-Wan; El-Sayed, Mostafa A
2010-10-15
A simple solution-based electrochemical cell has been constructed and successfully employed in the detection of the photoelectric response upon photoexcitation of bacteriorhodopsin (bR) without external bias. Commercially-available indium tin oxide (ITO) glasses served as the optical windows and electrodes. Small amounts of bR suspensions (∼100 μL) were utilized as the photovoltaic medium to generate the proton gradient between two half-cells separated by a molecular porous membrane. Continuous broadband visible light (λ>380 nm) and a short-pulse 532-nm laser were employed for the photoexcitation of bR. Upon the modulated cw broadband irradiation, an instantaneous rise and decay of the current was observed. Our observations of the pH-dependent photocurrent are consistent with previous reports in a bR thin film configuration, which also showed a polarity inversion at pH 5-6. This is due to the change of the priority of the proton release and proton uptake in the photocycle of bR. Studies on the ionic strength effect were also carried out at different KCl concentrations, which resulted in the acceleration of the rise and decay of the photoelectric response. This was accompanied by a decrease in the stationary photocurrent at higher KCl concentrations in the broadband excitation experiments. The solution-based electrochemical cell uses aqueous medium, which is required for the completion of the bR proton pumping function. Due to the generation of the stationary current, it is advantageous to convert solar energy into electricity without the need of film-based photovoltaic devices with external bias. Copyright © 2010 Elsevier B.V. All rights reserved.
A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.
Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong
2016-01-01
We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.
Stationary swarming motion of active Brownian particles in parabolic external potential
NASA Astrophysics Data System (ADS)
Zhu, Wei Qiu; Deng, Mao Lin
2005-08-01
We investigate the stationary swarming motion of active Brownian particles in parabolic external potential and coupled to its mass center. Using Monte Carlo simulation we first show that the mass center approaches to rest after a sufficient long period of time. Thus, all the particles of a swarm have identical stationary motion relative to the mass center. Then the stationary probability density obtained by using the stochastic averaging method for quasi integrable Hamiltonian systems in our previous paper for the motion in 4-dimensional phase space of single active Brownian particle with Rayleigh friction model in parabolic potential is used to describe the relative stationary motion of each particle of the swarm and to obtain more probability densities including that for the total energy of the swarm. The analytical results are confirmed by comparing with those from simulation and also shown to be consistent with the existing deterministic exact steady-state solution.
Exact solutions for sound radiation from a moving monopole above an impedance plane.
Ochmann, Martin
2013-04-01
The acoustic field of a monopole source moving with constant velocity at constant height above an infinite locally reacting plane can be expressed in analytical form by combining the Lorentz transformation with the method of superimposing complex or real point sources. For a plane with masslike response, the solution in Lorentz space consists of a superposition of monopoles only and therefore, does not differ in principle from the solution for the corresponding stationary boundary value problem. However, by considering a frequency independent surface impedance, e.g., with pure absorbing behavior, the half-space Green's function is now comprised of not only a line of monopoles but also of dipoles. For certain field points at a special line g, this solution can be written explicitly by using an exponential integral. For arbitrary field points, the method of stationary phase leads to an asymptotic solution for the reflection coefficient which agrees with prior results from the literature.
Special discontinuities in nonlinearly elastic media
NASA Astrophysics Data System (ADS)
Chugainova, A. P.
2017-06-01
Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr; Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu
In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case ofmore » a slightly more general potential than the one for harmonic oscillator.« less
Asymptotic Poincare lemma and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziolkowski, R.W.; Deschamps, G.A.
1984-05-01
An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generatemore » a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures.« less
NASA Astrophysics Data System (ADS)
Lyulin, Y. V.; Rezanova, E. V.
2017-11-01
Heat- and mass transfer processes in a two-layer system of the liquid and gas are studied with respect to evaporation at interface. The stationary convective flows of two immiscible viscous incompressible fluids filling an infinite channel and being under action of the transverse gravitation field are studied analytically. Mathematical modeling of the flows is carried out with the help of the Navier-Stokes equations in Boussinesq approximation. The Dufour and Soret effects are taken into consideration in the gas-vapor phase. In the two-dimensional case the exact solutions of special type are constructed under condition of a given specific gas flow rate. Comparison of the analytical results with results of the physical experiments with the “liquid-gas” system like “ethanol-air” are presented.
Analysis of the cooling of continuous flow helium cryostats
NASA Astrophysics Data System (ADS)
Pust, L.
A mathematical model of the cooling of a continuous-flow cryostat which takes into account real values of the specific and latent heat of the cryogenic fluid and of the specific heat of the cryostat material is presented. The amount of liquid in the cooling fluid and four parasitic heat flows, caused by radiation and heat conduction in the construction materials and in the rest gas in the vacuum insulation, are also taken into account. The influence of different model parameters on performance, particularly in the non-stationary regime, is demonstrated by means of numerical solutions of the modelling equations. A quantitative criterion which assesses the properties of the planned cryostat, is formulated. The theoretical conclusions are compared with measurements performed on a continuous flow helium cryostat.
Flowing to higher dimensions: a new strongly-coupled phase on M2 branes
Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.
2015-11-24
We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less
Flowing to higher dimensions: a new strongly-coupled phase on M2 branes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.
We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less
NASA Astrophysics Data System (ADS)
Kashiwabara, Takahito
Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.
Population dynamical behavior of Lotka-Volterra system under regime switching
NASA Astrophysics Data System (ADS)
Li, Xiaoyue; Jiang, Daqing; Mao, Xuerong
2009-10-01
In this paper, we investigate a Lotka-Volterra system under regime switching where B(t) is a standard Brownian motion. The aim here is to find out what happens under regime switching. We first obtain the sufficient conditions for the existence of global positive solutions, stochastic permanence and extinction. We find out that both stochastic permanence and extinction have close relationships with the stationary probability distribution of the Markov chain. The limit of the average in time of the sample path of the solution is then estimated by two constants related to the stationary distribution and the coefficients. Finally, the main results are illustrated by several examples.
On the dynamics of exotic matter: Towards creation of Perpetuum Mobile of third kind
NASA Astrophysics Data System (ADS)
Ivanov, Pavel
2009-09-01
The one-dimensional dynamics of a classical ideal ‘exotic’ fluid with equation of state p=p(γ)<0 violating the weak energy condition is discussed. Under certain assumptions it is shown that the well-known Hwa-Bjorken exact solution of one-dimensional relativistic hydrodynamics is confined within the future/past light cone. It is also demonstrated that the total energy of such a solution is equal to zero and that there are regions within the light cone with negative (-) and positive (+) total energies. For certain equations of state there is a continuous energy transfer from the (-)-regions to the (+)-regions resulting in indefinite growth of energy in the (+)-regions with time, which may be interpreted as action of a specific ‘Perpetuum Mobile’ (Perpetuum Motion). It is speculated that if it is possible to construct a three-dimensional non-stationary flow of an exotic fluid having a finite negative value of energy such a situation would also occur. Such a flow may continuously transfer positive energy to gravitational waves, resulting in a runaway. It is conjectured that theories plagued by such solutions should be discarded as inherently unstable.
40 CFR Table 8 to Subpart IIIi of... - Applicability of General Provisions to Subpart IIII
Code of Federal Regulations, 2012 CFR
2012-07-01
... Yes § 60.4 Address Yes § 60.5 Determination of construction or modification Yes § 60.6 Review of plans....4214(a). § 60.8 Performance tests Yes Except that § 60.8 only applies to stationary CI ICE with a... Except that § 60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder...
40 CFR Table 8 to Subpart IIIi of... - Applicability of General Provisions to Subpart IIII
Code of Federal Regulations, 2014 CFR
2014-07-01
... Yes § 60.4 Address Yes § 60.5 Determination of construction or modification Yes § 60.6 Review of plans....4214(a). § 60.8 Performance tests Yes Except that § 60.8 only applies to stationary CI ICE with a... Except that § 60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder...
40 CFR Table 8 to Subpart IIIi of... - Applicability of General Provisions to Subpart IIII
Code of Federal Regulations, 2013 CFR
2013-07-01
... Yes § 60.4 Address Yes § 60.5 Determination of construction or modification Yes § 60.6 Review of plans....4214(a). § 60.8 Performance tests Yes Except that § 60.8 only applies to stationary CI ICE with a... Except that § 60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder...
40 CFR Table 8 to Subpart IIIi of... - Applicability of General Provisions to Subpart IIII
Code of Federal Regulations, 2011 CFR
2011-07-01
... Yes § 60.4 Address Yes § 60.5 Determination of construction or modification Yes § 60.6 Review of plans....4214(a). § 60.8 Performance tests Yes Except that § 60.8 only applies to stationary CI ICE with a... Except that § 60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder...
A new, double-inversion mechanism of the F- + CH3Cl SN2 reaction in aqueous solution.
Liu, Peng; Wang, Dunyou; Xu, Yulong
2016-11-23
Atomic-level, bimolecular nucleophilic substitution reaction mechanisms have been studied mostly in the gas phase, but the gas-phase results cannot be expected to reliably describe condensed-phase chemistry. As a novel, double-inversion mechanism has just been found for the F - + CH 3 Cl S N 2 reaction in the gas phase [Nat. Commun., 2015, 6, 5972], here, using multi-level quantum mechanics methods combined with the molecular mechanics method, we discovered a new, double-inversion mechanism for this reaction in aqueous solution. However, the structures of the stationary points along the reaction path show significant differences from those in the gas phase due to the strong influence of solvent and solute interactions, especially due to the hydrogen bonds formed between the solute and the solvent. More importantly, the relationship between the two double-inversion transition states is not clear in the gas phase, but, here we revealed a novel intermediate complex serving as a "connecting link" between the two transition states of the abstraction-induced inversion and the Walden-inversion mechanisms. A detailed reaction path was constructed to show the atomic-level evolution of this novel double reaction mechanism in aqueous solution. The potentials of mean force were calculated and the obtained Walden-inversion barrier height agrees well with the available experimental value.
NASA Astrophysics Data System (ADS)
Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong
2018-04-01
We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.
Inference for local autocorrelations in locally stationary models.
Zhao, Zhibiao
2015-04-01
For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.
Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.
2013-06-15
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less
Curl forces and the nonlinear Fokker-Planck equation.
Wedemann, R S; Plastino, A R; Tsallis, C
2016-12-01
Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the S_{q} entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.
Non-GPS full position and angular orientation onboard sensors for moving and stationary platforms
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.
2016-05-01
Angular orientation of both mobile and stationary objects continues to be an ongoing topic of interest for guidance and control as well as for non-GPS based solutions for geolocations of assets in any environment. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable solution for many applications, particularly for gun-fired munitions and for all-weather and all environment scenarios. A robust onboard full angular orientation sensor solution, based on a scanning polarized reference source and a polarized geometrical cavity orientation sensor, is presented. The full position of the object, in the reference source coordinate system, is determined by combining range data obtained using established time-of-flight techniques, with the angular orientation information.
Correct numerical simulation of a two-phase coolant
NASA Astrophysics Data System (ADS)
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Alikram N.; Cebeci, Hakan; Dereli, Tekin
We present an exact solution describing a stationary and axisymmetric object with electromagnetic and dilaton fields. The solution generalizes the usual Kerr-Taub-NUT (Newman-Unti-Tamburino) spacetime in general relativity and is obtained by boosting this spacetime in the fifth dimension and performing a Kaluza-Klein reduction to four dimensions. We also discuss the physical parameters of this solution and calculate its gyromagnetic ratio.
Particular transcendent solution of the Ernst system generalized on n fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leaute, B.; Marcilhacy, G.
A particular solution, a function of a particular form of the fifth Painleve transcendent, of the Ernst system generalized to n fields is determined, which characterizes both the stationary axially symmetric fields, the solution of the Einstein (n-1) Maxwell equations, and one class of axially symmetric static self-dual SU(n+1) Yang--Mills fields.
Berthod, Alain; Hassoun, Mahmoud
2006-05-26
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.
Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation
2011-04-01
history tracing back to Hilbert , Chapmann and Enskog (Cercignani, 1988) at the beginning of the last century. The mathematical difficulties related to the...accurate determin- istic computations of the stationary solutions, which may be treated by schemes aimed to capture the stationary state ( Greenberg and...Stokes model, can be considered using the Chapmann-Enskog and the Hilbert expansions. We refer to Levermore (1996) for a mathematical setting of the
Kim, Myoung-Ho; Choi, Suk-Jung
2015-04-15
In this study, we devised a stationary liquid-phase lab-on-a-chip (SLP LOC), which was operated by moving solid-phase magnetic particles in the stationary liquid phase. The SLP LOC consisted of a sample chamber to which a sample and reactants were added, a detection chamber containing enzyme substrate solution, and a narrow channel connecting the two chambers and filled with buffer. As a model system, competitive immunoassays of saxitoxin (STX), a paralytic shellfish toxin, were conducted in the SLP LOC using protein G-coupled magnetic particles (G-MPs) as the solid phase. Anti-STX antibodies, STX-horseradish peroxidase conjugate, G-MPs, and a STX sample were added to the sample chamber and reacted by shaking. While liquids were in the stationary state, G-MPs were transported from the sample chamber to the detection chamber by moving a magnet below the LOC. After incubation to allow the enzymatic reaction to occur, the absorbance of the detection chamber solution was found to be reciprocally related to the STX concentration of the sample. Thus, the SLP LOC may represent a novel, simple format for point-of-care testing applications of enzyme-linked immunosorbent assays by eliminating complicated liquid handling steps. Copyright © 2014 Elsevier B.V. All rights reserved.
Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.
Pino, Verónica; Afonso, Ana M
2012-02-10
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Hydrodynamics of isotropic and liquid crystalline active polymer solutions.
Ahmadi, Aphrodite; Marchetti, M C; Liverpool, T B
2006-12-01
We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.
Kitagawa, Shinya; Tsuda, Takao
2003-05-02
The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themore » dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.« less
Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.; ...
2015-04-30
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themore » dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.« less
A new method for the radiochemical purity measurement of ¹¹¹In-pentetreotide.
Salgado-Garcia, Carlos; Montoza-Aguado, Manuel; Luna-Alcaide, Ana B; Segovia-Gonzalez, Maria M; de Mora, Elena Sanchez; Lopez-Martin, Juana; Ramos-Font, Carlos; Jimenez-Heffernan, Amelia
2011-12-01
The recommended method for the measurement of radiochemical purity (RCP) of ¹¹¹In-labelled pentetreotide is thin-layer chromatography with a silica gel as the stationary phase and a 0.1 N sodium citrate solution (pH 5) as the mobile phase. According to the supplier's instructions, the mobile phase must be prepared before the test is carried out, and the recommended stationary phase is off-market. We propose a new method for RCP measurement in which the mobile phase is acid citrate dextrose, solution A, which does not need to be prepared beforehand, and thin-layer chromatography is performed with a silica gel-impregnated glass fibre sheet as the stationary phase. We used both methods to measure the percentages of radiopharmaceutical and impurities. The range of RCP values obtained was 98.0-99.9% (mean=99.3%) by the standard method and 98.1-99.9% (mean=99.2%) by the new method. We observed no differences between the RCP values of both methods (P=0.070). The proposed method is suitable for RCP testing because it yields results that are in good agreement with those of the standard method and because it is easier to perform as the mobile-phase solution need not be prepared in advance.
On Maximal Hard-Core Thinnings of Stationary Particle Processes
NASA Astrophysics Data System (ADS)
Hirsch, Christian; Last, Günter
2018-02-01
The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.
Expansion shock waves in regularized shallow-water theory
NASA Astrophysics Data System (ADS)
El, Gennady A.; Hoefer, Mark A.; Shearer, Michael
2016-05-01
We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.
NASA Astrophysics Data System (ADS)
Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.
2012-09-01
We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.
Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang
2017-10-13
Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Urban construction and safety project
NASA Technical Reports Server (NTRS)
1975-01-01
The purpose and functions of NASA technology applications temas (TAT) are described, with emphasis on the activities of the Urban and Construction and Safety Project. The transfer and implementation of technology is discussed in five activities. Topics include: flat conductor cable, NASA house and compendium, flood insurance studies, tornado studies, and the controller for stationary diesels.
Design and construction of coke battery 1A at Radlin coke plant, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka
In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.
NASA Astrophysics Data System (ADS)
Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.
2016-08-01
In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.
Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
NASA Astrophysics Data System (ADS)
Muruganandam, P.; Adhikari, S. K.
2009-10-01
Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
NASA Astrophysics Data System (ADS)
Makoveeva, Eugenya V.; Alexandrov, Dmitri V.
2018-01-01
This article is concerned with a new analytical description of nucleation and growth of crystals in a metastable mushy layer (supercooled liquid or supersaturated solution) at the intermediate stage of phase transition. The model under consideration consisting of the non-stationary integro-differential system of governing equations for the distribution function and metastability level is analytically solved by means of the saddle-point technique for the Laplace-type integral in the case of arbitrary nucleation kinetics and time-dependent heat or mass sources in the balance equation. We demonstrate that the time-dependent distribution function approaches the stationary profile in course of time. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Towards Gravitating Discs around Stationary Black Holes
NASA Astrophysics Data System (ADS)
Semerák, Oldřich
This article outlines the search for an exact general relativistic description of the exterior(vacuum) gravitational field of a rotating spheroidal black hole surrounded by a realistic axially symmetric disc of matter. The problem of multi-body stationary spacetimes is first exposed from the perspective of the relativity theory (section 1) and astrophysics (section 2), listing the basic methods employed and results obtained. Then (in section 3) basic formulas for stationary axisymmetric solutions are summarized. Sections 4 and 5 review what we have learnt with Miroslav Žáček and Tomáš Zellerin about certain static and stationary situations recently. Concluding remarks are given in section 6. Although the survey part is quite general, the list of references cannot be complete.Our main desideratum was the informative value rather than originality — novelties have been preferred, mainly reviews and those with detailed introductions.
Global solution branches for a nonlocal Allen-Cahn equation
NASA Astrophysics Data System (ADS)
Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji
2018-05-01
We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.
NASA Astrophysics Data System (ADS)
von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin
2016-04-01
Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I. Horenko. On identification of nonstationary factor models and its application to atmospherical data analysis. J. Atm. Sci., 67:1559-1574, 2010. [2] P. Metzner, L. Putzig and I. Horenko. Analysis of persistent non-stationary time series and applications. CAMCoS, 7:175-229, 2012. [3] M. Uhlmann. Generation of a temporally well-resolved sequence of snapshots of the flow-field in turbulent plane channel flow. URL: http://www-turbul.ifh.unikarlsruhe.de/uhlmann/reports/produce.pdf, 2000. [4] Th. von Larcher, A. Beck, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov, G. Gassner and C.-D. Munz. Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation. Meteorol. Z., 24:313-342, 2015.
Cao, Yong; Chu, Yuchuan; He, Xiaoming; ...
2013-01-01
This paper proposes a domain decomposition method for the coupled stationary Navier-Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition in order to improve the efficiency of the finite element method. The physical interface conditions are directly utilized to construct the boundary conditions on the interface and then decouple the Navier-Stokes and Darcy equations. Newton iteration will be used to deal with the nonlinear systems. Numerical results are presented to illustrate the features of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty
2010-01-01
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less
Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang
2015-05-29
Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Variational principle for the Navier-Stokes equations.
Kerswell, R R
1999-05-01
A variational principle is presented for the Navier-Stokes equations in the case of a contained boundary-driven, homogeneous, incompressible, viscous fluid. Based upon making the fluid's total viscous dissipation over a given time interval stationary subject to the constraint of the Navier-Stokes equations, the variational problem looks overconstrained and intractable. However, introducing a nonunique velocity decomposition, u(x,t)=phi(x,t) + nu(x,t), "opens up" the variational problem so that what is presumed a single allowable point over the velocity domain u corresponding to the unique solution of the Navier-Stokes equations becomes a surface with a saddle point over the extended domain (phi,nu). Complementary or dual variational problems can then be constructed to estimate this saddle point value strictly from above as part of a minimization process or below via a maximization procedure. One of these reduced variational principles is the natural and ultimate generalization of the upper bounding problem developed by Doering and Constantin. The other corresponds to the ultimate Busse problem which now acts to lower bound the true dissipation. Crucially, these reduced variational problems require only the solution of a series of linear problems to produce bounds even though their unique intersection is conjectured to correspond to a solution of the nonlinear Navier-Stokes equations.
Åsberg, Dennis; Samuelsson, Jörgen; Fornstedt, Torgny
2016-07-29
A fundamental investigation of the pressure effect on individual adsorption sites was undertaken based on adsorption energy distribution and adsorption isotherm measurements. For this purpose, we measured adsorption equilibrium data at pressures ranging from 100 to 1000bar at constant flow and over a wide concentration range for three low-molecular-weight solutes, antipyrine, sodium 2-naphthalenesulfonate, and benzyltriethylammonium chloride, on an Eternity C18 stationary phase. The adsorption energy distribution was bimodal for all solutes, remaining clearly so at all pressures. The bi-Langmuir model best described the adsorption in these systems and two types of adsorption sites were identified, one with a low and another with a high energy of interaction. Evidence exists that the low-energy interactions occur at the interface between the mobile and stationary phases and that the high-energy interactions occur nearer the silica surface, deeper in the C18 layer. The contribution of each type of adsorption site to the retention factor was calculated and the change in solute molar volume from the mobile to stationary phase during the adsorption process was estimated for each type of site. The change in solute molar volume was 2-4 times larger at the high-energy site, likely because of the greater loss of solute solvation layer when penetrating deeper into the C18 layer. The association equilibrium constant increased with increasing pressure while the saturation capacity of the low-energy site remained almost unchanged. The observed increase in saturation capacity for the high-energy site did not affect the column loading capacity, which was almost identical at 50- and 950-bar pressure drops over the column. Copyright © 2016 Elsevier B.V. All rights reserved.
Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Uenal, A.
1981-01-01
A numerical scheme for solving two dimensional Fredholm integral equations of the second kind is developed. The proof of the convergence of the numerical scheme is shown for three cases: the case of periodic kernels, the case of semiperiodic kernels, and the case of nonperiodic kernels. Applications to the incompressible, stationary Navier-Stokes problem are of primary interest.
AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…
Miksch, G; Dobrowolski, P
1995-01-01
RSF1010-derived plasmids carrying a fusion of a promoterless lacZ gene with the sigma s-dependent growth phase-regulated promoters of Escherichia coli, bolAp1 and fic, were constructed. The plasmids were mobilized into the gram-negative bacterial species Acetobacter methanolicus, Xanthomonas campestris, Pseudomonas putida, and Rhizobium meliloti. The beta-galactosidase activities of bacterial cultures were determined during exponential and stationary growth phases. Transcriptional activation of the fic promoter in the different bacteria was growth phase dependent as in E. coli and was initiated generally during the transition to stationary phase. The induction of the bolA promoter was also growth phase dependent in the bacteria tested. While the expression in E. coli and R. meliloti was initiated during the transition from exponential to stationary phase, the induction in A. methanolicus, P. putida, and X. campestris started some hours after stationary growth phase was reached. In all the species tested, DNA fragments hybridizing with the rpoS gene of E. coli were detected. The results show that in different gram-negative bacteria, stationary-phase-specific sigma factors which are structurally and functionally homologous to sigma s and are able to recognize the promoter sequences of both bolA and fic exist. PMID:7665531
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1988-01-01
Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Lyu, Qingwen; Ma, Jianhua
2016-04-15
Purpose: In computed tomography perfusion (CTP) imaging, an initial phase CT acquired with a high-dose protocol can be used to improve the image quality of later phase CT acquired with a low-dose protocol. For dynamic regions, signals in the later low-dose CT may not be completely recovered if the initial CT heavily regularizes the iterative reconstruction process. The authors propose a hybrid nonlocal means (hNLM) regularization model for iterative reconstruction of low-dose CTP to overcome the limitation of the conventional prior-image induced penalty. Methods: The hybrid penalty was constructed by combining the NLM of the initial phase high-dose CT inmore » the stationary region and later phase low-dose CT in the dynamic region. The stationary and dynamic regions were determined by the similarity between the initial high-dose scan and later low-dose scan. The similarity was defined as a Gaussian kernel-based distance between the patch-window of the same pixel in the two scans, and its measurement was then used to weigh the influence of the initial high-dose CT. For regions with high similarity (e.g., stationary region), initial high-dose CT played a dominant role for regularizing the solution. For regions with low similarity (e.g., dynamic region), the regularization relied on a low-dose scan itself. This new hNLM penalty was incorporated into the penalized weighted least-squares (PWLS) for CTP reconstruction. Digital and physical phantom studies were performed to evaluate the PWLS-hNLM algorithm. Results: Both phantom studies showed that the PWLS-hNLM algorithm is superior to the conventional prior-image induced penalty term without considering the signal changes within the dynamic region. In the dynamic region of the Catphan phantom, the reconstruction error measured by root mean square error was reduced by 42.9% in PWLS-hNLM reconstructed image. Conclusions: The PWLS-hNLM algorithm can effectively use the initial high-dose CT to reconstruct low-dose CTP in the stationary region while reducing its influence in the dynamic region.« less
Time-periodic solutions of the Benjamin-Ono equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose , D.M.; Wilkening, Jon
2008-04-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less
On the simplest binary system of rotating black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manko, V. S.; Rodchenko, E. D.; Sadovnikov, B. I.
Exact axisymmetric stationary solution of the Einstein equations describing a system of two counter-rotating identical Kerr black holes is worked out in a physical parametrization within the framework of the Ernst formalism and analytically extended double-Kerr solution. The derivation of the limiting case of extreme constituents is also discussed.
Tunable tunneling: stationary states of the Bose-Einstein condensate in traps of finite depth
NASA Astrophysics Data System (ADS)
Mahmud, K. W.
2001-03-01
The complete set of stationary solutions in a finite square well for repulsive and attractive Bose-Einstein condensates was obtained. An immediate application of these different solution types is tunable tunneling. Magnetically tunable Feshbach resonances [1] can change the scattering length of certain atoms, such as ^85Rb , by several orders of magnitude, including the sign, and thereby also change the mean field nonlinearity term of the equation and the tunneling of the wavefunction. Extending earlier work on the solutions of the Gross-Pitaevskii equation under box and periodic boundary conditions [2,3], we find both linear-type localized solutions and uniquely nonlinear partially localized states where the tails of the wavefunction become nonzero at infinity when the nonlinearity increases. The tunneling and localization of the wavefunction therefore becomes an external experimentally controllable parameter. PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.-w 1. Ph. Courteille et al., Phys. Rev. Lett. 81, 69 (1998) 2, 3. L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A 62, 063610 and 063611 (2000)
Chaotic and regular instantons in helical shell models of turbulence
NASA Astrophysics Data System (ADS)
De Pietro, Massimo; Mailybaev, Alexei A.; Biferale, Luca
2017-03-01
Shell models of turbulence have a finite-time blowup in the inviscid limit, i.e., the enstrophy diverges while the single-shell velocities stay finite. The signature of this blowup is represented by self-similar instantonic structures traveling coherently through the inertial range. These solutions might influence the energy transfer and the anomalous scaling properties empirically observed for the forced and viscous models. In this paper we present a study of the instantonic solutions for a set of four shell models of turbulence based on the exact decomposition of the Navier-Stokes equations in helical eigenstates. We find that depending on the helical structure of each model, instantons are chaotic or regular. Some instantonic solutions tend to recover mirror symmetry for scales small enough. Models that have anomalous scaling develop regular nonchaotic instantons. Conversely, models that have nonanomalous scaling in the stationary regime are those that have chaotic instantons. The direction of the energy carried by each single instanton tends to coincide with the direction of the energy cascade in the stationary regime. Finally, we find that whenever the small-scale stationary statistics is intermittent, the instanton is less steep than the dimensional Kolmogorov scaling, independently of whether or not it is chaotic. Our findings further support the idea that instantons might be crucial to describe some aspects of the multiscale anomalous statistics of shell models.
NASA Astrophysics Data System (ADS)
Carlson, Shawn
2016-01-01
Energy conservation is a deep principle that is obeyed by all of the fundamental forces of nature. It puts stringent constraints on all systems, particularly systems that are ‘isolated,’ meaning that no energy can enter or escape. Notwithstanding the success of the principle of stationary action, it is fair to wonder to what extent physics can be formulated from the principle of stationary energy. We show that if one interprets mechanical energy as a state function, then its stationarity leads to a novel formulation of classical mechanics. However, unlike Lagrangian and Hamiltonian mechanics, which deliver their state functions via algebraic proscriptions (i.e., the Lagrangian is always the difference between a system’s kinetic and potential energies), this new formalism identifies its state functions as the solutions to a differential equation. This is an important difference because differential equations can generate more general solutions than algebraic recipes. When applied to Newtonian systems for which the energy function is separable, these state functions are always the mechanical energy. However, while the stationary state function for a charged particle moving in an electromagnetic field proves not to be energy, the function nevertheless correctly encodes the dynamics of the system. Moreover, the stationary state function for a free relativistic particle proves not to be the energy either. Rather, our differential equation yields the relativistic free-particle Lagrangian (plus a non-dynamical constant) in its correct dynamical context. To explain how this new formalism can consistently deliver stationary state functions that give the correct dynamics but that are not always the mechanical energy, we propose that energy conservation is a specific realization of a deeper principle of stationarity that governs both relativistic and non-relativistic mechanics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.57a [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.57a [Reserved] ...
A perturbation analysis of a mechanical model for stable spatial patterning in embryology
NASA Astrophysics Data System (ADS)
Bentil, D. E.; Murray, J. D.
1992-12-01
We investigate a mechanical cell-traction mechanism that generates stationary spatial patterns. A linear analysis highlights the model's potential for these heterogeneous solutions. We use multiple-scale perturbation techniques to study the evolution of these solutions and compare our solutions with numerical simulations of the model system. We discuss some potential biological applications among which are the formation of ridge patterns, dermatoglyphs, and wound healing.
Expansion shock waves in regularized shallow-water theory
El, Gennady A.; Shearer, Michael
2016-01-01
We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780
NASA Technical Reports Server (NTRS)
Chien, C. H.; Swinson, W. F.; Turner, J. L.; Moslehy, F. A.; Ranson, W. F.
1980-01-01
A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed.
A model of economic growth with physical and human capital: The role of time delays.
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2016-09-01
This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.
NASA Astrophysics Data System (ADS)
Reshetova, E. N.; Asnin, L. D.
2015-02-01
The adsorption of ibuprofen enantiomers on a chiral stationary phase Nautilus-E with a grafted antibiotic eremomycin from aqueous ethanol acetate buffer solutions was studied by chromatography. The ethanol concentration in the mobile phase was varied from 40 to 60 vol %. The adsorption isotherms of both enantiomers had a complex shape characterized by non-Langmuir type curvature and the presence of an inflection point. This is explained by two factors: the energy heterogeneity of the surface of the stationary phase and the dissociation of ibuprofen in the liquid phase. The effect of the system peak on the shape of the chromatograms of the target component was investigated. The temperature effect on the adsorption equilibrium was discussed.
Stationary and moving solitons in spin-orbit-coupled spin-1 Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Li, Yu-E.; Xue, Ju-Kui
2018-04-01
We investigate the matter-wave solitons in a spin-orbit-coupled spin-1 Bose-Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin-orbit-coupled threecomponent Gross-Pitaevskii equations, we derive a single nonlinear Schrödinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin-orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin-orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.
NASA Astrophysics Data System (ADS)
Johnson, Robert W.
2012-06-01
The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Only at low conductivity and below, the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.
Solution of the Lindblad equation for spin helix states.
Popkov, V; Schütz, G M
2017-04-01
Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.
40 CFR 60.1590 - When must I complete each increment of progress?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule...
40 CFR 60.52c - Emission limits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Hospital/Medical/Infectious Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.52c Emission limits. (a) On and after...
40 CFR 60.52c - Emission limits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Hospital/Medical/Infectious Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.52c Emission limits. (a) On and after...
Regionalized Lunar South Pole Surface Navigation System Analysis
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2008-01-01
Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.
On the membrane approximation in isothermal film casting
NASA Astrophysics Data System (ADS)
Hagen, Thomas
2014-08-01
In this work, a one-dimensional model for isothermal film casting is studied. Film casting is an important engineering process to manufacture thin films and sheets from a highly viscous polymer melt. The model equations account for variations in film width and film thickness, and arise from thinness and kinematic assumptions for the free liquid film. The first aspect of our study is a rigorous discussion of the existence and uniqueness of stationary solutions. This objective is approached via the argument principle, exploiting the homotopy invariance of a family of analytic functions. As our second objective, we analyze the linearization of the governing equations about stationary solutions. It is shown that solutions for the associated boundary-initial value problem are given by a strongly continuous semigroup of bounded linear operators. To reach this result, we cast the relevant Cauchy problem in a more accessible form. These transformed equations allow us insight into the regularity of the semigroup, thus yielding the validity of the spectral mapping theorem for the semigroup and the spectrally determined growth property.
Extraction of shear viscosity in stationary states of relativistic particle systems
NASA Astrophysics Data System (ADS)
Reining, F.; Bouras, I.; El, A.; Wesp, C.; Xu, Z.; Greiner, C.
2012-02-01
Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.
M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry*
NASA Technical Reports Server (NTRS)
Ray, R. D.; Zaron, E. D.
2015-01-01
A near-global chart of surface elevations associated with the stationary M2 internal tide is empirically constructed from multi-mission satellite altimeter data. An advantage of a strictly empirical mapping approach is that results are independent of assumptions about ocean wave dynamics and, in fact, can be used to test such assumptions. A disadvantage is that present-day altimeter coverage is only marginally adequate to support mapping such short-wavelength features. Moreover, predominantly north-south ground-track orientations and contamination from nontidal oceanographic variability can lead to deficiencies in mapped tides. Independent data from Cryosphere Satellite-2 (CryoSat-2) and other altimeters are used to test the solutions and show positive reduction in variance except in regions of large mesoscale variability. The tidal fields are subjected to two-dimensional wavenumber spectral analysis, which allows for the construction of an empirical map of modal wavelengths. Mode-1 wavelengths show good agreement with theoretical wavelengths calculated from the ocean's mean stratification, with a few localized exceptions (e.g., Tasman Sea). Mode-2 waves are detectable in much of the ocean, with wavelengths in reasonable agreement with theoretical expectations, but their spectral signatures grow too weak to map in some regions.
NASA Astrophysics Data System (ADS)
Wertgeim, Igor I.
2018-02-01
We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.
Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat
2010-11-12
Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Xiaoyan; Lu, Kai; Qi, Meiling; Fu, Ruonong
2009-11-01
The selectivity and thermal stability of ionic liquids as the stationary phases for capillary gas chromatography (CGC) have attracted much attention of researchers in recent years. In this study, 1-vinyl-3-benzyl imidazolium-bis(trifluoromethane-sulphonyl)imidate (VBIm-NTf2) was synthesized and polymerized (PVBIm-NTf2) in a CGC column. In comparison with VBIm-NTf2, PVBIm-NTf2 exhibits much better thermal stability and chromatographic selectivity, and achieves satisfactory resolution for Grob test mixture, alcohols mixture, esters mixture and aromatics mixture with narrow and symmetric peak shapes. The satisfactory resolution and selectivity of the polymerized column still remain after conditioned at 250 degrees C for 6 h. Additionally, the Abraham solvation parameters of PVBIm-NTf2 were determined and the interactions between the stationary phase and solutes were elucidated. The present work demonstrates that the polymerization is an effective way to improve the selectivity and thermal stability of common ionic liquids as CGC stationary phases.
NASA Astrophysics Data System (ADS)
Yang, T.; Wang, L.
A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Robert W.
2012-06-15
The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Onlymore » at low conductivity and below, the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.« less
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Prethermal Phases of Matter Protected by Time-Translation Symmetry
NASA Astrophysics Data System (ADS)
Else, Dominic V.; Bauer, Bela; Nayak, Chetan
2017-01-01
In a periodically driven (Floquet) system, there is the possibility for new phases of matter, not present in stationary systems, protected by discrete time-translation symmetry. This includes topological phases protected in part by time-translation symmetry, as well as phases distinguished by the spontaneous breaking of this symmetry, dubbed "Floquet time crystals." We show that such phases of matter can exist in the prethermal regime of periodically driven systems, which exists generically for sufficiently large drive frequency, thereby eliminating the need for integrability or strong quenched disorder, which limited previous constructions. We prove a theorem that states that such a prethermal regime persists until times that are nearly exponentially long in the ratio of certain couplings to the drive frequency. By similar techniques, we can also construct stationary systems that spontaneously break continuous time-translation symmetry. Furthermore, we argue that for driven systems coupled to a cold bath, the prethermal regime could potentially persist to infinite time.
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
NASA Astrophysics Data System (ADS)
Manard, Benjamin T.; Marcus, R. Kenneth
2012-08-01
Capillary-channeled polymer (C-CP) fibers are employed in a micropipette tip format to affect a stationary phase for the solid phase extraction (SPE) of proteins from buffer solutions prior to MALDI-MS analysis. Proteins readily adsorb to the polypropylene (PP) C-CP fibers while buffer species are easily washed off the tips using DI-H2O. Elution of the solutes is achieved with an aliquot of 50:50 ACN:H2O, which is compatible with the subsequent spotting on the MALDI target with the matrix solution. Lysozyme and cytochrome c are used as test species, with a primary buffer composition of 100 mM Tris-HCl. In this case, direct MALDI-MS produces no discernible protein signals. SPE on the C-CP fibers yields high fidelity mass spectra for 1 μL sample volumes. Limits of detection for cytochrome c in 100 mM Tris-HCl are on the order of 40 nM. Extraction of cytochrome c from buffer concentrations of up to 1 M Tris-HCl, provides signal recoveries that are suppressed by only ~50 % versus neat protein solutions. Finally, extraction of 3.1 μM cytochrome c from a synthetic urine matrix exhibits excellent recovery.
Stationary Black Holes: Uniqueness and Beyond.
Heusler, Markus
1998-01-01
The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
Stationary Black Holes: Uniqueness and Beyond.
Chruściel, Piotr T; Costa, João Lopes; Heusler, Markus
2012-01-01
The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Exact solutions and low-frequency instability of the adiabatic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, John M.
1988-01-01
The adiabatic auroral arc model couples a kinetic theory parallel current driven by mirror forces to horizontal ionospheric currents; the resulting equations are nonlinear. Some exact stationary solutions to these equations, some of them based on the Liouville equation, are developed, with both latitudinal and longitudinal spatial variations. These Liouville equation exact solutions are related to stability boundaries of low-frequency instabilities such as Kelvin-Helmholtz, as shown by a study of a simplified model.
Convective flow in the solid rotation of a viscous incompressible fluid
NASA Astrophysics Data System (ADS)
Gorshkov, A. V.; Prosviryakov, E. Yu.
2017-12-01
The analytical solution of the Ekman convective stationary flow of a viscous incompressible fluid in an infinite layer is obtained. A solution to an overdetermined system of the Oberbeck-Boussinesq equations is considered. It is shown that the structure of the solution allows one to preserve the advective derivative in the heat equation; this makes it possible to model the delamination of the temperature and pressure fields and to describe backflow in the ocean.
Soliton structure in crystalline acetanilide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-10-15
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.
Soliton structure in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C.
1984-10-01
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.
Experimental investigation of a transonic potential flow around a symmetric airfoil
NASA Technical Reports Server (NTRS)
Hiller, W. J.; Meier, G. E. A.
1981-01-01
Experimental flow investigations on smooth airfoils were done using numerical solutions for transonic airfoil streaming with shockless supersonic range. The experimental flow reproduced essential sections of the theoretically computed frictionless solution. Agreement is better in the expansion part of the of the flow than in the compression part. The flow was nearly stationary in the entire velocity range investigated.
On microscopic structure of the QCD vacuum
NASA Astrophysics Data System (ADS)
Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.
2018-05-01
We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.
Analytical impact time and angle guidance via time-varying sliding mode technique.
Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong
2016-05-01
To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
The magnetic field of a permanent hollow cylindrical magnet
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.
2016-09-01
Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.
Rogue waves and W-shaped solitons in the multiple self-induced transparency system.
Wang, Xin; Liu, Chong; Wang, Lei
2017-09-01
We study localized nonlinear waves on a plane wave background in the multiple self-induced transparency (SIT) system, which describes an important enhancement of the amplification and control of optical waves compared to the single SIT system. A hierarchy of exact multiparametric rational solutions in a compact determinant representation is presented. We demonstrate that this family of solutions contain known rogue wave solutions and unusual W-shaped soliton solutions. State transitions between the fundamental rogue waves and W-shaped solitons as well as higher-order nonlinear superposition modes are revealed in the zero-frequency perturbation region by the suitable choice for the background wavenumber of the electric field component. Particularly, it is found that the multiple SIT system can admit both stationary and nonstationary W-shaped solitons in contrast to the stationary results in the single SIT system. Moreover, the W-shaped soliton complex which is formed by a certain number of fundamental W-shaped solitons with zero phase parameters and its decomposition mechanism in the case of the nonzero phase parameters are shown. Meanwhile, some important characteristics of the nonlinear waves including trajectories and spectrum are discussed through the numerical and analytical methods.
Electro-optical hybrid slip ring
NASA Astrophysics Data System (ADS)
Hong, En
2005-11-01
The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or...
Versatile Mobile and Stationary Low-Cost Approaches for Hydrological Measurements
NASA Astrophysics Data System (ADS)
Kröhnert, M.; Eltner, A.
2018-05-01
In the last decades, an increase in the number of extreme precipitation events has been observed, which leads to increasing risks for flash floods and landslides. Thereby, conventional gauging stations are indispensable for monitoring and prediction. However, they are expensive in construction, management, and maintenance. Thus, density of observation networks is rather low, leading to insufficient spatio-temporal resolution to capture hydrological extreme events that occur with short response times especially in small-scale catchments. Smaller creeks and rivers require permanent observation, as well, to allow for a better understanding of the underlying processes and to enhance forecasting reliability. Today's smartphones with inbuilt cameras, positioning sensors and powerful processing units may serve as wide-spread measurement devices for event-based water gauging during floods. With the aid of volunteered geographic information (VGI), the hydrological network of water gauges can be highly densified in its spatial and temporal domain even for currently unobserved catchments. Furthermore, stationary low-cost solutions based on Raspberry Pi imaging systems are versatile for permanent monitoring of hydrological parameters. Both complementary systems, i.e. smartphone and Raspberry Pi camera, share the same methodology to extract water levels automatically, which is explained in the paper in detail. The annotation of 3D reference data by 2D image measurements is addressed depending on camera setup and river section to be monitored. Accuracies for water stage measurements are in range of several millimetres up to few centimetres.
NASA Astrophysics Data System (ADS)
Throumoulopoulos, G. N.; Tasso, H.
2003-06-01
The equilibrium of an axisymmetric magnetically confined plasma with anisotropic resistivity and incompressible flows parallel to the magnetic field is investigated within the framework of the magnetohydrodynamic (MHD) theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order elliptic partial differential equation for the poloidal magnetic flux function ψ along with a decoupled Bernoulli equation for the pressure identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the resistivities η∥ and η⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic resistivity and parallel flows [G. N. Throumoulopoulos and H. Tasso, J. Plasma Phys. 64, 601 (2000)] the equilibrium is compatible with nonvanishing poloidal current densities. Also, although exactly Spitzer resistivities either η∥(ψ) or η⊥(ψ) are not allowed, exact solutions with vanishing poloidal electric fields can be constructed with η∥ and η⊥ profiles compatible with roughly collisional resistivity profiles, i.e., profiles having a minimum close to the magnetic axis, taking very large values on the boundary and such that η⊥>η∥. For equilibria with vanishing flows satisfying the relation (dP/dψ)(dI2/dψ)>0, where P and I are the pressure and the poloidal current functions, the difference η⊥-η∥ for the reversed-field pinch scaling, Bp≈Bt, is nearly two times larger than that for the tokamak scaling, Bp≈0.1Bt (Bp and Bt are the poloidal and toroidal magnetic-field components). The particular resistive equilibrium solutions obtained in the present work, inherently free of—but not inconsistent with—Pfirsch-Schlüter diffusion, indicate that parallel flows might result in a reduction of the diffusion observed in magnetically confined plasmas.
A unified classification of stationary phases for packed column supercritical fluid chromatography.
West, C; Lesellier, E
2008-05-16
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.
NASA Astrophysics Data System (ADS)
Alvarez, Guillermo A.; Baumanna, Wolfram
2005-02-01
A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of a gas (and hence the solvent strength becomes negligible), a dramatic loss of the retention times of all pesticides is observed in the experiments; this is attributed to desorption of the solute from the stationary phase, as predicted by Le Châtelier's principle for the (exothermic) adsorption process.
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge
2002-04-01
Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.
Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.
Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I
2007-03-23
The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.
Coupled harmonic oscillators and their quantum entanglement.
Makarov, Dmitry N
2018-04-01
A system of two coupled quantum harmonic oscillators with the Hamiltonian H[over ̂]=1/2(1/m_{1}p[over ̂]_{1}^{2}+1/m_{2}p[over ̂]_{2}^{2}+Ax_{1}^{2}+Bx_{2}^{2}+Cx_{1}x_{2}) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H[over ̂]Ψ=iℏ∂Ψ/∂t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.
Coupled harmonic oscillators and their quantum entanglement
NASA Astrophysics Data System (ADS)
Makarov, Dmitry N.
2018-04-01
A system of two coupled quantum harmonic oscillators with the Hamiltonian H ̂=1/2 (1/m1p̂1 2+1/m2p̂2 2+A x12+B x22+C x1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H ̂Ψ =i ℏ ∂/Ψ ∂ t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.
Feedback coupling in dynamical systems
NASA Astrophysics Data System (ADS)
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
Probabilistic approach to lysozyme crystal nucleation kinetics.
Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P
2015-09-01
Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.
The hair-trigger effect for a class of nonlocal nonlinear equations
NASA Astrophysics Data System (ADS)
Finkelshtein, Dmitri; Tkachov, Pasha
2018-06-01
We prove the hair-trigger effect for a class of nonlocal nonlinear evolution equations on which have only two constant stationary solutions, 0 and . The effect consists in that the solution with an initial condition non identical to zero converges (when time goes to ) to θ locally uniformly in . We also find sufficient conditions for existence, uniqueness and comparison principle in the considered equations.
An entropy maximization problem related to optical communication
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Rodemich, E. R.; Swanson, L.
1986-01-01
In relation to a problem in optical communication, the paper considers the general problem of maximizing the entropy of a stationary radom process that is subject to an average transition cost constraint. By using a recent result of Justesen and Hoholdt, an exact solution to the problem is presented and a class of finite state encoders that give a good approximation to the exact solution is suggested.
Stationary conditions for stochastic differential equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Walker, W. W.
1972-01-01
This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.
Asymptotically locally Euclidean/Kaluza-Klein stationary vacuum black holes in five dimensions
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Weinstein, Gilbert; Yamada, Sumio
2018-05-01
We produce new examples, both explicit and analytical, of bi-axisymmetric stationary vacuum black holes in five dimensions. A novel feature of these solutions is that they are asymptotically locally Euclidean, in which spatial cross-sections at infinity have lens space L(p,q) topology, or asymptotically Kaluza-Klein so that spatial cross-sections at infinity are topologically S^1× S^2. These are nondegenerate black holes of cohomogeneity 2, with any number of horizon components, where the horizon cross-section topology is any one of the three admissible types: S^3, S^1× S^2, or L(p,q). Uniqueness of these solutions is also established. Our method is to solve the relevant harmonic map problem with prescribed singularities, having target symmetric space SL(3,{R})/SO(3). In addition, we analyze the possibility of conical singularities and find a large family for which geometric regularity is guaranteed.
NASA Technical Reports Server (NTRS)
Morozov, S. K.; Krasitskiy, O. P.
1978-01-01
A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.
Bayesian tomography and integrated data analysis in fusion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dong, E-mail: lid@swip.ac.cn; Dong, Y. B.; Deng, Wei
2016-11-15
In this article, a Bayesian tomography method using non-stationary Gaussian process for a prior has been introduced. The Bayesian formalism allows quantities which bear uncertainty to be expressed in the probabilistic form so that the uncertainty of a final solution can be fully resolved from the confidence interval of a posterior probability. Moreover, a consistency check of that solution can be performed by checking whether the misfits between predicted and measured data are reasonably within an assumed data error. In particular, the accuracy of reconstructions is significantly improved by using the non-stationary Gaussian process that can adapt to the varyingmore » smoothness of emission distribution. The implementation of this method to a soft X-ray diagnostics on HL-2A has been used to explore relevant physics in equilibrium and MHD instability modes. This project is carried out within a large size inference framework, aiming at an integrated analysis of heterogeneous diagnostics.« less
40 CFR 60.1620 - How do I comply with the increment of progress for initiating onsite construction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... or Before August 30, 1999 Model Rule-Increments of Progress § 60.1620 How do I comply with the...
40 CFR 60.1625 - How do I comply with the increment of progress for completing onsite construction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... or Before August 30, 1999 Model Rule-Increments of Progress § 60.1625 How do I comply with the...
Cluster analysis of multiple planetary flow regimes
NASA Technical Reports Server (NTRS)
Mo, Kingtse; Ghil, Michael
1987-01-01
A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.
Stationary holographic plasma quenches and numerical methods for non-killing horizons.
Figueras, Pau; Wiseman, Toby
2013-04-26
We explore use of the harmonic Einstein equations to numerically find stationary black holes where the problem is posed on an ingoing slice that extends into the interior of the black hole. Requiring no boundary conditions at the horizon beyond smoothness of the metric, this method may be applied for horizons that are not Killing. As a nontrivial illustration we find black holes which, via AdS-CFT, describe a time-independent CFT plasma flowing through a static spacetime which asymptotes to Minkowski in the flow's past and future, with a varying spatial geometry in between. These are the first nonperturbative examples of stationary black holes which do not have Killing horizons. When the CFT spacetime slowly varies, the CFT stress tensor derived from gravity is well described by viscous hydrodynamics. For fast variation it is not, and the solutions are stationary analogs of dynamical quenches, with the plasma being suddenly driven out of equilibrium. We find evidence these flows become unstable for sufficiently strong quenches, and speculate the instability may be turbulent.
Methodology for modeling the microbial contamination of air filters.
Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho
2014-01-01
In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.
Photoemission studies of fluorine functionalized porous graphitic carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens
2012-03-01
Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated,more » PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.« less
Pattern formation and mass transfer under stationary solutal Marangoni instability.
Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin
2014-04-01
According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated. Copyright © 2013 Elsevier B.V. All rights reserved.
Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events
NASA Astrophysics Data System (ADS)
Fürstenau, Norbert; Mittendorf, Monika
2016-12-01
We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations "Xaver" and "Christian", 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.
Khokhlova, Svetlana S; Burshtein, Anatoly I
2011-01-21
The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.
Determination of Global Stability of the Slosh Motion in a Spacecraft via Num Erical Experiment
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-12-01
The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.
Cartan invariants and event horizon detection
NASA Astrophysics Data System (ADS)
Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.
2018-04-01
We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.
Geometrical optics and optimal transport.
Rubinstein, Jacob; Wolansky, Gershon
2017-10-01
The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.
Weighted Lq-estimates for stationary Stokes system with partially BMO coefficients
NASA Astrophysics Data System (ADS)
Dong, Hongjie; Kim, Doyoon
2018-04-01
We prove the unique solvability of solutions in Sobolev spaces to the stationary Stokes system on a bounded Reifenberg flat domain when the coefficients are partially BMO functions, i.e., locally they are merely measurable in one direction and have small mean oscillations in the other directions. Using this result, we establish the unique solvability in Muckenhoupt type weighted Sobolev spaces for the system with partially BMO coefficients on a Reifenberg flat domain. We also present weighted a priori Lq-estimates for the system when the domain is the whole Euclidean space or a half space.
Stationary black holes and attractor mechanism
NASA Astrophysics Data System (ADS)
Astefanesei, Dumitru; Yavartanoo, Hossein
2008-05-01
We investigate the symmetries of the near horizon geometry of extremal stationary black hole in four-dimensional Einstein gravity coupled to Abelian gauge fields and neutral scalars. Careful consideration of the equations of motion and the boundary conditions at the horizon imply that the near horizon geometry has SO(2,1)×U(1) isometry. This compliments the rotating attractors proposal of hep-th/0606244 that had assumed the presence of this isometry. The extremal solutions are classified into two families differentiated by the presence or absence of an ergo-region. We also comment on the attractor mechanism of both branches.
Quasivariational Solutions for First Order Quasilinear Equations with Gradient Constraint
NASA Astrophysics Data System (ADS)
Rodrigues, José Francisco; Santos, Lisa
2012-08-01
We prove the existence of solutions for a quasi-variational inequality of evolution with a first order quasilinear operator and a variable convex set which is characterized by a constraint on the absolute value of the gradient that depends on the solution itself. The only required assumption on the nonlinearity of this constraint is its continuity and positivity. The method relies on an appropriate parabolic regularization and suitable a priori estimates. We also obtain the existence of stationary solutions by studying the asymptotic behaviour in time. In the variational case, corresponding to a constraint independent of the solution, we also give uniqueness results.
An exact conformal symmetry Ansatz on Kaluza-Klein reduced TMG
NASA Astrophysics Data System (ADS)
Moutsopoulos, George; Ritter, Patricia
2011-11-01
Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.
Wang, P; Wang, J; Cong, R; Dong, B
1997-05-01
A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.
NASA Astrophysics Data System (ADS)
Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek
2018-01-01
The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.
Supergravity, complex parameters and the Janis-Newman algorithm
NASA Astrophysics Data System (ADS)
Erbin, Harold; Heurtier, Lucien
2015-08-01
The Demiański-Janis-Newman (DJN) algorithm is an original solution generating technique. For a long time it has been limited to producing rotating solutions, restricted to the case of a metric and real scalar fields, despite the fact that Demiański extended it to include more parameters such as a NUT charge. Recently two independent prescriptions have been given for extending the algorithm to gauge fields and thus electrically charged configurations. In this paper we aim to end setting up the algorithm by providing a missing but important piece, which is how the transformation is applied to complex scalar fields. We illustrate our proposal through several examples taken from N = 2 supergravity, including the stationary BPS solutions from Behrndt et al and Sen's axion-dilaton rotating black hole. Moreover we discuss solutions that include pairs of complex parameters, such as the mass and the NUT charge, or the electric and magnetic charges, and we explain how to perform the algorithm in this context (with the example of Kerr-Newman-Taub-NUT and dyonic Kerr-Newman black holes). The final formulation of the DJN algorithm can possibly handle solutions with five of the six Plebański-Demiański parameters along with any type of bosonic fields with spin less than two (exemplified with the stationary Israel-Wilson-Perjes solutions). This provides all the necessary tools for applications to general matter-coupled gravity and to (gauged) supergravity.
NASA Astrophysics Data System (ADS)
Zander, C.; Plastino, A. R.; Díaz-Alonso, J.
2015-11-01
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Xiao; Zhang, Lu Lu; Li, Min; Qi, Feng-Hua
2015-09-01
Under investigation in this paper is a amplifier nonlinear Schrödinger Maxwell-Bloch (NLS-MB) system which describes the propagation of optical pulses in an inhomogeneous erbium doped fiber. Nonautonomous breather and rogue wave (RW) solutions of the amplifier NLS-MB system are constructed via the modified Darboux transformation with the inhomogeneous parameters. By suitably choosing the dispersion coefficient function, several types of inhomogeneous nonlinear waves are obtained in: (1) periodically fluctuating dispersion profile; (2) exponentially increasing (or decreasing) dispersion profile; and (3) linearly decreasing (increasing) dispersion profile. The nonautonomous characteristics of the breathers and RWs are graphically investigated, including the breather accelerating and decelerating motions, boomerang breather, breather compression, breather evolution, periodic RW, boomerang RW and stationary RW. Such novel patterns as the periodic breathers and rogue-wave fission of the amplifier NLS-MB system are exhibited by properly adjusting the group velocity dispersion function and interaction parameter between silica and doped atoms.
Free energies from dynamic weighted histogram analysis using unbiased Markov state model.
Rosta, Edina; Hummer, Gerhard
2015-01-13
The weighted histogram analysis method (WHAM) is widely used to obtain accurate free energies from biased molecular simulations. However, WHAM free energies can exhibit significant errors if some of the biasing windows are not fully equilibrated. To account for the lack of full equilibration, we develop the dynamic histogram analysis method (DHAM). DHAM uses a global Markov state model to obtain the free energy along the reaction coordinate. A maximum likelihood estimate of the Markov transition matrix is constructed by joint unbiasing of the transition counts from multiple umbrella-sampling simulations along discretized reaction coordinates. The free energy profile is the stationary distribution of the resulting Markov matrix. For this matrix, we derive an explicit approximation that does not require the usual iterative solution of WHAM. We apply DHAM to model systems, a chemical reaction in water treated using quantum-mechanics/molecular-mechanics (QM/MM) simulations, and the Na(+) ion passage through the membrane-embedded ion channel GLIC. We find that DHAM gives accurate free energies even in cases where WHAM fails. In addition, DHAM provides kinetic information, which we here use to assess the extent of convergence in each of the simulation windows. DHAM may also prove useful in the construction of Markov state models from biased simulations in phase-space regions with otherwise low population.
Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang
2009-05-01
A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.
Schwarzschild and Kerr solutions of Einstein's field equation: An Introduction
NASA Astrophysics Data System (ADS)
Heinicke, Christian; Hehl, Friedrich W.
2015-12-01
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution. The Schwarzschild solution is unique and its metric can be interpreted as the exterior gravitational field of a spherically symmetric mass. The Kerr solution is only unique if the multipole moments of its mass and its angular momentum take on prescribed values. Its metric can be interpreted as the exterior gravitational field of a suitably rotating mass distribution. Both solutions describe objects exhibiting an event horizon, a frontier of no return. The corresponding notion of a black hole is explained to some extent. Eventually, we present some generalizations of the Kerr solution.
NASA Astrophysics Data System (ADS)
Qi, Wei
2017-11-01
Cost-benefit analysis is commonly used for engineering planning and design problems in practice. However, previous cost-benefit based design flood estimation is based on stationary assumption. This study develops a non-stationary cost-benefit based design flood estimation approach. This approach integrates a non-stationary probability distribution function into cost-benefit analysis, and influence of non-stationarity on expected total cost (including flood damage and construction costs) and design flood estimation can be quantified. To facilitate design flood selections, a 'Risk-Cost' analysis approach is developed, which reveals the nexus of extreme flood risk, expected total cost and design life periods. Two basins, with 54-year and 104-year flood data respectively, are utilized to illustrate the application. It is found that the developed approach can effectively reveal changes of expected total cost and extreme floods in different design life periods. In addition, trade-offs are found between extreme flood risk and expected total cost, which reflect increases in cost to mitigate risk. Comparing with stationary approaches which generate only one expected total cost curve and therefore only one design flood estimation, the proposed new approach generate design flood estimation intervals and the 'Risk-Cost' approach selects a design flood value from the intervals based on the trade-offs between extreme flood risk and expected total cost. This study provides a new approach towards a better understanding of the influence of non-stationarity on expected total cost and design floods, and could be beneficial to cost-benefit based non-stationary design flood estimation across the world.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NEW STATIONARY SOURCES Standards of Performance for Hospital/Medical/Infectious Waste Incinerators for Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 3 Table 3 to Subpart Ec of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shihui; Pelletier, Dale A; Lu, Tse-Yuan
Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expressionmore » plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.« less
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.
2011-01-01
We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.
Moore, Harold L; Twardowski, Zbylut J
2003-10-01
Soft, cuffed indwelling catheters are used for hemodialysis access and intravenous infusions. The majority of these catheters are removed as a result of infection caused by contamination of the catheter hub during the connection/disconnection procedures. To prevent clot formation in the lumen, these catheters are routinely "locked" with heparin or some other anticoagulant. None of the anticoagulants commonly used as locking solutions demonstrates any significant bactericidal properties. The primary goal of this study was the development of a catheter locking method that retains anticoagulant properties at the catheter tip and bactericidal properties at the catheter hub. The second goal was to find a solution that possesses excellent bactericidal properties but is not detrimental in the event of injection into the patient's blood stream. The bactericidal properties of acidified, concentrated saline (ACS) were compared to concentrated trisodium citrate and to commonly used bactericidal agents such as povidone iodine, sodium hypochlorite, and chlorhexidine. In preliminary studies, the rate of diffusion of solutes was measured in glass tubes. In another set of experiments, the mixing of two solutions (anticoagulant and bactericide) separated by an air bubble ("air-bubble method") was observed in stationary and moving systems. The final series of studies compared the bactericidal properties of ACS to other bactericidal solutions mentioned above. The solutions diffused swiftly in the glass tubes, and by the third day, both solutions were mixed. The air-bubble method prevented mixing in both stationary and moving systems. The bactericidal properties of ACS were superior to all other tested solutions. The proposed method of catheter locking with anticoagulant at the catheter tip and ACS at the catheter hub separated by an air bubble is a promising technique and clinical studies are warranted.
Meeker, John D; Cooper, Michael R; Lefkowitz, Daniel; Susi, Pam
2009-01-01
A number of tasks in construction generate worker overexposures to respirable crystalline silica dust, which is a significant contributor to occupational mortality and morbidity. This study evaluated the performance of commercially available engineering controls used in dusty construction tasks commonly performed by bricklayers. Local exhaust ventilation (LEV) controls for a portable abrasive cutter and for tuckpointing grinders were examined at a bricklayers' training center, as were two stationary wet saws. Personal breathing zone air samples were collected with and without the use of LEV or water suppression during simulated concrete block cutting, brick cutting, and tuckpointing. Compared with the use of no exposure control during block and brick cutting, the portable LEV unit significantly reduced mean respirable quartz exposures by 96% for block cutting and 91% for brick cutting (p < 0.01). The use of stationary wet saws was also associated with 91% reductions in exposure (p < 0.01). For tuckpointing, the reductions in mean respirable quartz concentrations were between 91% and 93% with the LEV controls (p < 0.05). Reductions of up to 96% in mean respirable quartz concentration were observed between control and no-control scenarios. These reductions with commercially available off-the-shelf tools demonstrate the effectiveness of engineering control interventions to reduce crystalline silica exposures in construction. Strategies to further improve control performance and approaches for increasing control interventions in construction are needed.
On the Asymptotic Stability of Steady Flows with Nonzero Flux in Two-Dimensional Exterior Domains
NASA Astrophysics Data System (ADS)
Guillod, Julien
2017-05-01
The Navier-Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any L 2-perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically decaying flux carrier with flux {| Φ | < 2 π} and a small subcritically decaying term. Under the central symmetry assumption, the general hypothesis is also proven for any critically decaying steady solutions under a suitable smallness condition.
Problem of gas accretion on a gravitational center
NASA Technical Reports Server (NTRS)
Ladygin, V. A.
1980-01-01
A method of the approximated solution of the problem of accretion on a rapidly moving gravitational center is developed. This solution is obtained in the vicinity of the axis of symmetry in the region of the potential flow. The solution of the problem of stationary gas accretion on a moving gravitational center simulates the movement of a substance in interstellar space in the vicinity of a black hole. A detailed picture of gas accretion on a black hole is of interest in connection with the problem of observation of black holes.
Cathodic electrodeposition of p-CuSCN nanorod and its dye-sensitized photocathodic property
NASA Astrophysics Data System (ADS)
Sun, Lina; Ichinose, Keigo; Sekiya, Tomohiro; Sugiura, Takashi; Yoshida, Tsukasa
Mechanism of cathodic electrodeposition of CuSCN from ethanolic solutions containing Cu2+ and SCN- was studied in detail. Job's plot for the absorption spectra of mixed solution in various Cu2+: SCN- ratios have revealed the presence of [Cu(SCN)2]0 as a soluble species responsible to the electrode process in SCN- rich solutions. From Levich analysis of diffusion limited current employing a rotating disc electrode (RDE), diffusion coefficients of 5.2 × 10-6 cm2 s-1 and 3.0 × 10-6 cm2 s-1 in ethanol at 298 K were determined for [Cu(SCN)2]0 and [Cu(SCN)]+, respectively. Morphology as well as crystallographic orientation of the product films significantly changed by the composition of the electrolytic baths. When the bath contains excess of Cu2+ and mixed solvent up to 50% ethanol content to water was used, strong anisotropic crystal growth along the c-axis was observed. When electrolysis was carried out under stationary conditions, the nanorod structures in high aspect ratios could be obtained, due to the limited transport of the active species to the tip of the rods. When rhodamine B was adsorbed onto such CuSCN as a sensitizer, dye-sensitized photocathodic current was observed with an incident photon to current conversion efficiency (IPCE) of 4.4% at the absorption maximum, suggesting its usefulness as the hole conducting electrode in construction of nanostructured solar cells.
Railroad crossing wayside horn evaluation : final report, May 11, 2007.
DOT National Transportation Integrated Search
2007-05-11
One potential solution for reducing horn noise from a locomotive is a stationary horn mounted at the crossing. This wayside horn is sounded in place of the locomotive horn when a train approaches and is positioned to direct the sound precisely ...
40 CFR 60.1225 - What types of continuous emission monitoring must I perform?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30... emissions, you must perform four tasks: (a) Install continuous emission monitoring systems for certain...
High speed capillary liquid chromatographic separations using a simple home made system constructed from readily available inexpensive components have been studied. Using thermally stable zirconia and titania based packing, the separation of eight alkylbenzene...
40 CFR 68.77 - Pre-startup review.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.77 Pre-startup review. (a) The... stationary sources when the modification is significant enough to require a change in the process safety... substances to a process: (1) Construction and equipment is in accordance with design specifications; (2...
Code of Federal Regulations, 2010 CFR
2010-10-01
... processing plant or storage location, as evidenced by skeletal construction that accommodates harvest... mechanism used to stop, or hold a vehicle stationary. Brake power assist unit. A device installed in a... force on the service brake control. Brake power unit. A device installed in a brake system that provides...
Code of Federal Regulations, 2011 CFR
2011-10-01
... processing plant or storage location, as evidenced by skeletal construction that accommodates harvest... mechanism used to stop, or hold a vehicle stationary. Brake power assist unit. A device installed in a... force on the service brake control. Brake power unit. A device installed in a brake system that provides...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Scope. 100.2 Section 100.2 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.2 Scope. The siting requirements contained in this part apply to applications for site approval for the purpose of constructing and operating stationary power...
Detonation Jet Engine. Part 2--Construction Features
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…
40 CFR 60.1250 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous emission monitoring systems? 60.1250 Section 60.1250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced...
Purely electromagnetic spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, B. V.
The Rainich's program of describing metrics induced by pure electromagnetic fields is implemented in a simpler way by using the Ernst formalism and increasing the symmetry of spacetime. Stationary metrics possessing one, two or three Killing vectors are studied and classified. Three branches of solutions exist. Electromagnetically induced mass terms appear in two of them, including a class of solutions in harmonic functions. The static subcase is discussed too. Relations to other well-known electrovacuum metrics are elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence J.
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less
Chimera states in coupled Kuramoto oscillators with inertia.
Olmi, Simona
2015-12-01
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it; INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaoticmore » but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.« less
Stationary states of extended nonlinear Schrödinger equation with a source
NASA Astrophysics Data System (ADS)
Borich, M. A.; Smagin, V. V.; Tankeev, A. P.
2007-02-01
Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.
Maury, Olivier; Poggiale, Jean-Christophe
2013-05-07
Individual metabolism, predator-prey relationships, and the role of biodiversity are major factors underlying the dynamics of food webs and their response to environmental variability. Despite their crucial, complementary and interacting influences, they are usually not considered simultaneously in current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate a mathematical model of the size-structured dynamics of marine communities which integrates mechanistically individual, population and community levels. The model represents the transfer of energy generated in both time and size by an infinite number of interacting fish species spanning from very small to very large species. It is based on standard individual level assumptions of the Dynamic Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based predation and competition for food. Resting on the inter-specific body-size scaling relationships of the DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary solutions of the model as well as the transient solutions arising when environmental signals (e.g. variability of primary production and temperature) propagate through the ecosystem are studied using numerical simulations. It is shown that in the absence of density-dependent feedback processes, the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-linear stationary spectrum matches well with empirical studies. When oscillations of primary production are simulated, the model predicts that the variability propagates along the spectrum in a given frequency-dependent size range before decreasing for larger sizes. At the species level, the simulations show that small and large species dominate the community successively (small species being more abundant at small sizes and large species being more abundant at large sizes) and that the total biomass of a species decreases with its maximal size which again corroborates empirical studies. Our results indicate that the simultaneous consideration of individual growth and reproduction, size-structured trophic interactions, the diversity of life-history traits and a density-dependent stabilizing process allow realistic community structure and dynamics to emerge without any arbitrary prescription. As a logical consequence of our model construction and a basis for future studies, we define the function Φ as the relative contribution of each species to the total biomass of the ecosystem, for any given size. We argue that this function is a measure of the functional role of biodiversity characterizing the impact of the structure of the community (its species composition) on its function (the relative proportions of losses, dissipation and biological work). Copyright © 2013 Elsevier Ltd. All rights reserved.
Radiation Hardened DDR2 SDRAM Solution
NASA Astrophysics Data System (ADS)
Wang, Pierre-Xiao; Sellier, Charles
2016-08-01
The Radiation Hardened (RH) DDR2 SDRAM Solution is a User's Friendly, Plug-and-Play and Radiation Hardened DDR2 solution, which includes the radiation tolerant stacking DDR2 modules and a radiation intelligent memory controller (RIMC) IP core. It provides a high speed radiation hardened by design DRAM solution suitable for all space applications such as commercial or scientific geo-stationary missions, earth observation, navigation, manned space vehicles and deep space scientific exploration. The DDR2 module has been guaranteed with SEL immune and TID > 100Krad(Si), on the other hand the RIMC IP core provides a full protection against the DDR2 radiation effects such as SEFI and SEU.
Exact solutions for the entropy production rate of several irreversible processes.
Ross, John; Vlad, Marcel O
2005-11-24
We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.
Methodology for Modeling the Microbial Contamination of Air Filters
Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho
2014-01-01
In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908
Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes
NASA Astrophysics Data System (ADS)
Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos
2014-05-01
We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.
A Study of a Mechanical Swimming Dolphin
NASA Astrophysics Data System (ADS)
Fang, Lilly; Maass, Daniel; Leftwich, Megan; Smits, Alexander
2007-11-01
A one-third scale dolphin model was constructed to investigate dolphin swimming hydrodynamics. Design and construction of the model were achieved using body coordinate data from the common dolphin (Delphinus delphis) to ensure geometric similarity. The front two-thirds of the model are rigid and stationary, while an external mechanism drives the rear third. This motion mimics the kinematics of dolphin swimming. Planar laser induced florescence (PLIF) and particle image velocimetry (PIV) are used to study the hydrodynamics of the wake and to develop a vortex skeleton model.
Electric Conductivity in a Beam, Plasma System.
1977-09-15
Green ’s function solution to the Boltzmann equation and arrived at a stationary state. However Balescu has accounted for the potential energy of...R. Balescu , Statistical Mechanics of Charged Particles , (In terscience Publishers , New York , 1963) 21. P.M. Morse and H. Feshbach, Methods of
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; McCaughan, Frances E.
1998-01-01
Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...
Code of Federal Regulations, 2012 CFR
2012-04-01
... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask or other container used, or intended for use, as a receptacle for wort, beer or concentrate produced from beer shall: (a) Be durably marked with a serial number and capacity; and (b) Be equipped with a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask or other container used, or intended for use, as a receptacle for wort, beer or concentrate produced from beer shall: (a) Be durably marked with a serial number and capacity; and (b) Be equipped with a...
The Multiplicative Zak Transform, Dimension Reduction, and Wavelet Analysis of LIDAR Data
2010-01-01
systems is likely to fail. Auslander, Eichmann , Gertner, and Tolimieri defined a multiplicative Zak transform [1], mimicking the construction of the Gabor...L. Auslander, G. Eichmann , I. Gertner and R. Tolimieri, “Time-Frequency Analysis and Synthesis of Non-Stationary Signals,” Proc. Soc. Photo-Opt. In
One proposed method for reducing exposure to mobile-source air pollution is the construction or preservation of vegetation barriers between major roads and nearby populations. This study combined stationary and mobile monitoring approaches to determine the effects of an existing,...
Code of Federal Regulations, 2011 CFR
2011-04-01
... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask or other container used, or intended for use, as a receptacle for wort, beer or concentrate produced from beer shall: (a) Be durably marked with a serial number and capacity; and (b) Be equipped with a...
40 CFR 60.1440 - What is yard waste?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is yard waste? 60.1440 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste...
40 CFR 60.1440 - What is yard waste?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is yard waste? 60.1440 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste...
The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.
Raiger-Iustman, Laura J; Ruiz, Jimena A
2008-07-01
To determine whether the stationary sigma factor, sigma(S), influences polyhydroxyalkanoate metabolism in Pseudomonas putida KT2440, an rpoS-negative mutant was constructed to evaluate polyhydroxyalkanoate accumulation and expression of a translational fusion to the promoter region of the genes that code for polyhydroxyalkanoate synthase 1 (phaC1) and polyhydroxyalkanoate depolymerase (phaZ). By comparison with the wild-type, the rpoS mutant showed a higher polyhydroxyalkanoate degradation rate and increased expression of the translational fusion during the stationary growth phase. These results suggest that sigma(S) might control the genes involved in polyhydroxyalkanoate metabolism, possibly in an indirect manner. In addition, survival and oxidative stress assays performed under polyhydroxyalkanoate- and nonpolyhydroxyalkanoate- accumulating conditions demonstrated that the accumulated polyhydroxyalkanoate increased the survival and stress tolerance of the rpoS mutant. According to this, polyhydroxyalkanoate accumulation would help cells to overcome the adverse conditions encountered during the stationary phase in the strain that lacks RpoS.
A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation
NASA Astrophysics Data System (ADS)
Byun, K.; Hamlet, A. F.
2017-12-01
There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.
Precision Geolocation of Active Electromagnetic Sensors Using Stationary Magnetic Sensors
2009-09-01
0.0003, 0.0003 ] m TiltMeter Mean Pitch: -1.71576990 and Roll: 0.92591697 LSQ Moment Pitch: 0.00576850 and Roll: -0.35543026 Run #5...Standard deviation of optimized solution: [ 0.0028, 0.0014, 0.0012 ] m TiltMeter Mean Pitch: -1.08757549 and Roll: 1.09065730 LSQ Moment...0.00, 0.00, -434.95 ] Standard deviation of optimized solution: [ 0.0051, 0.0031, 0.0035 ] m TiltMeter Mean Pitch: 0.05301905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
Isentropic fluid dynamics in a curved pipe
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Holden, Helge
2016-10-01
In this paper we study isentropic flow in a curved pipe. We focus on the consequences of the geometry of the pipe on the dynamics of the flow. More precisely, we present the solution of the general Cauchy problem for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We consider initial data in the subsonic regime, with small total variation about a stationary solution. The proof relies on the front-tracking method and is based on [1].
Stationary black holes with stringy hair
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system
NASA Astrophysics Data System (ADS)
Gambino, G.; Lombardo, M. C.; Sammartino, M.
2018-01-01
In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
Phase Transitions and Free Boundaries
1991-10-31
Antman & M. Lanza de Gristoforis On the asymptotic properties of Leray’s solutions to exterior stationary three-dimensional Navier-Stokes equations...the School of Mathematics and the IMA Unless otherwise indicated, the talks today are in Conteence Hall EE/CS 3-180 9:30 am S. Antman Nonlinear
Dealing with Non-stationarity in Intensity-Frequency-Duration Curve
NASA Astrophysics Data System (ADS)
Rengaraju, S.; Rajendran, V.; C T, D.
2017-12-01
Extremes like flood and drought are becoming frequent and more vulnerable in recent times, generally attributed to the recent revelation of climate change. One of the main concerns is that whether the present infrastructures like dams, storm water drainage networks, etc., which were designed following the so called `stationary' assumption, are capable of withstanding the expected severe extremes. Stationary assumption considers that extremes are not changing with respect to time. However, recent studies proved that climate change has altered the climate extremes both temporally and spatially. Traditionally, the observed non-stationary in the extreme precipitation is incorporated in the extreme value distributions in terms of changing parameters. Nevertheless, this raises a question which parameter needs to be changed, i.e. location or scale or shape, since either one or more of these parameters vary at a given location. Hence, this study aims to detect the changing parameters to reduce the complexity involved in the development of non-stationary IDF curve and to provide the uncertainty bound of estimated return level using Bayesian Differential Evolutionary Monte Carlo (DE-MC) algorithm. Firstly, the extreme precipitation series is extracted using Peak Over Threshold. Then, the time varying parameter(s) is(are) detected for the extracted series using Generalized Additive Models for Location Scale and Shape (GAMLSS). Then, the IDF curve is constructed using Generalized Pareto Distribution incorporating non-stationarity only if the parameter(s) is(are) changing with respect to time, otherwise IDF curve will follow stationary assumption. Finally, the posterior probability intervals of estimated return revel are computed through Bayesian DE-MC approach and the non-stationary based IDF curve is compared with the stationary based IDF curve. The results of this study emphasize that the time varying parameters also change spatially and the IDF curves should incorporate non-stationarity only if there is change in the parameters, though there may be significant change in the extreme rainfall series. Our results evoke the importance of updating the infrastructure design strategies for the changing climate, by adopting the non-stationary based IDF curves.
Scanning nozzle plating system. [for etching or plating metals on substrates without masking
NASA Technical Reports Server (NTRS)
Oliver, G. D. (Inventor)
1974-01-01
A plating system is described in which a substrate to be plated is supported on a stationary platform. A nozzle assembly with a small nozzle is supplied with a plating solution under high pressure, so that a constant-flow stream of solution is directed to the substrate. The nozzle assembly is moved relative to the substrate at a selected rate and movement pattern. A potential difference (voltage) is provided between the substrate and the solution in the assembly. The voltage amplitude is modulated so that only when the amplitude is above a minimum known value plating takes place.
Stopped-in-loop flow analysis of trace vanadium in water.
Teshima, Norio; Ohno, Shinsuke; Sakai, Tadao
2007-01-01
The new concept of stopped-in-loop flow analysis (SIL-FA) is proposed, and an SIL-FA method for the catalytic determination of vanadium is demonstrated. In an SIL format, a sample solution merges with reagent(s), and the well-mixed solution is loaded into a loop. The solution in the loop is separated by a six-way switching valve from the main stream. While the reaction proceeds in the stationary loop, the SIL-FA system does not need to establish a baseline continuously. This leads to a reduction in reagent consumption and waste generation compared with traditional flow injection analysis.
General Wahlquist metrics in all dimensions
NASA Astrophysics Data System (ADS)
Hinoue, Kazuki; Houri, Tsuyoshi; Rugina, Christina; Yasui, Yukinori
2014-07-01
It is shown that the Wahlquist metric, which is a stationary, axially symmetric perfect fluid solution with ρ +3p=const, admits a rank-2 generalized closed conformal Killing-Yano tensor with a skew-symmetric torsion. Taking advantage of the presence of such a tensor, we obtain a higher-dimensional generalization of the Wahlquist metric in arbitrary dimensions, including a family of vacuum black hole solutions with spherical horizon topology such as Schwarzschild-Tangherlini, Myers-Perry and higher-dimensional Kerr-NUT-(A)dS metrics and a family of static, spherically symmetric perfect fluid solutions in higher dimensions.
Robinson-Trautman solutions to Einstein's equations
NASA Astrophysics Data System (ADS)
Davidson, William
2017-02-01
Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.
Sound Clocks and Sonic Relativity
NASA Astrophysics Data System (ADS)
Todd, Scott L.; Menicucci, Nicolas C.
2017-10-01
Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.
Global, decaying solutions of a focusing energy-critical heat equation in R4
NASA Astrophysics Data System (ADS)
Gustafson, Stephen; Roxanas, Dimitrios
2018-05-01
We study solutions of the focusing energy-critical nonlinear heat equation ut = Δu - | u|2 u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the "concentration-compactness plus rigidity" strategy of Kenig-Merle [33,34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza-Seregin-Sverak [17,18] in an argument similar to that of Kenig-Koch [32] for the Navier-Stokes equations.
Faye, Grégory; Rankin, James; Chossat, Pascal
2013-05-01
The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.
Homoclinic accretion solutions in the Schwarzschild-anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Mach, Patryk
2015-04-01
The aim of this paper is to clarify the distinction between homoclinic and standard (global) Bondi-type accretion solutions in the Schwarzschild-anti-de Sitter space-time. The homoclinic solutions have recently been discovered numerically for polytropic equations of state. Here I show that they exist also for certain isothermal (linear) equations of state, and an analytic solution of this type is obtained. It is argued that the existence of such solutions is generic, although for sufficiently relativistic matter models (photon gas, ultrahard equation of state) there exist global solutions that can be continued to infinity, similarly to standard Michel's solutions in the Schwarzschild space-time. In contrast to that global solutions should not exist for matter models with a nonvanishing rest-mass component, and this is demonstrated for polytropes. For homoclinic isothermal solutions I derive an upper bound on the mass of the black hole for which stationary transonic accretion is allowed.
An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
NASA Astrophysics Data System (ADS)
Drivas, Theodore D.; Eyink, Gregory L.
2017-12-01
We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.
Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D
2002-10-25
Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.
Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.
Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie
2018-01-26
Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Yang; Xu, Fei; Gong, Bolin
2011-09-01
A novel stationary phase was synthesized for chiral ligand-exchange chromatography via atom transfer radical polymerization (ATRP). Glycidyl methacrylate (GMA) was grafted onto the surface of the silica by ATRP using bromoisobutyryl bromide as an initiator, and the organic metal compound formed in the CuCl/2,2'-bipyridine(Bpy) system as a catalyst at room temperature. The chiral stationary phase was then synthesized by grafting L-phenylalanine on the surface of the silica. The stationary phase was characterized by means of elementary analysis and evaluated in detail to determine its separability. The amount of L-phenylalanine on the surface of silica was calculated to be 4.32 mg/m2. The results showed that the good enantioseparations of some DL-amino acids were obtained using ligand-exchange chromatography on the synthesized chiral stationary phase (50 degrees C) with 0.05 mol/L KH2PO4 and 0.1 mmol/L Cu(Ac)2 solution (pH 4.5) as the mobile phase at a flow rate of 1.0 mL/min and a wavelength of 223 nm. The influences of the mobile phase pH, concentration of Cu (II), and temperature of column on the resolution of DL-amino acids by ligand-exchange chromatography were investigated. The results showed that these conditions could affect the resolution of racemates. Compared with the column prepared by radical method using L-phenylalanine directly bonded onto the surface of the silica, the synthesized stationary phase showed a better separation ability, and the DL-aspartic acids and DL-asparagines could be separated at baseline.
Wave Propagation in Non-Stationary Statistical Mantle Models at the Global Scale
NASA Astrophysics Data System (ADS)
Meschede, M.; Romanowicz, B. A.
2014-12-01
We study the effect of statistically distributed heterogeneities that are smaller than the resolution of current tomographic models on seismic waves that propagate through the Earth's mantle at teleseismic distances. Current global tomographic models are missing small-scale structure as evidenced by the failure of even accurate numerical synthetics to explain enhanced coda in observed body and surface waveforms. One way to characterize small scale heterogeneity is to construct random models and confront observed coda waveforms with predictions from these models. Statistical studies of the coda typically rely on models with simplified isotropic and stationary correlation functions in Cartesian geometries. We show how to construct more complex random models for the mantle that can account for arbitrary non-stationary and anisotropic correlation functions as well as for complex geometries. Although this method is computationally heavy, model characteristics such as translational, cylindrical or spherical symmetries can be used to greatly reduce the complexity such that this method becomes practical. With this approach, we can create 3D models of the full spherical Earth that can be radially anisotropic, i.e. with different horizontal and radial correlation functions, and radially non-stationary, i.e. with radially varying model power and correlation functions. Both of these features are crucial for a statistical description of the mantle in which structure depends to first order on the spherical geometry of the Earth. We combine different random model realizations of S velocity with current global tomographic models that are robust at long wavelengths (e.g. Meschede and Romanowicz, 2014, GJI submitted), and compute the effects of these hybrid models on the wavefield with a spectral element code (SPECFEM3D_GLOBE). We finally analyze the resulting coda waves for our model selection and compare our computations with observations. Based on these observations, we make predictions about the strength of unresolved small-scale structure and extrinsic attenuation.
Comment on the Exterior Solutions and Their Geometry in Scalar-Tensor Theories of Gravity
NASA Astrophysics Data System (ADS)
Tsuchida, T.; Watanabe, K.
1999-01-01
We study series of stationary solutions with asymptotic flatness properties in the Einstein-Maxwell-free scalar system because they are locally equivalent to the exterior solutions in some class of scalar-tensor theories of gravity. First, we classify spherical exterior solutions into two types of solutions, an apparently black hole type solution and an apparently worm hole type solution. The solutions contain three parameters, and we clarify their physical significance. Second, we reduce the field equations for the axisymmetric exterior solutions. We find that the reduced equations are partially the same as the Ernst equations. As simple examples, we derive new series of static, axisymmetric exterior solutions, which correspond to Voorhees's solutions. We then establish a non-trivial relation between the spherical exterior solutions and our new solutions. Finally, since null geodesics have conformally invariant properties, we study the local geometry of the exterior solutions by using the optical scalar equations and find some anomalous behavior of the null geodesics.
On the stability of dust orbits in mean-motion resonances perturbed by from an interstellar wind
NASA Astrophysics Data System (ADS)
Pástor, Pavol
2014-09-01
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange's planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting-Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.
NASA Astrophysics Data System (ADS)
Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun
2018-03-01
We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.
Application of the zeta potential for stationary phase characterization in ion chromatography.
Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina
2013-01-01
Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patel, Kamlesh D.
2007-11-20
A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.
NASA Astrophysics Data System (ADS)
Kukushkin, A. B.; Sdvizhenskii, P. A.
2017-12-01
The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Application of Hamilton's law of varying action
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1975-01-01
The law of varying action enunciated by Hamilton in 1834-1835 permits the direct analytical solution of the problems of mechanics, both stationary and nonstationary, without consideration of force equilibrium and the theory of differential equations associated therewith. It has not been possible to obtain direct analytical solutions to nonstationary systems through the use of energy theory, which has been limited for 140 years to the principle of least action and to Hamilton's principle. It is shown here that Hamilton's law permits the direct analytical solution to nonstationary, initial value systems in the mechanics of solids without any knowledge or use of the theory of differential equations. Solutions are demonstrated for nonconservative, nonstationary particle motion, both linear and nonlinear.
40 CFR 60.603 - Performance test and compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for... Solvent Contained in the Solvent Feed Holding Tank. (ii) Measure and record the amount of polymer introduced into the affected facility and the solvent-to-polymer ratio of the spinning solutions, and use the...
Guards, Galleries, Fortresses, and the Octoplex
ERIC Educational Resources Information Center
Michael, T. S.
2011-01-01
The art gallery problem asks for the maximum number of stationary guards required to protect the interior of a polygonal art gallery with "n" walls. This article explores solutions to this problem and several of its variants. In addition, some unsolved problems involving the guarding of geometric objects are presented.
40 CFR 60.1090 - What must I do with my revised materials separation plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30... must do two tasks: (a) As specified under “Reporting” (§ 60.1375), submit five items to the...
A Software Architecture for the Construction and Management of Real-Time Virtual Worlds
1993-06-01
University of California, Berkeley [FUNK921. The second improvement was the addition of a radiosity light model. The use of radiosity and its use of diffuse...the viewpoint is stationary, the coarse polygon model is replaced by progressively more complex radiosity lit scenes. The area of molecular modeling
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Performance Specification 1 in appendix B of this part. Complete the evaluation within 60 days after your...
Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2008-09-01
We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.
NASA Astrophysics Data System (ADS)
Stolz, Claude
2010-12-01
The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.
Modeling of Electrochemical Copying in a Finite-Width Cell
NASA Astrophysics Data System (ADS)
Zhitnikov, V. P.; Sherykhalina, N. M.; Zaripov, A. A.
2017-11-01
The problem of modeling of electrochemical machining is reduced to the solution of the Schwartz problem on a parametrical rectangle with the use of theta-functions. Various conditions (non-equipotentiality of electrodes and inconstancy of current efficiency) at the boundary of a processed surface are considered. Nonstationary, quasistationary, stationary, and limit solutions are studied. Results of machining of surfaces by tool electrodes of various shapes are given. It is shown that machining mode parameters significantly affect the dissolved layer size necessary for obtaining high-precision copying.
Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase.
Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M; Katz, Barry P; Brautigam, Chad A; Munson, Robert S; Hansen, Eric J; Spinola, Stanley M
2014-02-11
To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.
Lévy-Student distributions for halos in accelerator beams.
Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio
2005-12-01
We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.
Levy-Student distributions for halos in accelerator beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio
2005-12-15
We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonicmore » (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.« less
Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping
2017-09-01
The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
Novel nano bearings constructed by physical adsorption
Zhang, Yongbin
2015-01-01
The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488
Space-time adaptive solution of inverse problems with the discrete adjoint method
NASA Astrophysics Data System (ADS)
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
Design and emplacement of an integrated lunar power system - Issues and concerns
NASA Technical Reports Server (NTRS)
Sprouse, Kenneth M.; Robin, James E.; Metcalf, Kenneth J.; Cataldo, Robert
1991-01-01
Issues regarding the construction and operation of a stationary lunar surface power system that must be resolved in order to create a permanent manned presence on the moon are addressed. The issues considered include: (1) the centralization or decentralization of the electrical power system; (2) whether power transmission should be ac or dc; (3) what mix of power generating technology should be used; and (4) the physical interface requirements between the power-system hardware and the construction equipment to be used in placing the hardware on the lunar surface.
Gezici, Orhan; Kara, Hüseyin
2011-09-15
The stationary phase characteristics of the material obtained through immobilization of humic acid (HA) to aminopropyl silica (APS) via amide-bond formation were investigated. The material was characterized in terms of elemental analysis, FTIR, thermogravimetric analyses, pH point of zero charge measurements, potentiometric titrations, and contact angle measurements. Amount of HA bonded to APS was determined from the elemental analysis results, and found as 170 mgHA/gAPS. Stability of the material was studied in aqueous media at different pH values, and amount of HA released at pH=8 did not exceed 2% of the total immobilized HA. Stationary phase characteristics of the well-characterized material were investigated in an HPLC system by using some low-molecular weight polar compounds (i.e. some nucleosides and nucleobases) as test solutes. Effect of some experimental variables such as column conditioning, composition of mobile phase, and temperature on the chromatographic behavior of the studied compounds was studied. Role of ammonium solutions at different pH values on retentive properties of the species was also studied. Retention factors (k') versus volume percentage of organic modifier exhibited a U-curve, which was evaluated as an indication for RPLC/HILIC mixed-mode behavior of the stationary phase. Orthogonality between RPLC and HILIC modes was analyzed through geometric approach, and found as 48.5%. Base-line separation for the studied groups of compounds was achieved under each studied mode, and some differentiations were observed in elution order of the compounds depending on the HPLC mode applied. Chromatograms recorded under RPLC and HILIC modes were compared with those recorded on APS under similar conditions, and thus the influence/importance of HA immobilization process was evaluated in detail. In light of the obtained results, immobilized HA is represented as a useful stationary phase for HPLC separations. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Yulia
2018-02-01
Stages of direct computational experiments in hydromechanics based on tensor mathematics tools are represented by conditionally independent mathematical models for calculations separation in accordance with physical processes. Continual stage of numerical modeling is constructed on a small time interval in a stationary grid space. Here coordination of continuity conditions and energy conservation is carried out. Then, at the subsequent corpuscular stage of the computational experiment, kinematic parameters of mass centers and surface stresses at the boundaries of the grid cells are used in modeling of free unsteady motions of volume cells that are considered as independent particles. These particles can be subject to vortex and discontinuous interactions, when restructuring of free boundaries and internal rheological states has place. Transition from one stage to another is provided by interpolation operations of tensor mathematics. Such interpolation environment formalizes the use of physical laws for mechanics of continuous media modeling, provides control of rheological state and conditions for existence of discontinuous solutions: rigid and free boundaries, vortex layers, their turbulent or empirical generalizations.
A novel look at the pulsar force-free magnetosphere
NASA Astrophysics Data System (ADS)
Petrova, S. A.; Flanchik, A. B.
2018-03-01
The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, B_{new}0=3.3×10^{-4}B/P, where P is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \\cotχ-law, where χ is a random quantity uniformly distributed in the interval [0,π/2]. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.
Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles
NASA Astrophysics Data System (ADS)
Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.
2007-01-01
The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.
Rotating and binary relativistic stars with magnetic field
NASA Astrophysics Data System (ADS)
Markakis, Charalampos
We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry and elucidate their relativistic analogues.
Alagöz, B Aylin Zeren; Kocasoy, Günay
2007-02-01
Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.
On axisymmetric resistive MHD equilibria with flow free of Pfirsch-Schlüter diffusion
NASA Astrophysics Data System (ADS)
Throumoulopoulos, George N.; Tasso, Henri
2002-11-01
The equilibrium of an axisymmetric magnetically confined plasma with anisotropic electrical conductivity and flows parallel to the magnetic field is investigated within the framework of the MHD theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order partial differential equation for the poloidal magnetic flux function along with a Bernoulli equation for the density identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the conductivities σ_allel and σ_⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic conductivity and parallel flows (see [1]) the equilibrium is compatible with non-vanishing poloidal currents. For incompressible flows exact solutions of the above mentioned set of equations can be constructed with σ_allel and σ_⊥ profiles compatible with collisional conductivity profiles, i.e. profiles peaked close to the magnetic axis, vanishing on the boundary and such that σ_allel> σ_⊥. In particular, an exact equilibrium describing a toroidal plasma of arbitrary aspect ratio being contained within a perfectly conducting boundary of rectangular cross-section and peaked toroidal current density profile vanishing on the boundary is further considered. For this equilibrium in the case of vanishing flows the difference σ_allel-σ_⊥ for the reversed field pinch scaling Bp Bt (where Bp and Bt are the poloidal and toroidal magnetic field components) is nearly two times larger than that for the tokamak scaling B_p 0.1 B_t. [1] G. N. Throumoulopoulos, H. Tasso, J. Plasma Physics 64, 601 (2000).
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa
2017-04-01
Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral transport through the material interface which differs between the stationary (unilateral) and dynamic cases (bilateral). This qualitative observation is confirmed by breakthrough curves for dynamic experiments which generally show the trend of faster initial breakthrough and increased tailing when compared to stationary infiltration results. Literature Cremer, C.J.M., I. Neuweiler, M. Bechtold, J. Vanderborght (2016): Solute Transport in Heterogeneous Soil with Time-Dependent Boundary Conditions, Vadose Zone Journal 15 (6) DOI: 10.2136/vzj2015.11.0144
The problem of exact interior solutions for rotating rigid bodies in general relativity
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.
1993-01-01
The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.
Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.
2006-01-01
In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.
Polyphosphate and Orthophosphate Content of Nitrosomonas europaea as a Function of Growth
Terry, K. R.; Hooper, A. B.
1970-01-01
After inoculation of a stationary-phase culture of Nitrosomonas europaea into fresh growth solution, the cell-associated orthophosphate increased rapidly to 800 μmoles/g (wet weight), whereas the acid-insoluble long-chain polyphosphate content decreased rapidly to 22 μmoles/g. As growth proceeded, the orthophosphate content decreased rapidly to a level of 15 μmoles/g and the long-chain polyphosphate content gradually increased to 60 to 90 μmoles/g. When the pH of a culture of Nitrosomonas decreased during growth below approximately 7.4, the rate of nitrite and polyphosphate synthesis increased and the ratio of change in protein to change in nitrite decreased. When the pH of the culture was maintained above 7.6 throughout growth, polyphosphate accumulation, an increased rate of nitrite and polyphosphate synthesis, and a decreased ratio of change in protein to change in nitrite were not observed. Cells of Nitrosomonas apparently accumulated polyphosphate when adenosine triphosphate generated during the oxidation of ammonia to nitrite was not efficiently used to promote an increase in cell mass. The rapid hydrolysis of polyphosphate after the transfer of stationary-phase cells into fresh growth solution was found to be triggered primarily by the higher pH of the fresh growth solution. The efflux of orthophosphate during culture growth was not associated with a decrease in the pH of the growth solution. Data on the chemical composition of Nitrosomonas are presented. PMID:5423370
Spherical harmonic expansion of the Levitus Sea surface topography
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
Boosted Kaluza-Klein magnetic monopole
NASA Astrophysics Data System (ADS)
Hashemi, S. Sedigheh; Riazi, Nematollah
2018-06-01
We consider a Kaluza-Klein vacuum solution which is closely related to the Gross-Perry-Sorkin (GPS) magnetic monopole. The solution can be obtained from the Euclidean Taub-NUT solution with an extra compact fifth spatial dimension within the formalism of Kaluza-Klein reduction. We study its physical properties as appearing in (3 + 1) spacetime dimensions, which turns out to be a static magnetic monopole. We then boost the GPS magnetic monopole along the extra dimension, and perform the Kaluza-Klein reduction. The resulting four-dimensional spacetime is a rotating stationary system, with both electric and magnetic fields. In fact, after the boost the magnetic monopole turns into a string connected to a dyon.
NASA Astrophysics Data System (ADS)
Huang, Feimin; Li, Tianhong; Yu, Huimin; Yuan, Difan
2018-06-01
We are concerned with the global existence and large time behavior of entropy solutions to the one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations in a bounded interval. In this paper, we first prove the global existence of entropy solution by vanishing viscosity and compensated compactness framework. In particular, the solutions are uniformly bounded with respect to space and time variables by introducing modified Riemann invariants and the theory of invariant region. Based on the uniform estimates of density, we further show that the entropy solution converges to the corresponding unique stationary solution exponentially in time. No any smallness condition is assumed on the initial data and doping profile. Moreover, the novelty in this paper is about the unform bound with respect to time for the weak solutions of the isentropic Euler-Poisson system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... sulfur dioxide (SO 2 ) emissions inventories as satisfying the requirement in section 172(c)(3) for a... and quantification of allowable emissions for major new and modified stationary sources in an area, and section 172(c)(5) requires source permits for the construction and operation of new and modified...
40 CFR 60.1570 - What is the “model rule” in this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Use of Model Rule § 60.1570 What is the “model rule” in this subpart? (a) The model rule is the portion of the...
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed
2017-03-01
In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... incorporates District Rule 2410-- Prevention of Significant Deterioration (PSD)--into the California SIP to establish a PSD permit program for pre-construction review of certain new and modified major stationary... provides an adequate PSD permitting program as required by section 110 and part C of title I of the CAA...
Díaz, J I; Hidalgo, A; Tello, L
2014-10-08
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.
NASA Astrophysics Data System (ADS)
Yan, Zhen-Ya; Yan, Fang-Chi
2015-09-01
We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity. Supported by the National Natural Science Foundation of China under Grant No. 61178091, the National Key Basic Research Program of China under Grant No. 2011CB302400, and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China under Grant No. Y4KF211CJ1
Stability properties of a thin relativistic beam propagation in a magnetized plasma
NASA Astrophysics Data System (ADS)
Jovanović, Dušan; Fedele, Renato; Belić, Milivoj; De Nicola, Sergio; Akhter, Tamina
2018-05-01
A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam through a plasma that is relatively strongly magnetized. Such situation is encountered when the gyro-frequency is comparable to the plasma frequency, i.e. |Ω e | ω pe . In addition, it is assumed the plasma density is much bigger than that of the beam. In the regime when the solution propagates in the comoving frame with a velocity that is much smaller than the thermal speed, a nonlinear stationary beam structure is found in which the electron motion in the transverse direction is negligible and whose transverse localization comes from the nonlinearity associated with its 3-D adiabatic expansion. Conversely, when the parallel velocity of the structure is sufficiently large to prevent the heat convection along the magnetic field, a helicoidally shaped stationary solution is found that is governed by the transverse convective nonlinearity. The profile of such beam is determined from a nonlinear dispersion relation and depends on the transverse size of the beam and its pitch angle to the magnetic field.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Díaz, J. I.; Hidalgo, A.; Tello, L.
2014-01-01
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969
Molecular dynamics test of the Brownian description of Na(+) motion in water
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.; Pratt, L. R.
1985-01-01
The present paper provides the results of molecular dynamics calculations on a Na(+) ion in aqueous solution. Attention is given to the sodium-oxygen and sodium-hydrogen radial distribution functions, the velocity autocorrelation function for the Na(+) ion, the autocorrelation function of the force on the stationary ion, and the accuracy of Brownian motion assumptions which are basic to hydrodynamic models of ion dyanmics in solution. It is pointed out that the presented calculations provide accurate data for testing theories of ion dynamics in solution. The conducted tests show that it is feasible to calculate Brownian friction constants for ions in aqueous solutions. It is found that for Na(+) under the considered conditions the Brownian mobility is in error by only 60 percent.
The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Haider, Md. Masum; Ferdous, Tahmina; Duha, Syed S.
2014-09-01
The nonlinear propagation of small but finite amplitude dust-ion-acoustic solitary waves in a magnetized, collisionless dusty plasma is investigated theoretically. It has been assumed that the electrons are trapped following the vortex-like distribution and that the negatively and positively charged ions are mobile with the presence of charge fluctuating stationary dusts, where ions mass provide the inertia and restoring forces are provided by the thermal pressure of hot electrons. A reductive perturbation method was employed to obtain a modified Korteweg-de Vries (mK-dV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of trapped electrons, negatively and positively charged ions and arbitrary charged dust grains are discussed.
NASA Astrophysics Data System (ADS)
Haque, Q.; Zakir, U.; Qamar, A.
2015-12-01
Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.
Nurhuda, M; Rouf, A
2017-09-01
The paper presents a method for simultaneous computation of eigenfunction and eigenvalue of the stationary Schrödinger equation on a grid, without imposing boundary-value condition. The method is based on the filter operator, which selects the eigenfunction from wave packet at the rate comparable to δ function. The efficacy and reliability of the method are demonstrated by comparing the simulation results with analytical or numerical solutions obtained by using other methods for various boundary-value conditions. It is found that the method is robust, accurate, and reliable. Further prospect of filter method for simulation of the Schrödinger equation in higher-dimensional space will also be highlighted.
Forced oscillations of cracked beam under the stochastic cyclic loading
NASA Astrophysics Data System (ADS)
Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.
2018-05-01
An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.
Stationary equatorial MHD flows in general relativity
NASA Astrophysics Data System (ADS)
Daigne, F.; Drenkhahn, G.
2002-01-01
We derive a new formulation of the fully general relativistic equations describing a stationary equatorial MHD outflow from a rotating central object. The wind solution appears as a level contour of a ``Bernoulli'' function fixed by the requirements that it must pass through the slow and fast critical points. This approach is the general relativistic extension to the classical treatment of Sakurai (\\cite{sakurai:85}). We discuss in details how the efficiency of the magnetic to kinetic energy conversion depends mainly on the geometry of the flux tubes and show that the magnetic acceleration can work very well under some conditions. We show how this tool can be used for the study of several astrophysical phenomena, among which gamma-ray bursts.
Castañeda, Miguel; Sánchez, Judith; Moreno, Soledad; Núñez, Cinthia; Espín, Guadalupe
2001-01-01
Transcription of the Azotobacter vinelandii algD gene, which encodes GDP-mannose dehydrogenase (the rate-limiting enzyme of alginate synthesis), starts from three sites: p1, p2, and p3. The sensor kinase GacS, a member of the two-component regulatory system, is required for transcription of algD from its three sites during the stationary phase. Here we show that algD is expressed constitutively throughout the growth cycle from the p2 and p3 sites and that transcription from p1 started at the transition between the exponential growth phase and stationary phase. We constructed A. vinelandii strains that carried mutations in gacA encoding the cognate response regulator of GacS and in rpoS coding for the stationary-phase ςS factor. The gacA mutation impaired alginate production and transcription of algD from its three promoters. Transcription of rpoS was also abolished by the gacA mutation. The rpoS mutation impaired transcription of algD from the p1 promoter and increased it from the p2 ςE promoter. The results of this study provide evidence for the predominant role of GacA in a regulatory cascade controlling alginate production and gene expression during the stationary phase in A. vinelandii. PMID:11698366
On the non-stationary generalized Langevin equation
NASA Astrophysics Data System (ADS)
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
A dissipative particle dynamics method for arbitrarily complex geometries
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em
2018-02-01
Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.
NASA Astrophysics Data System (ADS)
Queloz, Pierre; Carraro, Luca; Bertuzzo, Enrico; Botter, Gianluca; Rao, P. Suresh C.; Rinaldo, Andrea
2014-05-01
Experimental data have been collected over a year-long period in a large weighing lysimeter. Natural climatic forcing occurs, except for rainfall which is artificially generated as a given Poisson process at a daily timescale. A constant water table is maintained and excess infiltrated water is discharged through the outlet at the bottom of the lysimeter. Soil water storage and evapotranspiration fluxes (accentuated by a willow tree planted in the lysimeter) were monitored throughout the experiment, so that accurate time series of all in- and out-fluxes are available. Five rainfall inputs were marked with individually traceable passive solutes (fluorobenzoic acids) at various initial soil moisture conditions during the first month of the experiment. Tracer concentrations were measured in the soil water and in the discharge at high temporal resolution. We aim here at directly measuring solute travel times, a proxy of hydrological transport with the main advantage to blend the bulk effects of water velocity distributions. The drivers of water displacement in this hydrological setting - and in any other realistic case - have intrinsically a non-stationary nature (e.g. random rainfall occurrence, seasonal evapotranspiration cycles and moisture-related soil connectivity), but the integration of these processes over a larger time scale (i.e. typically the time scale of the mean travel time) often lead to the stationary assumption thus considerably simplifying the data interpretation. Results clearly show that even in such a hydrological system with reduced complexity, experimental travel time distributions are non-stationary and are strongly influenced by the states encountered by the system during the transport phase. The measurements help at identifying the relevant key features influencing the experimental bulk transport. Modeling efforts have demonstrated the inability of a plug-flow reactor (old-water first reservoir) to reproduce the solute outfluxes dynamics. On the other hand, the well-mixed reactor performs well at long term, but hardly applies for the period directly following the tracer injection.
A Proof of Friedman's Ergosphere Instability for Scalar Waves
NASA Astrophysics Data System (ADS)
Moschidis, Georgios
2018-03-01
Let {(M^{3+1},g)} be a real analytic, stationary and asymptotically flat spacetime with a non-empty ergoregion E and no future event horizon H}^{+. In Friedman (Commun Math Phys 63(3):243-255, 1978), Friedman observed that, on such spacetimes, there exist solutions φ to the wave equation \\squaregφ=0 such that their local energy does not decay to 0 as time increases. In addition, Friedman provided a heuristic argument that the energy of such solutions actually grows to +∞. In this paper, we provide a rigorous proof of Friedman's instability. Our setting is, in fact, more general. We consider smooth spacetimes {(M^{d+1},g)}, for any {d≥2}, not necessarily globally real analytic. We impose only a unique continuation condition for the wave equation across the boundary partial{E} of E on a small neighborhood of a point p\\inpartialE. This condition always holds if {(M,g)} is analytic in that neighborhood of p, but it can also be inferred in the case when {(M,g)} possesses a second Killing field {Φ} such that the span of {Φ} and the stationary Killing field T is timelike on partial{E}. We also allow the spacetimes {(M,g)} under consideration to possess a (possibly empty) future event horizon H}^{+, such that, however, {H+\\cap E=\\emptyset} (excluding, thus, the Kerr exterior family). As an application of our theorem, we infer an instability result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014). Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on the vector field method, of a Carleman-type estimate on the exterior of the ergoregion for a general class of stationary and asymptotically flat spacetimes. Applications of this estimate include a Morawetz-type bound for solutions φ of \\squaregφ=0 with frequency support bounded away from {{ω}=0} and {{ω}=±∞}.
Convergence speeding up in the calculation of the viscous flow about an airfoil
NASA Technical Reports Server (NTRS)
Radespiel, R.; Rossow, C.
1988-01-01
A finite volume method to solve the three dimensional Navier-Stokes equations was developed. It is based on a cell-vertex scheme with central differences and explicit Runge-Kutta time steps. A good convergence for a stationary solution was obtained by the use of local time steps, implicit smoothing of the residues, a multigrid algorithm, and a carefully controlled artificial dissipative term. The method is illustrated by results for transonic profiles and airfoils. The method allows a routine solution of the Navier-Stokes equations.
Asymptotic behaviors of a cell-to-cell HIV-1 infection model perturbed by white noise
NASA Astrophysics Data System (ADS)
Liu, Qun
2017-02-01
In this paper, we analyze a mathematical model of cell-to-cell HIV-1 infection to CD4+ T cells perturbed by stochastic perturbations. First of all, we investigate that there exists a unique global positive solution of the system for any positive initial value. Then by using Lyapunov analysis methods, we study the asymptotic property of this solution. Moreover, we discuss whether there is a stationary distribution for this system and if it owns the ergodic property. Numerical simulations are presented to illustrate the theoretical results.
On a remarkable electromagnetic field in the Einstein Universe
NASA Astrophysics Data System (ADS)
Kopiński, Jarosław; Natário, José
2017-06-01
We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.
Bound states and interactions of vortex solitons in the discrete Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Mejía-Cortés, C.; Soto-Crespo, J. M.; Vicencio, Rodrigo A.; Molina, Mario I.
2012-08-01
By using different continuation methods, we unveil a wide region in the parameter space of the discrete cubic-quintic complex Ginzburg-Landau equation, where several families of stable vortex solitons coexist. All these stationary solutions have a symmetric amplitude profile and two different topological charges. We also observe the dynamical formation of a variety of “bound-state” solutions composed of two or more of these vortex solitons. All of these stable composite structures persist in the conservative cubic limit for high values of their power content.
Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement
NASA Astrophysics Data System (ADS)
Szirmai, G.; Nagy, D.; Domokos, P.
2010-04-01
A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.
Delahousse, Guillaume; Peulon-Agasse, Valérie; Debray, Jean-Christophe; Vaccaro, Marie; Cravotto, Giancarlo; Jabin, Ivan; Cardinael, Pascal
2013-11-29
New polyethylene-glycol-based sol-gels containing cyclodextrin or calix[6]arene derivatives have been synthesized. An original method for sol-gel preparation and capillary column coating, which consumes smaller quantities of selectors and allows for control of their amounts in the stationary phase, is reported herein. The new stationary phases exhibited excellent column efficiencies over a large range of temperatures and thermal stability up to 280°C. The cyclodextrin derivative generally showed the best separation factors for aromatic positional isomers. The calix[6]arene derivative exhibited the best selectivity for the polychlorobiphenyl congeners and some polycyclic aromatic hydrocarbon isomers. The relationship between the structure and the chromatographic properties of the selectors is discussed. The tert-butyl groups on the upper rim of the calix[6]arene were found to possibly play an important role in the recognition of solutes. The incorporation of the cyclodextrin derivative into the sol-gel matrix did not affect its enantioselective recognition capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Stationary and on-board storage systems to enhance energy and cost efficiency of tramways
NASA Astrophysics Data System (ADS)
Ceraolo, M.; Lutzemberger, G.
2014-10-01
Nowadays road transportation contributes in a large amount to the urban pollution and greenhouse gas emissions. One solution in urban environment, also in order to mitigate the effects of traffic jams, is the use of tramways. The most important bonus comes from the inherent reversibility of electric drives: energy can be sent back to the electricity source, while braking the vehicle. This can be done installing some storage device on-board trains, or in one or more points of the supply network. This paper analyses and compares the following variants: Stationary high-power lithium batteries. Stationary supercapacitors. High-power lithium batteries on-board trains. Supercapacitors on-board trains. When the storage system is constituted by a supercapacitor stack, it is mandatory to interpose between it and the line a DC/DC converter. On the contrary, the presence of the converter can be avoided, in case of lithium battery pack. This paper will make an evaluation of all these configurations, in a realistic case study, together with a cost/benefit analysis.
Karenga, Samuel; El Rassi, Ziad
2011-04-01
Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-11-15
In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less
Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A
2015-05-29
In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Regev-Yochay, Gili; Trzcinski, Krzysztof; Thompson, Claudette M; Lipsitch, Marc; Malley, Richard
2007-09-01
The human bacterial pathogen Streptococcus pneumoniae dies spontaneously upon reaching stationary phase. The extent of S. pneumoniae death at stationary phase is unusual in bacteria and has been conventionally attributed to autolysis by the LytA amidase. In this study, we show that spontaneous pneumococcal death is due to hydrogen peroxide (H(2)O(2)), not LytA, and that the gene responsible for H(2)O(2) production (spxB) also confers a survival advantage in colonization. Survival of S. pneumoniae in stationary phase was significantly prolonged by eliminating H(2)O(2) in any of three ways: chemically by supplementing the media with catalase, metabolically by growing the bacteria under anaerobic conditions, or genetically by constructing DeltaspxB mutants that do not produce H(2)O(2). Likewise, addition of H(2)O(2) to exponentially growing S. pneumoniae resulted in a death rate similar to that of cells in stationary phase. While DeltalytA mutants did not lyse at stationary phase, they died at a rate similar to that of the wild-type strain. Furthermore, we show that the death process induced by H(2)O(2) has features of apoptosis, as evidenced by increased annexin V staining, decreased DNA content, and appearance as assessed by transmission electron microscopy. Finally, in an in vivo rat model of competitive colonization, the presence of spxB conferred a selective advantage over the DeltaspxB mutant, suggesting an explanation for the persistence of this gene. We conclude that a suicide gene of pneumococcus is spxB, which induces an apoptosis-like death in pneumococci and confers a selective advantage in nasopharyngeal cocolonization.
Regev-Yochay, Gili; Trzcinski, Krzysztof; Thompson, Claudette M.; Lipsitch, Marc; Malley, Richard
2007-01-01
The human bacterial pathogen Streptococcus pneumoniae dies spontaneously upon reaching stationary phase. The extent of S. pneumoniae death at stationary phase is unusual in bacteria and has been conventionally attributed to autolysis by the LytA amidase. In this study, we show that spontaneous pneumococcal death is due to hydrogen peroxide (H2O2), not LytA, and that the gene responsible for H2O2 production (spxB) also confers a survival advantage in colonization. Survival of S. pneumoniae in stationary phase was significantly prolonged by eliminating H2O2 in any of three ways: chemically by supplementing the media with catalase, metabolically by growing the bacteria under anaerobic conditions, or genetically by constructing ΔspxB mutants that do not produce H2O2. Likewise, addition of H2O2 to exponentially growing S. pneumoniae resulted in a death rate similar to that of cells in stationary phase. While ΔlytA mutants did not lyse at stationary phase, they died at a rate similar to that of the wild-type strain. Furthermore, we show that the death process induced by H2O2 has features of apoptosis, as evidenced by increased annexin V staining, decreased DNA content, and appearance as assessed by transmission electron microscopy. Finally, in an in vivo rat model of competitive colonization, the presence of spxB conferred a selective advantage over the ΔspxB mutant, suggesting an explanation for the persistence of this gene. We conclude that a suicide gene of pneumococcus is spxB, which induces an apoptosis-like death in pneumococci and confers a selective advantage in nasopharyngeal cocolonization. PMID:17631628
Stability of the lepton bag model based on the Kerr–Newman solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burinskii, A., E-mail: bur@ibrae.ac.ru
2015-11-15
We show that the lepton bag model considered in our previous paper [10], generating the external gravitational and electromagnetic fields of the Kerr–Newman (KN) solution, is supersymmetric and represents a BPS-saturated soliton interpolating between the internal vacuum state and the external KN solution. We obtain Bogomolnyi equations for this phase transition and show that the Bogomolnyi bound determines all important features of this bag model, including its stable shape. In particular, for the stationary KN solution, the BPS bound provides stability of the ellipsoidal form of the bag and the formation of the ring–string structure at its border, while formore » the periodic electromagnetic excitations of the KN solution, the BPS bound controls the deformation of the surface of the bag, reproducing the known flexibility of bag models.« less
Contribution to an effective design method for stationary reaction-diffusion patterns.
Szalai, István; Horváth, Judit; De Kepper, Patrick
2015-06-01
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
NASA Astrophysics Data System (ADS)
de Smet, Filip; Aeyels, Dirk
2010-12-01
We consider the stationary and the partially synchronous regimes in an all-to-all coupled neural network consisting of an infinite number of leaky integrate-and-fire neurons. Using analytical tools as well as simulation results, we show that two threshold values for the coupling strength may be distinguished. Below the lower threshold, no synchronization is possible; above the upper threshold, the stationary regime is unstable and partial synchrony prevails. In between there is a range of values for the coupling strength where both regimes may be observed. The assumption of an infinite number of neurons is crucial: simulations with a finite number of neurons indicate that above the lower threshold partial synchrony always prevails—but with a transient time that may be unbounded with increasing system size. For values of the coupling strength in a neighborhood of the lower threshold, the finite model repeatedly builds up toward synchronous behavior, followed by a sudden breakdown, after which the synchronization is slowly built up again. The “transient” time needed to build up synchronization again increases with increasing system size, and in the limit of an infinite number of neurons we retrieve stationary behavior. Similarly, within some range for the coupling strength in this neighborhood, a stable synchronous solution may exist for an infinite number of neurons.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or Reconstruction is... your municipal waste combustion unit. You must distribute the document at least to the main public...
Constructing Noise-Invariant Representations of Sound in the Auditory Pathway
Rabinowitz, Neil C.; Willmore, Ben D. B.; King, Andrew J.; Schnupp, Jan W. H.
2013-01-01
Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain. PMID:24265596
Modelling and calculation of flotation process in one-dimensional formulation
NASA Astrophysics Data System (ADS)
Amanbaev, Tulegen; Tilleuov, Gamidulla; Tulegenova, Bibigul
2016-08-01
In the framework of the assumptions of the mechanics of the multiphase media is constructed a mathematical model of the flotation process in the dispersed mixture of liquid, solid and gas phases, taking into account the degree of mineralization of the surface of the bubbles. Application of the constructed model is demonstrated on the example of one-dimensional stationary flotation and it is shown that the equations describing the process of ascent of the bubbles are singularly perturbed ("rigid"). The effect of size and concentration of bubbles and the volumetric content of dispersed particles on the flotation process are analyzed.
Development of the Aqueous Processes for Removing NOx from Flue Gases.
ERIC Educational Resources Information Center
Chappell, Gilford A.
A screening study was conducted to evaluate the capability of aqueous solutions to scrub NOx from the flue gases emitted by stationary power plants fired with fossil fuels. The report summarizes the findings of this laboratory program. The experimental program studied the following media for absorption of NOx from flue gases containing no NOx:…
Boultwood, Tom; Affron, Dominic P.; Bull, James A.
2014-01-01
The highly diastereoselective preparation of cis-N-Ts-iodoaziridines through reaction of diiodomethyllithium with N-Ts aldimines is described. Diiodomethyllithium is prepared by the deprotonation of diiodomethane with LiHMDS, in a THF/diethyl ether mixture, at -78 °Cin the dark. These conditions are essential for the stability of the LiCHI2 reagent generated. The subsequent dropwise addition of N-Ts aldimines to the preformed diiodomethyllithium solution affords an amino-diiodide intermediate, which is not isolated. Rapid warming of the reaction mixture to 0 °C promotes cyclization to afford iodoaziridines with exclusive cis-diastereoselectivity. The addition and cyclization stages of the reaction are mediated in one reaction flask by careful temperature control. Due to the sensitivity of the iodoaziridines to purification, assessment of suitable methods of purification is required. A protocol to assess the stability of sensitive compounds to stationary phases for column chromatography is described. This method is suitable to apply to new iodoaziridines, or other potentially sensitive novel compounds. Consequently this method may find application in range of synthetic projects. The procedure involves firstly the assessment of the reaction yield, prior to purification, by 1H NMR spectroscopy with comparison to an internal standard. Portions of impure product mixture are then exposed to slurries of various stationary phases appropriate for chromatography, in a solvent system suitable as the eluent in flash chromatography. After stirring for 30 min to mimic chromatography, followed by filtering, the samples are analyzed by 1H NMR spectroscopy. Calculated yields for each stationary phase are then compared to that initially obtained from the crude reaction mixture. The results obtained provide a quantitative assessment of the stability of the compound to the different stationary phases; hence the optimal can be selected. The choice of basic alumina, modified to activity IV, as a suitable stationary phase has allowed isolation of certain iodoaziridines in excellent yield and purity. PMID:24893769
NASA Astrophysics Data System (ADS)
Herda, Maxime; Rodrigues, L. Miguel
2018-03-01
The present contribution investigates the dynamics generated by the two-dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady inhomogeneous background of opposite charges. We provide global in time estimates that are uniform with respect to initial data taken in a bounded set of a weighted L^2 space, and where dependencies on the mean-free path τ and the Debye length δ are made explicit. In our analysis the mean free path covers the full range of possible values: from the regime of evanescent collisions τ → ∞ to the strongly collisional regime τ → 0. As a counterpart, the largeness of the Debye length, that enforces a weakly nonlinear regime, is used to close our nonlinear estimates. Accordingly we pay a special attention to relax as much as possible the τ -dependent constraint on δ ensuring exponential decay with explicit τ -dependent rates towards the stationary solution. In the strongly collisional limit τ → 0, we also examine all possible asymptotic regimes selected by a choice of observation time scale. Here also, our emphasis is on strong convergence, uniformity with respect to time and to initial data in bounded sets of a L^2 space. Our proofs rely on a detailed study of the nonlinear elliptic equation defining stationary solutions and a careful tracking and optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.
Selfsimilar time dependent shock structures
NASA Astrophysics Data System (ADS)
Beck, R.; Drury, L. O.
1985-08-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Selfsimilar time dependent shock structures
NASA Technical Reports Server (NTRS)
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
On a Free Boundary Problem for the Curvature Flow with Driving Force
NASA Astrophysics Data System (ADS)
Guo, Jong-Shenq; Matano, Hiroshi; Shimojo, Masahiko; Wu, Chang-Hong
2016-03-01
We study a free boundary problem associated with the curvature dependent motion of planar curves in the upper half plane whose two endpoints slide along the horizontal axis with prescribed fixed contact angles. Our first main result concerns the classification of solutions; every solution falls into one of the three categories, namely, area expanding, area bounded and area shrinking types. We then study in detail the asymptotic behavior of solutions in each category. Among other things we show that solutions are asymptotically self-similar both in the area expanding and the area shrinking cases, while solutions converge to either a stationary solution or a traveling wave in the area bounded case. We also prove results on the concavity properties of solutions. One of the main tools of this paper is the intersection number principle, however in order to deal with solutions with free boundaries, we introduce what we call "the extended intersection number principle", which turns out to be exceedingly useful in handling curves with moving endpoints.
On stress field near a stationary crack tip
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Obata, M.
1984-01-01
It is well known that the stress and elastic-plastic deformation fields near a crack tip have important roles in the corresponding fracture process. For elastic-perfectly-plastic solids, different solutions are given in the literature. In this work several of these solutions are examined and compared for Mode I (tension), Mode II (shear), and mixed Modes I and II loading conditions in plane strain. By consideration of the dynamic solution, it is shown that the assumption that the material is yielding all around a crack tip may not be reasonable in all cases. By admitting the existence of some elastic sectors, continuous stress fields are obtained even for mixed Modes I and II.
Yan, Zhenya; Konotop, V V
2009-09-01
It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.
NASA Astrophysics Data System (ADS)
Sazonov, S. V.; Ustinov, N. V.
2017-02-01
The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky-Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.
The scatter of obliquely incident plane waves from a corrugated conducting surface
NASA Technical Reports Server (NTRS)
Levine, D. N.
1975-01-01
A physical optics solution is presented for the scattering of plane waves from a perfectly conducting corrugated surface in the case of waves incident from an arbitrary direction and for an observer far from the surface. This solution was used to compute the radar cross section of the surface in the case of backscatter from irregular (i.e., stochastic) corrugations and to point out a correction to the literature on this problem. A feature of the solution is the occurrence of singularities in the scattered fields which appear to be a manifestation of focussing by the surface at its stationary points. Whether or not the singularities occur in the solution depends on the manner in which one restricts the analysis to the far field.
Prescribing the mixed scalar curvature of a foliated Riemann-Cartan manifold
NASA Astrophysics Data System (ADS)
Rovenski, Vladimir Y.; Zelenko, Leonid
2018-03-01
The mixed scalar curvature is the simplest curvature invariant of a foliated Riemannian manifold. We explore the problem of prescribing the leafwise constant mixed scalar curvature of a foliated Riemann-Cartan manifold by conformal change of the structure in tangent and normal to the leaves directions. Under certain geometrical assumptions and in two special cases: along a compact leaf and for a closed fibered manifold, we reduce the problem to solution of a nonlinear leafwise elliptic equation for the conformal factor. We are looking for its solutions that are stable stationary solutions of the associated parabolic equation. Our main tool is using of majorizing and minorizing nonlinear heat equations with constant coefficients and application of comparison theorems for solutions of Cauchy's problem for parabolic equations.
Dissolution of multicomponent bubbles. [gases in glass melts
NASA Technical Reports Server (NTRS)
Weinberg, M. C.; Subramanian, R. S.
1980-01-01
The behavior of an isolated, stationary, multicomponent gas bubble in a glassmelt containing several dissolved gases is considered. The relevant mass-transport equations are formulated and calculations are performed for the case of two diffusing gases using a quasi-stationary model and a numerical solution of the exact mass-transfer equations. The results obtained from these two approaches are compared. The factors which govern the dissolution or growth of a bubble are thermodynamic and kinetic in origin. The tendency of a bubble to grow or shrink at long times is controlled by departure from overall equilibrium, whereas the short-time bubble dynamics may be dominated by kinetic effects. As a result of the existence of these dual influences, maxima and/or minima occur in the functional dependence of the bubble radius on time.
Two-temperature Brownian dynamics of a particle in a confining potential
NASA Astrophysics Data System (ADS)
Mancois, Vincent; Marcos, Bruno; Viot, Pascal; Wilkowski, David
2018-05-01
We consider the two-dimensional motion of a particle in a confining potential, subject to Brownian orthogonal forces associated with two different temperatures. Exact solutions are obtained for an asymmetric harmonic potential in the overdamped and underdamped regimes. For more general confining potentials, a perturbative approach shows that the stationary state exhibits some universal properties. The nonequilibrium stationary state is characterized with a nonzero orthoradial mean current, corresponding to a global rotation of the particle around the center. The rotation is due to two broken symmetries: two different temperatures and a mismatch between the principal axes of the confining asymmetric potential and the temperature axes. We confirm our predictions by performing a Brownian dynamics simulation. Finally, we propose to observe this effect on a laser-cooled atomic gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractionalmore » order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.« less
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law
NASA Astrophysics Data System (ADS)
Torres-Cordoba, Rafael; Martinez-Garcia, Edgar
2017-10-01
This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less
NASA Astrophysics Data System (ADS)
Staszczuk, Anna
2017-03-01
The paper provides comparative results of calculations of heat exchange between ground and typical residential buildings using simplified (quasi-stationary) and more accurate (transient, three-dimensional) methods. Such characteristics as building's geometry, basement hollow and construction of ground touching assemblies were considered including intermittent and reduced heating mode. The calculations with simplified methods were conducted in accordance with currently valid norm: PN-EN ISO 13370:2008. Thermal performance of buildings. Heat transfer via the ground. Calculation methods. Comparative estimates concerning transient, 3-D, heat flow were performed with computer software WUFI®plus. The differences of heat exchange obtained using more exact and simplified methods have been specified as a result of the analysis.
2011-08-02
provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB...and Regulations ............................................................. 22 3.2.2 Baseline Air Emissions ...23 TABLE 3.2.2 STATIONARY AIR EMISSIONS INVENTORY, HILLSBOROUGH COUNTY, FLORIDA
NASA Technical Reports Server (NTRS)
Clark, D. L.
1972-01-01
The chronic 2g centrifuge was constructed for testing weightlessness effects on development of vestibular apparatus and ocular nystagmus in the rat. Both the stationary and rotating rail tests were performed. A physiological review is presented on vestibular apparatus, along with a system analysis. Time constants and input threshold level of the system are also considered.
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
Size exclusion chromatographic analysis of refuse-derived fuel for mycotoxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicking, M.K.; Kniseley, R.N.
1980-11-01
A Styragel packing material is characterized in several solvent systems by using a series of test solutes and mycotoxins. Differences in interpretation with other work are discussed. Three different separation modes are generated on one stationary phase. An improved separation of mycotoxins from a compilcated matrix results by simultaneously using size exclusion and liquid-liquid partitioning. 4 figures, 3 tables.
"In Situ" Observation of a Soap-Film Catenoid--A Simple Educational Physics Experiment
ERIC Educational Resources Information Center
Ito, Masato; Sato, Taku
2010-01-01
The solution to the Euler-Lagrange equation is an extremal functional. To understand that the functional is stationary at local extrema (maxima or minima), we propose a physics experiment that involves using a soap film to form a catenoid. A catenoid is a surface that is formed between two coaxial circular rings and is classified mathematically as…
Carter constant and angular momentum
NASA Astrophysics Data System (ADS)
Mukherjee, Sajal; Nayak, K. Rajesh
We investigate the Carter-like constant in the case of a particle moving in a nonrelativistic dipolar potential. This special case is a missing link between the Carter constant in stationary and axially symmetric spacetimes (SASS) such as Kerr solution and its possible Newtonian counterpart. We use this system to carry over the definition of angular momentum from the Newtonian mechanics to the relativistic SASS.
A method to approximate a closest loadability limit using multiple load flow solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong
A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice
NASA Astrophysics Data System (ADS)
Butt, Imran A.; Wattis, Jonathan A. D.
2007-02-01
We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.
Lotka-Volterra system in a random environment.
Dimentberg, Mikhail F
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic "damping" term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent gamma-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
Lotka-Volterra system in a random environment
NASA Astrophysics Data System (ADS)
Dimentberg, Mikhail F.
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
NASA Astrophysics Data System (ADS)
Coppa, G. G.; Ricci, Paolo
2002-10-01
This work deals with a noncollisional kinetic model for non-neutral plasmas in a Penning trap. Using the spatial coordinates r, θ, z and the axial velocity vz as phase-space variables, a kinetic model is developed starting from the kinetic equation for the distribution function f(r,θ,z,vz,t). In order to reduce the complexity of the model, the kinetic equations are integrated along the axial direction by assuming an ergodic distribution in the phase space (z,vz) for particles of the same axial energy ɛ and the same planar position. In this way, a kinetic equation for the z-integrated electron distribution F(r,θ,ɛ,t) is obtained taking into account implicitly the three-dimensionality of the problem. The general properties of the model are discussed, in particular the conservation laws. The model is also related to the fluid model that was introduced by Finn et al. [Phys. Plasmas 6, 3744 (1999); Phys. Rev. Lett. 84, 2401 (2000)] and developed by Coppa et al. [Phys. Plasmas 8, 1133 (2001)]. Finally, numerical investigations are presented regarding the stationary solutions of the model.
An affordable wearable video system for emergency response training
NASA Astrophysics Data System (ADS)
King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.
2009-02-01
Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.
Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime
NASA Astrophysics Data System (ADS)
Sarvaramini, E.; Garagash, D.
2011-12-01
The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.
Stationary phase method and delay times for relativistic and non-relativistic tunneling particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardini, A.E.
2009-06-15
The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.« less
ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, Almog; Sari, Re’em
2016-08-01
The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.
1999-04-01
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein equations in terms of bars. We find that each multi-pole corresponds to the Newtonian potential of a bar with linear density proportional to a Legendre polynomial. We use this fact to find an integral representation of the 0264-9381/16/4/010/img1 function. These integral representations are used in the context of the inverse scattering method to find solutions associated with one or more rotating bodies each with their own multi-polar structure.
The dissolution or growth of a sphere
NASA Technical Reports Server (NTRS)
Shankar, N.; Wiltshire, Timothy J.; Subramanian, R. Shankar
1984-01-01
The problem of the dissolution or growth of an isolated stationary sphere in a large fluid body is analyzed. The motion of the boundary as well as the the resulting motion in the liquid are properly taken into account. The governing equations are solved using a recently developed technique (Subramanian and Weinberg, 1981) which employs an asymptotic expansion in time. Results for the radius of the sphere as a function of time are calculated. The range of utility of the present solution is established by comparison with a numerical solution of the governing equations obtained by the method of finite differences.
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
Stępnik, Katarzyna E; Malinowska, Irena; Maciejewska, Małgorzata
2016-06-01
The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration. Copyright © 2016 Elsevier B.V. All rights reserved.
Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge
2017-10-01
Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.
Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Li, Fei
2013-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.
2016-11-01
The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.
NASA Astrophysics Data System (ADS)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
Multiple spectator condensates from inflation
NASA Astrophysics Data System (ADS)
Hardwick, Robert J.
2018-05-01
We investigate the development of spectator (light test) field condensates due to their quantum fluctuations in a de Sitter inflationary background, making use of the stochastic formalism to describe the system. In this context, a condensate refers to the typical field value found after a coarse-graining using the Hubble scale H, which can be essential to seed the initial conditions required by various post-inflationary processes. We study models with multiple coupled spectators and for the first time we demonstrate that new forms of stationary solution exist (distinct from the standard exponential form) when the potential is asymmetric. Furthermore, we find a critical value for the inter-field coupling as a function of the number of fields above which the formation of stationary condensates collapses to H. Considering some simple two-field example potentials, we are also able to derive a lower limit on the coupling, below which the fluctuations are effectively decoupled, and the standard stationary variance formulae for each field separately can be trusted. These results are all numerically verified by a new publicly available python class (nfield) to solve the coupled Langevin equations over a large number of fields, realisations and timescales. Further applications of this new tool are also discussed.