Construction of trypanosome artificial mini-chromosomes.
Lee, M G; E, Y; Axelrod, N
1995-01-01
We report the preparation of two linear constructs which, when transformed into the procyclic form of Trypanosoma brucei, become stably inherited artificial mini-chromosomes. Both of the two constructs, one of 10 kb and the other of 13 kb, contain a T.brucei PARP promoter driving a chloramphenicol acetyltransferase (CAT) gene. In the 10 kb construct the CAT gene is followed by one hygromycin phosphotransferase (Hph) gene, and in the 13 kb construct the CAT gene is followed by three tandemly linked Hph genes. At each end of these linear molecules are telomere repeats and subtelomeric sequences. Electroporation of these linear DNA constructs into the procyclic form of T.brucei generated hygromycin-B resistant cell lines. In these cell lines, the input DNA remained linear and bounded by the telomere ends, but it increased in size. In the cell lines generated by the 10 kb construct, the input DNA increased in size to 20-50 kb. In the cell lines generated by the 13 kb constructs, two sizes of linear DNAs containing the input plasmid were detected: one of 40-50 kb and the other of 150 kb. The increase in size was not the result of in vivo tandem repetitions of the input plasmid, but represented the addition of new sequences. These Hph containing linear DNA molecules were maintained stably in cell lines for at least 20 generations in the absence of drug selection and were subsequently referred to as trypanosome artificial mini-chromosomes, or TACs. Images PMID:8532534
Cell of Origin: Exploring an Alternative Contributor to Ovarian Cancer
2014-09-01
previously shown that DDX4 is expressed in ovarian carcinomas and its expression is associated with age and the serous histophenotype. Thus, we analyzed...oncogenic alleles of human TP53, AKT1, KRAS, and PIK3CA were constructed and initially validated in both a human endometrial cancer cell line and mouse...AKT1, KRAS, or PIK3CA were successfully constructed. 9. The viral constructs were initially validated in a human endometrial cancer cell line and
Povey, Jane F; O'Malley, Christopher J; Root, Tracy; Martin, Elaine B; Montague, Gary A; Feary, Marc; Trim, Carol; Lang, Dietmar A; Alldread, Richard; Racher, Andrew J; Smales, C Mark
2014-08-20
Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.
1987-11-15
Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture mediummore » containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.« less
Arsenakis, M; Hubenthal-Voss, J; Campadelli-Fiume, G; Pereira, L; Roizman, B
1986-01-01
We report the construction of a cell line constitutively expressing the glycoprotein B (gB) of herpes simplex virus (HSV) 1. The cell line was constructed in two steps. In the first, a baby hamster kidney cell line was transfected with the DNA of a plasmid containing the neomycin phosphotransferase gene that confers resistance to the antibiotic G418 and the gene specifying a temperature-sensitive (ts-) alpha 4 protein of HSV-1, the major viral regulatory protein. A clonal cell line, alpha 4/c113, selected for resistance to the antibiotic G418, expressed high levels of alpha 4 protein constitutively. Superinfection of these cells with HSV-2 resulted in twofold induction of the resident HSV-1 alpha 4 gene. In the second step, alpha 4/c113 cells were transfected with the DNA of a plasmid carrying the gB gene and the mouse methotrexate resistance dihydrofolate reductase gene. A clonal cell line, alpha 4/c113/gB, selected for methotrexate resistance expressed gB constitutively. Expression of both gB and alpha 4 continued unabated for at least 32 serial passages. Cells passaged serially in medium containing both methotrexate and G418 after passage 10 contained a higher copy number of the alpha 4 gene and produced larger amounts of both gB and alpha 4 proteins than did cells maintained in medium containing methotrexate alone. Expression of gB was dependent on the presence of functional alpha 4 protein inasmuch as expression of gB ceased on shift up to nonpermissive temperatures, when shifted to permissive temperatures, the cell line reinitiated expression of gB after a delay commensurate with the length of incubation at the nonpermissive temperature, and the cell-resident HSV-1 gB gene was expressed at the nonpermissive temperature in cells infected with a recombinant expressing a ts+ alpha 4 protein and an HSV-2 gB. The properties of the alpha 4/c113 cell line suggest that it may express other viral genes induced by alpha 4 protein constitutively, provided that the product is not toxic to the cells. Images PMID:3022001
Human T-lymphotropic virus type I tax regulates the expression of the human lymphotoxin gene.
Tschachler, E; Böhnlein, E; Felzmann, S; Reitz, M S
1993-01-01
Human T-lymphotropic virus type-I (HTLV-I)-infected T-cell lines constitutively produce high levels of lymphotoxin (LT). To analyze the mechanisms that lead to the expression of LT in HTLV-I-infected cell lines, we studied regulatory regions of the human LT promoter involved in the activation of the human LT gene. As determined by deletional analysis, sequences between +137 and -116 (relative to the transcription initiation site) are sufficient to direct expression of a reporter gene in the HTLV-I-infected cell line MT-2. Site-directed mutation of a of the single kappa B-like motif present in the LT promoter region (positions -99 to -89) completely abrogated LT promoter activity in MT-2 cells, suggesting that this site plays a critical role in the activation of the human LT gene. Transfection of LT constructs into HTLV-I-uninfected and -unstimulated Jurkat and U937 cell lines showed little to no activity of the LT promoter. Cotransfection of the same constructs with a tax expression plasmid into Jurkat cells led to detectable promoter activity, which could be significantly increased by stimulation of the cells with phorbol myristate acetate (PMA). Similarly, cotransfection of the LT promoter constructs and the tax expression plasmid into U937 cells led to significant promoter activity upon stimulation with PMA. These data suggest that HTLV-I tax is involved in the upregulation of LT gene expression in HTLV-I-infected cells.
A549 Cells: Lung Carcinoma Cell Line for Adenovirus | NCI Technology Transfer Center | TTC
Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.
Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen; Lyer, Stefan; Bewerunge-Hudler, Melanie; Gronert-Sum, Sabine; Strobel-Freidekind, Olga; Müller, Carolin; List, Markus; Jaskot, Aleksandra; Christiansen, Helle; Hafner, Mathias; Schadendorf, Dirk; Block, Ines; Mollenhauer, Jan
2017-01-01
Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression. PMID:28423600
Activation of the canonical beta-catenin pathway by histamine.
Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P
2003-12-26
Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.
Li, Lixuan; Li, Jia
2015-05-01
To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.
Li, Wei; Ma, Le; Guo, Li-Ping; Wang, Xiao-Lei; Zhang, Jing-Wei; Bu, Zhi-Gao; Hua, Rong-Hong
2017-06-12
West Nile virus (WNV) is a neurotropic pathogen which causes zoonotic disease in humans. Recently, there have been an increasing number of infected cases and there are no clinically approved vaccines or effective drugs to treat WNV infections in humans. The purpose of this study was to facilitate vaccine and antiviral drug discovery by developing a packaging cell line-restricted WNV infectious replicon particle system. We constructed a DNA-based WNV replicon lacking the C-prM-E coding region and replaced it with a GFP coding sequence. To produce WNV replicon particles, cell lines stably-expressing prM-E and C-prM-E were constructed. When the WNV replicon plasmid was co-transfected with a WNV C-expressing plasmid into the prM-E-expressing cell line or directly transfected the C-prM-E expressing cell line, the replicon particle was able to replicate, form green fluorescence foci, and exhibit cytopathic plaques similar to that induced by the wild type virus. The infectious capacity of the replicon particles was restricted to the packaging cell line as the replicons demonstrated only one round of infection in other permissive cells. Thus, this system provides a safe and convenient reporter WNV manipulating tool which can be used to study WNV viral invasion mechanisms, neutralizing antibodies and antiviral efficacy.
Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.
Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao
2016-08-01
The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. Copyright © 2016. Published by Elsevier B.V.
The lymphotoxin promoter is stimulated by HTLV-I tax activation of NF-kappa B in human T-cell lines.
Paul, N L; Millet, I; Ruddle, N H
1993-07-01
The HTLV-I transcriptional activator tax was used to gain insight into the mechanism of lymphotoxin (LT; TNF-beta) gene induction. Tax-expressing cell lines produce LT biologic activity. An LT promoter (LT-293) CAT construct that contained an NF-kappa B site was active in the LT-producing C81-66-45 cell line, which contains defective HTLV-I but expresses tax. The observation that a mutated LT-kappa B construct (M1-CAT) was inactive in C81-66-45, confirmed the importance of NF-kappa B in LT gene expression. Tax was transfected into HTLV-I-negative human T-cell lines. Jurkat T cells stably expressing tax contained elevated levels of NF-kappa B that directly bound to the LT-kappa B site. Tax co-transfected with reporter constructs into Jurkat cells maximally activated HTLV-I-LTR-CAT and kappa B-fos-CAT and also activated LT-293 to a lesser extent. In JM T cells, tax induced LT-293 activity by two- to four-fold, though there was no induction of M1-CAT. The increase in LT-293 CAT activity mirrored the increase in LT biologic activity seen under these conditions. These studies, the first to demonstrate induction of LT promoter activity over basal levels, indicate that HTLV-I tax causes low-level activation of both endogenous LT and the LT promoter, at least in part through activation of NF-kappa B.
Construction of C35 gene bait recombinants and T47D cell cDNA library.
Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge
2017-11-20
C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.
[Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system].
Chen, Fang; Zhang, Weifeng; Zhao, Junli; Yang, Peiyan; Ma, Rui; Xia, Haibin
2016-11-01
Objective To prepare Rev-erbβ knockout HEK293 cells using clustered regularly interspaced short palindromic repeats/Cas 9 nuclease (CRISPR/Cas9) gene editing technology. Methods The knock-in or knockout of Rev-erbβ gene could be realized by single-guide RNA (sgRNA)-mediated Cas9 cutting of target DNA, and followed by DNA homologous recombination or non-homologous end joining-mediated DNA repair. Firstly, four sgRNAs were designed for Rev-erbβ gene. The sgRNA1 and sgRNA2 with the higher activity were respectively used to construct pCMV-hCas9-U6-Rev-erbβ sgRNA1 and pCMV-hCas9-U6-Rev-erbβ sgRNA2. Then, pCMV-hCas9-U6-Rev-erbβ sgRNA1, pCMV-hCas9-U6-Rev-erbβ sgRNA2 and pAd5-E1/hRev-erbβ donor plasmid vectors were co-transfected into HEK293 cells. Through drug screening, cloning and sequencing, the Rev-erbβ gene-knockout HEK293 (Rev-erbβ -/- ) cell lines were obtained with one chain integrated with exogenous gene fragment and the other chain for deletion mutants. Finally, the HEK293 (Rev-erbβ -/- ) cell lines (C3-6) was detected with real-time quantitative PCR and Western blotting. Results Expression of Rev-erbβ mRNA and protein was undetectable in HEK293 Rev-erbβ -/- cell line. Conclusion Using CRISPR/Cas9 technology, the HEK293 Rev-erbβ -/- cell line has been successfully constructed, which would provide an effective tool for the study on the function of Rev-erbβ.
Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin
2010-02-01
This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.
Ectopic transgene expression in the retina of four transgenic mouse lines
Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh
2017-01-01
Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404
Establishment of stable cell line for inducing KAP1 protein expression.
Liu, Xiaoyan; Khan, Md Asaduzzaman; Cheng, Jingliang; Wei, Chunli; Zhang, Lianmei; Fu, Junjiang
2015-06-01
Generation of the stable cell lines is a highly efficient tool in functional studies of certain genes or proteins, where the particular genes or proteins are inducibly expressed. The KRAB-associated protein-1 (KAP1) is an important transcription regulatory protein, which is investigated in several molecular biological studies. In this study, we have aimed to generate a stable cell line for inducing KAP1 expression. The recombinant plasmid pcDNA5/FRT/TO-KAP1 was constructed at first, which was then transfected into Flp-In™T-REx™-HEK293 cells to establish an inducible pcDNA5/FRT/TO-KAP1-HEK293 cell line. The Western blot analysis showed that the protein level of KAP1 is over-expressed in the established stable cell line by doxycycline induction, both dose and time dependently. Thus we have successfully established stable pcDNA5/FRT/TO-KAP1-HEK293 cell line, which can express KAP1 inducibly. This inducible cell line might be very useful for KAP1 functional studies.
Ko, Eunhye; Kim, Minhye; Park, Yunho; Ahn, Yeh-Jin
2017-08-01
In industrial fermentation of yeast (Saccharomyces cerevisiae), culture conditions are often modified from the optimal growth conditions of the cells to maintain large-scale cultures and/or to increase recombinant protein production. However, altered growth conditions can be stressful to yeast cells resulting in reduced cell growth and viability. In this study, a small heat shock protein gene from carrot (Daucus carota L.), Hsp17.7, was inserted into the yeast genome via homologous recombination to increase tolerance to stress conditions that can occur during industrial culture. A DNA construct, Translational elongation factor gene promoter-carrot Hsp17.7 gene-Phosphoribosyl-anthranilate isomerase gene (an auxotrophic marker), was generated by a series of PCRs and introduced into the chromosome IV of the yeast genome. Immunoblot analysis showed that carrot Hsp17.7 accumulated in the transformed yeast cell lines. Growth rates and cell viability of these cell lines were higher than control cell lines under heat, cold, acid, and hyperosmotic stress conditions. Soluble protein levels were higher in the transgenic cell lines than control cell lines under heat and cold conditions, suggesting the molecular chaperone function of the recombinant Hsp17.7. This study showed that a recombinant DNA construct containing a HSP gene from carrot was successfully expressed in yeast by homologous recombination and increased tolerances to abiotic stress conditions.
Genetic Construction and Molecular Characterization of Breast Cancer Precursor Cells.
1995-06-30
papilloma virus (HPV) E6/E7 fusion construct, previously shown to specifically target the retinoblastoma protein (pRb) for degradation, will be...will be transfected into human mammary epithelial cell lines (HMEC) in order to knock out both RB allels via homologous recombination. Second, a human
USDA-ARS?s Scientific Manuscript database
Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vec...
2014-01-01
Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852
From Never Born Proteins to Minimal Living Cells: two projects in synthetic biology.
Luisi, Pier Luigi; Chiarabelli, Cristiano; Stano, Pasquale
2006-12-01
The Never Born Proteins (NBPs) and the Minimal Cell projects are two currently developed research lines belonging to the field of synthetic biology. The first deals with the investigation of structural and functional properties of de novo proteins with random sequences, selected and isolated using phage display methods. The minimal cell is the simplest cellular construct which displays living properties, such as self-maintenance, self-reproduction and evolvability. The semi-synthetic approach to minimal cells involves the use of extant genes and proteins in order to build a supramolecular construct based on lipid vesicles. Results and outlooks on these two research lines are shortly discussed, mainly focusing on their relevance to the origin of life studies.
Holm, P. S.; Scanlon, K. J.; Dietel, M.
1994-01-01
A major problem in cytostatic treatment of many tumours is the development of multidrug resistance (MDR4). This is most often accompanied by the overexpression of a membrane transport protein, P-glycoprotein, and its encoding mRNA. In order to reverse the resistant phenotype in cell cultures, we constructed a specific hammerhead ribozyme possessing catalytic activity that cleaves the 3'-end of the GUC sequence in codon 880 of the mdr1 mRNA. We demonstrated that the constructed ribozyme is able to cleave a reduced substrate mdr1 mRNA at the GUC position under physiological conditions in a cell-free system. A DNA sequence encoding the ribozyme gene was then incorporated into a mammalian expression vector (pH beta APr-1 neo) and transfected into the human pancreatic carcinoma cell line EPP85-181RDB, which is resistant to daunorubicin and expresses the MDR phenotype. The expressed ribozyme decreased the level of mdr1 mRNA expression, inhibited the formation of P-glycoprotein and reduced the cell's resistance to daunorubicin dramatically; this means that the resistant cells were 1,600-fold more resistant than the parental cell line (EPP85-181P), whereas those cell clones that showed ribozyme expression were only 5.3-fold more resistant than the parental cell line. Images Figure 1 Figure 3 Figure 2 PMID:7914421
Ward, Eliot; Chan, Emma; Gustafsson, Kenth; Jayasinghe, Suwan N
2010-05-01
The investigations reported in this article demonstrate the ability of bio-electrosprays and cell electrospinning to deliver a genetic construct in association with living cells. Previous studies on both bio-electrosprays and cell electrospinning demonstrated great promise for tissue engineering and regenerative biology/medicine. The investigations described herein widen the applicability of these biotechniques by combining gene therapy protocols, resulting in a novel drug delivery methodology previously unexplored. In these studies a human cell line was transduced with recombinant self-inactivating lentiviral particles. These particles incorporated a green fluorescent protein fused to an endosomal targeting construct. This construct encodes a peptide, which can subsequently be detected on the surface of cells by specific T-cells. The transduced cell line was subsequently manipulated in association with either bio-electrospraying or cell electrospinning. Hence this demonstrates (i) the ability to safely handle genetically modified living cells and (ii) the ability to directly form pre-determined architectures bearing living therapeutic cells. This merged technology demonstrates a unique approach for directly forming living therapeutic architectures for controlled and targeted release of experimental cells/genes, as well as medical cell/gene therapeutics for a plethora of biological and medical applications. Hence, such developments could be applied to personalised medicine.
Tuckow, A P; Temeyer, K B
2015-08-01
Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vector of bovine babesiosis and anaplasmosis. Commercial promoters were evaluated for transcriptional activity driving luciferase expression in the tick cell lines. The human phosphoglycerate kinase (PGK) promoter resulted in detectable firefly luciferase activity within 2 days post-transfection of the R. microplus cell line BME26, with maximal activity at 5 days post-transfection. Several other promoters were weaker or inactive in the tick cells, prompting identification and assessment of transcriptional activity of the homologous ribosomal protein L4 (rpL4, GenBank accession no.: KM516205) and elongation factor 1α (EF-1α, GenBank accession no.: KM516204) promoters cloned from R. microplus. Evaluation of luciferase expression driven by various promoters in tick cell culture resulted in selection of the R. microplus rpL4 promoter and the human PGK promoter driving transcription of sequences encoding modified firefly and NanoLuc® luciferases for construction of a dual luciferase reporter system for use in tick cell culture. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Environmentally Induced Gene Silencing in Breast Cancer
2007-07-01
fibrosarcoma cell line (HTD114), and a human breast cancer cell line (MCF7). The MLH1 promoter was only tested in the MCG7 cells. The control TRE-Luc...TRE- Luc MLH1 - Luc step in silencing is quite unstable. Nonetheless, cells that exhibit stable silencing of the HPRT construct can arise in...mechanism (i.e., gene repression). Finally, during the last year we have isolated or acquired functional promoters for the BRCA-1, MLH1 , and E
Series interconnected photovoltaic cells and method for making same
Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.
1995-01-31
A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.
Sun, Wu-Sheng; Chun, Ju-Lan; Do, Jeong-Tae; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong
2016-01-01
Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free- Oct4 -promoter-driven EGFP reporter cassette with a PE-free- Oct4 -promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.
2011-01-01
Background Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2). To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2). Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors. Results The tCD2-luc2 chimera behaves as a type I membrane protein with surface presentation of CD2 epitopes. One of these epitopes reacts with the OX34, a widely spread, high affinity monoclonal antibody. Stably transfected cells are sorted by flow cytometry on the basis of OX34 staining. In vitro and, moreover, in xenografted tumors, the tCD2-luc2 chimera retains a substantial and stable luciferase activity, although not as high as the wild-type luciferase expressed from the luc2-IRES-tCD2 construct. Expression of the tCD2-luc2 chimera does not harm cell and tumor growth. Conclusion Lentiviral transduction of the chimeric tCD2-luc2 fusion gene allows selection of cell clones with stable luciferase expression in less than seven days without antibiotic selection. We believe that it will be helpful to increase the number of tumor cell lines available for in vivo imaging and assessment of novel therapeutic modalities. On a longer term, the tCD2-luc2 chimera has the potential to be expressed from multi-cassette vectors in combination with various inserts of interest. PMID:21435248
Streamline integration as a method for two-dimensional elliptic grid generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less
Yi, Y; Zhang, M; Liu, C
2001-06-01
To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.
Molecular Medicine II: Hormone Dependent Cancers
2005-04-01
multimode, live-cell videomicroscopy - we are analyzing the cycles of centrosome amplification in living S-phase arrested cells. Finally, we will directly...living cells by time-lapse multi-mode videomicroscopy . The key construct for our work is the generation of a mammalian somatic cell line stably expressing
[Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].
Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min
2015-05-01
To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (P<0. 05). A549 cell lines stably transduced with a lentivirus expressing the BAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.
Toward a framework linkage map of the canine genome.
Langston, A A; Mellersh, C S; Wiegand, N A; Acland, G M; Ray, K; Aguirre, G D; Ostrander, E A
1999-01-01
Selective breeding to maintain specific physical and behavioral traits has made the modern dog one of the most physically diverse species on earth. One unfortunate consequence of the common breeding practices used to develop lines of dogs with the desired traits is amplification and propagation of genetic diseases within distinct breeds. To map disease loci we have constructed a first-generation framework map of the canine genome. We developed large numbers of highly polymorphic markers, constructed a panel of canine-rodent hybrid cell lines, and assigned those markers to chromosome groups using the hybrid cell lines. Finally, we determined the order and spacing of markers on individual canine chromosomes by linkage analysis using a reference panel of 17 outbred pedigrees. This article describes approaches and strategies to accomplish these goals.
24 CFR 3285.307 - Perimeter support piers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... support piers. (a) Piers required at mate-line supports, perimeter piers, and piers at exterior wall openings are permitted to be constructed of single open-cell or closed-cell concrete blocks, with nominal...
An SSH library responsive to azadirachtin A constructed in Spodoptera litura Fabricius cell lines.
Yan, Chao; Zhang, Zhi-Xiang; Xu, Han-Hong
2012-05-31
The present study revealed differentially expressed genes responsive to azadirachtin A (Aza) in Spodoptera litura cell line through suppression subtractive hybridization. In the Aza-responsive SSH library, approximately 270 sequences represent 53 different identified genes encoding proteins with various predicted functions, and the percentages of the gene clusters were 26.09% (genetic information processing), 11.41% (cell growth and death), 7.07% (metabolism), 6.52% (signal transduction/transport) and 2.72% (immunity), respectively. Eleven clones homologous to identified genes were selected to be confirmed through quantitative real time polymerase chain reaction. Among the eleven clones validated, all but one transcript of lipase showed an increase in SL cell line collected from ETA, whereas the transcripts of other genes were lower in the SL cell line collected from ETA compared with that of UETA. These genes were considered to be related to the response of SL cell line to Aza. These will provide a new clue to uncover the molecular mechanisms of Aza acting on SL cell line. Copyright © 2012 Elsevier B.V. All rights reserved.
Construction and analysis of a modular model of caspase activation in apoptosis
Harrington, Heather A; Ho, Kenneth L; Ghosh, Samik; Tung, KC
2008-01-01
Background A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins. Results A model of caspase activation is constructed and analyzed. The apoptosis signaling network is simplified through modularization methodologies and equilibrium abstractions for three functional modules. The mathematical model is composed of a system of ordinary differential equations which is numerically solved. Multiple linear regression analysis investigates the role of each module and reduced models are constructed to identify key contributions of the extrinsic and intrinsic pathways in triggering apoptosis for different cell lines. Conclusion Through linear regression techniques, we identified the feedbacks, dissociation of complexes, and negative regulators as the key components in apoptosis. The analysis and reduced models for our model formulation reveal that the chosen cell lines predominately exhibit strong extrinsic caspase, typical of type I cell, behavior. Furthermore, under the simplified model framework, the selected cells lines exhibit different modes by which caspase activation may occur. Finally the proposed modularized model of apoptosis may generalize behavior for additional cells and tissues, specifically identifying and predicting components responsible for the transition from type I to type II cell behavior. PMID:19077196
Sensor And Method For Detecting A Superstrate
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Cari, James R. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor); Siekierski, James D. (Inventor)
2006-01-01
Method and apparatus are provided for determining a superstrate on or near a sensor, e.g., for detecting the presence of an ice superstrate on an airplane wing or a road. In one preferred embodiment, multiple measurement cells are disposed along a transmission line. While the present invention is operable with different types of transmission lines, construction details for a presently preferred coplanar waveguide and a microstrip waveguide are disclosed. A computer simulation is provided as part of the invention for predicting results of a simulated superstrate detector system. The measurement cells may be physically partitioned, nonphysically partitioned with software or firmware, or include a combination of different types of partitions. In one embodiment, a plurality of transmission lines are utilized wherein each transmission line includes a plurality of measurement cells. The plurality of transmission lines may be multiplexed with the signal from each transmission line being applied to the same phase detector. In one embodiment, an inverse problem method is applied to determine the superstrate dielectric for a transmission line with multiple measurement cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsten, E.; Bauer, P.I.; Kun, E.
1991-03-01
The cellular inhibitory effects of 6-amino-1,2-benzopyrone (6-ABP), a DNA site-specific ligand of adenosine diphosphoribosyl transferase (ADPRT), were determined in a dexamethasone-sensitive EJ-ras gene construct containing cell line (14C cells). Dexamethansone in vitro transforms these cells to a tumorigenic phenotype and also stimulates cell replication. AT a nontoxic concentration 6-ABP treatment of intact cells for 4 days inhibits the dexamethasone-stimulated increment of cellular DNA content, depresses replicative DNA synthesis as assayed by thymidine incorporation to the level of cells that were not exposed to dexamethasone, and in permeabilized cells reduces the dexamethasone-stimulated increase of deoxyribonucleotide incorporation into DNA to the levelmore » of untreated cells. In situ pulse labeling of cells pretreated with 6-ABP indicated an inhibition of DNA synthesis at a stage prior to the formation of the 10-kb intermediate species. Neither dexamethasone nor the drug influenced the cellular quantity of ADPRT molecules, tested immunochemically.« less
Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs
Borenstein, Jeffrey T.; Megley, Katie; Wall, Kimberly; Pritchard, Eleanor M.; Truong, David; Kaplan, David L.; Tao, Sarah L.; Herman, Ira M.
2010-01-01
One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.
Stiles, B; Heilmann, J; Sparks, R B; Santoso, A; Leopold, R A
1992-01-01
Expression of heat shock proteins (hsp) in the BRL-AG-3C cell line from the cotton boll weevil was examined. It was determined that the maximal expression of endogenous hsp occurred at 41 degrees C. Various transfection methods were then compared using this cell line in conjunction with a transiently expressed bacterial gene marker (chloramphenicol acetyltransferase) which was under the control of the Drosophila hsp 70 gene promoter. The cationic lipid preparation Lipofectin was found to be very efficient at transfecting the boll weevil cells. Polylysine and 20-hydroxyecdysone-conjugated polylysine were moderately effective, whereas polybrene and electroporation, under the conditions reported herein, were ineffective at transfecting this cell line.
Series interconnected photovoltaic cells and method for making same
Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.
1995-01-01
A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.
The Role of Adenosine A2BR in Metastatic Melanoma
2017-07-01
100% complete. ACURO approval to perform animal studies was obtained July 2016. Specific Aim 1, Subtask 2: 100% complete. Use CRISPR /Cas9 technology...immune cell interactions, the first objective was to use the CRISPR Cas9 system to knock out A2BR expression in melanoma cell lines. Melanoma cell lines...and sgRNA3 to work but sgRNA2 would not be as efficient. We considered commercially available constructs to potentially improve the CRISPR knock
Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang
2005-05-01
To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.
Retroviral expression screening of oncogenes in natural killer cell leukemia.
Choi, Young Lim; Moriuchi, Ryozo; Osawa, Mitsujiro; Iwama, Atsushi; Makishima, Hideki; Wada, Tomoaki; Kisanuki, Hiroyuki; Kaneda, Ruri; Ota, Jun; Koinuma, Koji; Ishikawa, Madoka; Takada, Shuji; Yamashita, Yoshihiro; Oshimi, Kazuo; Mano, Hiroyuki
2005-08-01
Aggressive natural killer cell leukemia (ANKL) is an intractable malignancy that is characterized by the outgrowth of NK cells. To identify transforming genes in ANKL, we constructed a retroviral cDNA expression library from an ANKL cell line KHYG-1. Infection of 3T3 cells with recombinant retroviruses yielded 33 transformed foci. Nucleotide sequencing of the DNA inserts recovered from these foci revealed that 31 of them encoded KRAS2 with a glycine-to-alanine mutation at codon 12. Mutation-specific PCR analysis indicated that the KRAS mutation was present only in KHYG-1 cells, not in another ANKL cell line or in clinical specimens (n=8).
Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review.
Rahman, Nurul Adhwa; Rasil, Alifah Nur'ain Haji Mat; Meyding-Lamade, Uta; Craemer, Eva Maria; Diah, Suwarni; Tuah, Ani Afiqah; Muharram, Siti Hanna
2016-07-01
Endothelial cells play the most important role in construction of the blood-brain barrier. Many studies have opted to use commercially available, easily transfected or immortalized endothelial cell lines as in vitro blood-brain barrier models. Numerous endothelial cell lines are available, but we do not currently have strong evidence for which cell lines are optimal for establishment of such models. This review aimed to investigate the application of immortalized endothelial cell lines as in vitro blood-brain barrier models. The databases used for this review were PubMed, OVID MEDLINE, ProQuest, ScienceDirect, and SpringerLink. A narrative systematic review was conducted and identified 155 studies. As a result, 36 immortalized endothelial cell lines of human, mouse, rat, porcine and bovine origins were found for the establishment of in vitro blood-brain barrier and brain endothelium models. This review provides a summary of immortalized endothelial cell lines as a guideline for future studies and improvements in the establishment of in vitro blood-brain barrier models. It is important to establish a good and reproducible model that has the potential for multiple applications, in particular a model of such a complex compartment such as the blood-brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.
[Expression of SLP-2 mRNA in endometrial cancer and its significance].
Feng, Wang-qin; Cui, Zhu-mei; Feng, Feng-zhi; Qi, Xiu-juan; Ding, Fang; Li, Wen-dong; Liu, Zhi-hua
2005-08-01
To characterize the differential expression of SLP-2 in endometrial cancer, and to study the effect of human SLP-2 gene on human endometrial cancer cell line. The expression of SLP-2 gene in 32 cases of endometrial cancer and 28 cases of normal endometrial tissues was examined by semi-quantitative RT-PCR. Eukaryotic expression vectors of sense and antisense SLP-2 were constructed and transfected into HEC-1B cell line using lipofectamine 2000 respectively. The morphological changes of the cell were observed by phase contrast microscopy. The cell growth was detected by methyl thiazolyl tetrazolium (MTT) assay, and the cell cycles were analyzed by flow cytometry. The expression of SLP-2 mRNA in endometrial cancer tissues was higher than that in normal endometrial tissues (1.6 +/- 0.7 vs 0.7 +/- 0.3, P < 0.05). Sense and antisense human SLP-2 constructs were transfected into HEC-1B cell line respectively. After being transfected with sense SLP-2, the expression of SLP-2 mRNA in HEC-1B cell line was increased by about 2.4 times that of the control group, the cell growth was accelerated, and the number of cells in G(1) phase was decreased by 12.5%, S phase was increased by 8.0%. After being transfected with antisense SLP-2, the expression of SLP-2 mRNA was declined 50%. The transfected cells showed slower growth, and the number of cells in G(1) phase was significantly increased by 10.5%, and S phase was declined by 9.8%. SLP-2 mRNA shows up-regulation in endometrial cancer tissues, and it may have some relationship with carcinogenesis of endometrial cancer.
Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V. Bleu; Serrano, Elba E.
2014-01-01
The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology. PMID:21959846
Complementation of a Fanconi anemia group A cell line by UbA{sup 52}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, R.E.; Heina, J.A.; Jakobs, P.M.
1994-09-01
Cells from patients with Fanconi anemia (FA) display chromosomal instability and increased sensitivity to mitomycin C (MMC) and diepoxybutane (DEB) relative to normal cells. Several genes act in this pathway of DNA damage processing based upon four known complementation groups in FA. We have made a cDNA expression library in a vector with a G418 selectable marker to identify FA genes other than the FA-C group. Approximately 1 x 10{sup 6} independent cDNA clones were isolated with an average cDNA size of 1.5 kb. Five cell lines resistant to MMC and DEB were isolated from 6 x 10{sup 6} G418-resistantmore » transfectants from 65 individual transfections of the FA-A fibroblast line GM6914. The isolated cell lines also showed normal chromosome stability. The same cDNA (600 bp) was recovered from three independent cell lines by PCR using flanking sequence primers. The gene has sequence identity with a known gene, the ubiquitin fusion gene, UbA{sub 52}. Interestingly, each of the cDNAs were inserted in antisense orientation relative to the cytomegalovirus (CMV) promoter as determined by sequencing and PCR using UbA{sub 52}-specific internal primers. Southern blot analysis indicated the cell lines had distinct chromosomal insertion sites. Mutation analysis by chemical cleavage showed no reading frame mutations, indicating that UbA{sub 52} is not the FA-A gene. Re-transfection with the UbA{sub 52} gene in antisense gave complementation for MMC, DEB and chromosome stability to varying degrees. Re-transfection of the antisense construct with the CMV promotor removed or with a sense construct did not alter the MMC sensitivity. We conclude that the antisense UbA{sub 52} gene has a non-specific effect, perhaps acting by altering the cell cycle or susceptibility to apoptosis.« less
Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.
1996-01-01
Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135
He, Xianzhi; Zhang, Lei; Liu, Pengchong; Liu, Li; Deng, Hui; Huang, Jinhai
2015-03-01
Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus have increasingly given rise to human health and food safety. Genetically engineered small molecular antibody is a useful tool in immuno-detection and treatment for clinical illness caused by SEs. In this study, we constructed the V(L)-V(H) tail-parallel genetically engineered antibody against SEs by using the repertoire of rearranged germ-line immunoglobulin variable region genes. Total RNA were extracted from six hybridoma cell lines that stably express anti-SEs antibodies. The variable region genes of light chain (V(L)) and heavy chain (V(H)) were cloned by reverse transcription PCR, and their classical murine antibody structure and functional V(D)J gene rearrangement were analyzed. To construct the eukaryotic V(H)-V(L) tail-parallel co-expression vectors based on the "5'-V(H)-ivs-IRES-V(L)-3'" mode, the ivs-IRES fragment and V(L) genes were spliced by two-step overlap extension PCR, and then, the recombined gene fragment and V(H) genes were inserted into the pcDNA3.1(+) expression vector sequentially. And then the constructed eukaryotic expression clones termed as p2C2HILO and p5C12HILO were transfected into baby hamster kidney 21 cell line, respectively. Two clonal cell lines stably expressing V(L)-V(H) tail-parallel antibodies against SEs were obtained, and the antibodies that expressed intracytoplasma were evaluated by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry. SEs can stimulate the expression of some chemokines and chemokine receptors in porcine IPEC-J2 cells; mRNA transcription level of four chemokines and chemokine receptors can be blocked by the recombinant SE antibody prepared in this study. Our results showed that it is possible to get functional V(L)-V(H) tail-parallel genetically engineered antibodies in same vector using eukaryotic expression system.
Stamps, A C; Davies, S C; Burman, J; O'Hare, M J
1994-06-15
A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.
Yoshino, T P; Wu, X J; Liu, H D
1998-09-01
Studies were initiated to begin developing a genetic transformation system for cells derived from the freshwater gastropod, Biomphalaria glabrata, an intermediate host of the human blood fluke Schistosoma mansoni. Using a 70-kD heat-shock protein (HSP70) cDNA probe obtained from the B. glabrata embryonic (Bge) cell line, we cloned from Bge cells a complete HSP70 gene including a 1-kb genomic DNA fragment in its 5'-flanking region containing sequences indicative of a HSP promoter. Identified in the 5'-half (416 nucleotides) of this genomic fragment were TATA and CAAT boxes, two putative transcription initiation sites, and a series of palindromic DNA repeats with shared homology to the heat-shock element consensus sequence (Bge HSP70(0.5k) promoter). The 3'-half of this upstream flanking region was comprised of a 508-base intron located immediately 5' of the ATG start codon. To determine the functionality of the putative snail promoter sequence, Bge HSP promoter/luciferase (Luc) reporter gene constructs were introduced into Bge cells by N-(1-(2,3-dioleoyloxy) propyl)-N,N,N-trimethylammonium methylsulfate (DOTAP)-mediated transfection methods, and assayed for Luc activity 48 hr following a 1.5-hr heat-shock treatment (40 degrees C). Compared with control vectors or the Bge HSP70(0.5k/1.0k) promoter constructs at 26 degrees C, a 10- to 300-fold increase in Luc expression was obtained only in the Bge HSP70 promoter/Luc-transfected cells following heat-shock. Results of transfection experiments demonstrate that the Bge HSP70(0.5k) DNA segment contains appropriate promoter sequences for driving temperature-inducible gene expression in the Bge snail cell line. This report represents the first isolation and functional characterization of an inducible promoter from a freshwater gastropod mollusc. Successful transient expression of a foreign reporter gene in Bge cells using a homologous, inducible promoter sequence now paves the way for development of methods for stable integration and expression of snail genes of interest into the Bge cell line.
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Krejsa, E. A.; Coats, J. W.
1972-01-01
Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.
Sequencing thousands of single-cell genomes with combinatorial indexing.
Vitak, Sarah A; Torkenczy, Kristof A; Rosenkrantz, Jimi L; Fields, Andrew J; Christiansen, Lena; Wong, Melissa H; Carbone, Lucia; Steemers, Frank J; Adey, Andrew
2017-03-01
Single-cell genome sequencing has proven valuable for the detection of somatic variation, particularly in the context of tumor evolution. Current technologies suffer from high library construction costs, which restrict the number of cells that can be assessed and thus impose limitations on the ability to measure heterogeneity within a tissue. Here, we present single-cell combinatorial indexed sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single-cell libraries for detection of somatic copy-number variants. We constructed libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex tissue and two human adenocarcinomas, and obtained a detailed assessment of subclonal variation within a pancreatic tumor.
Byrgazov, Konstantin; Lucini, Chantal Blanche; Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A; Hoermann, Gregor; Valent, Peter; Lion, Thomas
2016-11-22
Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance.
Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line
Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas
2013-01-01
Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175
Zhu, Jie; Miao, Qiuhong; Tan, Yonggui; Guo, Huimin; Li, Chuanfeng; Chen, Zongyan; Liu, Guangqing
2016-11-01
Rabbit hemorrhagic disease virus (RHDV) is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, which limits the study of its pathogenesis. To bypass this obstacle, we established a cell line, RK13-VPg, stably expressing the VPg gene with a lentivirus packaging system in this study. In addition, the recently constructed RHDV replicon in our laboratory provided an appropriate model for studying the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon and RK13-VPg cell line, we further demonstrated that the presence of VPg protein is essential for efficient translation of an RHDV replicon. Therefore, the RK13-VPg cell line is a powerful tool for studying the replication and translation mechanisms of RHDV. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
A comparison of CRISPR/Cas9 and siRNA-mediated ALDH2 gene silencing in human cell lines.
Wang, Fei; Guo, Tao; Jiang, Hongmei; Li, Ruobi; Wang, Ting; Zeng, Ni; Dong, Guanghui; Zeng, Xiaowen; Li, Daochuan; Xiao, Yongmei; Hu, Qiansheng; Chen, Wen; Xing, Xiumei; Wang, Qing
2018-06-01
Gene knockdown and knockout using RNAi and CRISPR/Cas9 allow for efficient evaluation of gene function, but it is unclear how the choice of technology can influence the results. To compare the phenotypes obtained using siRNA and CRISPR/Cas9 technologies, aldehyde dehydrogenase 2 (ALDH2) was selected as an example. In this study, we constructed one HepG2 cell line with a homozygous mutation in the fifth exon of ALDH2 (ALDH2-KO1 cell) using the eukaryotic CRISPR/Cas9 expression system followed by the limited dilution method and one HepG2 cell line with different mutations in the ALDH2 gene (ALDH2-KO2 cell) using the lentivirus CRISPR/Cas9 system. Additionally, one ALDH2-knockdown (KD) HepG2 cell line was created using siRNA. The reproducibility of these methods was further verified in the HEK293FT cell line. We found that the mRNA expression level of ALDH2 was significantly decreased and the protein expression level of ALDH2 was completely abolished in the ALDH2-KO cell lines, but not in ALDH2-KD cells. Furthermore, the functional activity of ALDH2 was also markedly disrupted in the two ALDH2-KO cell lines compared with ALDH2-KD and wild-type cells. The lack of ALDH2 expression mediated by CRIPSR/Cas9 resulted in a more dramatic increase in the cellular susceptibility to chemical-induced reactive oxygen species generation, cytotoxicity, apoptosis, and inflammation, especially at low concentrations compared with ALDH2-KD and WT cells. Therefore, we consider the gene knockout cell line created by CRISPR/Cas9 to be a more useful tool for identifying the function of a gene.
Expression and processing of human preprogastrin in murine medullary thyroid carcinoma cells.
Daugherty, D F; Dickinson, C J; Takeuchi, T; Bachwich, D; Yamada, T
1991-05-01
Gastrin, the primary hormonal mediator of postprandial gastric acid secretion, is produced from its precursor progastrin by a series of posttranslational processing reactions including dibasic residue cleavage and carboxyl-terminal alpha-amidation. Progastrin contains three dibasic cleavage signals, Arg57Arg58, Lys74Lys75, and Arg94Arg95, that appear to be cleaved differently in different tissues. Differential processing is a potential means by which the production of biologically active peptides may be regulated in a tissue-specific manner. To study these reactions further, we used the pZipNeo SV(X) retroviral vector to express human gastrin cDNA in a heterologous cell line (MTC 6-23) known to be capable of processing other peptide precursors. The psi 2 packaging cell line transfected with the gastrin cDNA-retroviral construct (pSVXgas) produced progastrin, but no substantial amounts of processed amidated gastrin were detected. amounts of processed amidated gastrin were detected. In contrast, MTC 6-23 cells infected with the viral stock obtained from the supernatant of pSVXgas-transfected psi 2 cells produced carboxyl-terminally amidated gastrin in all of its standard molecular forms, including sulfated and nonsulfated forms of tetratriacontagastrin (G-34), heptadecagastrin (G-17), and tetradecagastrin (G-14). These studies indicate that heterologous endocrine cell lines infected with a retroviral-peptide cDNA construct can serve as useful models for peptide hormone posttranslational processing.
Piskun, Caroline M; Stein, Timothy J
2016-06-01
Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy. © 2013 John Wiley & Sons Ltd.
B7-1 (CD80) as target for immunotoxin therapy for Hodgkin's disease.
Vooijs, W. C.; Otten, H. G.; van Vliet, M.; van Dijk, A. J.; de Weger, R. A.; de Boer, M.; Bohlen, H.; Bolognesi, A.; Polito, L.; de Gast, G. C.
1997-01-01
In this preclinical study, the potential applicability of an anti-B7-1 immunotoxin (IT) for the treatment of Hodgkin's disease (HD) was investigated. Immunohistochemical analysis demonstrated strong expression of B7-1 on Hodgkin and Reed-Sternberg (R-S) cells and clear expression on dendritic cells, macrophages and some B-cells in tissues, but not on other tissue cells. Flow cytometric analysis demonstrated that B7-1 was expressed on a few monocytes, but not on CD34+ cells from bone marrow, resting T- or B-cells from peripheral blood or epithelial and endothelial cell lines. An anti-B7-1 immunotoxin containing the anti-B7-1 monoclonal antibody (MAb) B7-24 and saporin as toxin moiety was constructed and showed an affinity similar to that shown by the native MAb. It exhibited strong cytotoxicity against the B7-1+ B-cell line Raji (IC50 10(-11) M), R-S cell lines HDLM2, KM/H2 and L428 and also against a B7-1-transfected epithelial cell line, A431, whose parental line lacks expression of B7-1. In clonogenic assays with Raji cells or KM/H2 cells, a 3- or 4-log kill, respectively, was observed. No cytotoxicity was found against the B7-1- epithelial and endothelial cell lines or against haematopoietic progenitor cells. In conclusion, an anti-B7-1 immunotoxin was developed that had good cytotoxicity against R-S cell lines and that may be used in the elimination of R-S cells in vivo. A concomitant elimination of activated antigen-presenting cells may avoid development of antitoxin and anti-mouse Ig responses and allow repeated administration. Images Figure 1 PMID:9365164
Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan
2013-10-10
Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. © 2013.
Schmohl, Joerg U.; Felices, Martin; Todhunter, Deborah; Taras, Elizabeth; Miller, Jeffrey S.; Vallera, Daniel A.
2016-01-01
Background The design of a highly effective anti-cancer immune-engager would include targeting of highly drug refractory cancer stem cells (CSC). The design would promote effective antibody-dependent cell-mediated cytotoxicity (ADCC) and simultaneously promote costimulation to expand and self-sustain the effector NK cell population. Based on our bispecific NK cell engager platform we constructed a tetraspecific killer engager (TetraKE) comprising single-chain variable fragments (scFvs) binding FcγRIII (CD16) on NK cells, EpCAM on carcinoma cells and CD133 on cancer stem cells in order to promote ADCC. Furthermore, an Interleukin (IL)-15-crosslinker enhanced NK cell related proliferation resulting in a highly active drug termed 1615EpCAM133. Results Proliferation assays showed TetraKE promoted proliferation and enhanced NK cell survival. Drug-target binding, NK cell related degranulation, and IFN-γ production was specific for both tumor related antigens in EpCAM and CD133 bearing cancer cell lines. The TetraKE showed higher killing activity and superior dose dependent degranulation. Cytokine profiling showed a moderately enhanced IFN-γ production, enhanced GM-CSF production, but no evidence of induction of excessive cytokine release. Methods Assembly and synthesis of hybrid genes encoding the TetraKE were performed using DNA shuffling and ligation. The TetraKE was tested for efficacy, specificity, proliferation, survival, and cytokine production using carcinoma cell lines and functional assays measuring NK cell activity. Conclusion 1615EpCAM133 combines improved induction of ADCC with enhanced proliferation, limited cytokine response, and prolonged survival and proliferation of NK cells. By linking scFv-related targeting of carcinoma and CSCs with a sustaining IL-15 signal, our new construct shows great promise to target cancer and CSCs. PMID:27650544
Zhu, Shengming; Wang, Yanping; Zheng, Hong; Cheng, Jingqiu; Lu, Yanrong; Zeng, Yangzhi; Wang, Yu; Wang, Zhu
2009-04-01
This study sought to clone Chinese Banna minipig inbred-line (BMI) alpha1,3-galactosyltransferase (alpha1,3-GT) gene and construct its recombinant eukaryotic expression vector. Total RNA was isolated from BMI liver. Full length cDNA of alpha1,3-GT gene was amplified by RT-PCR and cloned into pMD18-T vector to sequence. Subsequently, alpha1,3-GT gene was inserted into pEGFP-N1 to construct eukaryotic expression vector pEGFP-N1-GT. Then the reconstructed plasmid pEGFP-N1-GT was transiently transfected into human lung cancer cell line A549. The expression of alpha1,3-GT mRNA in transfected cells was detected by RT-PCR. FITC-BS-IB4 lectin was used in the direct immunofluorescence method, which was performed to observe the alpha-Gal synthesis function of BMI alpha1,3-GT in transfected cells. The results showed that full length of BMI alpha1,3-GT cDNA was 1116 bp. BMI alpha1,3-GT cDNA sequence was highly homogenous with those of mouse and bovine, and was exactly the same as the complete sequence of those of swine, pEGFP-N1-GT was confirmed by enzyme digestion and PCR. The expression of alpha1,3-GT mRNA was detected in A549 cells transfected by pEGFP-N1-GT. The expression of alpha-Gal was observed on the membrane of A549 cells transfected by pEGFP-N1-GT. Successful cloning of BMI alpha1,3-GT cDNA and construction of its eukaryotic expression vector have established a foundation for further research and application of BMI alpha1,3-GT in the fields of xenotransplantation and immunological therapy of cancer.
SPERTI Terminal Building (PER604) is under construction in foreground, with ...
SPERT-I Terminal Building (PER-604) is under construction in foreground, with vertical metal siding partially affixed to gable end of building. Utility lines are laid in shallow trench to Reactor Pit and Instrument Cell Buildings also under construction in distance. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1001 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
1999-01-01
development of breast cancers. To study the effects of inactivating mutations in these tumor suppressor genes early in the breast-cancer pathway, we have...the effects of inactivating mutations in these tumor suppressor genes early in the breast-cancer pathway. The consequences of transduction of these...proposed three approaches for constructing p53-deficient cells; i.e., by mutating the p53 gene directly, by abrogating the protein’s normal cellular
Koenigsberger, C; Chiappa, S; Brimijoin, S
1997-10-01
Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.
Whitesell, L; Rosolen, A; Neckers, L M
1991-01-01
Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098
Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A.; Hoermann, Gregor; Valent, Peter; Lion, Thomas
2016-01-01
Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance. PMID:27801667
Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy
Mallikaratchy, Prabodhika; Tang, Zhiwen
2010-01-01
This paper describes the application of a molecular construct of a photosensitizer and an aptamer for photo-therapeutically targeting tumor cells. The key step in increasing selectivity in chemotherapeutic drugs is to create effective molecular platforms that could target cancer cells but not normal cells. Recently, we have developed a strategy via cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) to obtain cell specific aptamers using intact viable cells as targets to select aptamers that can recognize cell membrane proteins with high selectivity and excellent affinity. We have identified an aptamer TD05 that only recognizes Ramos cells, a Burkitt’s lymphoma cell line. Here, the high specificity of aptamers in target cell binding and an efficient phototherapy reagent, Ce6, are molecularly engineered to construct a highly selective Aptamer-photosensitizer conjugates (APS) to effectively destroy target cancer cells. Introduction of the APS conjugates followed by irradiation of light selectively destroyed target Ramos cells but not acute lymphoblastic leukemia and myeloid leukemia cell lines. This study demonstrates that the use of cancer specific aptamers conjugated to a photosensitizer will enhance the selectivity of photodynamic therapy. Coupled with the advantages of the cell-SELEX in generating multiple effective aptamers for diseased cell recognition, we will be able to develop highly efficient photosensitizer based therapeutical reagents for clinical applications. PMID:18058891
Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F
1997-06-01
Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.
Yano, Yoko; Kobayashi, Seiichi; Yasumizu, Ryoji; Tamaki, Junko; Kubo, Mitsumasa; Sasaki, Akio; Hasan, Shahid; Okuyama, Harue; Inaba, Muneo; Ikehara, Susumu; Hiai, Hiroshi; Kakinuma, Mitsuaki
1991-01-01
Among 18 thymic leukemia cell lines which have been established from spontaneous thymic lym‐phomas in AKR mice as well as in bone marrow chimeras which were constructed by transplanting allogeneic bone marrow cells into irradiated AKR mice, three proviral integration sites were identified; near c‐myc, N‐myc and pim‐l loci. No integration site specific for chimeric leukemia cell lines was found. In three thymic leukemia cell lines which contained rearranged N‐myc, genes, insertions of long terminal repeats (LTRs) of murine leukemia viruses were detected at 18 or 20 bp downstream of the translational termination codon. These results demonstrate that the 3’region of the N‐myc gene is one of the integration targets for murine leukemia viruses in spontaneous thymic lymphomas. In these three cell lines, N‐myc mRNA was stably transcribed and transcription of c‐myc mRNA was down‐regulated. The integrated murine leukemia viruses in AKR thymic leukemia were most likely AKV, though the DNA sequence of the LTR inserted in the genome of a leukemic cell line from [(BALB/c × B6)F1‐AKR], CAK20, was different from LTRs of murine leukemia viruses so far reported. PMID:1900822
Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan
2016-06-01
A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.
1990-01-01
Lipopolysaccharide (LPS) potently stimulates human immunodeficiency virus type 1-long terminal repeat (HIV-1-LTR) CAT constructs transfected into monocyte/macrophage-like cell lines but not a T cell line. This effect appears to be mediated through the induction of nuclear factor kappa B (NF-kappa B). Electrophoretic mobility shift assays demonstrate that LPS induces a DNA binding activity indistinguishable from NF-kappa B in U937 and THP-1 cells. LPS is also shown to dramatically increase HIV-1 production from a chronically infected monocyte/macrophage-like cloned cell line, U1, which produces very low levels of HIV-1 at baseline. The stimulation of viral production from this cell line occurs only if these cells are treated with granulocyte/macrophage colony-stimulating factor (GM-CSF) before treatment with LPS. This stimulation of HIV-1 production is correlated with an increase in the level of HIV-1 RNA and and activation of NF- kappa B. LPS is not able to induce HIV-1 production in a cloned T cell line. The effect of LPS on HIV-1 replication occurs at picogram per milliliter concentrations and may be clinically significant in understanding the variability of the natural history of HIV-1 infection. PMID:2193097
Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent
2018-04-13
Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayerovitch, M.D.
1980-03-25
A solar collector cell formed as an integral portion of a roof flashing is disclosed as comprising a flashing base having a dihedral surface including a larger base portion and a smaller ramp portion, and a solar collector cell container built integrally with the base portion of the flashing. The combination is designed to be installed in the roof of a dwelling or other building structure. The container portion of the flashing is substantially shorter in height above the roof line than conventional solar collector cell structures added to a roof subsequent to its construction. As a result, the inventionmore » gives the building constructor or owner, the option of either including the solar cell components at the time of construction of the roof to provide a solar heating device, or to fill the solar collector cell container with a temporary support structure, such as roof shakes or tiles. The shape of the solar collector cell and flashing assembly permits the solar collector cell structure to be camouflaged by overlying shakes or tiles of which the roof is constructed.« less
A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...
Attar, Mohammad Mahdi; Haghpanahi, Mohammad
2016-01-01
The purpose of this study was to propose a method for constructing the software setup required for investigating thermal effect of superparamagnetic nanoparticles on three human cell lines. This article aimed to examine the required nanoparticle dose, frequency, field intensity and the exposure time. In the present study, first some general details were given about design and construction of the setup required for generating a safe magnetic field in order to examine the thermal effect of superparamagnetic nanoparticles on three human cancer cell lines, cultured under laboratory conditions. Next, a series of experimental tests were conducted to study the effect of magnetic field, on the cells. Finally, by applying three types of iron-based nanoparticles with mean diameters of 8, 15 and 20 nm, for 30 min, the temperature rise and specific absorption rate (SAR) were calculated. By conducting experimental tests, the maximum temperature rise at the resonance frequency of the coil was reported to be 80 kHz, and it was observed that all the cells died when temperature of the cells reached 42°C/30 min. Based on the experiments, it was observed that magnetic field with intensity of 8 kA/m within the frequency range of 80-180 kHz did not have any effect on the cells. Based on the results, it can be concluded that the nanoparticle dose of 80 µg/ml with diameter of 8 nm at the resonance frequency of coil for 30 min was sufficient to destroy all the cancerous cells in the flask.
Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific.
Pathak, Bhakti R; Breed, Ananya A; Nakhawa, Vaishali H; Jagtap, Dhanashree D; Mahale, Smita D
2010-09-01
The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis.
A simple cell transport device keeps culture alive and functional during shipping.
Miller, Paula G; Wang, Ying I; Swan, Glen; Shuler, Michael L
2017-09-01
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life-sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo-like values for trans-endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long-distance transport of membrane-bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the "Multi-Organ-on-Chip" devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257-1266, 2017. © 2017 American Institute of Chemical Engineers.
Chen, Qian; Pang, Min-Hui; Ye, Xiao-Hong; Yang, Guang; Lin, Chen
2018-05-18
Acute T-lymphocyte leukaemia is a form of haematological malignancy with abnormal activation of NF-κB pathway, which results in high expression of A20 and ABIN1, which constitute a negative feedback mechanism for the regulation of NF-κB activation. Clinical studies have found that acute T-lymphocyte leukaemia patients are susceptible to Toxoplasma gondii infection; however, the effect of T. gondii on the proliferation and apoptosis of human leukaemia T-cells remains unclear. Here, we used the T. gondii ME-49 strain to infect human leukaemia T-cell lines Jurkat and Molt-4, to explore the effect of T. gondii on proliferation and apoptosis, which is mediated by NF-κB in human leukaemia T-cells. The Tunel assay was used to detect cell apoptosis. Cell Counting Kit-8 was used to detect cell proliferation viability. The apoptosis level and the expression level of NF-κB related proteins in human leukaemia T-cells were detected by flow cytometry and Western blotting. Western blotting analyses revealed that the T. gondii ME-49 strain increased the expression of A20 and decreased both ABIN1 expression and NF-κB p65 phosphorylation. By constructing a lentiviral-mediated shRNA to knockdown the A20 gene in Jurkat T-cells and Molt-4 T-cells, the apoptosis levels of the two cell lines decreased after T. gondii ME-49 infection, and levels of NF-κB p65 phosphorylation and ABIN1 were higher than in the non-konckdown group. After knockingdown ABIN1 gene expression by constructing the lentiviral-mediated shRNA and transfecting the recombinant expression plasmid containing the ABIN1 gene into two cell lines, apoptosis levels and cleaved caspase-8 expression increased or decreased in response to T. gondii ME-49 infection, respectively. Our data suggest that ABIN1 protects human leukaemia T-cells by allowing them to resist the apoptosis induced by T. gondii ME-49 and that the T. gondii ME-49 strain induces the apoptosis of human leukaemia T-cells via A20-mediated downregulation of ABIN1 expression.
Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei
2018-07-01
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.
Overhead Projection Cell for Streamline Flow
ERIC Educational Resources Information Center
Waage, Harold M.
1969-01-01
Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)
Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication.
Leberfinger, Ashley N; Ravnic, Dino J; Dhawan, Aman; Ozbolat, Ibrahim T
2017-10-01
Bioprinting is a quickly progressing technology, which holds the potential to generate replacement tissues and organs. Stem cells offer several advantages over differentiated cells for use as starting materials, including the potential for autologous tissue and differentiation into multiple cell lines. The three most commonly used stem cells are embryonic, induced pluripotent, and adult stem cells. Cells are combined with various natural and synthetic materials to form bioinks, which are used to fabricate scaffold-based or scaffold-free constructs. Computer aided design technology is combined with various bioprinting modalities including droplet-, extrusion-, or laser-based bioprinting to create tissue constructs. Each bioink and modality has its own advantages and disadvantages. Various materials and techniques are combined to maximize the benefits. Researchers have been successful in bioprinting cartilage, bone, cardiac, nervous, liver, and vascular tissues. However, a major limitation to clinical translation is building large-scale vascularized constructs. Many challenges must be overcome before this technology is used routinely in a clinical setting. Stem Cells Translational Medicine 2017;6:1940-1948. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T.
1995-08-10
The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.
Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn
2016-01-01
Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Heppell-Parton, A C; Nacheva, E; Carter, N P; Bergh, J; Ogilvie, D; Rabbitts, P H
1999-06-01
Homozygous deletions in tumor cells have been useful in the localization and validation of tumor suppressor genes. We have described a homozygous deletion in a lung cancer cell line (U2020) which is located within the most proximal of the three regions on the short arm of chromosome 3 believed to be lost in lung cancer development. Construction of a YAC contig map indicates that the deletion spans around 8 Mb, but no large deletion was apparent on conventional cytogenetic analysis of the cell line. To investigate this paradox, whole chromosome, arm-specific, and regional paints have been used. This analysis has revealed that genetic loss has occurred by complex rearrangements of chromosomes 3, rather than simple interstitial deletion. These studies emphasize the power of molecular cytogenetics to disclose unsuspected tumor-specific translocations within the extremely complex karyotypes characteristic of solid tumors.
[Experimental study on carcinogenesis by human papillomavirus type 8 E7 gene].
Nishikawa, T
1994-05-01
Human papillomavirus (HPV) 5 and HPV8 are often detected in skin cancers developed in patients suffering from epidermodysplasia verruciformis, as well as in skin cancers developed in immunosuppressed patients. In the present study, in order to examine the transforming activity of the HPV8E7 gene, the HPV8E7 and HPV8E6/E7 genes were cloned into the expression vector (pcD2-Y), under the SV40 enhancer/promoter to construct pcD2-8E7 and pcD2-8E6/E7, respectively. The E7 and E6/E7 genes of genital high-risk HPV16 were also cloned into pcD2-Y to construct pcD2-16E7 and pcD2-16E6/E7, respectively. They were tested for their ability to collaboratively transform primary rat embryo fibroblasts (REFs) with activated H-ras gene. Transfection experiments of REFs having an activated H-ras gene revealed that pcD2-8E7, as well as pcD2-16E7 and pcD2-16E6/E7, induced transformation of cells in G418-resistant colonies at efficiencies of 11.9%, 43.0% and 53.0%, respectively. Transformed cell lines induced by activated H-ras gene and pcD2-8E7 or pcD2-16E7 were named 8RE and 16RE cell lines, respectively. Tumor induction in syngeneic newborn rats by injected the 8RE cells was higher than that of the 16RE cells. In cytological and histological examination, the 8RE cell lines and their induced tumors were different from the 16RE cell lines and their induced tumors. The 8RE cell lines showed the characteristic transformation with efficient growth ability on plastic and colony formation in 0.3% soft agar. These results support the hypothesis that the HPV8E7 gene plays an important role in the carcinogenesis of skin cancers.
Barnes, D W
2012-04-01
Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F
1988-01-01
V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560
Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.
Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae
2017-09-01
Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tan, A; Fujisawa, K; Yukawa, Y; Matsunaga, Y T
2016-10-20
We developed a robust bottom-up approach to construct open-ended, tubular co-culture constructs that simulate the human vascular morphology and microenvironment. By design, these three-dimensional artificial vessels mimic the basic architecture of an artery: a collagen-rich extracellular matrix (as the tunica externa), smooth muscle cells (SMCs) (as the tunica media), and an endothelial cell (EC) lining (as the tunica interna). A versatile needle-based fabrication technique was employed to achieve controllable arterial layouts within a PDMS-hosted collagen microchannel scaffold (330 ± 10 μm in diameter): (direct co-culture) a SMC/EC bilayer to follow the structure of an arteriole-like segment; and (encapsulated co-culture) a lateral SMC multilayer covered by an EC monolayer lining to simulate the architecture of a larger artery. Optical and fluorescence microscopy images clearly evidenced the progressive cell elongation and sprouting behavior of SMCs and ECs along the collagen gel contour and within the gel matrix under static co-culture conditions. The progressive cell growth patterns effectively led to the formation of a tubular co-culture with an internal endothelial lining expressing prominent CD31 (cluster of differentiation 31) intercellular junction markers. During a 4-day static maturation period, the artery constructs showed modest alteration in the luminal diameters (i.e. less than 10% changes from the initial measurements). This argues in favor of stable and predictable arterial architecture achieved via the proposed fabrication protocols. Both co-culture models showed a high glucose metabolic rate during the initial proliferation phase, followed by a temporary quiescent (and thus, mature) stage. These proof-of-concept models with a controllable architecture create an important foundation for advanced vessel manipulations such as the integration of relevant physiological functionality or remodeling into a vascular disease-mimicking tissue.
Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid
2015-01-01
Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221
Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.
Duijkers, Floor A M; Meijerink, Jules P P; Pieters, Rob; van Noesel, Max M
2013-05-25
Neuroblastomas (NBL) are common pediatric solid tumors with a variable clinical course. At diagnosis half of all neuroblastoma patients presents with metastatic disease. The mechanisms of metastasis are largely unknown. Gene expression profiles (HU133plus2.0 arrays, Affymetrix) of 17 NBL and 5 peripheral neuro-ectodermal cell lines were used to identify a subgroup of non-MYCN amplified (non-NMA) NBL cell lines with a distinct gene expression profile and characterized by high expression of AXL. Axl is a tyrosine kinase receptor which plays a role in the metastatic process of several types of cancer. We hypothesized that Axl contributes to the metastasizing potential of non-NMA NBL and tested if AXL silencing diminishes malignant properties of high Axl expressing cell lines. AXL was silenced in two non-NMA NBL cell lines by using a lentiviral shRNA construct that was able to transduce these cell lines with more than 90% infection efficiency. Axl mRNA and protein level were efficiently knocked-down resulting in a decrease of migration of Axl positive cell lines GI-M-EN and SH-EP-2, and decreased invasion of GI-M-EN. Morphologically, Axl knockdown induced more rounded cells with a loss of contact. Intracellularly, we observed induction of stress fibers (immunofluorescence F-actin). These changes in cytoskeleton were associated with decreased migration, but were not accompanied by changes in genes involved in epithelial to mesenchymal transition such as CDH2, VIM or MMP9. No effects were observed for cell proliferation, apoptosis or downstream pathways. In conclusion, AXL is identified as a possible mediator of NBL metastasis. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Yang; Zhu, Fanjiao; Dan, Wangxia; Fu, Yu; Liu, Shaoqin
2014-10-21
A carbon nanotube (CNT) based nanoarchitecture is developed for rapid, sensitive and specific detection of cancer cells by using real time electrical impedance sensing. The sensor is constructed with carbon nanotube (CNT) multilayers and EpCAM (epithelial cell adhesion molecule) antibodies, which are assembled on an indium tin oxide (ITO) electrode surface. The binding of tumor cells to EpCAM antibodies causes increase of the electron-transfer resistance. The electrochemical impedance of the prepared biosensors is linear with the logarithm of concentration of the liver cancer cell line (HepG2) within the concentration range of 10 to 10(5) cells per mL. The detection limit for HepG2 cells is 5 cells per mL. The proposed impedimetric sensing devices allow for sensitive and specific detection of cancer cells in whole-blood samples without any sample pretreatment steps.
Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad
2010-06-01
Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.
Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer.
Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong
2017-10-01
The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer.
Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer
Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong
2017-01-01
The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer. PMID:28943918
Cis activation of the c-myc gene in bovine papilloma virus type 1/human c-myc hybrid plasmids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modjtahedi, N.; Feunteun, J.; Brison, O.
1988-01-01
The c-myc gene amplification observed in human tumors is likely to represent an activation mechanism aiming at an increased transcription level. In order to evaluate the biological significance of this amplification in the malignant transformation the authors designed an experimental model that could possibly mimic this situation in vitro. They have constructed a series of plasmids which physically link the human c-myc gene to the bovine papilloma virus type 1 genome (BPV1) and therefore should be maintained as amplified episomes upon transformation of rodent cells. Anticipating that the high copy number will bring about the immortalizing capacity of the c-mycmore » gene, the constructions were introduced into primary rat embryo cells. Immortal cell lines were established by transfection of the hybrid plasmids carrying either the complete BPV1 genome or the transforming region of the viral genome. The BPV1 DNA alone or the c-myc gene alone has no activity in this assay. The analysis of the established cell lines demonstrates that the transfected plasmids are present not as free copies as anticipated but rather integrated as tandem repeats. They present data which strongly suggest that the immortalization capacity of the hybrid plasmids reflects the activation of the c-myc gene by the transactivable BPV1 enhancer. Although both the BPV1 early genes and the c-myc gene are actively transcribed, most of the cell lines do not display a transformed phenotype.« less
Alqabandi, Jassim A; Abdel-Motal, Ussama M; Youcef-Toumi, Kamal
2009-02-01
Cancer cells have distinctive electrochemical properties. This work sheds light on the system design aspects and key challenges that should be considered when experimentally analyzing and extracting the electrical characteristics of a tumor cell line. In this study, we developed a cellularbased functional microfabricated device using lithography technology. This device was used to investigate the electrochemical parameters of cultured cancer cells at the single-cell level. Using impedance spectroscopy analyses, we determined the average specific capacitance and resistance of the membrane of the cancer cell line B16-F10 to be 1.154 +/- 0.29 microF/cm(2), and 3.9 +/- 1.15 KOmega.cm(2) (mean +/- SEM, n =14 cells), respectively. The consistency of our findings via different trails manifests the legitimacy of our experimental procedure. Furthermore, the data were compared with a proposed constructed analytical-circuit model. The results of this work may greatly assist researchers in defining an optimal procedure while extracting electrical properties of cancer cells. Detecting electrical signals at the single cell level could lead to the development of novel approaches for analysis of malignant cells in human tissues and biopsies.
1986-10-31
constructed from TeO2 sisting of lenses L6 and L- and a cylindrical lens C- material which is oriented to operate in the slow shear shape the Bragg...to focus the light into a horizontal line for efficient illumination. The Bragg cells are constructed from TeO2 material which is oriented to operate...source is a 10 mW He-Ne laser for which = 632.8 nm. The holographic element was constructed on a SO-120 glass plate with a reference-to-signal beam
Ships Lounge Burnout Experiments
1982-04-01
Johns Manville Corporation under the trade name Marinite. It was surfaced with a thin plastic veneer on either side. The non-combustible nature...Six lounges were constructed as follows: Ceiling: 3/4" Marinite 36 paneling lined with 1" Microlite fiber- glass insulation and Johns ... Manville acoustical celling tile. Walls: 3/4" Marinite 36 paneling lined with Westinghouse general purpose Micarta plastic laminate held in place
Oliveira, Virgínia Carla; Bartasson, Lorrainy; de Castro, Maria Elita Batista; Corrêa, José Raimundo; Ribeiro, Bergmann Morais; Resende, Renato Oliveira
2011-01-01
The nonstructural protein (NSs) of the Tomato spotted wilt virus (TSWV) has been identified as an RNAi suppressor in plant cells. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) designated vAcNSs, containing the NSs gene under the control of the viral polyhedrin (polh) gene promoter, was constructed and the effects of NSs in permissive, semipermissive and nonpermissive insect cells to vAcNSs infection were evaluated. vAcNSs produced more budded virus when compared to wild type in semipermissive cells. Co-infection of vAcNSs with wild type baculoviruses clearly enhanced polyhedra production in all host cells. Confocal microscopy analysis showed that NSs accumulated in abundance in the cytoplasm of permissive and semipermissive cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Co-infection of vAcNSs with a recombinant AcMNPV containing the enhanced green fluorescent protein (egfp) gene, significantly increased EGFP expression in semipermissive cells and in Anticarsia gemmatalis-hemocytes. Absence of small RNA molecules of egfp transcripts in this cell line and in a permissive cell line indicates the suppression of gene silencing activity. On the other hand, vAcNSs was not able to suppress RNAi in a nonpermissive cell line. Our data showed that NSs protein of TSWV facilitates baculovirus replication in different lepidopteran cell lines, and these results indicate that NSs could play a similar role during TSWV-infection in its thrips vector. Copyright © 2010 Elsevier B.V. All rights reserved.
An non-uniformity voltage model for proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai
2017-01-01
The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2013-01-01
A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767
Androgen responsiveness of the new human endometrial cancer cell line MFE-296.
Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D
1994-04-01
MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.
Blochlinger, K; Diggelmann, H
1984-12-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.
Blochlinger, K; Diggelmann, H
1984-01-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
Cerebral visual impairment and intellectual disability caused by PGAP1 variants.
Bosch, Daniëlle G M; Boonstra, F Nienke; Kinoshita, Taroh; Jhangiani, Shalini; de Ligt, Joep; Cremers, Frans P M; Lupski, James R; Murakami, Yoshiko; de Vries, Bert B A
2015-12-01
Homozygous variants in PGAP1 (post-GPI attachment to proteins 1) have recently been identified in two families with developmental delay, seizures and/or spasticity. PGAP1 is a member of the glycosylphosphatidylinositol anchor biosynthesis and remodeling pathway and defects in this pathway are a subclass of congenital disorders of glycosylation. Here we performed whole-exome sequencing in an individual with cerebral visual impairment (CVI), intellectual disability (ID), and factor XII deficiency and revealed compound heterozygous variants in PGAP1, c.274_276del (p.(Pro92del)) and c.921_925del (p.(Lys308Asnfs*25)). Subsequently, PGAP1-deficient Chinese hamster ovary (CHO)-cell lines were transfected with either mutant or wild-type constructs and their sensitivity to phosphatidylinositol-specific phospholipase C (PI-PLC) treatment was measured. The mutant constructs could not rescue the PGAP1-deficient CHO cell lines resistance to PI-PLC treatment. In addition, lymphoblastoid cell lines (LCLs) of the affected individual showed no sensitivity to PI-PLC treatment, whereas the LCLs of the heterozygous carrier parents were partially resistant. In conclusion, we report novel PGAP1 variants in a boy with CVI and ID and a proven functional loss of PGAP1 and show, to our knowledge, for the first time this genetic association with CVI.
Factors affecting the structure and maturation of human tissue engineered skeletal muscle.
Martin, Neil R W; Passey, Samantha L; Player, Darren J; Khodabukus, Alastair; Ferguson, Richard A; Sharples, Adam P; Mudera, Vivek; Baar, Keith; Lewis, Mark P
2013-07-01
Tissue engineered skeletal muscle has great utility in experimental studies of physiology, clinical testing and its potential for transplantation to replace damaged tissue. Despite recent work in rodent tissue or cell lines, there is a paucity of literature concerned with the culture of human muscle derived cells (MDCs) in engineered constructs. Here we aimed to tissue engineer for the first time in the literature human skeletal muscle in self-assembling fibrin hydrogels and determine the effect of MDC seeding density and myogenic proportion on the structure and maturation of the constructs. Constructs seeded with 4 × 10(5) MDCs assembled to a greater extent than those at 1 × 10(5) or 2 × 10(5), and immunostaining revealed a higher fusion index and a higher density of myotubes within the constructs, showing greater structural semblance to in vivo tissue. These constructs primarily expressed perinatal and slow type I myosin heavy chain mRNA after 21 days in culture. In subsequent experiments MACS(®) technology was used to separate myogenic and non-myogenic cells from their heterogeneous parent population and these cells were seeded at varying myogenic (desmin +) proportions in fibrin based constructs. Only in the constructs seeded with 75% desmin + cells was there evidence of striations when immunostained for slow myosin heavy chain compared with constructs seeded with 10 or 50% desmin + cells. Overall, this work reveals the importance of cell number and myogenic proportions in tissue engineering human skeletal muscle with structural resemblance to in vivo tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lin, Chi-Hung; Jarvis, Donald L
2013-05-10
Genetically transformed lepidopteran insect cell lines have biotechnological applications as constitutive recombinant protein production platforms and improved hosts for baculovirus-mediated recombinant protein production. Insect cell transformation is often accomplished with a DNA construct(s) encoding a foreign protein(s) under the transcriptional control of a baculovirus immediate early promoter, such as the ie1 promoter. However, the potential utility of increasingly stronger promoters from later baculovirus gene classes, such as delayed early (39K), late (p6.9), and very late (polh), has not been systematically assessed. Hence, we produced DNA constructs encoding secreted alkaline phosphatase (SEAP) under the transcriptional control of each of the four temporally distinct classes of baculovirus promoters, used them to transform insect cells, and compared the levels of SEAP RNA and protein production obtained before and after baculovirus infection. The ie1 construct was the only one that supported SEAP protein production by transformed insect cells prior to baculovirus infection, confirming that only immediate early promoters can be used to isolate transformed insect cells for constitutive recombinant protein production. However, baculovirus infection activated transgene expression by all four classes of baculovirus promoters. After infection, cells transformed with the very late (polh) and late (p6.9) promoter constructs produced the highest levels of SEAP RNA, but only low levels of SEAP protein. Conversely, cells transformed with the immediate early (ie1) and delayed early (39K) promoter constructs produced lower levels of RNA, but equal or higher levels of SEAP protein. Unexpectedly, the 39K promoter construct provided tightly regulated, baculovirus-inducible protein production at higher levels than the later promoter constructs. Thus, this study demonstrated the utility of the 39K promoter for insect cell engineering, particularly when one requires higher levels of effector protein production than obtained with ie1 and/or when constitutive transgene expression adversely impacts host cell fitness and/or genetic stability. Copyright © 2013 Elsevier B.V. All rights reserved.
Huang, Shengkai; Dong, Xin; Wang, Jia; Ding, Jie; Li, Yan; Li, Dongdong; Lin, Hong; Wang, Wenjie; Zhao, Mei
2018-01-01
Background Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. Material/Methods We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. Results Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. Conclusions These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells. PMID:29807370
NASA Astrophysics Data System (ADS)
Nezhurina, E. K.; Karalkin, P. A.; Komlev, V. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Shanskiy, Ya D.; Fedotov, A. Yu; Barinov, S. M.; Sergeeva, N. S.
2018-04-01
A creation of personalized implants for regeneration of bone tissue seems to be a very promising biomedical technological approach. We have studied the physicochemical characteristics, cyto- and biocompatibility of three-dimensional constructs based on sodium alginate and gelatin in combination with 2 types of calcium phosphate (tricalcium phosphate or octacalcium phosphate) obtained by inkjet 3D printing. In our experiments, we have studied the physical and chemical properties of the constructs – their porosity, chemical composition, microarchitecture of the surface and mechanical elasticity. The cytocompatibility of 3D constructs and matrix-for-cell properties were investigated in vitro on a model of human osteosarcoma MG-63 cell line by means of MTT assay. The biocompatibility of 3D constructs was studied on the model of subcutaneous implantation in mice up to 12 weeks. All types of 3D constructs were cytocompatible in vitro, demonstrated good matrix-for-cells properties, and had supported cell proliferation for 2 weeks. In results of subcutaneous in vivo test all constructs demonstrated biocompatibility with slow bioresorption of organic and inorganic components. Osteogenesis proceeded more actively in rat tibia model defects (marginal excision), substituted by 3D printed 3-component implants based on alginate, gelatin and octacalcium phosphate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun
2014-12-12
Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identificationmore » and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.« less
Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion
Yang, Hua; Gan, Jean; Xie, Xiaoling; Deng, Min; Feng, Liang; Chen, Xiaowei; Gao, Zhiqiang; Gan, Lin
2010-01-01
Summary Gfi1encodes a zinc-finger transcription factor essential for the development and maintenance of haematopoiesis and the inner ear. In mouse inner ear, Gfi1 expression is confined to hair cells during development and in adulthood. To construct a genetic tool for inner ear hair cell-specific gene deletion, we generated a Gfi1-Cre mouse line by knocking-in Cre coding sequences into the Gfi1 locus and inactivating the endogenous Gfi1. The specificity and efficiency of Gfi1-Cre recombinase-mediated recombination in the developing inner ear was revealed through the expression of the conditional R26R-lacZ reporter gene. The onset of lacZ expression in the Gfi1Cre/+ inner ear was first detected at E13.5 in the vestibule and at E15.5 in the cochlea, coinciding with the generation of hair cells. Throughout inner ear development, lacZ expression was detected only in hair cells. Thus, Gfi1-Cre knock-in mouse line provides a useful tool for gene manipulations specifically in inner ear hair cells. PMID:20533399
Kim, Sang Hoon; Pajarillo, Edward Alain B; Balolong, Marilen P; Lee, Ji Yoon; Kang, Dae-Kyung
2016-06-28
In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive™ Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications.
Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P
2016-01-21
This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.
Tectonic-1 contributes to the growth and migration of prostate cancer cells in vitro
WANG, ZHIJUN; GAO, YI; LIU, YUSHAN; CHEN, JIE; WANG, JUNKAI; GAN, SISHUN; XU, DANFENG; CUI, XINGANG
2015-01-01
Tectonic-1 (TCTN1) is an upstream gene involved in embryonic development. The aim of the present study was to investigate the effect of the TCTN1 gene on the viability and migration of prostate cancer cells. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of TCTN1 in PC-3 and DU145 prostate cancer cells. Cell viability and proliferation were measured using MTT and colony formation assays, and the distribution of cells in phases of the cell cycle was determined using flow cytometry. Cell migration was detected using a Transwell assay. The results demonstrated that TCTN1 was widely expressed in several human prostate cancer cell lines. Knockdown of the TCTN1 gene by RNA interference markedly suppressed cell viability and colony formation in the PC-3 and DU145 cell lines. Cell cycle progression was also arrested by TCTN1 silencing. In addition, knockdown of the TCTN1 gene led to the inhibition of cell migration in the two cell lines. These findings confirmed the direct association between the TCTN1 gene and prostate cancer growth in vitro. With further understanding and clinical investigation, this indicates the potential for future development of a novel marker for early detection and gene therapy for prostate cancer. PMID:26310786
Nishiyama, Yuichi; Nakamura, Makoto; Henmi, Chizuka; Yamaguchi, Kumiko; Mochizuki, Shuichi; Nakagawa, Hidemoto; Takiura, Koki
2009-03-01
We have developed a new technology for producing three-dimensional (3D) biological structures composed of living cells and hydrogel in vitro, via the direct and accurate printing of cells with an inkjet printing system. Various hydrogel structures were constructed with our custom-made inkjet printer, which we termed 3D bioprinter. In the present study, we used an alginate hydrogel that was obtained through the reaction of a sodium alginate solution with a calcium chloride solution. For the construction of the gel structure, sodium alginate solution was ejected from the inkjet nozzle (SEA-Jet, Seiko Epson Corp., Suwa, Japan) and was mixed with a substrate composed of a calcium chloride solution. In our 3D bioprinter, the nozzle head can be moved in three dimensions. Owing to the development of the 3D bioprinter, an innovative fabrication method that enables the gentle and precise fixation of 3D gel structures was established using living cells as a material. To date, several 3D structures that include living cells have been fabricated, including lines, planes, laminated structures, and tubes, and now, experiments to construct various hydrogel structures are being carried out in our laboratory.
Bazl, M Rajabi; Rasaee, M J; Foruzandeh, M; Rahimpour, A; Kiani, J; Rahbarizadeh, F; Alirezapour, B; Mohammadi, M
2007-02-01
There is an increasing interest in the application of nanobodies such as VHH in the field of therapy and imaging. In the present study a stable genetically engineered cell line of Chinese hamster ovary (CHO) origin transfected using two sets of expression vectors was constructed in order to permit the cytoplasmic and extracellular expression of single domain antibody along with green fluorescent protein (GFP) as reporter gene. The quality of the constructs were examined both by the restriction map as well as sequence analysis. The gene transfection and protein expression was further examined by reverse transcription-polymerase chain reaction (RT-PCR). The transfected cells were grown in 200 microg/mL hygromycin containing media and the stable cell line obtained showed fluorescent activity for more than a period of 180 days. The production of fusion protein was also detected by fluorescent microscopy, fluorescent spectroscopy as well as by enzyme-linked immunosorbent assay (ELISA) analysis. This strategy allows a rapid production of recombinant fluobodies involving VHH, which can be used in various experiments such as imaging and detection in which a primary labeled antibody is required.
NASA Astrophysics Data System (ADS)
Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.
Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.
2013-11-01
clones . Western blot analysis will be used to detect the protein expression after selection. 2. Differentiation into oligoprecursor cells (OPCs... monkey and mouse which will be tested in iPSC derived neurons aged with progerin. 13 Key Research Accomplishments: • Milestone 1 (month 1-2...iPSC clones with drug-inducible progerin construct we established the plasmid transfection for iPSC induced neural stem cells, the retroviral
Long Term Follow up of the Delayed Effects of Acute Radiation Exposure in Primates
2017-10-01
66 of 94 We will then use shRNAs and/or CRISPR constructs targeting the gene of interest to knock down its expression in stem cells prior to...DLBCLs Mutational profiling identifies 150 driver genes Gene expression identifies sub- groups including cell of origin Unbiased CRISPR screen...Exome sequencing in 1,001 DLBCL patients comprehensively identifies 150 driver genes d Unbiased CRISPR screen in DLBCL cell lines identifies essential
Heins, Brittany M.; McGivern, Jered V.; Ornelas, Loren; Svendsen, Clive N.
2012-01-01
Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients. PMID:22723941
Mingzhang, Rao; Zijun, Zhao; Lixia, Yuan; Jian, Chen; Min, Feng; Jie, Zhang; Ming, Liao; Weisheng, Cao
2018-01-01
A novel avian leukosis viruses (ALV) subgroup named ALV-K was recently isolated from Chinese indigenous chickens which is different from the subgroups (A to E and J) that have previously been reported to infect chickens. More and more ALV-K strains have recently been isolated from local breeds of Chinese chickens. However, there are no more effective diagnostic methods for ALV-K other than virus isolation followed by envelope gene sequencing and comparison. Viral infection can be blocked through expression of the viral receptor-binding protein. In this study, we have engineered a cell line, DF-1/K, that expresses ALV-K env protein and thereby confers resistance to ALV-K infection. DF-1/K can be used in combination with the ALV-K susceptible cell line DF-1 as a specific diagnostic tool for ALV-K and provides a good tool for further research into the molecular mechanisms of interaction between ALV-K env protein and the host cell receptor.
Towards a global human embryonic stem cell bank.
Lott, Jason P; Savulescu, Julian
2007-08-01
An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Human embryonic stem cell technology could solve the organ shortage problem by restoring diseased or damaged tissue across a range of common conditions. However, such technology faces several largely ignored immunological challenges in delivering cell lines to large populations. We address some of these challenges and argue in favor of encouraging contribution or intentional creation of embryos from which widely immunocompatible stem cell lines could be derived. Further, we argue that current immunological constraints in tissue transplantation demand the creation of a global stem cell bank, which may hold particular promise for minority populations and other sub-groups currently marginalized from organ procurement and allocation systems. Finally, we conclude by offering a number of practical and ethically oriented recommendations for constructing a human embryonic stem cell bank that we hope will help solve the ongoing organ shortage problem.
Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter
2014-01-01
In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reijnders, Christianne M.A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.
2015-01-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future. PMID:26135533
Reijnders, Christianne M A; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J; Gibbs, Susan
2015-09-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin-eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Hippocampal place cells construct reward related sequences through unexplored space.
Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J
2015-06-26
Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.
Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai
2017-11-01
Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.
ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer
2013-08-01
confocal microscopy to characterize the timing, location, and order of recruitment of the ERG-DNAPK interaction in relation to radiation delivery. In the...DNAPK linked to different fluorescent proteins, and Subtask #5B was to overexpress these constructs in the VCaP cell line and perform real-time...first half of year 3, we generated fusion constructs of ERG to various fluorescent proteins [green fluorescent protein (GFP), yellow fluorescent
Jiang, Jinghang; Yang, Peipei; Guo, Zhe; Yang, Rirong; Yang, Haojie; Yang, Fuquan; Li, Lequn; Xiang, Bangde
2016-10-28
Liver cancer stem cells (LCSCs) have been shown to express higher levels of microRNA-21 (miR-21). Here, we examine the possible contributions of miR-21 to the phenotype of LCSCs in culture and in xenograft tumors in nude mice. The hepatocellular carcinoma cell line MHCC-97H was stably transformed with a retroviral vector to establish cells overexpressing miR-21, while a cell line transformed with empty vector served as a negative control. RT-PCR and Western blotting were used to evaluate the effects of miR-21 overexpression on the expression of various LCSC markers, a Transwell assay was used to assess the effects on cell migration and invasion, and a spheroid formation assay was used to examine the effects on clonogenesis. The effects of miR-21 overexpression were also examined in tumors in nude mice. An MHCC-97H cell line was constructed that stably overexpresses miR-21 at 7.78 ± 1.51-fold higher levels than the negative control cell line. Expression of the LCSC markers CD13, Ep-CAM, CD90, and OCT4 was significantly higher in the miR-21-overexpressing cell line than in the negative control at both mRNA and protein levels. The overexpressing cell line formed larger, tighter, and more numerous spheroids. Overexpression of miR-21 was associated with greater cell migration and invasion. Tumors of overexpressing cells in nude mice had a significantly larger mean volume after 34 days of growth (773.62 ± 163.46 mm 3 ) than tumors of negative control cells (502.79 ± 33.94 mm 3 , p = 0.048), as well as greater mean weight (0.422 ± 0.019 vs. 0.346 ± 0.006 g, p = 0.003). Overexpression of miR-21 strengthens the phenotype of LCSCs, facilitating invasion, migration, and tumorigenesis in hepatocellular carcinoma.
Throm, Robert E.; Ouma, Annastasia A.; Zhou, Sheng; Chandrasekaran, Anantharaman; Lockey, Timothy; Greene, Michael; De Ravin, Suk See; Moayeri, Morvarid; Malech, Harry L.; Sorrentino, Brian P.
2009-01-01
Retroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 107 transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common γ chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 × 107 TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1). PMID:19286997
Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I
2012-12-01
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.
Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.
2012-01-01
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162
Bisphenol A exposure leads to specific microRNA alterations in placental cells.
Avissar-Whiting, Michele; Veiga, Keila R; Uhl, Kristen M; Maccani, Matthew A; Gagne, Luc A; Moen, Erika L; Marsit, Carmen J
2010-07-01
Exposure to bisphenol A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity.
Bisphenol A Exposure Leads to Specific MicroRNA Alterations in Placental Cells
Avissar-Whiting, Michele; Veiga, Keila; Uhl, Kristen; Maccani, Matthew; Gagne, Luc; Moen, Erika; Marsit, Carmen J.
2010-01-01
Exposure to bisphenol-A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity. PMID:20417706
Construction of Home-Made Tin Fixed-Point Cell at TUBITAK UME
NASA Astrophysics Data System (ADS)
Kalemci, M.; Arifovic, N.; Bağçe, A.; Aytekin, S. O.; Ince, A. T.
2015-08-01
TUBITAK UME Temperature Laboratory initiated a new study which focuses on the construction of a tin freezing-point cell as a primary temperature standard. The design is an open-cell type similar to the National Institute of Standards and Technology design. With this aim, a brand new vacuum and filling line employing an oil diffusion pump and two cold traps (liquid nitrogen and dry ice) was set-up. The graphite parts (crucible, thermometer well, etc.) have been baked at high temperature under vacuum. Each cell was filled with approximately 1 kg of high-purity tin (99.9999 %) in a three-zone furnace. Then several melting and freezing curves were obtained to assess the quality of the home-made cell, and also the new cell was compared with the existing reference cell of the laboratory. The results obtained are very close to the reference cell of UME, indicating that the method used for fabrication was promising and satisfactory and also seems to meet the requirements to have a primary level temperature standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiradzhiyska, D. D., E-mail: denica.kiradjiiska@gmail.com; Mantcheva, R. D., E-mail: r-manch@abv.bg; Feodorova, Y. N.
Materials for medical implants should have suitable mechanical properties, excellent biocompatibility and high corrosion resistance. They should not stimulate allergic and immunologic reactions and should not cause cancer. The use of aluminum as a construction material in implantology is continuously expanding. There are various methods for surface treatment to improve its biocompatibility. In this study aluminum samples anodized in 15% H{sub 2} SO{sub 4} or treated with positive or negative corona discharge were investigated. PDL-cell line of immortalized cells, precursors of periodontal ligament and RAW 264.7 cell line from mouse macrophages are used for the bioassays. The results show thatmore » 10 and 20 μm thick oxide film provides better development of the PLD cells, compared to untreated aluminum. Metal surfaces with 10 μm thick oxide film show the best properties in terms of cells vitality, proliferation and growth. Polymer treated but uncharged samples show good results.« less
Jing, Junjie; Wang, Chengfeng; Liang, Qinchuan; Zhao, Yang; Zhao, Qingshuang; Wang, Shousen; Ma, Jie
2015-01-01
Tectonic family member 1 (TCTN1) encodes a member of the tectonic family which are evolutionarily conserved secreted and transmembrane proteins, involving in a diverse variety of developmental processes. It has been demonstrated that tectonics expressed in regions that participate in Hedgehog (Hh) signaling during mouse embryonic development and was imperative for Hh-mediated patterning of the ventral neural tube. However, the expression and regulation of tectonics in human tumor is still not clear. In this study, shRNA-expressing lentivirus was constructed to knockdown TCTN1 in medulloblastoma cell line Daoy. The results showed that knockdown of TCTN1 inhibited cell proliferation and colony formation in Daoy cell line, also caused cell cycle arrest at the G2/M boundary. Taken all together, our data suggest that TCTN1 might play an important role in the progression of medulloblastoma. PMID:26550235
Zhang, Qian; Zeng, Lei-Ping; Zhou, Peng; Irving, Aaron T; Li, Shang; Shi, Zheng-Li; Wang, Lin-Fa
2017-01-01
Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection. In this study, we constructed IFNAR2 knockout bat cell lines using CRISPR technology and further characterized gene expression profiles induced by the most abundant IFN-α (IFN-α3). Firstly, we demonstrated that the CRISPR/Cas9 system is applicable for bat cells as this represents the first CRIPSR knockout cell line for bats. Our results showed the pleiotropic effect of IFN-α3 on the bat kidney cell line, PaKiT03. As expected, we confirmed that IFNAR2 is indispensable for IFN-a signaling pathway and plays an important role in antiviral immunity. Unexpectedly, we also identified novel IFNAR2-dependent IRGs which are enriched in pathways related to cancer. To our knowledge, this seems to be bat-specific as no such observation has been reported for other mammalian species. This study expands our knowledge about bat immunology and the cell line established can provide a powerful tool for future study into virus-bat interaction and cancer biology.
High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.
Bartlome, R; Baer, M; Sigrist, M W
2007-01-01
In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.
McAllister, J J; Phillips, D; Millhouse, S; Conner, J; Hogan, T; Ross, H L; Wigdahl, B
2000-09-01
It has been widely demonstrated that the human immunodeficiency virus type 1 (HIV-1) envelope, specifically the V3 loop of the gp120 spike, evolves to facilitate adaptation to different cellular populations within an infected host. Less energy has been directed at determining whether the viral promoter, designated the long terminal repeat (LTR), also exhibits this adaptive quality. Because of the unique nature of the cell populations infected during the course of HIV-1 infection, one might expect the opportunity for such adaptation to exist. This would permit select viral species to take advantage of the different array of conditions and factors influencing transcription within a given cell type. To investigate this hypothesis, the function of natural variants of the NF-kappaB-proximal Sp element (Sp site III) was examined in human cell line models of the two major cell types infected during the natural course of HIV-1 infection, T cells and monocytes. Utilizing the HIV-1 LAI molecular clone, which naturally contains a high-affinity Sp site III, substitution of low-affinity Sp sites in place of the natural site III element markedly decreased viral replication in Jurkat T cells. However, these substitutions had relatively small effects on viral replication in U-937 monocytic cells. Transient transfections of HIV-1 LAI-based LTR-luciferase constructs into these cell lines suggest that the large reduction in viral replication in Jurkat T cells, caused by low-affinity Sp site III variants, may result from reduced basal as well as Vpr- and Tat-activated LTR activities in Jurkat T cells compared to those in U-937 monocytic cells. When the function of Sp site III was examined in the context of HIV-1 YU-2-based LTR-luciferase constructs, substitution of a high-affinity element in place of the natural low-affinity element resulted in increased basal YU-2 LTR activity in Jurkat T cells and reduced activity in U-937 monocytic cells. These observations suggest that recruitment of Sp family members to Sp site III is of greater importance to the function of the viral promoter in the Jurkat T cell line as compared to the U-937 monocytic cell line. These observations also suggest that other regions of the LTR may compensate for Sp recruitment defects in specific cell populations. Copyright 2000 Academic Press.
Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.
Keefe, Douglas H
2015-04-01
An acoustical transmission line model of the middle-ear cavities and mastoid air cell system (MACS) was constructed for the adult human middle ear with normal function. The air-filled cavities comprised the tympanic cavity, aditus, antrum, and MACS. A binary symmetrical airway branching model of the MACS was constructed using an optimization procedure to match the average total volume and surface area of human temporal bones. The acoustical input impedance of the MACS was calculated using a recursive procedure, and used to predict the input impedance of the middle-ear cavities at the location of the tympanic membrane. The model also calculated the ratio of the acoustical pressure in the antrum to the pressure in the middle-ear cavities at the location of the tympanic membrane. The predicted responses were sensitive to the magnitude of the viscothermal losses within the MACS. These predicted input impedance and pressure ratio functions explained the presence of multiple resonances reported in published data, which were not explained by existing MACS models.
Leary, T P; Gao, Y; Splitter, G A
1992-07-01
The desire to obtain authentically glycosylated viral protein products in sufficient quantity for immunological study has led to the use of eucaryotic expression vectors for protein production. An additional advantage is that these protein products can be studied individually in the absence of their native viral environment. We have cloned a complementary DNA (cDNA) encoding bovine herpes virus-1 (BHV-1) glycoprotein 1 (gpI) into the eucaryotic expression vector, pZipNeo SVX1. Since this protein is normally embedded within the membrane of BHV-1 infected cells, we removed sequences encoding the transmembrane domain of the native protein. After transfection of the plasmid construct into the canine osteosarcoma cell line, D17, or Madin-Darby bovine kidney (MDBK) cells, a truncated BHV-1 (gpI) was secreted into the culture medium as demonstrated by radioimmunoprecipitation and SDS-PAGE. Both a CD4+ T-lymphocyte line specific for BHV-1 and freshly isolated T lymphocytes could recognize and respond to the secreted recombinant gpI. Further, recombinant gpI could elicit both antibody and cellular responses in cattle when used as an immunogen. Having established constitutively glycoprotein producing cell lines, future studies in vaccine evaluation of gpI will be facilitated.
Szczesny, Roman J.; Kowalska, Katarzyna; Klosowska-Kosicka, Kamila; Chlebowski, Aleksander; Owczarek, Ewelina P.; Warkocki, Zbigniew; Kulinski, Tomasz M.; Adamska, Dorota; Affek, Kamila; Jedroszkowiak, Agata; Kotrys, Anna V.; Tomecki, Rafal; Krawczyk, Pawel S.; Borowski, Lukasz S.; Dziembowski, Andrzej
2018-01-01
Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the exoribonuclease XRN2 in transcription termination by RNAseq. PMID:29590189
Decreased RECQL5 correlated with disease progression of osteosarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Junlong; Zhi, Liqiang; Dai, Xin
Human RecQ helicase family, consisting of RECQL, RECQL4, RECQL5, BLM and WRN, has critical roles in genetic stability and tumorigenesis. Although RECQL5 has been reported to correlate with the susceptibility to malignances including osteosarcoma, the specific effect on tumor genesis and progression is not yet clarified. Here we focused on the relationship between RECQL5 expression and osteosarcoma disease progression, and further investigated the function of RECQL5 on MG-63 cell proliferation and apoptosis. By immunohistochemical analysis, qRT-PCR and western blot, we found that RECQL5 expression was downregulated in osteosarcoma tissues and cells. Patients with advanced tumor stage and low grade expressedmore » lower RECQL5. To construct a stable RECQL5 overexpression osteosarcoma cell line (MG-63-RECQL5), RECQL5 gene was inserted into the human AAVS1 safe harbor by CRISPR/Cas9 system. The overexpression of RECQL5 was verified by qRT-PCR and western blot. Cell proliferation, cell cycle and apoptosis assay revealed that RECQL5 overexpression inhibited proliferation, induced G1-phase arrest and promoted apoptosis in MG-63 cells. Collectively, our results suggested RECQL5 as a tumor suppressor in osteosarcoma and may be a potential therapeutic target for osteosarcoma treatment. - Highlights: • The expression of RECQL5 was downregulated in osteosarcoma tissues and cells. • Decreased RECQL5 correlated with osteosarcoma Enneking surgical classification. • We constructed a stable RECQL5 overexpression cell line by CRISPR/Cas9 system. • RECQL5 overexpression inhibited proliferation of MG-63 cells. • RECQL5 overexpression promoted apoptosis of MG-63 cells.« less
Kilby, N J; Davies, G J; Snaith, M R
1995-11-01
FLP site-specific recombinase was expressed in stably transformed tobacco and Arabidopsis. FLP-expressing tobacco lines were crossed with other transformed tobacco lines that contained a stably integrated FLP recognition target construct(s). The target construct consisted of two directly-oriented FLP recognition targets (FRTs), flanking a hygromycin resistance cassette located between a GUS coding region and an upstream 35S CaMV promoter. Excision of the hygromycin resistance cassette by FLP-mediated recombination between FRTs brings the GUS coding region under the transcriptional control of the CaMV 35S promoter. In the absence of FLP-mediated recombination, the GUS gene is transcriptionally silent. GUS activity was observed in the progeny of all crosses made between FLP recombinase-expressing and target-containing tobacco lines, but not in the selfs of parents. The predicted recombination product remaining after excision was confirmed by PCR and Southern analysis. In Arabidopsis, inducible expression of FLP recombinase was achieved from the soybean Gmhsp 17.6L heat-shock promoter. Heat-shock induction of FLP expression in plants containing the target construct led to activation of constitutive GUS expression in a subset of cells, whose progeny, therefore, were GUS-positive. A variety of clonal sectors were produced in plants derived from seed that was heat-shocked during germination. The ability to control the timing of GUS activation was demonstrated by heat-shock of unopened flower heads which produced large sectors. It was concluded that heat-shock-induced expression of FLP recombinase provides a readily controllable method for generating marked clonal sectors in Arabidopsis, the size and distribution of which reflects the timing of applied heat-shock.
Rogers, Danny A; Schor, Nina F
2013-03-10
Peripheral neuroblastic tumors exist as a heterogeneous mixture of neuroblastic (N-type) cells and Schwannian stromal (S-type) cells. These stromal cells not only represent a differentiated and less aggressive fraction of the tumor, but also have properties that can influence the further differentiation of nearby malignant cells. In vitro neuroblastoma cultures exhibit similar heterogeneity with N-type and S-type cells representing the neuroblastic and stromal portions of the tumor, respectively, in behavior, morphology, and molecular expression patterns. In this study, we deplete kinase D-interacting substrate of 220kD (Kidins220) with an shRNA construct and thereby cause morphologic transition of the human SH-SY5Y neuroblastoma cell line from N-type to S-type. The resulting cells have similar morphology and expression profile to SH-EP1 cells, a native S-type cell line from the same parent cell line, and to SH-SY5Y cells treated with BrdU, a treatment that induces S-type morphology. Specifically, both Kidins220-deficient SH-SY5Y cells and native SH-EP1 cells demonstrate down-regulation of the genes DCX and STMN2, markers for the neuronal lineage. We further show that Kidins220, DCX and STMN2 are co-down-regulated in cells of S-type morphology generated by methods other than Kidins220 depletion. Finally, we report that the association of low Kidins220 expression with S-type morphology and low DCX and STMN2 expression is demonstrated in spontaneously occurring human peripheral neuroblastic tumors. We propose that Kidins220 is critical in N- to S-type transition of neural crest tumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Rosines, Eran; Johkura, Kohei; Zhang, Xing; Schmidt, Heidi J; Decambre, Marvalyn; Bush, Kevin T; Nigam, Sanjay K
2010-08-01
The plausibility of constructing vascularized three-dimensional (3D) kidney tissue from cells was investigated. The kidney develops from mutual inductive interactions between cells of the ureteric bud (UB), derived from the Wolffian duct (WD), and the metanephric mesenchyme (MM). We found that isolated MMs were capable of inducing branching morphogenesis of the WD (an epithelial tube) in recombination cultures; suggesting that the isolated MM retains inductive capacity for WD-derived epithelial tubule cells other than those from the UB. Hanging drop aggregates of embryonic and adult renal epithelial cells from UB and mouse inner medullary collecting duct cell (IMCD) lines, which are ultimately of WD origin, were capable of inducing MM epithelialization and tubulogenesis with apparent connections (UB cells) and collecting duct-like tubules with lumens (IMCD). This supports the view that the collecting system can be constructed from certain epithelial cells (those ultimately of WD origin) when stimulated by MM. Although the functions of the MM could not be replaced by cultured mesenchymal cells, primary MM cells and one MM-derived cell line (BSN) produced factors that stimulate UB branching morphogenesis, whereas another, rat inducible metanephric mesenchyme (RIMM-18), supported WD budding as a feeder layer. This indicates that some MM functions can be recapitulated by cells. Although engineering of a kidney-like tissue from cultured cells alone remains to be achieved, these results suggest the feasibility of such an approach following the normal developmental progression of the UB and MM. Consistent with this notion, implants of kidney-like tissues constructed in vitro from recombinations of the UB and MM survived for over 5 weeks and achieved an apparently host-derived glomerular vasculature. Lastly, we addressed the issue of optimal macro- and micro-patterning of kidney-like tissue, which might be necessary for function of an organ assembled using a tissue engineering approach. To identify suitable conditions, 3D reconstructions of HoxB7-green fluorescent protein mouse rudiments (E12) cultured on a filter or suspended in a collagen gel (type I or type IV) revealed that type IV collagen 3D culture supports the deepest tissue growth (600 +/- 8 microm) and the largest kidney volume (0.22 +/- 0.02 mm(3)), and enabled the development of an umbrella-shaped collecting system such as occurs in vivo. Taken together with prior work (Rosines et al., 2007; Steer et al., 2002), these results support the plausibility of a developmental strategy for constructing and propagating vascularized 3D kidney-like tissues from recombinations of cultured renal progenitor cells and/or primordial tissue.
Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia
2013-10-01
hematopoietic stem cells with RPS19 shRNA lentiviral constructs and examine levels of miR34a and target genes c-Myb, c- Myc, Sirt1 , and Notch1 at...leads to decreased expression of the miR34a targets c-myb and c-myc. Sirt1 and Notch1 expression remains unchanged in RPS19 deficient cells...b. Study miR34a target gene expression (c-Myb, c-Myc, Sirt1 , and Notch1) in lymphoblastoid cell lines (LCL) and CD34+ bone marrow progenitor cells
Intra-Prostate Cancer Vaccine Inducer
2006-02-01
analyzed by flowcytometry for Ii and MHC class II expression. The active constructs were used for the Ii suppression in the experiments planned in...care guidelines under an approved protocol. Cell lines and antibodies Green monkey kidney COS cells (#CRL-1650), cultured in RPMI-1640 medium with...AIDS vaccine protection in rhesus monkeys . J Virol 2004;78(14):7490-7. 12. Letvin NL, Montefiori DC, Yasutomi Y, et al. Potent, protective anti-HIV
Eklund, E A; Kakar, R
1997-04-04
The CYBB gene encodes gp91(phox), the heavy chain of the phagocyte-specific NADPH oxidase. CYBB is transcriptionally inactive until the promyelocyte stage of myelopoiesis, and in mature phagocytes, expression of gp91(phox) is further increased by interferon-gamma (IFN-gamma) and other inflammatory mediators. The CYBB promoter region contains several lineage-specific cis-elements involved in the IFN-gamma response. We screened a leukocyte cDNA expression library for proteins able to bind to one of these cis-elements (-214 to -262 base pairs) and identified TF1(phox), a protein with sequence-specific binding to the CYBB promoter. Electrophoretic mobility shift assay with nuclear proteins from a variety of cell lines demonstrated binding of a protein to the CYBB promoter that was cross-immunoreactive with TF1(phox). DNA binding of this protein was increased by IFN-gamma treatment in the myeloid cell line PLB985, but not in the non-myeloid cell line HeLa. Overexpression of recombinant TF1(phox) in PLB985 cells increased endogenous gp91(phox) message abundance, but did not lead to cellular differentiation. Overexpression of TF1(phox) in myeloid leukemia cell lines increased reporter gene expression from artificial promoter constructs containing CYBB promoter sequence. These data suggested that TF1(phox) increased expression of gp91(phox).
NASA Astrophysics Data System (ADS)
She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge
2016-09-01
High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy.
Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor
2016-01-01
Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702
CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells.
Jafari, Naser; Kim, Hyunju; Park, Rackhyun; Li, Liqing; Jang, Minsu; Morris, Andrew J; Park, Junsoo; Huang, Cai
2017-01-01
Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells.
Oraki Kohshour, Mojtaba; Mirzaie, Sako; Zeinali, Majid; Amin, Mansour; Said Hakhamaneshi, Mohammad; Jalili, Ali; Mosaveri, Nader; Jamalan, Mostafa
2014-03-01
Trastuzumab (Herceptin(®) ) is a monoclonal antibody (mAb) for specific ablation of HER2-overexpressing malignant breast cancer cells. Intensification of antiproliferative activity of trastuzumab through construction of immunotoxins and nano-immunoconjugates is a promising approach for treatment of cancer. In this study, trastuzumab was directly conjugated to diphtheria toxin (DT). Also, conjugates of trastuzumab and multiwalled carbon nanotubes (MWCNT) were constructed by covalent immobilization of trastuzumab onto MWCNTs. Then, antiproliferative activity of the fusion constructs against HER2-overexpressing SK-BR-3 and also HER2-negative MCF-7 cancer cell lines were examined. Cells treated with trastuzumab-MWCNT conjugates were irradiated with near-infrared (NIR) light. Efficient absorption of NIR radiation and its conversion to heat by MWCNTs can be resulted to thermal ablation of cancerous cells. Our results strongly showed that both trastuzumab-MWCNT and trastuzumab-DT conjugates were significantly efficient in the specific killing of SK-BR-3 cells. Targeting of MWCNTs to cancerous cells using trastuzumab followed by exposure of cells to NIR radiation was more efficient in repression of cell proliferation than treatment for cancer cells with trastuzumab-DT. Our results also showed that conjugation linkers can significantly affect the cytotoxicity of MWCNT-immunoconjugates. In conclusion, our data demonstrated that trastuzumab-MWCNT is a promising nano-immunoconjugate for killing of HER2-overexpressing cancerous cells. © 2013 John Wiley & Sons A/S.
Yokozaki, H; Tahara, H; Oue, N; Tahara, E
2000-01-01
A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.
NASA Astrophysics Data System (ADS)
Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi
This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.
Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.
Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S
2006-01-01
This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.
Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P
2015-01-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA promoter and 5'-UTR.
Krebs, Kendall C; Tian, Meijuan; Asmal, Mohammed; Ling, Binhua; Nelson, Kenneth; Henry, Kenneth; Gibson, Richard; Li, Yuejin; Han, Weining; Shattock, Robin J; Veazey, Ronald S; Letvin, Norman; Arts, Eric J; Gao, Yong
2016-11-25
New simian-human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env's in the pool, a feature also observed in the HIV establishing new infections in humans. Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites.
Research on cost control and management in high voltage transmission line construction
NASA Astrophysics Data System (ADS)
Xu, Xiaobin
2017-05-01
Enterprises. The cost control is of vital importance to the construction enterprises. It is the key to the profitability of the transmission line project, which is related to the survival and development of the electric power construction enterprises. Due to the long construction line, complex and changeable construction terrain as well as large construction costs of transmission line, it is difficult for us to take accurate and effective cost control on the project implementation of entire transmission line. Therefore, the cost control of transmission line project is a complicated and arduous task. It is of great theoretical and practical significance to study the cost control scheme of transmission line project by a more scientific and efficient way. Based on the characteristics of the construction project of the transmission line project, this paper analyzes the construction cost structure of the transmission line project and the current cost control problem of the transmission line project, and demonstrates the necessity and feasibility of studying the cost control scheme of the transmission line project more accurately. In this way, the dynamic cycle cost control process including plan, implementation, feedback, correction, modification and re-implement is achieved to realize the accurate and effective cost control of entire electric power transmission line project.
Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C
1998-01-01
Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.
Three-dimensional bioprinting is not only about cell-laden structures.
Zhang, Hong-Bo; Xing, Tian-Long; Yin, Rui-Xue; Shi, Yong; Yang, Shi-Mo; Zhang, Wen-Jun
2016-08-01
In this review, we focused on a few obstacles that hinder three-dimensional (3D) bioprinting process in tissue engineering. One of the obstacles is the bioinks used to deliver cells. Hydrogels are the most widely used bioink materials; however, they aremechanically weak in nature and cannot meet the requirements for supporting structures, especially when the tissues, such as cartilage, require extracellular matrix to be mechanically strong. Secondly and more importantly, tissue regeneration is not only about building all the components in a way that mimics the structures of living tissues, but also about how to make the constructs function normally in the long term. One of the key issues is sufficient nutrient and oxygen supply to the engineered living constructs. The other is to coordinate the interplays between cells, bioactive agents and extracellular matrix in a natural way. This article reviews the approaches to improve the mechanical strength of hydrogels and their suitability for 3D bioprinting; moreover, the key issues of multiple cell lines coprinting with multiple growth factors, vascularization within engineered living constructs etc. were also reviewed.
Thermal enclosures for electronically scanned pressure modules operating in cryogenic environments
NASA Technical Reports Server (NTRS)
Mitchell, Michael; Sealey, Bradley S.
1989-01-01
Specific guidelines to design, construct, and test ESP thermal enclosures for applications at cryogenic temperatures are given. The enclosures maintain the ESP modules at a constant temperature (10 C plus or minus 1 C) to minimize thermal zero and sensitivity shifts, to minimize the frequency of expensive on-line calibrations, and to avoid adverse effects on tunnel and model boundary layers. The enclosures are constructed of a rigid closed-cell foam and are capable of withstanding the stagnation pressures to 932kPa (135 psia) without reduction in thermal insulation properties. This construction procedure has been used to construct several thermal packages which have been successfully used in National Transonic Facility.
Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying
2013-02-01
Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.
Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology.
Wu, Jianbo; Hunt, Samuel D; Xue, Haipeng; Liu, Ying; Darabi, Radbod
2016-03-01
Directed differentiation of iPS cells toward various tissue progenitors has been the focus of recent research. Therefore, generation of tissue-specific reporter iPS cell lines provides better understanding of developmental stages in iPS cells. This technical report describes an efficient strategy for generation and validation of knock-in reporter lines in human iPS cells using the Cas9-nickase system. Here, we have generated a knock-in human iPS cell line for the early myogenic lineage specification gene of PAX7. By introduction of site-specific double-stranded breaks (DSB) in the genomic locus of PAX7 using CRISPR/Cas9 nickase pairs, a 2A-GFP reporter with selection markers has been incorporated before the stop codon of the PAX7 gene at the last exon. After positive and negative selection, single cell-derived human iPS clones have been isolated and sequenced for in-frame positioning of the reporter construct. Finally, by using a nuclease-dead Cas9 activator (dCas9-VP160) system, the promoter region of PAX7 has been targeted for transient gene induction to validate the GFP reporter activity. This was confirmed by flow cytometry analysis and immunostaining for PAX7 and GFP. This technical report provides a practical guideline for generation and validation of knock-in reporters using CRISPR/Cas9 system. Published by Elsevier B.V.
Rapid Characterization of Candidate Biomarkers for Pancreatic Cancer Using Cell Microarrays (CMAs)
Kim, Min-Sik; Kuppireddy, Sarada V.; Sakamuri, Sruthi; Singal, Mukul; Getnet, Derese; Harsha, H. C.; Goel, Renu; Balakrishnan, Lavanya; Jacob, Harrys K. C.; Kashyap, Manoj K.; Tankala, Shantal G.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Jaffee, Elizabeth; Goggins, Michael G.; Velculescu, Victor E.; Hruban, Ralph H.; Pandey, Akhilesh
2013-01-01
Tissue microarrays have become a valuable tool for high-throughput analysis using immunohistochemical labeling. However, the large majority of biochemical studies are carried out in cell lines to further characterize candidate biomarkers or therapeutic targets with subsequent studies in animals or using primary tissues. Thus, cell line-based microarrays could be a useful screening tool in some situations. Here, we constructed a cell microarray (CMA) containing a panel of 40 pancreatic cancer cell lines available from American Type Culture Collection in addition to those locally available at Johns Hopkins. As proof of principle, we performed immunocytochemical labeling of an epithelial cell adhesion molecule (Ep-CAM), a molecule generally expressed in the epithelium, on this pancreatic cancer CMA. In addition, selected molecules that have been previously shown to be differentially expressed in pancreatic cancer in the literature were validated. For example, we observed strong labeling of CA19-9 antigen, a prognostic and predictive marker for pancreatic cancer. We also carried out a bioinformatics analysis of a literature curated catalog of pancreatic cancer biomarkers developed previously by our group and identified two candidate biomarkers, HLA class I and transmembrane protease, serine 4 (TMPRSS4), and examined their expression in the cell lines represented on the pancreatic cancer CMAs. Our results demonstrate the utility of CMAs as a useful resource for rapid screening of molecules of interest and suggest that CMAs can become a universal standard platform in cancer research. PMID:22985314
Magnetophoretic circuits for digital control of single particles and cells
NASA Astrophysics Data System (ADS)
Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi
2014-05-01
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.
Liu, Qicai; Li, Ermao; Huang, Long; Cheng, Minsheng; Li, Li
2018-01-01
Background: The limb-bud and heart gene ( LBH ) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions : Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might be a therapeutic target and potential diagnostic marker in PCa.
Notch2 and Notch3 suppress the proliferation and mediate invasion of trophoblast cell lines
Zhao, Wei-Xiu; Wu, Zhen-Ming; Liu, Wei
2017-01-01
ABSTRACT Notch signaling pathways play important roles in cell fate and many diseases, including preeclampsia, the dysregulation of which may be the main cause of maternal mortality. This study aimed to investigate the roles of Notch2 and Notch3 in proliferation and invasion in trophoblast cell lines (BeWo and JAR). Small hairpin RNAs targeting Notch2/Notch3 and Notch2/Notch3-overexpression vectors were designed, constructed and transfected into BeWo and JAR cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were then used to detect Notch2 and Notch3 mRNA and protein levels, and confirm the efficiency of silence and overexpression. Flow cytometry assays were conducted to evaluate the cell cycle of the two cell lines, and transwell assays were used to detect migration and invasion. Western blot analysis was also performed to show the alteration of the cell lines' physiological activities at protein level. When Notch2 was downregulated in BeWo cells, proliferation was dramatically promoted, while migration and invasion were significantly inhibited. When Notch2 was upregulated in JAR cells, proliferation was inhibited, but migration and invasion were promoted. After overexpression of Notch3 in BeWo cells, proliferation was downregulated, but migration and invasion were both upregulated. By contrast, the silencing of Notch3 expression in JAR cells significantly enhanced proliferation, but suppressed migration and invasion. These data indicated that Notch2 and Notch3 mediate the invasion and migration of BeWo and JAR cells, and may play a potential role in early onset severe preeclampsia. PMID:28606936
Notch2 and Notch3 suppress the proliferation and mediate invasion of trophoblast cell lines.
Zhao, Wei-Xiu; Wu, Zhen-Ming; Liu, Wei; Lin, Jian-Hua
2017-08-15
Notch signaling pathways play important roles in cell fate and many diseases, including preeclampsia, the dysregulation of which may be the main cause of maternal mortality. This study aimed to investigate the roles of Notch2 and Notch3 in proliferation and invasion in trophoblast cell lines (BeWo and JAR). Small hairpin RNAs targeting Notch2/Notch3 and Notch2/Notch3-overexpression vectors were designed, constructed and transfected into BeWo and JAR cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were then used to detect Notch2 and Notch3 mRNA and protein levels, and confirm the efficiency of silence and overexpression. Flow cytometry assays were conducted to evaluate the cell cycle of the two cell lines, and transwell assays were used to detect migration and invasion. Western blot analysis was also performed to show the alteration of the cell lines' physiological activities at protein level.When Notch2 was downregulated in BeWo cells, proliferation was dramatically promoted, while migration and invasion were significantly inhibited. When Notch2 was upregulated in JAR cells, proliferation was inhibited, but migration and invasion were promoted. After overexpression of Notch3 in BeWo cells, proliferation was downregulated, but migration and invasion were both upregulated. By contrast, the silencing of Notch3 expression in JAR cells significantly enhanced proliferation, but suppressed migration and invasion. These data indicated that Notch2 and Notch3 mediate the invasion and migration of BeWo and JAR cells, and may play a potential role in early onset severe preeclampsia. © 2017. Published by The Company of Biologists Ltd.
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Edwards, Mary E.; Choo, Tze-Siang; Dickson, Cathryn A.; Scott, Catherine; Gidley, Michael J.; Reid, J.S. Grant
2004-01-01
Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1→6)-α-galactose (Gal) substitution of the (1→4)-β-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense (“hairpin loop”) constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T1 generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T1 generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T2 generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase. PMID:14988472
Eliminating Late Recurrence to Eradicate Breast Cancer
2015-09-01
induction of autophagy and antioxidant responses in Drosophila melanogaster . PLoS Genet. 9, e1003664 34 Rouschop, K.M. et al. (2010) The unfolded protein... genomic editing in human cells [8]. In contrast to RNA interference, CRISPR results in stable genetic changes in cell lines. We have generated the ...upcoming year. Since subtask 1d was delayed to pursue studies in the Fig 2. CRISP/Cas9-Mediated Genomic Deletion of cATGs. Top: Construct
Role of the EGF-Related Growth Factor Cripto in Murine Mammary Tumorigenesis
1999-10-01
release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in...function, we have made constructs that express secreted processed NODAL protein in transfected mammalian cells. For this purpose, we have used a wild-type...that processing of unmodified NODAL protein is dependent upon the cell line used for expression, which presumably reflects differential expression of
Human HLA-Ev (147) Expression in Transgenic Animals.
Matsuura, R; Maeda, A; Sakai, R; Eguchi, H; Lo, P-C; Hasuwa, H; Ikawa, M; Nakahata, K; Zenitani, M; Yamamichi, T; Umeda, S; Deguchi, K; Okuyama, H; Miyagawa, S
2016-05-01
In our previous study, we reported on the development of substituting S147C for HLA-E as a useful gene tool for xenotransplantation. In this study we exchanged the codon of HLA-Ev (147), checked its function, and established a line of transgenic mice. A new construct, a codon exchanging human HLA-Ev (147) + IRES + human beta 2-microgloblin, was established. The construct was subcloned into pCXN2 (the chick beta-actin promoter and cytomegalovirus enhancer) vector. Natural killer cell- and macrophage-mediated cytotoxicities were performed using the established the pig endothelial cell (PEC) line with the new gene. Transgenic mice with it were next produced using a micro-injection method. The expression of the molecule on PECs was confirmed by the transfection of the plasmid. The established molecules on PECs functioned well in regulating natural killer cell-mediated cytotoxicity and macrophage-mediated cytotoxicity. We have also successfully generated several lines of transgenic mice with this plasmid. The expression of HLA-Ev (147) in each mouse organ was confirmed by assessing the mRNA. The chick beta-actin promoter and cytomegalovirus enhancer resulted in a relatively broad expression of the gene in each organ, and a strong expression in the cases of the heart and lung. A synthetic HLA-Ev (147) gene with a codon usage optimized to a mammalian system represents a critical factor in the development of transgenic animals for xenotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Murovska, M F; Chernobayeva, L G; Miroshnichenko, O I; Tomsons, V P; Konicheva, V V; Ivanova, S V; Tikhonenko, T I
1992-11-01
A possible approach to control of bovine lymphoproliferative disease caused by bovine leukaemia virus (BLV) may be the development of an "antiviral information immunity" based on the effect of anti-sense RNA (asRNA). A numbers of constructs were obtained, under control of various promotors (herpesvirus thymidine kinase, T-antigen SV40 promoter), carrying as DNA against gene X, the expression product of which is a transactivator of viral transcription from the BLV LTR promotor. As a model system for the analysis of antiviral activity of constructs developed, cloned continuous cell lines of BLV-producing FLK cells were used. The level of BLV expression in cells transfected with the constructs was determined by various parameters. Differences were detected in different clones obtained from non-transfected cells, as well as variation between transfected clones, as measured by reverse transcriptase, competitive radio-immunoassay for BLV p24, the viral particle count on agar membrane, and the tumorigenicity for nude mice. The differences in inhibition of expression of BLV genes and their products may be explained in terms of the site of integration of asDNA and the number of integrated copies.
Sacramento, C B; Moraes, J Z; Denapolis, P M A; Han, S W
2010-08-01
The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.
Toth, Karoly; Djeha, Hakim; Ying, Baoling; Tollefson, Ann E; Kuppuswamy, Mohan; Doronin, Konstantin; Krajcsi, Peter; Lipinski, Kai; Wrighton, Christopher J; Wold, William S M
2004-05-15
We have constructed a novel oncolytic adenovirus (Ad) vector named VRX-009 that combines enhanced cell spread with tumor-specific replication. Enhanced spread, which could significantly increase antitumor efficacy, is mediated by overexpression of the Ad cytolytic protein named ADP (also known as E3-11.6K). Replication of VRX-009 is restricted to cells with a deregulated wnt signal transduction pathway by replacement of the wild-type Ad E4 promoter with a synthetic promoter consisting of five consensus binding sites for the T-cell factor transcription factor. Tumor-selective replication is indicated by several lines of evidence. VRX-009 expresses E4ORF3, a representative Ad E4 protein, only in colon cancer cell lines. Furthermore, VRX-009 replicates preferentially in colon cancer cell lines as evidenced by virus productivity 2 orders of magnitude higher in SW480 colon cancer cells than in A549 lung cancer cells. Replication in primary human bronchial epithelial cells and human umbilical vein endothelial cells was also significantly lower than in SW480 cells. When tested in human tumor xenografts in nude mice, VRX-009 effectively suppressed the growth of SW480 colon tumors but not of A549 lung tumors. VRX-009 may provide greater level of antitumor efficacy than standard oncolytic Ad vectors in tumors in which a defect in wnt signaling increases the level of nuclear beta-catenin.
Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1
YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE
2015-01-01
The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693
Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1.
Yang, Liang; Liu, Ren; Ma, Hong-Bin; Ying, Ming-Zhen; Wang, Ya-Jie
2015-09-01
The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 ( GSTP1 ) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G 2 /M phase arrest in the GSTP1 -expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1 -expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G 2 /M phase arrest.
Flores-Villanueva, Pedro O; Ganachari, Malathesha; Guio, Heinner; Mejia, Jaime A; Granados, Julio
2018-04-15
Lung cancer is a leading cause of cancer-related death among both men and women in the United States, where non-small cell lung cancer accounts for ∼85% of lung cancer. Lung adenocarcinoma (ADC) is the major histologic subtype. The presence of actionable mutations prompts the use of therapies designed to specifically address the deleterious effects of those cancer-driving mutations; these therapies have already shown promise in cases carrying those actionable mutations (∼30%). Innovative therapeutic approaches are needed for the treatment of 70% of patients suffering from lung ADC. Adoptive transfer of CD8 + T cells specific against cancer/testis (CT) Ags, whose protein expression is restricted to the gonads (testis and ovary) and cancerous cells, is an excellent alternative. In this study, we report the isolation of HLA-A*02:01/CT37 peptide-specific α and β TCR chains from a CD8 + T cell clone obtained from a patient suffering from lung ADC. We also report the development of an innovative CD3ζ construct. With those TCR chains and the engineered (modified) CD3ζ chain, we produced a construct that when transduced into CD8 + T cells is capable of redirecting transduced CD8 + T cell cytotoxic activity and IFN-γ secretion against peptide-pulsed autologous cells and HLA-A*02:01 -positive and CT37-expressing lung ADC cell lines. Our findings will launch the development of innovative adoptive transfer immunotherapies for the treatment of lung ADC, targeting the most prevalent HLA molecules and CT37 peptides restricted by these molecules. Copyright © 2018 by The American Association of Immunologists, Inc.
Guio, Heinner
2018-01-01
Lung cancer is a leading cause of cancer-related death among both men and women in the United States, where non–small cell lung cancer accounts for ∼85% of lung cancer. Lung adenocarcinoma (ADC) is the major histologic subtype. The presence of actionable mutations prompts the use of therapies designed to specifically address the deleterious effects of those cancer-driving mutations; these therapies have already shown promise in cases carrying those actionable mutations (∼30%). Innovative therapeutic approaches are needed for the treatment of 70% of patients suffering from lung ADC. Adoptive transfer of CD8+ T cells specific against cancer/testis (CT) Ags, whose protein expression is restricted to the gonads (testis and ovary) and cancerous cells, is an excellent alternative. In this study, we report the isolation of HLA-A*02:01/CT37 peptide–specific α and β TCR chains from a CD8+ T cell clone obtained from a patient suffering from lung ADC. We also report the development of an innovative CD3ζ construct. With those TCR chains and the engineered (modified) CD3ζ chain, we produced a construct that when transduced into CD8+ T cells is capable of redirecting transduced CD8+ T cell cytotoxic activity and IFN-γ secretion against peptide-pulsed autologous cells and HLA-A*02:01–positive and CT37-expressing lung ADC cell lines. Our findings will launch the development of innovative adoptive transfer immunotherapies for the treatment of lung ADC, targeting the most prevalent HLA molecules and CT37 peptides restricted by these molecules. PMID:29555781
Networking of differentially expressed genes in human cancer cells resistant to methotrexate
2009-01-01
Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436
MiR-33a Decreases High-Density Lipoprotein-Induced Radiation Sensitivity in Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Adam R.; Bambhroliya, Arvind; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
Purpose: We previously showed that high-density lipoprotein (HDL) radiosensitizes inflammatory breast cancer (IBC) cells in vitro and is associated with better local control after radiation therapy in IBC patients. The microRNA miR-33 family negatively regulates the adenosine triphosphate binding cassette transporter subfamily A member 1. We hypothesized that variations in miR-33a expression in IBC cancer cells versus non-IBC cells would correlate with radiation sensitivity following exposure to HDL in vitro. Methods and Materials: MiR-33a expression was analyzed by reverse transcriptase–polymerase chain reaction in 4 cell lines representing common clinical breast cancer subtypes. Overexpression and knockdown of miR-33a was demonstrated via transfection of anmore » miR-33a mimic or an anti-miR-33a construct in high- and low-expressing miR-33a cell lines. Clonogenic survival in vitro in these cells was quantified at baseline and following HDL treatment. MiR-33a expression on distant relapse-free survival (DRFS) of 210 cases downloaded from the Oxford breast cancer dataset was determined. Results: Expression levels of miR-33a were lower in IBC cell lines and IBC tumor samples than in non-IBC cell lines and normal breast tissue. Cholesterol concentrations in the cell membranes were higher in IBC cells than in non-IBC cells. Clonogenic survival following 24 hours of HDL treatment was decreased in response to irradiation in the low-miR-33a–expressing cell lines SUM149 and KPL4, but survival following HDL treatment decreased in the high-miR-33a–expressing cell lines MDA-MB-231 and SUM159. In the high-miR-33a–expressing cell lines, anti-miR-33a transfection decreased radiation resistance in clonogenic assays. Conversely, in the low-miR-33a–expressing cell lines, the miR-33a mimic reversed the HDL-induced radiation sensitization. Breast cancer patients in the top quartile based on miR-33a expression had markedly lower rates of DRFS than the bottom quartile (P=.0228, log-rank test). For breast cancer patients treated with radiation, high miR-33a expression predicted worse overall survival (P=.06). Conclusions: Our results reveal miR-33a negatively regulates HDL-induced radiation sensitivity in breast cancer.« less
Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun
2018-01-01
In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.
Engineering muscle cell alignment through 3D bioprinting.
Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele; Trombetta, Marcella; Rainer, Alberto
2017-09-01
Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic ® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017. © 2017 Wiley Periodicals, Inc.
Li, Chunping; Yang, Xiaolin; Xu, Ming; Zhang, Jinlong; Sun, Na
2013-05-01
Occupational and environmental exposures to lead (Pb) are a worldwide concern. DNA methylation plays an important role in the development of Pb toxicity. Here, we try to find out the evidence to prove that the methylation of the LINE-1 promoter may be involved in Pb toxicity. To determine whether the methylation level of the LINE-1 is associated with the risk of Pb poisoning, we first constructed a Pb acetate-treated cell model to detect the association between LINE-1 methylation and Pb exposure. A case-control study involving 53 workers from a battery plant and 57 healthy volunteers with matching age and gender distribution was carried out. We employed methylation-specific real-time PCR to determine the relationship between LINE-1 methylation level and Pb exposure. In the cell model, Pb exposure significantly decreased the level of LINE-1 methylation (p = 0.009). Significant difference in methylation frequencies was found between the exposed and control samples (p < 0.001). We also found a decreasing trend of LINE-1 methylation level with increasing blood Pb level (p < 0.001). Therefore, the LINE-1 promoter methylation might contribute to the risk of Pb poisoning and identified a possible epigenetic biomarker for Pb toxicity, especially in individuals occupationally exposed to Pb.
Yin, Jiqing; Liu, Wenqiang; Liu, Chao; Zhao, Guimin; Zhang, Yihua; Liu, Weishuai; Hua, Jinlian; Dou, Zhongying; Lei, Anmin
2010-12-01
The integrity and transparency of cornea plays a key role in vision. Limbal Stem Cells (LSCs) are precursors of cornea, which are responsible for self-renewal and replenishing corneal epithelium. Though it is successful to cell replacement therapy for impairing ocular surface by Limbal Stem Cell Transplantation (LSCT), the mechanism of renew is unclear after LSCT. To real time follow-up the migration and differentiation of corneal transplanted epithelial cells after transplanting, we transfected venus (a fluorescent protein gene) into goat LSCs, selected with G418 and established a stable transfected cell line, named GLSC-V. These cells showed green fluorescence, and which could maintain for at least 3 months. GLSC-V also were positive for anti-P63 and anti-Integrinbeta1 antibody by immunofluorescent staining. We founded neither GLSC-V nor GLSCs expressed keratin3 (k3) and keratinl2 (k12). However, GLSC-V had higher levels in expression of p63, pcna and venus compared with GLSCs. Further, we cultivated the cells on denude amniotic membrane to construct tissue engineered fluorescent corneal epithelial sheets. Histology and HE staining showed that the constructed fluorescent corneal epithelial sheets consisted of 5-6 layers of epithelium. Only the lowest basal cells of fluorescent corneal epithelial sheets expressed P63 analyzed by immunofluorescence, but not superficial epithelial cells. These results showed that our constructed fluorescent corneal epithelial sheets were similar to the normal corneal epithelium in structure and morphology. This demonstrated that they could be transplanted for patents with corneal impair, also may provide a foundation for the study on the mechanisms of corneal epithelial cell regeneration after LSCT.
[Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects].
Shi, Gui-Lan; Zhuang, Xiu-Fen; Han, Xiang-Ping; Li, Jie; Zhang, Yu; Zhang, Shu-Ren; Liu, Bin-Lei
2012-02-01
The aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF. oHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded. Both oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days after tumor cells inoculation whereas all the mice in the PBS group died by day 22 (P < 0.01). The anti-tumor mechanism of the newly constructed oHSV2hGM-CSF against B16R cell tumor appeared to include the directly oncolytic activity and the induction of anti-tumor immunity to some degree. The findings of our study demonstrate that the newly constructed oHSV2hGM-CSF has potent anti-tumor activity in vitro to many tumor cell lines and in vive to the transplanted B16R tumor models.
Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
Yumlu, Saniye; Stumm, Jürgen; Bashir, Sanum; Dreyer, Anne-Kathrin; Lisowski, Pawel; Danner, Eric; Kühn, Ralf
2017-05-15
Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones. Copyright © 2017 Elsevier Inc. All rights reserved.
Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
Mahata, Barun; Biswas, Kaushik
2017-01-01
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
Effects of Notch2 and Notch3 on Cell Proliferation and Apoptosis of Trophoblast Cell Lines.
Zhao, Wei-Xiu; Zhuang, Xu; Huang, Tao-Tao; Feng, Ran; Lin, Jian-Hua
2015-01-01
To investigate the effect of Notch2 and Notch3 on cell proliferation and apoptosis of two trophoblast cell lines, BeWo and JAR. Notch2 and Notch3 expression in BeWo and JAR cells was upregulated or downregulated using lentivirus-mediated overexpression or RNA interference. The effect of Notch2 and Notch3 on cell proliferation was assessed by the CCK-8 assay. The effect of Notch2 and Notch3 on the apoptosis of BeWo and JAR cells was evaluated by flow cytometry using the Annexin V-PE Apoptosis kit. Lentivirus-based overexpression vectors were constructed by cloning the full-length coding sequences of human Notch2 and Notch3 C-terminally tagged with GFP or GFP alone (control) into a lentivirus-based expression vector. Lentivirus-based gene silencing vectors were prepared by cloning small interfering sequences targeting human Notch2 and Notch3 and scrambled control RNA sequence into a lentivirus-based gene knockdown vector. The effect of Notch2 and Notch3 on cell proliferation was assessed by the CCK-8 assay. And the effect of Notch2 and Notch3 on the apoptosis of BeWo and JAR cells was evaluated by flow cytometry using the Annexin V PE Apoptosis kit. We found that the downregulation of Notch2 and Notch3 gene expression in BeWo and JAR cells resulted in an increase in cell proliferation, while upregulation of Notch3 and Notch2 expression led to a decrease in cell proliferation. Moreover, the overexpression of Notch3 and Notch2 in BeWo and JAR cells reduced apoptosis in these trophoblast cell lines, whereas apoptosis was increased in the cells in which the expression of Notch3 and Notch2 was downregulated. Notch2 and Notch3 inhibited both cell proliferation and cell apoptosis in BeWo and JAR trophoblast cell lines.
Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility
2014-01-01
Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274
Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.
Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T
2013-11-01
Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cryopreservation of tissue engineered constructs for bone.
Kofron, Michelle D; Opsitnick, Natalie C; Attawia, Mohamed A; Laurencin, Cato T
2003-11-01
The large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering. Experimental samples were tested for their ability to maintain cell viability, following low temperature banking for one week, in solutions of the penetrating cryoprotective agents, dimethylsulfoxide (DMSO), ethylene glycol, and glycerol. Results indicated the DMSO solution yielded the greatest percent cell survival for SaOS-2 cells adhered to both the 2D- and 3D-PLAGA scaffolds; therefore, DMSO was used to cryopreserve mineralizing primary rabbit osteoblasts cells adhered to 2D-PLAGA matrices for 35 days. Results indicated retention of the extracellular matrix architecture as no statistically significant difference in the pre- and post-thaw mineralized structures was measured. Percent cell viability of the mineralized constructs following low temperature storage was approximately 50%. These are the first studies to address the issue of preservation techniques for tissue engineered constructs. The ability to successfully cryopreserve mineralized tissue engineered matrices for bone may offer an unlimited and readily available source of bone-like materials for orthopaedic applications.
Rentsch, Markus; Kienle, Klaus; Mueller, Thomas; Vogel, Mandy; Jauch, Karl Walter; Püllmann, Kerstin; Obed, Aiman; Schlitt, Hans J; Beham, Alexander
2005-11-27
Primary graft dysfunction due to ischemia and reperfusion injury represents a major problem in liver transplantation. The related cell stress may induce apoptosis, which can be suppressed by bcl-2. The purpose of the study was to investigate the effect of adenoviral bcl-2 gene transfer on early graft function and survival in rat liver transplantation. An adenoviral construct that transfers bcl-2 under the control of a tetracycline inducible promoter was generated (advTetOn bcl-2) and used with a second adenovirus that transfers the repressor protein (advCMV Rep). Forty-eight hours before explantation, donor rats were treated with advTetOn bcl-2/ advCMV Rep (n=7) and doxycyclin, with the control adenoviral construct advCMV GFP (n=8) or with doxycyclin alone (n=8). Liver transplantation was performed following 16 hours of cold storage (UW). Bcl-2 expression and intrahepatic apoptosis was assessed. Bile flow was monitored 90 min posttransplantation. The endpoint for survival was 7 days. Bcl-2 was expressed in hepatocytes and sinusoidal lining cells. This was associated with a significant reduction of apoptotic sinusoidal lining cells and hepatocytes after 24 hours and 7 days. Bile production was significantly higher following bcl-2 pretreatment. Furthermore, bcl-2 transfer resulted in significantly improved survival (100% vs. 50% both control groups). Adenoviral bcl-2 transfer results in protein expression in hepatocytes and sinusoidal lining cells resulting in early graft function and survival enhancement after prolonged ischemia and reperfusion injury. The inhibition of apoptosis in the context of liver transplantation might be a reasonable approach in the treatment of graft dysfunction.
Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu
2016-01-01
We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less
Sensory role of actin in auxin-dependent responses of tobacco BY-2.
Huang, Xiang; Maisch, Jan; Nick, Peter
2017-11-01
Polar auxin transport depends on the polar localization of auxin-efflux carriers. The cycling of these carriers between cell interior and plasma membrane depends on actin. The dynamic of actin not only affects auxin transport, but also changes the auxin-responsiveness. To study the potential link between auxin responsiveness and actin dynamics, we investigated developmental responses of the non-transformed BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cell line and the transgenic BY-2 strain GF11 (stably transformed BY-2 cells with a GFP-fimbrin actin-binding domain 2 construct). The developmental process was divided into three distinct stages: cell cycling, cell elongation and file disintegration. Several phenotypes were measured to monitor the cellular responses to different concentrations of exogenous natural auxin (Indole-3-acetic acid, IAA). We found that auxin stimulated and prolonged the mitotic activity, and delayed the exit from the proliferation phase. However, both responses were suppressed in the GF11 line. At the stationary phase of the cultivation cycle, auxin strongly accelerated the cell file disintegration. Interestingly, it was not suppressed but progressed to a more complete disintegration in the GF11 line. During the cultivation cycle, we also followed the organization of actin in the GF11 line and did not detect any significant difference in actin organization from untreated control or exogenous IAA treatment. Therefore, our findings indicate that the specific differences observed in the GF11 line must be linked with a function of actin that is not structural. It means that there is a sensory role of actin for auxin signaling. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zhao, H P; Gao, Y F; Xia, D; Zhao, Z Q; Wu, S; Wang, X H; Liu, H X; Xiao, C; Xing, X M; He, Y
2018-05-06
Objective: To establish the immortalized mouse brain microvascular pericytes model and to apply to the cerebrovascular toxicants screening study. Methods: Brain pericytes were isolated from 3 weeks of mice by tissue digestion. Immortalized pericyte cell line was constructed by infecting with LT retrovirus. Monoclone was selected to purify the immortalized pericyte cell line. The pericyte characteristics and purity were explored by immunocytochemistry. Cell proliferation was measured by using the Pomega MTS cell Proliferation Colorimetric Assay Kit. Pericytes were treated with 0, 160, 320, 640, 1 280, 2 560 μmol/L lead acetate, 0, 5, 10, 20, 40, 80 μmol/L cadmium chloride and 0, 5, 10, 20, 40, 80 μmol/L sodium arsenite in 24 hours. Cell toxicity of each group was determined by MTS assay, median lethal dose (LD(50)) was calculated in linear regression. Results: Mouse brain pericytes were successfully isolated by tissue separation and enzyme digestion method. After immortalized by LT retroviruses, monoclone was selected and expanded to establish pericyte cell line. The brain pericytes exhibited typical long spindle morphology and positive staining for α-SMA and Vimentin. The proliferation of brain pericytes cell lines was very slowly, and the doubling time was about 48 hours. The proliferation of immortalized brain pericytes cell lines was very quickly, and the doubling time was about 24 hours. After lead acetate, cadmium chloride and sodium arsenite treatment for 24 hours respectively, gradual declines in cell viability were observed. The LD(50) of lead acetate was 2 025.0 μmol/L, the LD(50) of cadmium chloride was 36.6 μmol/L, and the LD(50) of sodium arsenite was 33.2 μmol/L. Conclusion: The immortalized mouse brain microvascular pericyte model is established successfully by infecting with LT retrovirus, and can be applied to screen cerebrovascular toxicants. The toxicity of these toxicants to immortalized mouse brain microvascular pericyte is in sequence: sodium arsenite,cadmium chloride, lead acetate.
NASA Astrophysics Data System (ADS)
Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo
2012-08-01
The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.
7 CFR 1726.51 - Distribution line construction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of net utility plant (NUP), whichever is greater, per calendar year of distribution line construction... 7 Agriculture 11 2010-01-01 2010-01-01 false Distribution line construction. 1726.51 Section 1726..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Distribution Facilities § 1726...
The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.
Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K
2015-01-01
Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an alternate means to achieve functional bladder regeneration.
Bandeira, Vanessa S; Tomás, Hélio A; Alici, Evren; Carrondo, Manuel J T; Coroadinha, Ana S
2017-04-01
Gammaretrovirus and lentivirus are the preferred viral vectors to genetically modify T and natural killer cells to be used in immune cell therapies. The transduction efficiency of hematopoietic and T cells is more efficient using gibbon ape leukemia virus (GaLV) pseudotyping. In this context gammaretroviral vector producer cells offer competitive higher titers than transient lentiviral vectors productions. The main aim of this work was to identify the key parameters governing GaLV-pseudotyped gammaretroviral vector productivity in stable producer cells, using a retroviral vector expression cassette enabling positive (facilitating cell enrichment) and negative cell selection (allowing cell elimination). The retroviral vector contains a thymidine kinase suicide gene fused with a ouabain-resistant Na + ,K + -ATPase gene, a potential safer and faster marker. The establishment of retroviral vector producer cells is traditionally performed by randomly integrating the retroviral vector expression cassette codifying the transgene. More recently, recombinase-mediated cassette exchange methodologies have been introduced to achieve targeted integration. Herein we compared random and targeted integration of the retroviral vector transgene construct. Two retroviral producer cell lines, 293 OuaS and 293 FlexOuaS, were generated by random and targeted integration, respectively, producing high titers (on the order of 10 7 infectious particles·ml -1 ). Results showed that the retroviral vector transgene cassette is the key retroviral vector component determining the viral titers notwithstanding, single-copy integration is sufficient to provide high titers. The expression levels of the three retroviral constructs (gag-pol, GaLV env, and retroviral vector transgene) were analyzed. Although gag-pol and GaLV env gene expression levels should surpass a minimal threshold, we found that relatively modest expression levels of these two expression cassettes are required. Their levels of expression should not be maximized. We concluded, to establish a high producer retroviral vector cell line only the expression level of the genomic retroviral RNA, that is, the retroviral vector transgene cassette, should be maximized, both through (1) the optimization of its design (i.e., genetic elements composition) and (2) the selection of high expressing chromosomal locus for its integration. The use of methodologies identifying and promoting integration into high-expression loci, as targeted integration or high-throughput screening are in this perspective highly valuable.
Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties.
Yue, Zhenyu; Zhang, Wenna; Lu, Yongming; Yang, Qiaoyue; Ding, Qiuying; Xia, Junfeng; Chen, Yan
2015-01-01
Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.
Miranda, José A; Avonce, Nelson; Suárez, Ramón; Thevelein, Johan M; Van Dijck, Patrick; Iturriaga, Gabriel
2007-11-01
Improving stress tolerance is a major goal for agriculture. Trehalose is a key molecule involved in drought tolerance in anhydrobiotic organisms. Here we describe the construction of a chimeric translational fusion of yeast trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. This construct was overexpressed in yeast cells displaying both TPS and TPP enzyme activities and trehalose biosynthesis capacity. In Arabidopsis thaliana, the gene fusion was overexpressed using either the 35S promoter or the stress-regulated rd29A promoter. Transgene insertion in the genome was checked by PCR and transcript expression by RT-PCR. Several independent homozygous lines were selected in the presence of kanamycin and further analyzed. Trehalose was accumulated in all these lines at low levels. No morphological or growth alterations were observed in lines overexpressing the TPS1-TPS2 construct, whereas plants overexpressing the TPS1 alone under the control of the 35S promoter had aberrant growth, color and shape. TPS1-TPS2 overexpressor lines were glucose insensitive, consistent with a suggested role of trehalose/T6P in modulating sugar sensing and carbohydrate metabolism. Moreover, TPS1-TPS2 lines displayed a significant increase in drought, freezing, salt and heat tolerance. This is the first time that trehalose accumulation in plants is shown to protect against freezing and heat stress. Therefore, these results demonstrate that engineering trehalose metabolism with a yeast TPS-TPP bifunctional enzyme confers multiple stress protection in plants, comprising a potential tool to improve stress-tolerance in crops.
Expression of human argininosuccinate synthetase after retroviral-mediated gene transfer.
Wood, P A; Partridge, C A; O'Brien, W E; Beaudet, A L
1986-09-01
The cDNA sequence for human argininosuccinate synthetase (AS) was introduced into plasmid expression vectors with an SV40 promoter or Rous sarcoma virus promoter to construct pSV2-AS and pRSV-AS, respectively, and human enzyme was synthesized after gene transfer into Chinese hamster cells. The functional cDNA was inserted into the retroviral vectors pZIP-NeoSV(X) and pZIP-NeoSV(B). Ecotropic AS retrovirus was produced after calcium-phosphate-mediated gene transfer of these constructions into the packaging cell line psi-2, and viral titers up to 10(5) CFU/ml were obtained. Recombinant AS retrovirus was evaluated by detecting G-418-resistant colonies after infection of the rodent cells, XC, NRK, and 3T3. Colonies were also obtained when infected XC cells were selected in citrulline medium for expression of AS activity. Southern blot analysis of infected cells demonstrated that the recombinant retroviral genome was not altered grossly after infecting some rodent cells, while other cells showed evidence of rearrangement. A rapid assay for detecting AS retrovirus was developed based on the incorporation of [14C]citrulline into protein by intact 3T3 cells or XC cells.
Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids
Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad
2013-01-01
The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293
Zhang, Zhiwen; Sha, Xianyi; Shen, Anle; Wang, Yongzhong; Sun, Zhaogui; Gu, Zheng; Fang, Xiaoling
2008-06-06
A novel nonviral gene transfer vector was developed by modifying nanostructured lipid carrier (NLC) with cetylated polyethylenimine (PEI). Polycation nanostructured lipid carrier (PNLC) was prepared using the emulsion-solvent evaporation method. Its in vitro gene transfer properties were evaluated in the human lung adenocarcinoma cell line SPC-A1 and Chinese Hamster Ovary (CHO) cells. Enhanced transfection efficiency of PNLC was observed after the addition of triolein to the PNLC formulation and the transfection efficiency of the optimized PNLC was comparable to that of Lipofectamine 2000. In the presence of 10% serum the transfection efficiency of the optimal PNLC was not significantly changed in either cell line, whereas that of Lipofectamine 2000 was greatly decreased in both. Thus, PNLC is an effective nonviral gene transfer vector and the gene delivery activity of PNLC was enhanced after triolein was included into the PNLC formulation.
MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems.
Sakuma, Tetsushi; Nakade, Shota; Sakane, Yuto; Suzuki, Ken-Ichi T; Yamamoto, Takashi
2016-01-01
Programmable nucleases enable engineering of the genome by utilizing endogenous DNA double-strand break (DSB) repair pathways. Although homologous recombination (HR)-mediated gene knock-in is well established, it cannot necessarily be applied in every cell type and organism because of variable HR frequencies. We recently reported an alternative method of gene knock-in, named the PITCh (Precise Integration into Target Chromosome) system, assisted by microhomology-mediated end-joining (MMEJ). MMEJ harnesses independent machinery from HR, and it requires an extremely short homologous sequence (5-25 bp) for DSB repair, resulting in precise gene knock-in with a more easily constructed donor vector. Here we describe a streamlined protocol for PITCh knock-in, including the design and construction of the PITCh vectors, and their delivery to either human cell lines by transfection or to frog embryos by microinjection. The construction of the PITCh vectors requires only a few days, and the entire process takes ∼ 1.5 months to establish knocked-in cells or ∼ 1 week from injection to early genotyping in frog embryos.
Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation
NASA Astrophysics Data System (ADS)
Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei
2016-06-01
The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.
Nasir, Amjad M; Yang, Qianyi; Chalker, Douglas L; Forney, James D
2015-02-01
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong
2012-12-01
We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.
2010-09-01
Task Summary: Construct expression plasmids, purify proteins, test proteins for cytotoxic effects on breast cancer cell lines. Progress: The majority...either Pseudomonas exotoxin PE38 protein or a recombinant form of a plant toxin named gelonin (denoted rGel) act as the cytotoxic cargo. We found that...ability to kill Fn14-positive breast cancer cells the cytotoxic effect was not impressive (see Annual Report). Another approach listed in this Aim was
Homocysteine elicits an M1 phenotype in murine macrophages through an EMMPRIN-mediated pathway.
Winchester, Lee J; Veeranki, Sudhakar; Givvimani, Srikanth; Tyagi, Suresh C
2015-07-01
Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the "classically activated/destructive" (M1), and the "alternatively activated/constructive" (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 μmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.
Giri, Shibashish; Bader, Augustinus
2014-09-01
Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a conditional human fetal hepatocytes cell line with mesenchymal characteristics. Thus immortalization of human fetal hepatocytes cell line by telomerase biology offers a great challenge to examine basic biological mechanisms which are directly related to human and best cell source having unlimited population doubling for bioartificial support without any risk of replicative senescence and pathogenic risks.
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Méot, F.; Tsoupas, N.; Brooks, S.; Trbojevic, D.
2018-07-01
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. This approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbach cell.
Production and engineering methods for CARB: TEK (trade name) batteries in fork lift trucks
NASA Astrophysics Data System (ADS)
Schaefer, J. C.
1975-03-01
The purpose of this program is to develop the manufacturing technology of the Carb Tek molten salt Li/Cl battery to the prototype level. This purpose is being accomplished by actually constructing cells on a pilot line, optimizing process steps, establishing quality control procedures, and engineering appropriate changes. The majority of the cell work is performed in a controlled argon atmosphere. Results show that the carbon selected for the cell cathode can develop the required 5 Whr/cubic inch even when damaged by stress cracks. Anode contamination and fabrication problems have been reduced by a new alloying technique. Cell yields are dependent on weld quality.
Klerx, J P; Jansen Verplanke, C; Blonk, C G; Twaalfhoven, L C
1988-07-22
A compact and easily portable hollow fibre cell culture system using commercially available components is described. The construction is relatively cheap and simple. As the hollow fibre cell culture cartridge we chose an inexpensive haemodialyser. Though not specially developed for this purpose this performed excellently in our system. Using a serum-free medium supplemented with ethanolamine, selenium and transferrin, an average antibody production of 30-200 mg per cartridge per day could be achieved, depending on the cell line. Because a serum-free medium was used, monoclonal antibodies could readily be purified on a large scale.
Huerta-Yepez, Sara; Vega, Mario; Escoto-Chavez, Saul E; Murdock, Benjamin; Sakai, Toshiyuki; Baritaki, Stavroula; Bonavida, Benjamin
2009-02-01
Treatment of TRAIL-resistant tumor cells with the nitric oxide donor DETANONOate sensitizes the tumor cells to TRAIL-induced apoptosis concomitantly with DR5 upregulation. The mechanism of sensitization was examined based on the hypothesis that DETANONOate inhibits a transcription repressor Yin Yang 1 (YY1) that negatively regulates DR5 transcription. Treatment of the prostate carcinoma cell lines with DETANONOate inhibited both NF-kappaB and YY1 DNA-binding activities concomitantly with upregulation of DR5 expression. The direct role of YY1 in the regulation of TRAIL resistance was demonstrated in cells treated with YY1 siRNA resulting in TRAIL-induced apoptosis. The role of YY1 in the transcriptional regulation of DR5 was examined in cells treated with a DR5 luciferase reporter system (pDR5) and two constructs, namely, the pDR5/-605 construct with a deletion of the putative YY1 DNA-binding region (-1224 to -605) and a construct pDR5-YY1 with a mutation of the YY1 DNA-binding site. A significant (3-fold) augmentation of luciferase activity over baseline transfection with pDR5 was observed in cells transfected with the modified constructs. ChIP analysis corroborated the YY1 binding to the DR5 promoter. In vivo, tissues from nude mice bearing the PC-3 xenograft and treated with DETANONOate showed inhibition of YY1 and upregulation of DR5. The present findings demonstrate that YY1 negatively regulates DR5 transcription and expression and these correlated with resistance to TRAIL-induced apoptosis. DETANONOate inhibits both NF-kappaB and YY1 and in combination with TRAIL reverses tumor cell resistance to TRAIL apoptosis.
Belkorchia, Abdel; Biderre, Corinne; Militon, Cécile; Polonais, Valérie; Wincker, Patrick; Jubin, Claire; Delbac, Frédéric; Peyretaillade, Eric; Peyret, Pierre
2008-03-01
Brachiola algerae has a broad host spectrum from human to mosquitoes. The successful infection of two mosquito cell lines (Mos55: embryonic cells and Sua 4.0: hemocyte-like cells) and a human cell line (HFF) highlights the efficient adaptive capacity of this microsporidian pathogen. The molecular karyotype of this microsporidian species was determined in the context of the B. algerae genome sequencing project, showing that its haploid genome consists of 30 chromosomal-sized DNAs ranging from 160 to 2240 kbp giving an estimated genome size of 23 Mbp. A contig of 12,269 bp including the DNA sequence of the B. algerae ribosomal transcription unit has been built from initial genomic sequences and the secondary structure of the large subunit rRNA constructed. The data obtained indicate that B. algerae should be an excellent parasitic model to understand genome evolution in relation to infectious capacity.
Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.
Tang, Binhua; Wang, Xin
2015-01-01
DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.
Insulators to improve expression of a 3(')IgH LCR-driven reporter gene in transgenic mouse models.
Guglielmi, Laurence; Le Bert, Marc; Truffinet, Véronique; Cogné, Michel; Denizot, Yves
2003-08-01
A locus control region (LCR) containing four transcriptional enhancers lies downstream of the IgH chain locus. We studied transgenes carrying a 3(')IgH LCR-driven GFP reporter gene for expression and B cell differentiation stage specificity. We also compared transgenes that were or were not flanked by two copies of the beta-globin HS4 insulator, an element defined by its ability to protect transgenes from the influences of surrounding genes at the insertion site. Results indicate that insulators are instrumental in sustaining GFP expression in GFP-3(')LCR transgenic mice when they were included. Flow cytometry experiments reported a strictly B cell specific GFP expression from pre-B cells in bone marrow to mature B cells in spleen. Despite addition of 5(')HS4 insulators to the GFP-3(')LCR construct, complete transgene silencing occurred in some transgenic lines and was systematically observed in ageing animals from all lines.
Lemmon, Jason C M; McFarland, Ryan J; Rybicka, Joanna M; Balce, Dale R; McKeown, Kyle R; Krohn, Regina M; Matsunaga, Terry O; Yates, Robin M
2011-08-31
The professional phagocytes, such as macrophages and dendritic cells, are the subject of numerous research efforts in immunology and cell biology. The use of primary phagocytes in these investigations however, are limited by their inherent resistance to transfection with DNA constructs. As a result, the use of phagocyte-like immortalized cell lines is widespread. While these cell lines are transfection permissive, they are generally regarded as poor biological substitutes for primary phagocytes. By exploiting the phagocytic machinery of primary phagocytes, we developed a non-viral method of DNA transfection of macrophages that employs intraphagosomal sonoporation mediated by internalized lipid-based microbubbles. This approach enables the transfection of primary phagocytes in vitro, with a modest, but reliable efficiency. Furthermore, this methodology was readily adapted to transfect murine peritoneal macrophages in vivo. This technology has immediate application to current research efforts and has potential for use in gene therapy and vaccination strategies. Copyright © 2011 Elsevier B.V. All rights reserved.
Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines.
Ravikumar, S; Fredimoses, M; Gnanadesigan, M
2012-02-01
To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) µg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 µg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.
NASA Astrophysics Data System (ADS)
Liu, Chen; Tang, Guang-Rui; Jiang, Ming; Dong, Yu-Ming
2017-09-01
According to the practical situation of stringing construction for Ultra High Voltage (UHV) overhead transmission line, construction technology standardization of primary guide rope laying by multi-rotor aircraft is studied. This paper mainly focuses on the construction preparation, test flight and technology of laying primary guide rope. The summary of the construction technology standardization of primary guide rope laying by multi-rotor aircraft in stringing construction are useful in further guiding practical construction of transmission line.
Rescue of a Porcine Anellovirus (Torque Teno Sus Virus 2) from Cloned Genomic DNA in Pigs
Huang, Yao-Wei; Patterson, Abby R.; Opriessnig, Tanja; Dryman, Barbara A.; Gallei, Andreas; Harrall, Kylie K.; Vaughn, Eric M.; Roof, Michael B.
2012-01-01
Anelloviruses are a group of single-stranded circular DNA viruses infecting humans and other animal species. Animal models combined with reverse genetic systems of anellovirus have not been developed. We report here the construction and initial characterization of full-length DNA clones of a porcine anellovirus, torque teno sus virus 2 (TTSuV2), in vitro and in vivo. We first demonstrated that five cell lines, including PK-15 cells, are free of TTSuV1 or TTSuV2 contamination, as determined by a real-time PCR and an immunofluorescence assay (IFA) using anti-TTSuV antibodies. Recombinant plasmids harboring monomeric or tandem-dimerized genomic DNA of TTSuV2 from the United States and Germany were constructed. Circular TTSuV2 genomic DNA with or without introduced genetic markers and tandem-dimerized TTSuV2 plasmids were transfected into PK-15 cells, respectively. Splicing of viral mRNAs was identified in transfected cells. Expression of TTSuV2-specific open reading frame 1 (ORF1) in cell nuclei, especially in nucleoli, was detected by IFA. However, evidence of productive TTSuV2 infection was not observed in 12 different cell lines transfected with the TTSuV2 DNA clones. Transfection with circular DNA from a TTSuV2 deletion mutant did not produce ORF1 protein, suggesting that the observed ORF1 expression is driven by TTSuV2 DNA replication in cells. Pigs inoculated with either the tandem-dimerized clones or circular genomic DNA of U.S. TTSuV2 developed viremia, and the introduced genetic markers were retained in viral DNA recovered from the sera of infected pigs. The availability of an infectious DNA clone of TTSuV2 will facilitate future study of porcine anellovirus pathogenesis and biology. PMID:22491450
Buskermolen, Jeroen K; Reijnders, Christianne M A; Spiekstra, Sander W; Steinberg, Thorsten; Kleverlaan, Cornelis J; Feilzer, Albert J; Bakker, Astrid D; Gibbs, Susan
2016-08-01
Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics.
Buskermolen, Jeroen K.; Reijnders, Christianne M.A.; Spiekstra, Sander W.; Steinberg, Thorsten; Kleverlaan, Cornelis J.; Feilzer, Albert J.; Bakker, Astrid D.
2016-01-01
Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics. PMID:27406216
Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping
2017-01-01
Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.
Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.
Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali
2010-01-01
Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.
Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A
2016-10-10
MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS.
Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang
2017-02-01
Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.
Kageyama, Tatsuto; Kakegawa, Takahiro; Osaki, Tatsuya; Enomoto, Junko; Ito, Taichi; Nittami, Tadashi; Fukuda, Junji
2014-06-01
Fabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures. The in situ crosslinkable hydrogel was composed of hydrazide-modified gelatin (gelatin-ADH) and aldehyde-modified hyaluronic acid (HA-CHO). By simply mixing these two solutions, the gelation occurred in less than 20 s through the formation of a stable hydrazone bond. To rapidly transfer cells from a culture surface to the hydrogel, we utilized a zwitterionic oligopeptide, which forms a self-assembled molecular layer on a gold surface. Human umbilical vein endothelial cells adhering on a gold surface via the oligopeptide layer were transferred to the hydrogel within 5 min, along with electrochemical desorption of the oligopeptides. This approach was applicable to cylindrical needles 200-700 µm in diameter, resulting in the formation of perfusable microchannels where the internal surface was fully enveloped with the transferred endothelial cells. The entire fabrication process was completed within 10 min, including 20 s for the hydrogel crosslinking and 5 min for the electrochemical cell transfer. This rapid fabrication approach may provide a promising strategy to construct perfusable vasculatures in cell-dense tissue constructs and subsequently allow cells to organize complicated and fully vascularized tissues while preventing hypoxic cell injury.
The world of epithelial sheets.
Honda, Hisao
2017-06-01
An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.
NASA Astrophysics Data System (ADS)
Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
The time for electrical conduction blockade induced by a photodynamic reaction was studied on a myocardial cell wire in vitro and an in silico simulation model was constructed to understand the necessary time for electrical conduction blockade for the wire. Vulnerable state of the cells on a laser interaction would be an unstable and undesirable state since the cells might progress to completely damaged or repaired to change significantly therapeutic effect. So that in silico model, which can calculate the vulnerable cell state, is needed. Understanding an immediate electrical conduction blockade is needed for our proposed new methodology for tachyarrhythmia catheter ablation applying a photodynamic reaction. We studied the electrical conduction blockade occurrence on the electrical conduction wire made of cultured myocardial cells in a line shape and constructed in silico model based on this experimental data. The intracellular Ca2+ ion concentrations were obtained using Fluo-4 AM dye under a confocal laser microscope. A cross-correlation function was used for the electrical conduction blockade judgment. The photodynamic reaction was performed under the confocal microscopy with 3-120 mW/cm2 in irradiance by the diode laser with 663 nm in wavelength. We obtained that the time for the electrical conduction blockade decreased with the irradiance increasing. We constructed a simulation model composed of three states; living cells, vulnerable cells, and blocked cells, using the obtained experimental data and we found the rate constant by an optimization using a conjugate gradient method.
[The expression of interferon-lambda1 in CHO cell].
Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu
2013-06-01
To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.
Fabricating microfluidic valve master molds in SU-8 photoresist
NASA Astrophysics Data System (ADS)
Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos
2014-05-01
Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.
Wang, Hai-rong; Xiao, Zhen-yu; Chen, Miao; Wang, Fei-long; Liu, Jia; Zhong, Hua; Zhong, Ji-hua; Ou-Yang, Ren-rong; Shen, Yan-lin; Pan, Shu-ming
2012-06-01
Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.
Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong
2017-12-01
Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.
MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2
Wu, Xiao-Li; Cheng, Bin; Li, Pei-Yuan; Huang, Huan-Jun; Zhao, Qiu; Dan, Zi-Li; Tian, De-An; Zhang, Peng
2013-01-01
AIM: To investigate the function of microRNA-143 (miR-143) in gastric cancer and explore the target genes of miR-143. METHODS: A quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to evaluate miR-143 expression in gastric cancer cell lines. After transfecting gastric cancer cells with miR-143-5p and miR-143-3p precursors, Alamar blue and apoptosis assays were used to measure the respective proliferation and apoptosis rates. Cyclooxygenase-2 (COX-2) expression was determined by real-time RT-PCR and Western blot assays after miR-143 transfection. Reporter plasmids were constructed, and a luciferase reporter assay was used to identify the miR-143 binding site on COX-2. RESULTS: Both miR-143-5p and miR-143-3p were significantly downregulated in multiple gastric cancer cell lines. Forced miR-143-5p and miR-143-3p expression in gastric cancer cells produced a profound cytotoxic effect. MiR-145-5p transfection into gastric cancer cells resulted in a greater growth inhibitory effect (61.23% ± 3.16% vs 46.58% ± 4.28%, P < 0.05 in the MKN-1 cell line) and a higher apoptosis rate (28.74% ± 1.93% vs 22.13% ± 3.31%, P < 0.05 in the MKN-1 cell line) than miR-143-3p transfection. Further analysis indicated that COX-2 expression was potently suppressed by miR-143-5p but not by miR-143-3p. The activity of a luciferase reporter construct that contained the 3’-untranslated region (UTR) of COX-2 was downregulated by miR-143-5p (43.6% ± 4.86%, P < 0.01) but not by miR-143-3p. A mutation in the miR-145-5p binding site completely ablated the regulatory effect on luciferase activity, which suggests that there is a direct miR-145-5p binding site in the 3’-UTR of COX-2. CONCLUSION: Both miR-143-5p and miR-143-3p function as anti-oncomirs in gastric cancer. However, miR-143-5p alone directly targets COX-2, and it exhibits a stronger tumor suppressive effect than miR-143-3p. PMID:24616567
JNK1 Inhibition Attenuates Hypoxia-Induced Autophagy and Sensitizes to Chemotherapy.
Vasilevskaya, Irina A; Selvakumaran, Muthu; Roberts, David; O'Dwyer, Peter J
2016-08-01
Inhibition of hypoxia-induced stress signaling through JNK potentiates the effects of oxaliplatin. The JNK pathway plays a role in both autophagy and apoptosis; therefore, it was determined how much of the effect of JNK inhibition on oxaliplatin sensitivity is dependent on its effect on autophagy. We studied the impact of JNK isoform downregulation in the HT29 colon adenocarcinoma cell line on hypoxia- and oxaliplatin-induced responses. Electron microscopic analyses demonstrated that both oxaliplatin- and hypoxia-induced formations of autophagosomes were reduced significantly in HT29 cells treated with the JNK inhibitor SP600125. The role of specific JNK isoforms was defined using HT29-derived cell lines stably expressing dominant-negative constructs for JNK1 and JNK2 (HTJ1.3 and HTJ2.2, respectively). These cell lines demonstrated that functional JNK1 is required for hypoxia-induced autophagy and that JNK2 does not substitute for it. Inhibition of autophagy in HTJ1.3 cells also coincided with enhancement of intrinsic apoptosis. Analysis of Bcl2-family proteins revealed hyperphosphorylation of Bcl-XL in the HTJ1.3 cell line, but this did not lead to the expected dissociation from Beclin 1. Consistent with this, knockdown of Bcl-XL in HT29 cells did not significantly affect the induction of autophagy, but abrogated hypoxic resistance to oxaliplatin due to the faster and more robust activation of apoptosis. These data suggest that balance between autophagy and apoptosis is shifted toward apoptosis by downregulation of JNK1, contributing to oxaliplatin sensitization. These findings further support the investigation of JNK inhibition in colorectal cancer treatment. Mol Cancer Res; 14(8); 753-63. ©2016 AACR. ©2016 American Association for Cancer Research.
Targeting tumor cells via EGF receptors: selective toxicity of an HBEGF-toxin fusion protein.
Chandler, L A; Sosnowski, B A; McDonald, J R; Price, J E; Aukerman, S L; Baird, A; Pierce, G F; Houston, L L
1998-09-25
Over-expression of the epidermal growth factor receptor (EGFR) is a hallmark of numerous solid tumors, thus providing a means of selectively targeting therapeutic agents. Heparin-binding epidermal growth factor (HBEGF) binds to EGFRs with high affinity and to heparan sulfate proteoglycans, resulting in increased mitogenic potential compared to other EGF family members. We have investigated the feasibility of using HBEGF to selectively deliver a cytotoxic protein into EGFR-expressing tumor cells. Recombinant fusion proteins consisting of mature human HBEGF fused to the plant ribosome-inactivating protein saporin (SAP) were expressed in Escherichia coli. Purified HBEGF-SAP chimeras inhibited protein synthesis in a cell-free assay and competed with EGF for binding to receptors on intact cells. A construct with a 22-amino-acid flexible linker (L22) between the HBEGF and SAP moieties exhibited an affinity for the EGFR that was comparable to that of HBEGF. The sensitivity to HBEGF-L22-SAP was determined for a variety of human tumor cell lines, including the 60 cell lines comprising the National Cancer Institute Anticancer Drug Screen. HBEGF-L22-SAP was cytotoxic in vitro to a variety of EGFR-bearing cell lines and inhibited growth of EGFR-over-expressing human breast carcinoma cells in vivo. In contrast, the fusion protein had no effect on small-cell lung carcinoma cells, which are EGFR-deficient. Our results demonstrate that fusion proteins composed of HBEGF and SAP exhibit targeting specificity and cytotoxicity that may be of therapeutic value in treating a variety of EGFR-bearing malignancies.
Construction of Artificial Hepatic Lobule-Like Spheroids on a Three-Dimensional Culture Device.
Enosawa, Shin; Miyamoto, Yoshitaka; Kubota, Hisayo; Jomura, Tomoko; Ikeya, Takeshi
2012-01-01
One major purpose of cell culture is the reconstruction of physiological structures. Using bovine aortic epithelium cell line HH (JCRB0099) as feeder cells and rat primary hepatocytes, we constructed hepatic lobule-like spheroids on a cell array plate designed for three-dimensional (3D) culture. Microfabricated patterning of the cell array with poly(ethyleneglycol) brushes promotes the formation of spheroids at 100-μm diameter at 100-μm intervals. Our standard protocol is to seed with feeder HH cells and then seed with primary hepatic parenchymal cells. The composite cell spheroids thus obtained are called heterospheroids. Feeder cells that were attached to the plate migrated and encompassed the spheroidal hepatocyte mass. Electron microscopy revealed Disse space-like structures characterized by hepatocyte-rooted microvilli rooted between hepatocyte and feeder epithelial HH cells. Differentiated hepatic functions such as albumin synthesis and cytochrome P450 subfamily CYP3A activities were maintained for 28 days in the heterospheroid versus monospheroid and monolayer cultures. In addition, glucuronide conjugation activity was maintained at a high level in heterospheroids. These results indicate that structurally similar hepatic lobules were formed in a microfabricated cell array coculture system and that the culture conditions are beneficial for maintaining differentiated hepatic functions.
Functional activation of PPARγ in human upper aerodigestive cancer cell lines.
Wright, Simon K; Wuertz, Beverly R; Harris, George; Abu Ghazallah, Raed; Miller, Wendy A; Gaffney, Patrick M; Ondrey, Frank G
2017-01-01
Upper aerodigestive cancer is an aggressive malignancy with relatively stagnant long-term survival rates over 20 yr. Recent studies have demonstrated that exploitation of PPARγ pathways may be a novel therapy for cancer and its prevention. We tested whether PPARγ is expressed and inducible in aerodigestive carcinoma cells and whether it is present in human upper aerodigestive tumors. Human oral cancer CA-9-22 and NA cell lines were treated with the PPAR activators eicosatetraynoic acid (ETYA), 15-deoxy-δ- 12,14-prostaglandin J2 (PG-J2), and the thiazolidinedione, ciglitazone, and evaluated for their ability to functionally activate PPARγ luciferase reporter gene constructs. Cellular proliferation and clonogenic potential after PPARγ ligand treatment were also evaluated. Aerodigestive cancer specimens and normal tissues were evaluated for PPARγ expression on gene expression profiling and immunoblotting. Functional activation of PPARγ reporter gene constructs and increases in PPARγ protein were confirmed in the nuclear compartment after PPARγ ligand treatment. Significant decreases in cell proliferation and clonogenic potential resulted from treatment. Lipid accumulation was induced by PPARγ activator treatment. 75% of tumor specimens and 100% of normal control tissues expressed PPARγ RNA, and PPARγ protein was confirmed in 66% of tumor specimens analyzed by immunoblotting. We conclude PPARγ can be functionally activated in upper aerodigestive cancer and that its activation downregulates several features of the neoplastic phenotype. PPARγ expression in human upper aerodigestive tract tumors and normal cells potentially legitimizes it as a novel intervention target in this disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zhu, Wei; Zhang, Hongwei; Shi, Yi; Song, Mangen; Zhu, Bijun; Wei, Lai
2013-01-01
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising cancer therapeutic target due to its selective apoptosis-inducing effect in cancer cells. To efficiently deliver TRAIL to the tumor cells, an oncolytic adenovirus (p55-hTERT-HRE-TRAIL) carrying the TRAIL coding sequence was constructed. In the present study, we aimed to investigate the effect of p55-hTERT-HRE-TRAIL on the growth and metastasis of triple-negative breast cancer (TNBC). We observed that infection of the recombinant adenovirus resulted in expression of TRAIL and massive cell death in a TNBC cell line MDA-MB-231. This effect is much weaker in MCF-10A, which is a normal breast cell line. Administration of P55-HTERT-HRE-TRAIL significantly reduced orthotopic breast tumor growth and extended survival in a metastatic model. Our results suggest the oncolytic adenovirus armed with P55-HTERT-HRE-TRAIL, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of TNBC. PMID:24025362
EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis.
Shen, Xue; Kan, Shifeng; Liu, Zhen; Lu, Guang; Zhang, Xiaoyan; Chen, Yingyu; Bai, Yun
2017-03-01
Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Targeting of CD22-positive B-cell lymphoma cells by synthetic divalent sialic acid analogues.
Schweizer, Astrid; Wöhner, Miriam; Prescher, Horst; Brossmer, Reinhard; Nitschke, Lars
2012-10-01
CD22 is an inhibitory co-receptor of the B-cell receptor (BCR) on B cells. Since CD22 is ubiquitously expressed in the B-cell lineage and CD22 endocytosis can be triggered efficiently, antibodies and antibody-based immunotoxins against CD22 are used to target B cells both in B-cell lymphomas and leukemias, as well as in autoimmune diseases. CD22 recognizes α2,6-linked sialic acids as endogenous ligands. We have developed new synthetic sialosides as ligands for human CD22. These sialosides bind CD22 on human B cells with high affinity and can efficiently enhance IgM-triggered Ca(2+) signaling. We coupled these sialosides to Pseudomonas exotoxin A to generate a novel CD22 ligand-based immunotoxin. This sialoside-exotoxin-A construct can specifically kill CD22-positive B-cell lymphoma cells. It binds specifically to CD22-positive B-cell lymphoma cells and is dominant over endogenous cis-ligands on the B-cell surface. The sialoside-exotoxin-A construct is efficiently internalized by endocytosis into B-cell lymphoma cell lines. Thus we show the development of a new therapeutic compound for targeting CD22 on human B cells, both for B-cell lymphoma, as well as for B-cell-mediated autoimmune diseases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seynhaeve, Ann L B; Oostinga, Douwe; van Haperen, Rien; Eilken, Hanna M; Adams, Susanne; Adams, Ralf H; Ten Hagen, Timo L M
2018-06-25
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell - pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.
Feldman, Steven A; Xu, Hui; Black, Mary A; Park, Tristen S; Robbins, Paul F; Kochenderfer, James N; Morgan, Richard A; Rosenberg, Steven A
2014-08-01
Efforts to improve the biosafety of γ-retroviral-mediated gene therapy have resulted in a shift toward the use of self-inactivating (SIN) γ-retroviral vectors. However, scale-up and manufacturing of such vectors requires significant optimization of transient transfection-based processes or development of novel platforms for the generation of stable producer cell clones. To that end, we describe the use of the piggybac transposon to generate stable producer cell clones for the production of SIN γ-retroviral vectors. The piggybac transposon is a universal tool allowing for the stable integration of SIN γ-retroviral constructs into murine (PG13) and human 293-based Phoenix (GALV and RD114, respectively) packaging cell lines without reverse transcription. Following transposition, a high-titer clone is selected for manufacture of a master cell bank and subsequent γ-retroviral vector supernatant production. Packaging cell clones created using the piggybac transposon have comparable titers to non-SIN vectors generated via conventional methods. We describe herein the use of the piggybac transposon for the production of stable packaging cell clones for the manufacture of clinical-grade SIN γ-retroviral vectors for ex vivo gene therapy clinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiler-Tuyns, A.; Merillat, A.M.; Haefliger, D.N.
Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5{prime} flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogeninmore » minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells.« less
Deisting, Wibke; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A.; Münz, Markus
2015-01-01
Background Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells. Methods The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells. Findings An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not. Conclusions Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct. PMID:26510188
Murray-Stewart, Tracy; Applegren, Nancy B; Devereux, Wendy; Hacker, Amy; Smith, Renee; Wang, Yanlin; Casero, Robert A
2003-07-15
Spermidine/spermine N (1)-acetyltransferase (SSAT) activity is typically highly inducible in non-small-cell lung carcinomas in response to treatment with anti-tumour polyamine analogues, and this induction is associated with subsequent cell death. In contrast, cells of the small-cell lung carcinoma (SCLC) phenotype generally do not respond to these compounds with an increase in SSAT activity, and usually are only moderately affected with respect to growth. The goal of the present study was to produce an SSAT-overexpressing SCLC cell line to further investigate the role of SSAT in response to these anti-tumour analogues. To accomplish this, NCI-H82 SCLC cells were stably transfected with plasmids containing either the SSAT genomic sequence or the corresponding cDNA sequence. Individual clones were selected based on their ability to show induced SSAT activity in response to exposure to a polyamine analogue, and an increase in the steady-state SSAT mRNA level. Cells transfected with the genomic sequence exhibited a significant increase in basal SSAT mRNA expression, as well as enhanced SSAT activity, intracellular polyamine pool depletion and growth inhibition following treatment with the analogue N (1), N (11)-bis(ethyl)norspermine. Cells containing the transfected cDNA also exhibited an increase in the basal SSAT mRNA level, but remained phenotypically similar to vector control cells with respect to their response to analogue exposure. These studies indicate that both the genomic SSAT sequence and polyamine analogue exposure play a role in the transcriptional and post-transcriptional regulation and subsequent induction of SSAT activity in these cells. Furthermore, this is the first production of a cell line capable of SSAT protein induction from a generally unresponsive parent line.
Poon, Betty; Chen, Irvin S. Y.
1998-01-01
In vitro infection by human T-cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) can result in syncytium formation, facilitating viral entry. Using cell lines that were susceptible to HTLV-2-mediated syncytium formation but were nonfusogenic with HTLV-1, we constructed chimeric envelopes between HTLV-1 and -2 and assayed for the ability to induce syncytia in BJAB cells and HeLa cells. We have identified a fusion domain composed of the first 64 amino acids at the amino terminus of the HTLV-2 transmembrane protein, p21, the retention of which was required for syncytium induction. Construction of replication-competent HTLV genomic clones allowed us to correlate the ability of HTLV-2 to induce syncytia with the ability to replicate in BJAB cells. Differences in the ability to induce syncytia were not due to differences in the levels of total or cell membrane-associated envelope or in the formation of multimers. Therefore, we have localized a fusion domain within the amino terminus of the transmembrane protein of HTLV-2 envelope that is necessary for syncytium induction and viral replication. PMID:9499049
[Construction and characterization of liposomal magnetofection system in pig kidney cells].
Chen, Wenjie; Cui, Haixin; Zhao, Xiang; Cui, Jinhui; Wang, Yan; Sun, Changjiao
2014-06-01
Magnetic nano gene vector is one of the non-viral gene vectors, modified by functional group to bind cationic transfect reagents. Coupling magnetofection with the universal lipofection we developed a novel somatic cell transfection method as the so-called liposomal magnetofection (LMF). This approach is potential to provide somatic cell cloning with stable genetic cell lines to cultivate transgenic animals. In order to construct such liposomal magnetic gene vectors complexes system, we used nano magnetic gene vector to combine with liposomal cationic transfect reagents by molecular self-assembly. This vectors system successfully carried exogenous gene and then transfected animal somatic cells. Here, we conducted atomic force microscopy (AFM), zeta potential-diameter analysis and other characterization experiments to investegate the size distribution and morphology of magnetic nanoparticles, the way of the vectors to load and concentrate DNA molecules. Our data reveal that, the LMF of Pig Kidney cells exhibited higher transfection efficiency comparing with the transfection mediated by the commercial lipofectamine2000. Moreover, LMF method overcomes the constraint of transient expression mediated by lipofection. Meanwhile, MTT assay showed low cytotoxicity of LMF. Hence, LMF is a feasible, low cytotoxic and effective method of cell transfection.
Yu, Kenneth K.; Aguilar, Kiefer; Tsai, Jonathan; Galimidi, Rachel; Gnanapragasam, Priyanthi; Yang, Lili; Baltimore, David
2012-01-01
In nature, B cells produce surface immunoglobulin and secreted antibody from the same immunoglobulin gene via alternative splicing of the pre-messenger RNA. Here we present a novel system for genetically programming B cells to direct the simultaneous formation of membrane-bound and secreted immunoglobulins that we term a “Molecular Rheostat”, based on the use of mutated “self-cleaving” 2A peptides. The Molecular Rheostat is designed so that the ratio of secreted to membrane-bound immunoglobulins can be controlled by selecting appropriate mutations in the 2A peptide. Lentiviral transgenesis of Molecular Rheostat constructs into B cell lines enables the simultaneous expression of functional b12-based IgM-like BCRs that signal to the cells and mediate the secretion of b12 IgG broadly neutralizing antibodies that can bind and neutralize HIV-1 pseudovirus. We show that these b12-based Molecular Rheostat constructs promote the maturation of EU12 B cells in an in vitro model of B lymphopoiesis. The Molecular Rheostat offers a novel tool for genetically manipulating B cell specificity for B-cell based gene therapy. PMID:23209743
ME-143 Is Superior to Genistein in Suppression of WNT Signaling in Colon Cancer Cells.
Pintova, Sofya; Planutis, Kestutis; Planutiene, Marina; Holcombe, Randall F
2017-04-01
This study tested the effect of the soy isoflavones genistein and ME-143, and two chemotherapeutic agents, 5-fluorouracil (5FU) and oxaliplatin, on WNT signaling. Colon cancer cell lines RKO (hereditary nonpolyposis colorectal cancer type) and DLD1 (most common colorectal cancer type driven by a mutation in WNT pathway) were utilized. WNT throughput was measured using a β-catenin-responsive SuperTopFlash luciferase assay. A stabilized β-catenin construct was employed to test β-catenin involvement in the mechanism of drug activity. ME-143 was a more than 10-fold potent inhibitor of DLD1 proliferation than genistein at 3.125 μM. Genistein alone did not inhibit WNT signaling in either cell line. In RKO cells, oxaliplatin and its combination with 5FU significantly inhibited WNT throughput. Neither 5FU, oxaliplatin nor their combination inhibited WNT signaling in DLD1 cells. In both the RKO and DLD1 cell lines, ME-143 significantly reduced WNT throughput by 65-75%. The introduction of stabilized β-catenin attenuated the ME-143-dependent inhibition of the WNT/β-catenin pathway. ME-143 alone and in combination with 5FU and oxaliplatin effectively inhibits the WNT/β-catenin pathway in colorectal cancer cells of diverse genetic background. β-Catenin is directly involved in the mechanism of inhibition, and clinical studies are warranted. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Li, Yasha; Liu, Mengnan; Cui, Jiejie; Yang, Ke; Zhao, Li; Gong, Mengjia; Wang, Yi; He, Yun; He, Tongchuan; Bi, Yang
2018-05-01
Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo , and provide a reliable source for the establishment of hepatocarcinoma models.
Wu, Jian; Dai, Wei; Wu, Lin; Wang, Jinke
2018-02-13
Next-generation sequencing (NGS) is fundamental to the current biological and biomedical research. Construction of sequencing library is a key step of NGS. Therefore, various library construction methods have been explored. However, the current methods are still limited by some shortcomings. This study developed a new NGS library construction method, Single strand Adaptor Library Preparation (SALP), by using a novel single strand adaptor (SSA). SSA is a double-stranded oligonucleotide with a 3' overhang of 3 random nucleotides, which can be efficiently ligated to the 3' end of single strand DNA by T4 DNA ligase. SALP can be started with any denatured DNA fragments such as those sheared by Tn5 tagmentation, enzyme digestion and sonication. When started with Tn5-tagmented chromatin, SALP can overcome a key limitation of ATAC-seq and become a high-throughput NGS library construction method, SALP-seq, which can be used to comparatively characterize the chromatin openness state of multiple cells unbiasly. In this way, this study successfully characterized the comparative chromatin openness states of four different cell lines, including GM12878, HepG2, HeLa and 293T, with SALP-seq. Similarly, this study also successfully characterized the chromatin openness states of HepG2 cells with SALP-seq by using 10 5 to 500 cells. This study developed a new NGS library construction method, SALP, by using a novel kind of single strand adaptor (SSA), which should has wide applications in the future due to its unique performance.
RNA interference mediated in human primary cells via recombinant baculoviral vectors.
Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T
2005-04-01
The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.
Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D
2017-04-01
Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.
The Role of a Novel Topological Form of the Prion Protein in Prion Disease
2008-07-01
branes from mouse BW5174.3 cells (24) or from canine pancreas (Pro- mega). After translation, 5-l aliquots of lysate were incubated for 60 min at 4 °C in...in vitro in the presence of either murine thymoma microsomes (constructs 1–18 and 23–28) or canine pancreatic microsomes (constructs 19–22 and 29–32...in PrP 45963 canine pancreatic microsomes are used (Fig. 3B; Table I, lines 19–22). In this system, the percentage of CtmPrP is doubled by introduction
McGuire, Michael J; Samli, Kausar N; Chang, Ya-Ching; Brown, Kathlynn C
2006-04-01
Lymphoma and leukemia account for nearly 8% of cancer fatalities each year. Present treatments do not differentiate between normal and malignant cells. New reagents that distinguish malignant cells and enable the isolation of these cells from the normal background will enhance the molecular characterization of disease and specificity of treatment. Peptide ligands were selected from a phage-displayed peptide library by biopanning on the B-cell lymphoma line, A20. The isolated peptides were assessed as reagents for identification and isolation of lymphoma cells by flow cytometry and cell capture with magnetic beads. Two novel peptides and one obtained previously on cardiomyocytes were selected. A20 cells bind phage displaying these peptides 250- to 450-fold over control phage. These phage bind to other bone marrow-derived cancel lines including some macrophage and T cells but do not bind to normal splenocytes. Synthetic constructs of these peptides have binding affinities comparable to B-cell-specific antibodies. Similar to antibodies, these peptides can be used in flow cytometry and magnetic bead capture to distinguish lymphoma cells from normal splenocytes. Bone marrow-derived malignant cells express cell surface markers that can be used to distinguish them from normal cells. These results demonstrate the ability to use an unbiased screen to rapidly generate high-affinity peptide ligands for identification and isolation of lymphoma cells.
Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao
2017-07-01
Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.
Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay
Teeranaipong, Phairote; Hosoya, Noriaki; Kawana-Tachikawa, Ai; Fujii, Takeshi; Koibuchi, Tomohiko; Nakamura, Hitomi; Koga, Michiko; Kondo, Naoyuki; Gao, George F; Hoshino, Hiroo; Matsuda, Zene; Iwamoto, Aikichi
2013-01-01
Introduction A dual split reporter protein system (DSP), recombining Renilla luciferase (RL) and green fluorescent protein (GFP) split into two different constructs (DSP1–7 and DSP8–11), was adapted to create a novel rapid phenotypic tropism assay (PTA) for HIV-1 infection (DSP-Pheno). Methods DSP1–7 was stably expressed in the glioma-derived NP-2 cell lines, which expressed CD4/CXCR4 (N4X4) or CD4/CCR5 (N4R5), respectively. An expression vector with DSP8–11 (pRE11) was constructed. The HIV-1 envelope genes were subcloned in pRE11 (pRE11-env) and transfected into 293FT cells. Transfected 293FT cells were incubated with the indicator cell lines independently. In developing the assay, we selected the DSP1–7-positive clones that showed the highest GFP activity after complementation with DSP8–11. These cell lines, designated N4R5-DSP1–7, N4X4-DSP1–7 were used for subsequent assays. Results The env gene from the reference strains (BaL for R5 virus, NL4-3 for X4 virus, SF2 for dual tropic virus) subcloned in pRE11 and tested, was concordant with the expected co-receptor usage. Assay results were available in two ways (RL or GFP). The assay sensitivity by RL activity was comparable with those of the published phenotypic assays using pseudovirus. The shortest turnaround time was 5 days after obtaining the patient's plasma. All clinical samples gave positive RL signals on R5 indicator cells in the fusion assay. Median RLU value of the low CD4 group was significantly higher on X4 indicator cells and suggested the presence of more dual or X4 tropic viruses in this group of patients. Comparison of representative samples with Geno2Pheno [co-receptor] assay was concordant. Conclusions A new cell-fusion-based, high-throughput PTA for HIV-1, which would be suitable for in-house studies, was developed. Equipped with two-way reporter system, RL and GFP, DSP-Pheno is a sensitive test with short turnaround time. Although maintenance of cell lines and laboratory equipment is necessary, it provides a safe assay system without infectious viruses. With further validation against other conventional analyses, DSP-Pheno may prove to be a useful laboratory tool. The assay may be useful especially for the research on non-B subtype HIV-1 whose co-receptor usage has not been studied much. PMID:24050252
Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin
2006-08-01
To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.
KCH kinesin drives nuclear transport and cytoskeletal coalescence for tip cell growth.
Yamada, Moé; Goshima, Gohta
2018-06-07
Long-distance transport along microtubules (MTs) is critical for intracellular organisation. In animals, antagonistic motor proteins kinesin (plus end-directed) and dynein (minus end-directed) drive cargo transport. In land plants, however, the identity of motors responsible for transport is poorly understood, as genes encoding cytoplasmic dynein are absent in plant genomes. How other functions of dynein are brought about in plants also remains unknown. Here, we show that a subclass of the kinesin-14 family, KCH (kinesin with calponin homology domain)-which can also bind actin-drives MT minus end-directed nuclear transport in the moss Physcomitrella patens. When all four KCH genes were deleted, the nucleus was not maintained in the cell centre, but was translocated to the apical end of protonemal cells. In the knockout (KO) line, apical cell tip growth was also severely suppressed. KCH was localized to MTs, including at the MT focal point near the tip of protonemal cells, where MT plus ends coalesced with actin filaments. MT focus was not stably maintained in KCH KO lines, whereas actin destabilisation also disrupted the MT focus in wild-type lines despite KCH remaining on unfocused MTs. KCH had distinct functions in nuclear transport and tip growth, as a truncated KCH construct restored nuclear transport activity, but not tip growth retardation of the KO line. Thus, our study identified KCH as a long-distance retrograde transporter as well as a MT crosslinker, reminiscent of the versatile animal dynein. © 2018 American Society of Plant Biologists. All rights reserved.
Legraverend, C; Antonson, P; Flodby, P; Xanthopoulos, K G
1993-01-01
The promoter region of the mouse CCAAT-Enhancer Binding Protein (C/EBP alpha) gene is capable of directing high levels of expression of reporter constructs in various cell lines, albeit even in cells that do not express their endogenous C/EBP alpha gene. To understand the molecular mechanisms underlying this ubiquitous expression, we have characterized the promoter region of the mouse C/EBP alpha gene by a variety of in vitro and in vivo methods. We show that three sites related in sequence to USF, BTE and C/EBP binding sites and present in promoter region -350/+3, are recognized by proteins from rat liver nuclear extracts. The sequence of the C/EBP alpha promoter that includes the USF binding site is also capable of forming stable complexes with purified Myc+Max heterodimers and mutation of this site drastically reduces transcription of C/EBP alpha promoter luciferase constructs both in liver and non liver cell lines. In addition, we identify three novel protein-binding sites two of which display similarity to NF-1 and a NF kappa B binding sites. The region located between nucleotides -197 and -178 forms several heat-stable complexes with liver nuclear proteins in vitro which are recognized mainly by antibodies specific for C/EBP alpha. Furthermore, transient expression of C/EBP alpha and to a lesser extent C/EBP beta expression vectors, results in transactivation of a cotransfected C/EBP alpha promoter-luciferase reporter construct. These experiments support the notion that the C/EBP alpha gene is regulated by C/EBP alpha but other C/EBP-related proteins may also be involved. Images PMID:8493090
Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald GFP BAC Reporter
Hsiao, Edward C.; Yoshinaga, Yuko; Nguyen, Trieu D.; Musone, Stacy L.; Kim, Judy E.; Swinton, Paul; Espineda, Isidro; Manalac, Carlota; deJong, Pieter J.; Conklin, Bruce R.
2008-01-01
Background Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. Methodology Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. Conclusions Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library. PMID:18596956
NASA Astrophysics Data System (ADS)
Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai
1997-12-01
About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.
Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa
2016-12-01
Novel pure and hybrid zeolite membranes were prepared with appropriate different physicochemical characteristics such as frameworks, hydrophilicity, crystal size, chemical composition, acid-base properties (Point of Zero Charge, PZC) and surface morphology and used in inorganic cell/scaffold constructs. Because the control of cell interactions, as the adhesion, proliferation, remodelling and mobility, is important for differentiation and progression of tumors, this work focused on response of cancer cells adhered and grown on synthesized zeolite surfaces in order to study the influence of these scaffolds in controlled conditions. We have selected the MCF-7 and MDA-MB-231 human breast cancer cell line as model tumor cell lines. This study showed that all the zeolite membranes synthesized are excellent scaffolds because they are very selective materials to support the adhesion and growth of neoplastic cells. All zeolite scaffolds were characterized by FESEM, FTIR ATR, XRD, AFM, PZC and contact angle analyses. Cell adhesion, viability and morphology were measured by count, MTT assay and FESEM microphotography analysis, at various incubation times. Copyright © 2016. Published by Elsevier B.V.
Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting.
Masuda, Junko; Kawamoto, Hiroshi; Strober, Warren; Takayama, Eiji; Mizutani, Akifumi; Murakami, Hiroshi; Ikawa, Tomokatsu; Kitani, Atsushi; Maeno, Narumi; Shigehiro, Tsukasa; Satoh, Ayano; Seno, Akimasa; Arun, Vaidyanath; Kasai, Tomonari; Fuss, Ivan J; Katsura, Yoshimoto; Seno, Masaharu
2016-12-01
Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, Francois; Tsoupas, N.; Brooks, S.
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
Meot, Francois; Tsoupas, N.; Brooks, S.; ...
2018-04-16
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less
Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation
NASA Astrophysics Data System (ADS)
Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther
2012-07-01
Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis. Results of measuring d2EGFP showed a suppressed level of EGFP(+) cells in the knock-down cell line, indicating a decreased NF-κB level. Growth behavior of the original and the knock-down cell line was investigated, showing that the decreased RelA level leads to an elongated lag phase while the doubling time during the exponential growth phase remained unaltered. Further the colony forming ability of both cell lines was compared. Both cell lines were irradiated with X-Rays. The RelA-knock-down cell line showed an increased radiosensitivity towards X-Rays, proving that NF-κB plays an important role in the survival ability of the cell. The knock-down cell line will now be used to study the involvement of NF-κB pathway in the cellular response to heavy ion exposure and other space relevant radiation qualities.
Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle
2010-01-01
The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.
Welsh, N; Bendtzen, K; Welsh, M
1995-01-01
A hybrid gene consisting of the insulin gene enhancer/promoter region, the signal sequence, the insulin B- and C-chains, and the human interleukin-1 receptor antagonist (IL-1ra) gene was constructed. This hybrid gene was transfected together with the pSV2-neo construct into the insulin-producing cell lines HIT-T15 and NIT-1. One of the geneticin-selected clones, HITra2, expressed a 1.4-kb mRNA, which hybridized both to insulin and IL-1ra-cDNA in Northern blot analysis. Three proteins, with the mol wt 23, 17, and 14 kD, were immunoprecipitated with anti-IL-1ra antibodies from [35S]methionine-labeled HITra2 cells. Both at a low and at a high glucose concentration, 4-5 ng of IL-1ra/10(6) cells (ELISA) was released from these cells. On the other hand, a high glucose concentration evoked a three-fold increase in the release of insulin, suggesting that IL-1ra was released constitutively. Measured by nitrite production, transfected HIT, and NIT-1 cells exhibited a more than 10-fold decrease in IL-1 beta sensitivity. Since the conditioned culture media from the HITra2 cells exhibited an anti-IL-1 beta activity of only 0.5 U/ml, and mixed culture of HITra2 cells and isolated rat islets prevented IL-1 beta induced inhibition of insulin release, it is likely that IL-1ra acts locally at the cell surface. It is concluded that expression of a hybrid insulin/IL-1ra gene confers resistance to IL-1 and that this technique may be used to elucidate the role of IL-1 in autoimmune disorders such as insulin-dependent diabetes mellitus. Images PMID:7706480
Watson, Gregory A; Naran, Sanjay; Zhang, Xinglu; Stang, Michael T; Queiroz de Oliveira, Pierre E; Hughes, Steven J
2011-01-01
Introduction The CD95/CD95L pathway plays a critical role in tissue homeostasis and immune system regulation; however, the function of this pathway in malignancy remains poorly understood. We hypothesized that CD95L expression in esophageal adenocarcinoma confers advantages to the neoplasm other than immune privilege. Methods CD95L expression was characterized in immortalized squamous esophagus (HET-1A) and Barrett esophagus (BAR-T) cells; adenocarcinoma cell lines FLO-1, SEG-1, and BIC-1, and MDA468 (- control); and KFL cells (+ control). Analyses included reverse transcription-polymerase chain reaction, immunoblots of whole cell and secretory vesicle lysates, FACScan analysis, laser scanning confocal microscopy of native proteins and fluorescent constructs, and assessment of apoptosis and ERK1/2 pathways. Results Cleaved, soluble CD95L is expressed at both the RNA and protein levels in these cell lines derived from esophageal adenocarcinoma and other human tissues. CD95L was neither trafficked to the cell membrane nor secreted into the media or within vesicles, rather the protein seems to be sequestered in the cytoplasm. CD95 and CD95L colocalize by immunofluorescence, but an interaction was not proven by immunoprecipitation. Overexpression of CD95L in the adenocarcinoma cell lines induced robust apoptosis and, under conditions of pan-caspase inhibition, resulted in activation of ERK signaling. Conclusions CD95L localization in EA cells is inconsistent with the conference of immune privilege and is more consistent with a function that promotes tumor growth through alternative CD95 signaling. Reduced cell surface expression of CD95 affects cell sensitivity to extracellular apoptotic signals more significantly than alterations in downstream modulators of apoptosis. PMID:21390183
Tissue Engineering Using Transfected Growth-Factor Genes
NASA Technical Reports Server (NTRS)
Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana
2005-01-01
A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.
Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line.
Shima, Ai; Morimoto, Yuya; Sweeney, H Lee; Takeuchi, Shoji
2018-06-18
This paper describes a method to construct three-dimensional (3D) contractile human skeletal muscle tissues from a cell line. The 3D tissue was fabricated as a fiber-based structure and cultured for two weeks under tension by anchoring its both ends. While myotubes from the immortalized human skeletal myocytes used in this study never contracted in the conventional two-dimensional (2D) monolayer culture, myotubes in the 3D tissue showed spontaneous contraction at a high frequency and also reacted to the electrical stimulation. Immunofluorescence revealed that the myotubes in the 3D tissues had sarcomeres and expressed ryanodine receptor (RyR) and sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). In addition, intracellular calcium oscillations in the myotubes in the 3D tissue were observed. These results indicated that the 3D culture enabled the myocyte cell line to reach a more highly matured state compared to 2D culture. Since contraction is the most significant feature of skeletal muscle, we believe that our 3D human muscle tissue with the contractile ability would be a useful tool for both basic biology research and drug discovery as one of the muscle-on-chips. Copyright © 2018. Published by Elsevier Inc.
A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.
Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi
2014-10-31
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies
Firor, Amelia E.; Pinz, Kevin G.; Jares, Alexander; Liu, Hua; Salman, Huda; Golightly, Marc; Lan, Fengshuo; Jiang, Xun; Ma, Yupo
2016-01-01
Peripheral T-cell lymphomas (PTCLS) comprise a diverse group of difficult to treat, very aggressive non-Hodgkin's lymphomas (NHLS) with poor prognoses and dismal patient outlook. Despite the fact that PTCLs comprise the majority of T-cell malignancies, the standard of care is poorly established. Chimeric antigen receptor (CAR) immunotherapy has shown in B-cell malignancies to be an effective curative option and this extends promise into treating T-cell malignancies. Because PTCLS frequently develop from mature T-cells, CD3 is similarly strongly and uniformly expressed in many PTCL malignancies, with expression specific to the hematological compartment thus making it an attractive target for CAR design. We engineered a robust 3rd generation anti-CD3 CAR construct (CD3CAR) into an NK cell line (NK-92). We found that CD3CAR NK-92 cells specifically and potently lysed diverse CD3+ human PTCL primary samples as well as T-cell leukemia cells lines ex vivo. Furthermore, CD3CAR NK-92 cells effectively controlled and suppressed Jurkat tumor cell growth in vivo and significantly prolonged survival. In this study, we present the CAR directed targeting of a novel target - CD3 using CAR modified NK-92 cells with an emphasis on efficacy, specificity, and potential for new therapeutic approaches that could improve the current standard of care for PTCLs. PMID:27494836
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35116] R.J. Corman Railroad Company/Pennsylvania Lines Inc.-- Construction and Operation Exemption--In Clearfield County, PA.... 10901 for R.J. Corman Railroad Company/Pennsylvania Lines Inc. (RJCP) to construct and operate 10.8...
Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques
2012-01-01
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Andréasson, Claes; Schick, Anna J; Pfeiffer, Susanne M; Sarov, Mihail; Stewart, Francis; Wurst, Wolfgang; Schick, Joel A
2013-01-01
Efficient gene targeting in embryonic stem cells requires that modifying DNA sequences are identical to those in the targeted chromosomal locus. Yet, there is a paucity of isogenic genomic clones for human cell lines and PCR amplification cannot be used in many mutation-sensitive applications. Here, we describe a novel method for the direct cloning of genomic DNA into a targeting vector, pRTVIR, using oligonucleotide-directed homologous recombination in yeast. We demonstrate the applicability of the method by constructing functional targeting vectors for mammalian genes Uhrf1 and Gfap. Whereas the isogenic targeting of the gene Uhrf1 showed a substantial increase in targeting efficiency compared to non-isogenic DNA in mouse E14 cells, E14-derived DNA performed better than the isogenic DNA in JM8 cells for both Uhrf1 and Gfap. Analysis of 70 C57BL/6-derived targeting vectors electroporated in JM8 and E14 cell lines in parallel showed a clear dependence on isogenicity for targeting, but for three genes isogenic DNA was found to be inhibitory. In summary, this study provides a straightforward methodological approach for the direct generation of isogenic gene targeting vectors.
Mesner, Larry D.; Valsakumar, Veena; Karnani, Neerja; Dutta, Anindya; Hamlin, Joyce L.; Bekiranov, Stefan
2011-01-01
We have used a novel bubble-trapping procedure to construct nearly pure and comprehensive human origin libraries from early S- and log-phase HeLa cells, and from log-phase GM06990, a karyotypically normal lymphoblastoid cell line. When hybridized to ENCODE tiling arrays, these libraries illuminated 15.3%, 16.4%, and 21.8% of the genome in the ENCODE regions, respectively. Approximately half of the origin fragments cluster into zones, and their signals are generally higher than those of isolated fragments. Interestingly, initiation events are distributed about equally between genic and intergenic template sequences. While only 13.2% and 14.0% of genes within the ENCODE regions are actually transcribed in HeLa and GM06990 cells, 54.5% and 25.6% of zonal origin fragments overlap transcribed genes, most with activating chromatin marks in their promoters. Our data suggest that cell synchronization activates a significant number of inchoate origins. In addition, HeLa and GM06990 cells activate remarkably different origin populations. Finally, there is only moderate concordance between the log-phase HeLa bubble map and published maps of small nascent strands for this cell line. PMID:21173031
Bortolotto, Luis Felipe Buso; Barbosa, Flávia Regina; Silva, Gabriel; Bitencourt, Tamires Aparecida; Beleboni, Rene Oliveira; Baek, Seung Joon; Marins, Mozart; Fachin, Ana Lúcia
2017-01-01
Chalcones are precursors of flavonoids that exhibit structural heterogeneity and potential antitumor activity. The objective of this study was to characterize the cytotoxicity of trans-chalcone and licochalcone A (LicoA 1 ) against a breast cancer cell line (MCF-7) and normal murine fibroblasts (3T3). Also the mechanisms of the anti-cancer activity of these two compounds were studied. The alkaline comet assay revealed dose-dependent genotoxicity, which was more responsive against the tumor cell line, compared to the 3T3 mouse fibroblast cell line. Flow cytometry showed that the two chalcones caused the cell cycle arrest in the G1 phase and induced apoptosis in MCF-7 cells. Using PCR Array, we found that trans-chalcone and LicoA trigger apoptosis mediated by the intrinsic pathway as demonstrated by the inhibition of Bcl-2 and induction of Bax. In western blot assay, the two chalcones reduced the expression of cell death-related proteins such as Bcl-2 and cyclin D1 and promoted the cleavage of PARP. However, only trans-chalcone induced the expression of the CIDEA gene and protein in these two experiments. Furthermore, transient transfections of MCF-7 using a construction of a promoter-luciferase vector showed that trans-chalcone induced the expression of the CIDEA promoter activity in 24 and 48h. In conclusion, the results showed that trans-chalcone promoted high induction of the CIDEA promoter gene and protein, which is related to DNA fragmentation during apoptosis. Copyright © 2016. Published by Elsevier Masson SAS.
Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma
NASA Astrophysics Data System (ADS)
Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan
2007-02-01
For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.
The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.
Kim, H; You, S; Foster, L K; Farris, J; Foster, D N
2001-08-23
The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.
Progress in gene targeting and gene therapy for retinitis pigmentosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, G.J.; Humphries, M.M.; Erven, A.
1994-09-01
Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectorsmore » for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.« less
2014-01-01
Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid organ and hematologic malignancies. Chondroitin sulfate proteoglycan 4 (CSPG4) is a promising target antigen that is overexpressed in multiple cancer histologies including melanoma, triple-negative breast cancer, glioblastoma, mesothelioma and sarcoma. Methods CSPG4 expression in cancer cell lines was assayed using flow cytometry (FACS) and reverse-transcription PCR (RT-PCR). Immunohistochemistry was utilized to assay resected melanomas and normal human tissues (n = 30) for CSPG4 expression and a reverse-phase protein array comprising 94 normal tissue samples was also interrogated for CSPG4 expression. CARs were successfully constructed from multiple murine antibodies (225.28S, TP41.2, 149.53) using second generation (CD28.CD3ζ) signaling domains. CAR sequences were cloned into a gamma-retroviral vector with subsequent successful production of retroviral supernatant and PBL transduction. CAR efficacy was assayed by cytokine release and cytolysis following coculture with target cell lines. Additionally, glioblastoma stem cells were generated from resected human tumors, and CSPG4 expression was determined by RT-PCR and FACS. Results Immunohistochemistry demonstrated prominent CSPG4 expression in melanoma tumors, but failed to demonstrate expression in any of the 30 normal human tissues studied. Two of 94 normal tissue protein lysates were positive by protein array. CAR constructs demonstrated cytokine secretion and cytolytic function after co-culture with tumor cell lines from multiple different histologies, including melanoma, breast cancer, mesothelioma, glioblastoma and osteosarcoma. Furthermore, we report for the first time that CSPG4 is expressed on glioblastoma cancer stem cells (GSC) and demonstrate that anti-CSPG4 CAR-transduced T cells recognize and kill these GSC. Conclusions The functionality of multiple different CARs, with the widespread expression of CSPG4 on multiple malignancies, suggests that CSPG4 may be an attractive candidate tumor antigen for CAR-based immunotherapies using appropriate technology to limit possible off-tumor toxicity. PMID:25197555
A heating-superfusion platform technology for the investigation of protein function in single cells.
Xu, Shijun; Ainla, Alar; Jardemark, Kent; Jesorka, Aldo; Jeffries, Gavin D M
2015-01-06
Here, we report on a novel approach for the study of single-cell intracellular enzyme activity at various temperatures, utilizing a localized laser heating probe in combination with a freely positionable microfluidic perfusion device. Through directed exposure of individual cells to the pore-forming agent α-hemolysin, we have controlled the membrane permeability, enabling targeted delivery of the substrate. Mildly permeabilized cells were exposed to fluorogenic substrates to monitor the activity of intracellular enzymes, while adjusting the local temperature surrounding the target cells, using an infrared laser heating system. We generated quantitative estimates for the intracellular alkaline phosphatase activity at five different temperatures in different cell lines, constructing temperature-response curves of enzymatic activity at the single-cell level. Enzymatic activity was determined rapidly after cell permeation, generating five-point temperature-response curves within just 200 s.
[Nuclear transfer of goat somatic cells transgenic for human lactoferrin].
Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie
2006-12-01
Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magari, Masaki; Kanehiro, Yuichi; Todo, Kagefumi
Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell linemore » DT40-SW{Delta}C, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SW{Delta}C cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SW{Delta}C cells, although the protein might be highly susceptible to degradation. In DT40-SW{Delta}C cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SW{Delta}C cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.« less
Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Singh, Surender; Kumar, Sudarshan; Kaushik, Jai K; Mohanty, Ashok K; Malakar, Dhruba
2015-12-01
Oct4, pluripotency marker and transcription factor, expresses in embryonic stem cells. It plays a pivotal role in determination of stem cells fate. Up and down regulation of Oct4 causes differentiation of embryonic stem cells. It is one of the main transcription factors which remained concerned in every study related to induced pluripotent stem cell. Here, we report the production of goat Oct4 protein using plasmid and lentiviral based vectors. Firstly, Oct4 ORF was cloned in pAcGFP1-N1 plasmid vector and positive clones were screened with colony PCR. Oct4 was over-expressed in CHO-K1 cell line and expression was confirmed by observing green florescent protein expression in CHO-K1 cells. Secondly, Oct4 lentiviral expression construct has been prepared using pLenti-gw vector. Oct4 ORF was cloned into pLenti4/V5-DEST vector and viral particles were produced in 293FT cells. Oct4 viral particles were used to infect goat fibroblast cells. Oct4 expression was observed and confirmed in transfected goat fibroblast cells using RT-PCR. Detection of Oct4 protein in western blotting assay affirmed the capacity of over-expression of our Oct4 lentiviral vector. The lentiviral expression construct and recombinant Oct4 protein may be used for reprogramming of somatic cell into induced pluripotent stem cell.
Contextualization of drug-mediator relations using evidence networks.
Tran, Hai Joey; Speyer, Gil; Kiefer, Jeff; Kim, Seungchan
2017-05-31
Genomic analysis of drug response can provide unique insights into therapies that can be used to match the "right drug to the right patient." However, the process of discovering such therapeutic insights using genomic data is not straightforward and represents an area of active investigation. EDDY (Evaluation of Differential DependencY), a statistical test to detect differential statistical dependencies, is one method that leverages genomic data to identify differential genetic dependencies. EDDY has been used in conjunction with the Cancer Therapeutics Response Portal (CTRP), a dataset with drug-response measurements for more than 400 small molecules, and RNAseq data of cell lines in the Cancer Cell Line Encyclopedia (CCLE) to find potential drug-mediator pairs. Mediators were identified as genes that showed significant change in genetic statistical dependencies within annotated pathways between drug sensitive and drug non-sensitive cell lines, and the results are presented as a public web-portal (EDDY-CTRP). However, the interpretability of drug-mediator pairs currently hinders further exploration of these potentially valuable results. In this study, we address this challenge by constructing evidence networks built with protein and drug interactions from the STITCH and STRING interaction databases. STITCH and STRING are sister databases that catalog known and predicted drug-protein interactions and protein-protein interactions, respectively. Using these two databases, we have developed a method to construct evidence networks to "explain" the relation between a drug and a mediator. RESULTS: We applied this approach to drug-mediator relations discovered in EDDY-CTRP analysis and identified evidence networks for ~70% of drug-mediator pairs where most mediators were not known direct targets for the drug. Constructed evidence networks enable researchers to contextualize the drug-mediator pair with current research and knowledge. Using evidence networks, we were able to improve the interpretability of the EDDY-CTRP results by linking the drugs and mediators with genes associated with both the drug and the mediator. We anticipate that these evidence networks will help inform EDDY-CTRP results and enhance the generation of important insights to drug sensitivity that will lead to improved precision medicine applications.
SUN, LIJUN; HAO, YUEWEN; NIE, XIAOWEI; ZHANG, XUEXIN; YANG, GUANGXIAO; WANG, QUANYING
2012-01-01
The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the immunohistochemical method and results showed that the expression was positive in the experimental group. Myocardium perfusion MRI displayed that the infracted area significantly decreased under the action of pSS-HRE-CMV-NT4-PR39-PolyA-AAV. The artificial minimal HRE in CRL-1730 cells effectively and rapidly regulates the expression of the downstream gene NT4-TAT-His-PR39 of the CMV promoter. Recombinant pSS-HRE-CMV-NT4-PR39-Poly-AAAV promotes neoangiogenesis in the ischemic area, reduces the area of infarction and improves heart function. PMID:23226731
Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Zhang, Xuexin; Yang, Guangxiao; Wang, Quanying
2012-11-01
The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the immunohistochemical method and results showed that the expression was positive in the experimental group. Myocardium perfusion MRI displayed that the infracted area significantly decreased under the action of pSS-HRE-CMV-NT4-PR39-PolyA-AAV. The artificial minimal HRE in CRL-1730 cells effectively and rapidly regulates the expression of the downstream gene NT4-TAT-His-PR39 of the CMV promoter. Recombinant pSS-HRE-CMV-NT4-PR39-Poly-AAAV promotes neoangiogenesis in the ischemic area, reduces the area of infarction and improves heart function.
Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena
2006-01-01
Background Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. Results We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. Conclusion S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses. PMID:17052344
RNA interference inhibits yellow fever virus replication in vitro and in vivo.
Pacca, Carolina C; Severino, Adriana A; Mondini, Adriano; Rahal, Paula; D'avila, Solange G P; Cordeiro, José Antonio; Nogueira, Mara Correa Lelles; Bronzoni, Roberta V M; Nogueira, Maurício L
2009-04-01
RNA interference (RNAi) is a process that is induced by double stranded RNA and involves the degradation of specific sequences of mRNA in the cytoplasm of the eukaryotic cells. It has been used as an antiviral tool against many viruses, including flaviviruses. The genus Flavivirus contains the most important arboviruses in the world, i.e., dengue (DENV) and yellow fever (YFV). In our study, we investigated the in vitro and in vivo effect of RNAi against YFV. Using stable cell lines that expressed RNAi against YFV, the cell lines were able to inhibit as much as 97% of the viral replication. Two constructions (one against NS1 and the other against E region of YFV genome) were able to protect the adult Balb/c mice against YFV challenge. The histopathologic analysis demonstrated an important protection of the central nervous system by RNAi after 10 days of viral challenge. Our data suggests that RNAi is a potential viable therapeutic weapon against yellow fever.
Chen, Jian-jing; Raab-Traub, Nancy; Yao, Qing-yun; Zhang, Feng; Huang, Mei-ling; Kuang, Zhu-ji; Zhang, Xiao-shi; Ye, Yan-li; Gu, Li
2002-01-01
The latent membrane protein gene (LMP) of Epstein-Barr virus (EBV) was thought to play an important role in the carcinogenesis of nasopharyngeal carcinoma (NPC). In this study, the authors investigated the effects of antisense RNA (AsRNA) on LMP for down regulating at the target gene over expression in EBV transformed lymphoid cells, and set up an antisense system to inhibit LMP expression. Constructing the single strand antisense transcription system in vitro, the authors have got large amount of AsRNA. Designing and setting up an antisense tracing system in situ (ATSIS), the authors could observe the living particles of AsRNA/sense RNA duplex dimer. With time lapse phase-contrast microscopy, the agglutination phenotype on living cells was easily detected by MTT test, the inhibition rate on EBV transformed cells was calculated. LMP 1.9 fragment ligated into pGEM vector in reverse orientation have been constructed and produced a plentiful amount of AsLMPmRNA which could incorporated into both B95-8 and C1936 cell lines by endophagocytosis and formed the duplex dimer of As/Sense RNA. This particles have been visualized in situ when labelling 35S isotope by ATSIS. When AsLMPmRNA acted as agents for specific inhibition to LMP over expression, the transform phenotype of cell agglutination have been suppressed and MTT particle formatin was apparently reduced both two EBV tansformed cell lines. AsLMPmRNA targets at sense strand have a high effectiveness of down-regulation on EBV-LMP overexpression. This down regulating function of LMP and growth inhibition on transformed cell is demonstrated by the antisenes tracing system in situ (ATSIS). The results provide a clue to overcome the latent EBV infection in human bodies all living long time and to prevent it inducing NPC in high incidence area by antisense strategies.
Liger, D; vanderSpek, J C; Gaillard, C; Cansier, C; Murphy, J R; Leboulch, P; Gillet, D
1997-04-07
We have constructed two fusion proteins, DAB389-mIL-3 and DAB389-(Gly4Ser)2-mIL-3, in which the receptor-binding domain of diphtheria toxin is replaced by mouse interleukin-3 (IL-3). Cytotoxic activity of the fusion toxins was observed on three out of six cell lines assayed. This toxicity was mediated through binding to the IL-3 receptor as it was inhibited in a dose-dependent manner with murine IL-3 or anti-IL-3 neutralizing antibodies. DAB389-(Gly4Ser)2-mIL-3 was up to 5 times more toxic than DAB389-mIL-3, depending on the cell line (0.8 x 10(-10) M < IC50 < 3 x 10(-10) M). These proteins can be used for the detection of IL-3 receptors on mouse cells and should allow for the selective elimination of IL-3 receptor-positive pluripotent hematopoietic stem cells prior to bone marrow transplantation.
Acellular organ scaffolds for tumor tissue engineering
NASA Astrophysics Data System (ADS)
Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei
2015-12-01
Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.
The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.
1994-09-01
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcomamore » cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.« less
Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi
2017-01-01
ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368
Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi
2017-05-04
The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.
Novel revertants of H-ras oncogene-transformed R6-PKC3 cells.
Krauss, R S; Guadagno, S N; Weinstein, I B
1992-01-01
Rat 6 fibroblasts that overproduce protein kinase C beta 1 (R6-PKC3 cells) are hypersensitive to complete transformation by the T24 H-ras oncogene; yet T24 H-ras-transformed R6-PKC3 cells are killed when exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA) (W.-L. W. Hsiao, G. M. Housey, M. D. Johnson, and I. B. Weinstein, Mol. Cell. Biol. 9:2641-2647, 1989). Treatment of an R6-PKC3 subclone that harbors a T24 H-ras gene under the control of an inducible mouse metallothionein I promoter with ZnSO4 and TPA is extremely cytocidal. This procedure was used to isolate rare revertants that are resistant to this toxicity. Two revertant lines, R-1a and ER-1-2, continue to express very high levels of protein kinase C enzyme activity but, unlike the parental cells, do not grow in soft agar. Furthermore, these revertants are resistant to the induction of anchorage-independent growth by the v-src, v-H-ras, v-raf, and, in the case of the R-1a line, v-fos oncogenes. Both revertant lines, however, retain the ability to undergo morphological alterations when either treated with TPA or infected with a v-H-ras virus, thus dissociating anchorage independence from morphological transformation. The revertant phenotype of both R-1a and ER-1-2 cells is dominant over the transformed phenotype in somatic cell hybridizations. Interestingly, the revertant lines no longer induce the metallothionein I-T24 H-ras construct or the endogenous metallothionein I and II genes in response to three distinct agents: ZnSO4, TPA, and dexamethasone. The reduction in activity of metallothionein promoters seen in these revertants may reflect defects in signal transduction pathways that control the expression of genes mediating specific effects of protein kinase C and certain oncogenes in cell transformation. Images PMID:1535685
Ghanbari Safari, Maryam; Baesi, Kazem; Hosseinkhani, Saman
2017-03-01
MicroRNAs are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidences indicate that miRNAs have different expression profiles and play crucial roles in numerous cellular processes. Delivery and expression of transgenes for cancer therapy must be specific for tumors to avoid killing of healthy tissues. Many investigators have shown that transgene expression can be suppressed in normal cells using vectors that are responsive to microRNA regulation. To overcome this problem, miR-145 that exhibits downregulation in many types of cancer cells was chosen for posttranscriptional regulatory systems mediated by microRNAs. In this study, a psiCHECK-145T vector carrying four tandem copies of target sequences of miR-145 into 3'-UTR of the Renilla luciferase gene was constructed. Renilla luciferase activity from the psiCHECK-145T vector was 57% lower in MCF10A cells with high miR-145 expression as compared to a control condition. Additionally, overexpression of miR-145 in MCF-7 cells with low expression level of miR-145 showed more than 76% reduction in the Renilla luciferase activity from the psiCHECK-145T vector. Inclusion of miR-145 target sequences into the 3'-UTR of the Renilla luciferase gene is a feasible strategy for restricting transgene expression in a breast cancer cell line while sparing a breast normal cell line. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Xiao, W; Li, C Q; Xiao, X P; Lin, F Z
2013-12-16
Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.
One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Protic-Sabljic, M.; Kraemer, K.H.
1985-10-01
The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfectionmore » resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA.« less
Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound
2005-06-15
Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.
Donakonda, Sainitin; Sinha, Swati; Dighe, Shrinivas Nivrutti; Rao, Manchanahalli R Satyanarayana
2017-07-25
ASCL1 is a basic Helix-Loop-Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF-TF and gene-gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC.
Role of claudin species-specific dynamics in reconstitution and remodeling of the zonula occludens.
Yamazaki, Yuji; Tokumasu, Reitaro; Kimura, Hiroshi; Tsukita, Sachiko
2011-05-01
Tight-junction strands, which are organized into the beltlike cell-cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.
Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian
2013-01-01
In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.
Characterization and evaluation of apoptotic potential of double gene construct pVIVO.VP3.NS1.
Saxena, Shikha; Desai, G S; Kumar, G Ravi; Sahoo, A P; Santra, Lakshman; Singh, Lakshya Veer
2015-05-01
Viral gene oncotherapy, targeted killing of cancer cells by viral genes, is an emerging non-infectious therapeutic cancer treatment modality. Chemo and radiotherapy in cancer treatment is limited due to their genotoxic side effects on healthy cells and need of functional p53, which is mutated in most of the cancers. VP3 (apoptin) of chicken infectious anaemia (CIA) and NS1 (Non structural protein 1) of Canine Parvovirus-2 (CPV-2) have been proven to have oncolytic potential in our laboratory. To evaluate oncolytic potential of VP3 and NS1 together these genes needed to be cloned in a bicistronic vector. In this study, both these genes were cloned and characterized for expression of their gene products and its apoptotic potential. The expression of VP3 and NS1 was studied by confocal microscopy and flowcytometry. Expression of VP3 and NS1 in pVIVO.VP3.NS1 transfected HeLa cells in comparison to mock transfected cells indicated that the double gene construct expresses both the products. This was further confirmed by flowcytometry where there was increase in cells expressing VP3 and NS1 in pVIVO.VP3.NS1 transfected group in comparison with the mock control group. The apoptotic inducing potential of this characterized pVIVO.VP3.NS1 was evaluated in human cervical cancer cell line (HeLa) by DNA fragmentation assay, TUNEL assay and Hoechst staning. This double construct was observed to induce apoptosis in HeLa cells.
Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira; Kim, Seong-Jin
2018-03-01
Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2 , SNAI1 , and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B , CTGF , and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B , CTGF , and JUNB genes in various cancers.
NASA Astrophysics Data System (ADS)
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Wu, Yongyan; Zhang, Yuliang; Niu, Min; Shi, Yong; Liu, Hongliang; Yang, Dongli; Li, Fei; Lu, Yan; Bo, Yunfeng; Zhang, Ruiping; Li, Zhenyu; Luo, Hongjie; Cui, Jiajia; Sang, Jiangwei; Xiang, Caixia; Gao, Wei; Wen, Shuxin
2018-06-27
CD133+CD44+ cancer stem cells previously isolated from laryngeal squamous cell carcinoma (LSCC) cell lines showed strong malignancy and tumorigenicity. However, the molecular mechanism underlying the enhanced malignancy remained unclear. Cell proliferation assay, spheroid-formation experiment, RNA sequencing (RNA-seq), miRNA-seq, bioinformatic analysis, quantitative real-time PCR, migration assay, invasion assay, and luciferase reporter assay were used to identify differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs, construct transcription regulatory network, and investigate functional roles and mechanism of circRNA in CD133+CD44+ laryngeal cancer stem cells. Differentially expressed genes in TDP cells were mainly enriched in the biological processes of cell differentiation, regulation of autophagy, negative regulation of cell death, regulation of cell growth, response to hypoxia, telomere maintenance, cellular response to gamma radiation, and regulation of apoptotic signaling, which are closely related to the malignant features of tumor cells. We constructed the regulatory network of differentially expressed circRNAs, miRNAs and mRNAs. qPCR findings for the expression of key genes in the network were consistent with the sequencing data. Moreover, our data revealed that circRNA hg19_circ_0005033 promotes proliferation, migration, invasion, and chemotherapy resistance of laryngeal cancer stem cells. This study provides potential biomarkers and targets for LSCC diagnosis and therapy, and provide important evidences for the heterogeneity of LSCC cells at the transcription level. © 2018 The Author(s). Published by S. Karger AG, Basel.
Construction and Quantitative Validation of Chicken CXCR4 Expression Reporter.
Es-Haghi, Masoumeh; Bassami, Mohammadreza; Dehghani, Hesam
2016-03-01
Site directional migration is an important biological event and an essential behavior for latent migratory cells. A migratory cell maintains its motility, survival, and proliferation abilities by a network of signaling pathways where CXCR4/SDF signaling route plays crucial role for directed homing of a polarized cell. The chicken embryo due to its specific vasculature modality has been used as a valuable model for organogenesis, migration, cancer, and metastasis. In this research, the regulatory regions of chicken CXCR4 gene have been characterized in a chicken hematopoietic lymphoblast cell line (MSB1). A region extending from -2000 bp upstream of CXCR4 gene to +68 after its transcriptional start site, in addition to two other mutant fragments were constructed and cloned in a promoter-less reporter vector. Promoter activity was analyzed by quantitative real-time RT-PCR and flow cytometry techniques. Our findings show that the full sequence from -2000 to +68 bp of CXCR4 regulatory region is required for maximum promoter functionality, while the mutant CXCR4 promoter fragments show a partial promoter activity. The chicken CXCR4 promoter validated in this study could be used for characterization of directed migratory cells in chicken development and disease models.
Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J
1989-11-25
Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)
Line intensity measurements and analysis in the ν3 band of ruthenium tetroxide
NASA Astrophysics Data System (ADS)
Vander Auwera, J.; Reymond-Laruinaz, S.; Boudon, V.; Doizi, D.; Manceron, L.
2018-01-01
Ruthenium tetroxide (RuO4) is a heavy tetrahedral molecule characterized by an unusual volatility near ambient temperature. Because of its chemical toxicity and the radiological impact of its 103Ru and 106Ru isotopologues, the possible remote sensing of this compound in the atmosphere has renewed interest in its spectroscopic properties. The present contribution is the first investigation dealing with high-resolution line-by-line intensity measurements for the strong fundamental band observed near 10 μm, associated with the excitation of the infrared active stretching mode ν3. It relies on new, high resolution FTIR spectra recorded at room temperature, using a specially constructed cell and an isotopically pure sample of 102Ru16O4. Relying on an effective Hamiltonian and associated effective dipole moment [S Reymond-Laruinaz et al, J Mol Spectrosc 2015;315:46-54], the measured line intensities were assigned and dipole moment parameters determined. A HITRAN-formatted frequency and intensity line list was generated.
Comparison of Predicted and Measured Towline Tensions
1994-05-01
10 volts DC Calibration Error Less than 0.25% of full capacity Material Stainless Steel The installed configuration of the load cell at the tow end is...capacity zero shift per IF over operating temperature range. Construction- Stainless steel , seal welded. Electrical Connector- Brantner MSJ-4-BCR...Manufacturer- Marsh & MarineTm Connectors 150 Manufacturer’s Part #- RM-4-MP Description- Molded in-line female connector with stainless steel
Wang, Qian-Fei; Lauring, Josh; Schlissel, Mark S.
2000-01-01
The RAG-2 gene encodes a component of the V(D)J recombinase which is essential for the assembly of antigen receptor genes in B and T lymphocytes. Previously, we reported that the transcription factor BSAP (PAX-5) regulates the murine RAG-2 promoter in B-cell lines. A partially overlapping but distinct region of the proximal RAG-2 promoter was also identified as an important element for promoter activity in T cells; however, the responsible factor was unknown. In this report, we present data demonstrating that c-Myb binds to a Myb consensus site within the proximal promoter and is critical for its activity in T-lineage cells. We show that c-Myb can transactivate a RAG-2 promoter-reporter construct in cotransfection assays and that this transactivation depends on the proximal promoter Myb consensus site. By using a chromatin immunoprecipitation (ChIP) strategy, fractionation of chromatin with anti-c-Myb antibody specifically enriched endogenous RAG-2 promoter DNA sequences. DNase I genomic footprinting revealed that the c-Myb site is occupied in a tissue-specific fashion in vivo. Furthermore, an integrated RAG-2 promoter construct with mutations at the c-Myb site was not enriched in the ChIP assay, while a wild-type integrated promoter construct was enriched. Finally, this lack of binding of c-Myb to a chromosomally integrated mutant RAG-2 promoter construct in vivo was associated with a striking decrease in promoter activity. We conclude that c-Myb regulates the RAG-2 promoter in T cells by binding to this consensus c-Myb binding site. PMID:11094072
Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan
2017-07-01
Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.
Wang, Bin; Qin, Hao; Wang, Yuejian; Chen, Weixiong; Luo, Jie; Zhu, Xiaolin; Wen, Weiping; Lei, Wenbin
2014-09-01
The aim of the present study was to explore the effect of DJ-1-mediated PI3K/AKT/mTOR pathway on the proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous cell SNU-46, through stable transfection and overexpression of the DJ-1 gene. Retrovirus carrying DJ-1 gene was used to stabilize transfected human laryngeal squamous carcinoma SNU-46 cell line, and monoclonal cell line of stably overexpressed DJ-1 protein was screened out by G418. DJ-1 protein expression was determined by western blotting, and changes of p-AKT, p-mTOR and PTEN protein content were detected, followed by the detection of changes in proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous carcinoma cell line with stably transfected DJ-1 protein overexpression by flow cytometry, CCK-8 method and Transwell. We successfully constructed a laryngeal squamous carcinoma cell line of stably overexpressed DJ-1 protein and termed it SNU-46-DJ-1. After overexpression of DJ-1 protein, the levels of PTEN expression in laryngeal squamous cell SNU-46 decreased and p-AKT and p-mTOR protein expression levels increased. Compared to the untreated SNU-46 cells, the proliferation rate of SNU-46-DJ-1 cells increased (0.834±0.336 vs. 0.676±0.112; p<0.001); invasiveness was enhanced (165.7±13.6 vs. 100.0±17.4; p=0.001), the migration ability was enhanced (207.3±13.1 vs. 175.3±13.3; p=0.036), and the apoptosis rate decreased (3.533±5.167 vs. 16.397±5.447%; p=0.019). The overexpression of DJ-1 protein in laryngeal squamous carcinoma SNU-46 cells can accelerate proliferation rate, increase the invasion and migration capacity, and reduce apoptosis, by activating the PI3K/AKT/mTOR pathway.
Realization of compact tractor beams using acoustic delay-lines
NASA Astrophysics Data System (ADS)
Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.
2017-01-01
A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.
The carnegie protein trap library: a versatile tool for Drosophila developmental studies.
Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D; Nystul, Todd G; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E; Murphy, Terence D; Levis, Robert W; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A; Spradling, Allan C
2007-03-01
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.
NASA Astrophysics Data System (ADS)
He, Yingjun; Zou, Yuping; Wang, Xiaodong; Zheng, Zhiguo; Zhang, Daming; Duan, Delin
2003-06-01
Eighteen gametophytes including L. japonica, L. ochotensis and L. longissima, were verified with random amplified polymorphic DNA (RAPD) technique. Eighteen ten-base primers were chosen from 100 primers selected for final amplification test. Among the total of 205 bands amplified, 181 (88.3%) were polymorphic. The genetic distance among different strains ranged from 0.072 to 0.391. The dendrogram constructed by unweighted pair-group method with arithmetic (UPGMA) method showed that the female and male gametophytes of the same cell lines could be grouped in pairs respectively. It indicated that RAPD analysis could be used not only to distinguish different strains of Laminaria, but also to distinguish male and female gametophyte within the same cell lines. There is ambiguous systematic relationship if judged merely by the present data. It seems that the use of RAPD marker is limited to elucidation of the phylogenetic relationship among the species of Laminaria.
Transduction of cultured fish cells with recombinant baculoviruses.
Leisy, Douglas J; Lewis, Teresa D; Leong, Jo-Ann C; Rohrmann, George F
2003-05-01
Five fish cell lines were tested for their ability to be transduced by Ac-CAlacZ, a recombinant baculovirus that is capable of expressing a beta-galactosidase reporter gene from the CAG promoter (consisting of a cytomegalovirus enhancer element, a chicken actin promoter and rabbit beta-globin termination sequences). TO (Tilapia ovary), EPC (carp), CHH-1 (Chum salmon heart fibroblast) and CHSE-214 (chinook salmon embryo) cells were transducible, as demonstrated by an in situ beta-galactosidase assay, whereas RTG-2 (rainbow trout gonad) cells were not. The EPC cell line was used for more detailed studies on baculovirus transduction. The transduction frequency was found to be higher at 28 degrees C than at 21 degrees C. Addition of the histone deacetylase inhibitor sodium butyrate increased the number of blue cells detected 5- to 7-fold. The m.o.i. was positively correlated with transduction frequency, although the relationship did not appear to be strictly linear, as has been observed with mammalian cells. The temperature at which baculoviruses were adsorbed to EPC cells did not affect levels of beta-galactosidase expression. We also examined expression levels of beta-galactosidase in EPC cells after infection with a baculovirus construct that overexpresses the vesicular stomatitis virus G protein and displays it on the virion surface. Expression levels with this virus were approximately 15-fold higher than were observed with Ac-CAlacZ.
Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F
1989-01-01
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061
Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA Damaging Agents
Vasilevskaya, Irina A.; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R.; Winkler, Jeffrey D.; O'Dwyer, Peter J.
2015-01-01
Purpose We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. Experimental design In a panel of cell lines we investigated effects of pharmacological and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38 and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Results Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, though synergy is not always hypoxia-specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (non-responsive) lines. In HT29 and SW620 cells CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, where tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. Conclusions These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. PMID:26023085
von Einem, Jens; Schumacher, Daniel; O'Callaghan, Dennis J; Osterrieder, Nikolaus
2006-03-01
The equine herpesvirus 1 (EHV-1) alpha-trans-inducing factor homologue (ETIF; VP16-E) is a 60-kDa virion component encoded by gene 12 (ORF12) that transactivates the immediate-early gene promoter. Here we report on the function of EHV-1 ETIF in the context of viral infection. An ETIF-null mutant from EHV-1 strain RacL11 (vL11deltaETIF) was constructed and analyzed. After transfection of vL11deltaETIF DNA into RK13 cells, no infectious virus could be reconstituted, and only single infected cells or small foci containing up to eight infected cells were detected. In contrast, after transfection of vL11deltaETIF DNA into a complementing cell line, infectious virus could be recovered, indicating the requirement of ETIF for productive virus infection. The growth defect of vL11deltaETIF could largely be restored by propagation on the complementing cell line, and growth on the complementing cell line resulted in incorporation of ETIF in mature and secreted virions. Low- and high-multiplicity infections of RK13 cells with phenotypically complemented vL11deltaETIF virus resulted in titers of virus progeny similar to those used for infection, suggesting that input ETIF from infection was recycled. Ultrastructural studies of vL11deltaETIF-infected cells demonstrated a marked defect in secondary envelopment at cytoplasmic membranes, resulting in very few enveloped virions in transport vesicles or extracellular space. Taken together, our results demonstrate that ETIF has an essential function in the replication cycle of EHV-1, and its main role appears to be in secondary envelopment.
Miroshnichenko, O I; Borisenko, A S; Ponomareva, T I; Tikhonenko, T I
1990-03-01
The E1A region of the adenoviral genome, important for initiation of virus infection and activation of other viral genes, was chosen as a target for engineering antisense RNA (asRNA) to inhibit adenovirus 5 (Ad5) replication in COS-1 cell culture in vitro. The hsp70 promoter, taken from the appropriate heat-shock-protein gene of Drosophila melanogaster, and the VA-1 RNA promoter, derived from the Ad5 gene coding for low-molecular-mass VA-1 RNA and recognized by RNA polymerase III were used as regulatory elements of transcription. The two types of recombinant constructs contained E1A fragments of 710 bp (hsp70 constructs) or 380 or 740 bp (VA-1 RNA constructs) in reverse orientation relative to the promoter position, as well as a transcription termination signal, the SV40 ori, and the gene controlling Geneticin (antibiotic G418) resistance (G418R). After selection of transfected COS-1 cells in the presence of G418, a number of stable G418R cell lines were raised which expressed engineered asRNAs. Plating of Ad5 suspensions of known titre on monolayers of transfected COS-1 cells clearly showed strong inhibition of adenovirus replication by asRNAs: 75% with the hsp70 promoter and 90% with the VA-1 RNA promoter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenmakers, E.F.P.M.; Kools, P.F.J.; Mols, R.
1994-03-15
The authors report here the physical mapping of recurrent chromosome 12q13-q15 breakpoints in cell lines derived from primary myxoid liposarcoma, lipoma, uterine leiomyoma, and pleomorphic adenoma of the salivary glands. In fluorescence in situ hybridization (FISH) experiments, they first mapped the position of the chromosome 12 translocation breakpoint in uterine leiomyoma cell line LM-30.1/SV40 relative to loci COL2A1, D12S4, D12S17, D12S6, D12S19, D12S8, and D12S7. It mapped between linkage probes CRI-C86 (D12S19) and p7G11 (D12S8). They then isolated YAC clones using CRI-C86- and p7G11-derived sequence-tagged sites, constructed corresponding YAC contigs of 310 and 800 kb, respectively, and a mixture ofmore » them was used to routinely study the various tumor cell lines by FISH analysis. The chromosome 12 breakpoints of all tumor cell lines tested mapped between cosmids LLNL12NCO1-98C10 and LLNL12NCO1-113D12. None of the breakpoints appeared to map within any of the isolated YAC clones. Furthermore, FISH analysis using cosmid LLNL12-NCO1-144G3, which maps at the CHOP locus, revealed that the chromosome 12 breakpoints in all cell lines of the three benign solid tumors that were tested were located distal to the chromosome 12 translocation breakpoint with the CHOP gene in myxoid liposarcoma cells with t(12;16). In conclusion, the studies seem to indicate that the chromosome 12 breakpoints of myxoid liposarcoma, lipoma, uterine leiomyoma, and pleomorphic adenoma of the salivary glands are all clustered within the 7-cM interval between D12S19 and D12S8, with those of the benign solid tumors distal to CHOP. Finally, the MYF5 gene mapped telomeric to LLNL12NCO1-113D12, and the MIP gene mapped centromeric to the chromosome 12 translocation breakpoint in myxoid liposarcoma cells. 56 refs., 5 figs., 3 tabs.« less
[Screening and identification of anoikis-resistant gene UBCH7 in esophageal cancer cells].
Yang, Yang; Wang, Bo-Shi; Wang, Xiao-Min; Zhang, Yu; Wang, Ming-Rong; Jia, Xue-Mei
2012-02-01
Anoikis is a kind of programmed cell death induced by loss of extracellular matrix (ECM) adhesion, which is one of key factors for homestasis. Resistance to anoikis is required for tumor cell metastasis. We have previously shown several anoikis-resistance genes in esophageal squamous cell carcinoma (ESCC). In order to find novel anoikis-resistant genes in ESCC, we constructed retroviral cDNA library using total RNA from ESCC cell lines. NIH 3T3 cells, which are sensitive to anoikis, were infected with the library constructed. The cells were cultured in soft agar, and the clones which can survive in detached states were selected. The cDNAs inserted into the anoikis-resistant NIH3T3 clones were amplified using retroviral specific primers. Sequencing analysis showed that a cDNA fragment inserted into the anoikis-resistant clone contains full coding sequence (ORF) of human UBCH7/UBE2L3 gene. By infection with retrovirus encoding UBCH7 ORF (pMSCV-UBCH7), forced expression of UBCH7 increased the anoikis-resistance of NIH3T3 cells. More importantly, knockdown of UBCH7 expression by siRNA transfection reduced the anoikis-resistant ability of esophageal cancer MLuC1 cells. The data suggest that UBCH7/UBE2L3 gene would be involved in anoikis-resistance in ESCC.
Construction and Characterization of Isogenic Series of Saccharomyces cerevisiae Polyploid Strains
Takagi, Atsuko; Harashima, Satoshi; Oshima, Yasuji
1983-01-01
Tetraploid cells of Saccharomyces cerevisiae are generated spontaneously in a homothallic MATa/MATα diploid population at low frequency (approximately 10−6 per cell) through the homozygosity of mating-type alleles by mitotic recombination followed by homothallic switching of the mating-type alleles. To isolate tetraploid clones more effectively, a selection method was developed that used a dye plate containing 40 mg each of eosin Y and amaranth in synthetic nutrient agar per liter. It was possible to isolate tetraploid clones on the dye plate at a frequency of 1 to 3% among the colonies colored dark red in contrast to the light red of the original diploid colonies. Isogenic series of haploid to tetraploid clones with homozygous or heterozygous genomic configurations were easily constructed with the tetraploid strains. No significant differences in specific growth rate or fermentative rate were observed corresponding to differences in ploidy, although the haploid clones showed a higher frequency of spontaneous respiratory-deficient cells than did the others. However, a significant increment in the fermentative rate in glucose nutrient medium was observed in the hybrid strains constructed with two independent homozygous cell lines. These observations strongly suggest that the polyploid strains favored by the brewing and baking industries perform well not because of the physical increment of the cellular volume by polyploidy but because of the genetic complexity or heterosis by heterozygosity of the genome in the hybrid polyploid cells. Images PMID:16346227
Nietzer, Sarah; Baur, Florentin; Sieber, Stefan; Hansmann, Jan; Schwarz, Thomas; Stoffer, Carolin; Häfner, Heide; Gasser, Martin; Waaga-Gasser, Ana Maria; Walles, Heike; Dandekar, Gudrun
2016-07-01
Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of β-catenin in a subset of cells. One central drawback of 2D cultures-especially in consideration of drug testing-is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context-especially for substances targeting tumor-stroma interactions.
NASA Technical Reports Server (NTRS)
Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.
2008-01-01
Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emter, Roger; Natsch, Andreas, E-mail: andreas.natsch@givaudan.com
2015-11-01
Heme oxygenase (decycling) 1 (HMOX1) is the most consistently found genetic marker induced by skin sensitizers. HMOX1 is often referred to as typical gene regulated by nuclear factor erythroid 2-related factor 2 (Nrf2), however, it is also regulated by other DNA-binding factors, including BTB and CNC homolog 1 (Bach1). The KeratinoSens™ assay is the first validated in vitro assay for sensitizers that measures gene induction. It is based on luciferase expression regulated by the antioxidant response element (ARE) of the aldoketoreductase 1C2 (AKR1C2) gene. Luciferase upregulation is dependent on Nrf2, while HMOX1 upregulation is only partially Nrf2-dependent. Thus, sensitizer-dependent activationmore » of HMOX1 may integrate multiple signals thereby providing additional information. We constructed reporter cell lines containing the full HMOX1 regulatory region or the HMOX1-ARE sequence and compared them with the construct containing the AKR1C2-ARE sequence. Induction of the AKR1C2-ARE depends on Nrf2, but not on the repressor Bach1. Results obtained with HMOX1-ARE and the full HMOX1 promoter indicate that, within the HMOX1 promoter, the HMOX1-ARE is sufficient to explain the induction by sensitizers and that (i) inhibiting Bach1 leads to strong basal expression, (ii) fold-induction by sensitizers above this level is reduced in the absence of Bach1 and (iii) these constructs are less dependent on Nrf2 as compared to the AKR1C2-ARE. Nevertheless, congruent dose response curves for luciferase activity were obtained with all constructs. Thus, while sensitizer-induced HMOX1 activation is dependent on Nrf2 and Bach1, all constructs give identical information for the in vitro prediction of the sensitization potential. - Highlights: • HMOX1 is a key genetic marker up-regulated by skin sensitizers. • HMOX1-, but not AKR1C2-upregulation, is dependent on both Nrf2 and Bach1. • AKR1C2 and HMOX1-dependent reporter constructs yield congruent dose response curves. • Combining both constructs offers no advantage over either construct used alone.« less
Research on optimal DEM cell size for 3D visualization of loess terraces
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Tang, Guo'an; Ji, Bin; Ma, Lei
2009-10-01
In order to represent the complex artificial terrains like loess terraces in Shanxi Province in northwest China, a new 3D visual method namely Terraces Elevation Incremental Visual Method (TEIVM) is put forth by the authors. 406 elevation points and 14 enclosed constrained lines are sampled according to the TIN-based Sampling Method (TSM) and DEM Elevation Points and Lines Classification (DEPLC). The elevation points and constrained lines are used to construct Constrained Delaunay Triangulated Irregular Networks (CD-TINs) of the loess terraces. In order to visualize the loess terraces well by use of optimal combination of cell size and Elevation Increment Value (EIV), the CD-TINs is converted to Grid-based DEM (G-DEM) by use of different combination of cell size and EIV with linear interpolating method called Bilinear Interpolation Method (BIM). Our case study shows that the new visual method can visualize the loess terraces steps very well when the combination of cell size and EIV is reasonable. The optimal combination is that the cell size is 1 m and the EIV is 6 m. Results of case study also show that the cell size should be at least smaller than half of both the terraces average width and the average vertical offset of terraces steps for representing the planar shapes of the terraces surfaces and steps well, while the EIV also should be larger than 4.6 times of the terraces average height. The TEIVM and results above is of great significance to the highly refined visualization of artificial terrains like loess terraces.
Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach.
Pouryahya, Maryam; Oh, Jung Hun; Mathews, James C; Deasy, Joseph O; Tannenbaum, Allen R
2018-04-23
In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.
Targeting CD157 in AML using a novel, Fc-engineered antibody construct
Krupka, Christina; Lichtenegger, Felix S.; Köhnke, Thomas; Bögeholz, Jan; Bücklein, Veit; Roiss, Michael; Altmann, Torben; Do, To Uyen; Dusek, Rachel; Wilson, Keith; Bisht, Arnima; Terrett, Jon; Aud, Dee; Pombo-Villar, Esteban; Rohlff, Christian; Hiddemann, Wolfgang; Subklewe, Marion
2017-01-01
Antibody-based immunotherapy represents a promising strategy to eliminate chemorefractory leukemic cells in acute myeloid leukemia (AML). In this study, we evaluated a novel Fc-engineered antibody against CD157 (MEN1112) for its suitability as immunotherapy in AML. CD157 was expressed in 97% of primary AML patient samples. A significant, albeit lower expression level of CD157 was observed within the compartment of leukemia-initiating cells, which are supposed to be the major source of relapse. In healthy donor bone marrow, CD157 was expressed on CD34+ cells. In ex vivo assays, MEN1112 triggered natural killer (NK) cell-mediated cytotoxicity against AML cell lines and primary AML cells. Compared to its parental analogue, the Fc-engineered antibody exhibited higher antibody dependent cellular cytotoxicity responses. Using NK cells from AML patients, we observed heterogeneous MEN1112-mediated cytotoxicity against AML cells, most likely due to well-documented defects in AML-NK cells and corresponding inter-patient variations in NK cell function. Cytotoxicity could not be correlated to the time after completion of chemotherapy. In summary, we could demonstrate that CD157 is strongly expressed in AML. MEN1112 is a promising antibody construct that showed high cytotoxicity against AML cells and warrants further clinical testing. Due to variability in NK-cell function of AML patients, the time of application during the course of the disease as well as combinatorial strategies might influence treatment results. PMID:28415689
Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir; Ahmadvand, Davoud
2011-11-01
The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for highmore » and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.« less
Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase.
Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J
2011-11-01
The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilliland, D. Gary; Steplewski, Zenon; Collier, R. John; Mitchell, Kenneth F.; Chang, Tong H.; Koprowski, Hilary
1980-08-01
We have constructed cell-specific cytotoxic agents by covalently coupling the A chain from diphtheria toxin or ricin toxin to monoclonal antibody directed against a colorectal carcinoma tumor-associated antigen. Antibody 1083-17-1A was modified by attachment of 3-(2-pyridyldithio)propionyl or cystaminyl groups and then treated with reduced A chain to give disulfide-linked conjugates that retained the original binding specificity of the antibody moiety. The conjugates showed cytotoxic activity for colorectal carcinoma cells in culture, but were not toxic in the same concentration range for a variety of cell lines that lacked the antigen. Under defined conditions virtually 100% of antigen-bearing cultured cells were killed, whereas cells that lacked the antigen were not affected. Conjugates containing toxin A chains coupled to monoclonal antibodies may be useful in studying functions of various cell surface components and, possibly, as tumor-specific therapeutic agents.
Construction of Rabbit Immune Antibody Libraries.
Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo
2018-01-01
Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.
1994-01-01
The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12- mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H- 2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus- transformed cells escape immune recognition in vivo. PMID:7519239
Automation of large scale transient protein expression in mammalian cells
Zhao, Yuguang; Bishop, Benjamin; Clay, Jordan E.; Lu, Weixian; Jones, Margaret; Daenke, Susan; Siebold, Christian; Stuart, David I.; Yvonne Jones, E.; Radu Aricescu, A.
2011-01-01
Traditional mammalian expression systems rely on the time-consuming generation of stable cell lines; this is difficult to accommodate within a modern structural biology pipeline. Transient transfections are a fast, cost-effective solution, but require skilled cell culture scientists, making man-power a limiting factor in a setting where numerous samples are processed in parallel. Here we report a strategy employing a customised CompacT SelecT cell culture robot allowing the large-scale expression of multiple protein constructs in a transient format. Successful protocols have been designed for automated transient transfection of human embryonic kidney (HEK) 293T and 293S GnTI− cells in various flask formats. Protein yields obtained by this method were similar to those produced manually, with the added benefit of reproducibility, regardless of user. Automation of cell maintenance and transient transfection allows the expression of high quality recombinant protein in a completely sterile environment with limited support from a cell culture scientist. The reduction in human input has the added benefit of enabling continuous cell maintenance and protein production, features of particular importance to structural biology laboratories, which typically use large quantities of pure recombinant proteins, and often require rapid characterisation of a series of modified constructs. This automated method for large scale transient transfection is now offered as a Europe-wide service via the P-cube initiative. PMID:21571074
Tumbarello, David A; Andrews, Melissa R; Brenton, James D
2016-01-01
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior.
Andrews, Melissa R.; Brenton, James D.
2016-01-01
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1–256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior. PMID:27622658
Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea
2016-01-01
Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but also in winter. The presence of the signal in meristematic tissues supports their role in meristem maintenance. The reporter lines will be useful to study the involvement of cytokinins in acclimation of poplar growth to stress.
Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.
1994-01-01
Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974
Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.
Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry
2017-05-26
A multivalent phosphorus dendrimer 1G 3 and its corresponding Cu-complex, 1G 3 -Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G 3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf
2010-12-01
Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.
Grobe, Nadja; Di Fulvio, Mauricio; Kashkari, Nada; Chodavarapu, Harshita; Somineni, Hari K.; Singh, Richa
2015-01-01
The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1–7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS. PMID:25740155
Sun, Dian Xing; Hu, Da Rong; Wu, Guang Hui; Hu, Xue Ling; Li, Juan; Fan, Gong Ren
2002-08-01
To explore the possibility of using HBV as a gene delivery vector, and to test the anti-HBV effects by intracellular combined expression of antisense RNA and dominant negative mutants of core protein. Full length of mutant HBV genome, which expresses core-partial P fusion protein and/or antisense RNA, was transfected into HepG2.2.15 cell lines. Positive clones were selected and mixed in respective groups with hygromycin in the culture medium. HBsAg and HBeAg, which exist in the culture medium, were tested by ELISA method. Intracellular HBc related HBV DNA was examined by dot blot hybridization. The existence of recombinant HBV virion in the culture medium was examined by PCR. Free of packaging signal, HBV genome, which express the HBV structural proteins including core, pol and preS/S proteins, was inserted into pCI-neo vector. HepG2 cell lines were employed to transfect with the construct. G418 selection was done at the concentration of 400mug/ml in the culture medium. The G418-resistant clones with the best expression of HBsAg and HBcAg were theoretically considered as packaging cell lines and propagated under the same conditions. It was transfected with plasmid pMEP-CPAS and then selected with G418 and hygromycin in the culture medium. The existence of recombinant HBV virion in the culture medium was examined by PCR. The mean inhibitory rates of HBsAg were 2.74% 3.83%, 40.08 2.05% (t=35.5, P<0.01), 66.54% 4.45% (t=42.3, P<0.01), and 73.68% 5.07% (t=51.9, P<0.01) in group 2.2.15-pMEP4, 2.2.15-CP, 2.2.15-SAS, and 2.2.15-CPAS, respectively. The mean inhibitory rates of HBeAg were 4.46% 4.25%, 52.86% 1.32% (t=36.2, P<0.01), 26.36% 1.69% (t=22.3, P<0.01), and 59.28% 2.10% (t=39.0, P<0.01), respectively. The inhibitory rates of HBc related HBV DNA were 0, 82.0%, 59.9%, and 96.6%, respectively. Recombinant HB virion was detectable in the culture medium of all the three treatment groups. G418-resistant HBV packaging cell line, which harbored an HBV mutant whose packaging signal had been deleted, was generated. Expression of HBsAg and HBcAg was detectable. Transfected with plasmid pMEP-CPAS, it was found to secrete recombinant HB virion and no wild-type HBV was detectable in the culture medium. It has stronger anti-HBV effects by combined expression of antisense RNA and dominant negative mutants than by individual expression of them. With the help of wild-type HBV, the modified HBV genome can form and secret HBV like particles, which provides evidence that the antiviral gene will be hepatotropic expression and the antiviral effects will be amplified. The packaging cell line can provide packaging for replication-defective HBV, but with low efficiency.
Hoogenkamp, Henk R; Pot, Michiel W; Hafmans, Theo G; Tiemessen, Dorien M; Sun, Yi; Oosterwijk, Egbert; Feitz, Wout F; Daamen, Willeke F; van Kuppevelt, Toin H
2016-10-01
The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders. Copyright © 2016. Published by Elsevier Ltd.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accessories) to a complete stop; wind conditions; degree of sway in the power line; lighting conditions, and... 29 Labor 8 2011-07-01 2011-07-01 false Power line safety (all voltages)-equipment operations... FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1410 Power line safety (all voltages...
MicroRNA-126 enhances the sensitivity of osteosarcoma cells to cisplatin and methotrexate
JIANG, LIANGDONG; HE, AIYONG; HE, XIAOJIE; TAO, CHENG
2015-01-01
The establishment of novel chemotherapy drugs for osteosarcoma is urgently required, and the mechanisms and effects of cisplatin (DDP) and methotrexate (MTX) in the current treatment of osteosarcoma have not been fully elucidated. The present study aimed to observe the effect of DDP, MTX and rapamycin on osteosarcoma cell proliferation and apoptosis, and to investigate the association between miR-126 and the effects of DDP and MTX in osteosarcoma cells. miR-126-overexpressing and -silencing lentiviral vectors were constructed, and MG63 and U-2 OS osteosarcoma cells were infected. An MTT assay was conducted to detect transfected cell proliferation, and the effects of the chemotherapy drugs on transfected cell apoptosis were detected by flow cytometry. The cell cycle of the transfected cells was analyzed via flow cytometry. As the miR-126-overexpressing and -silencing osteosarcoma cell lines were successfully constructed, it was observed that DDP and MTX inhibited osteosarcoma cell proliferation. With the decreased expression of miR-126, the sensitivity of osteosarcoma cells to DDP and MTX was reduced at the same concentration. The flow cytometry suggested that DDP and MTX could promote the apoptosis of osteosarcoma cells with overexpressed miR-126, whereas they could not significantly impact the apoptosis of the miR-126-silenced osteosarcoma cells. Meanwhile, DDP inhibited the cell cycle of the miR-126-overexpressing osteosarcoma cells. In conclusion, DDP and MTX inhibited the proliferation and promoted the apoptosis of the osteosarcoma cells, and these processes were dependent upon the expression of miR-126. PMID:26788206
Zhang, Yujuan; Huang, Jinhu; Liu, Yang; Guo, Tingting; Wang, Liping
2018-06-01
Transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are known to influence the pharmacokinetics and toxicity of substrate drugs. However, no detailed information is as yet available about functional activity and substrate spectra of chicken P-gp and BCRP. In this study, BCRP single and BCRP/P-gp double-transfected MDCK cell lines (named MDCK-chAbcg2 and MDCK-chAbcg2/Abcb1, respectively) were generated using lentiviral vector system to develop reliable systems for screening the substrates for these two transporters and study the interplay between them. The constructed cell lines significantly expressed functional exogenous proteins and expression persisted for at least 50 generations with no decrease. Enrofloxacin, ciprofloxacin, tilmicosin, sulfadiazine, ampicillin and clindamycin were classified as the substrates of chicken P-gp according to the rules suggested by FDA, as their net efflux ratios were greater than two. Similarly, enrofloxacin, ciprofloxacin, tilmicosin, florfenicol, ampicillin and clindamycin were classified as the substrates of BCRP. Among these drugs, enrofloxacin, ciprofloxacin, tilmicosin, ampicillin, and clindamycin were the cosubstrates of P-gp and BCRP, however, chicken BCRP and P-gp exhibit different affinities to the shared substrates at different concentrations by blocking either one or both transport with specific inhibitors in the coexpression system. It was also found that ceftiofur, amoxicillin and doxycycline were not substrates of either chicken BCRP or the substrates of chicken P-gp. These constructed cell models provide useful systems for high-throughput screening of the potential substrates of chicken BCRP and P-gp as well as the drug-drug interaction mediated via chicken BCRP and P-gp.
Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid
2018-06-01
This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.
1996-04-01
Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.
Metta, Manoj Kumar; Malkhed, Vasavi; Tantravahi, Srinivasan; Vuruputuri, Uma; Kunaparaju, Rajkumar
2017-04-01
Determination of biological activity and its comparison with clinical behavior is important in the quality assessment of therapeutic glycoproteins. In vivo studies are usually employed for evaluating bioactivity of these glycomolecules. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with in vivo studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of rHuEPO. To address this need, we employed the human acute myeloid leukemia cell line UT-7 for the determination of proliferative stimulation induced by rHuEPO. Relative potencies of various intact and sugar-trimmed rHuEPO preparations were estimated using the International Standard for Human r-DNA derived EPO (87/684) as a reference for bioactivity. The cellular response was measured with a multi-channel photometer using a colorimetric microassay, based on the metabolism of the Resazurin sodium by cell viability. For a resourceful probing of physiological features of rHuEPO with significance, we obtained partly or completely desialylated rHuEPO digested by the neuraminidase enzyme without degradation of carbohydrates. Two-fold higher specific activity was shown by asialoerythropoietin in in vitro analysis compared with the sialoerythropoietin. Further, computational studies were also carried out to construct the 3D model of the erythropoietin (EPO) protein structure using standard comparative modeling methods. The quality of the model was validated using Procheck and protein structure analysis (ProSA) server tools. N-glycan units were constructed; moreover, EPO protein was glycosylated at potential glycosylation amino acid residue sites. The method described should be suitable for potency assessments of pharmaceutical formulations of rHuEPO (European Pharmacopeia, 2016).
NASA Astrophysics Data System (ADS)
Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus
2018-01-01
A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.
Suspension cell culture in microgravity and development of a space bioreactor
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
1987-01-01
NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.
Space Bioreactor Science Workshop
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Editor)
1987-01-01
The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.
Endocrine system on chip for a diabetes treatment model.
Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu
2017-02-21
The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.
Modes of isolated, severe convective storm formation along the dryline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; Parker, S.S.
1993-05-01
Patterns of the formation of isolated, severe convective storms along the dryline in the Southern plains of the United States during the spring over a 16-year period were determined from an examination of the evolution of radar echoes as depicted by WSR-57 microfilm data. It was found that in the first 30 min after the first echo, more than half of the radar echoes evolved into isolated storms as isolated cells from the start; others developed either from a pair of cells, from a line segment, from a cluster of cells, from the merger of mature cells, or from amore » squall line. Proximity soundings were constructed from both standard and special soundings, and from standard surface data. It was found that the estimated convective available potential energy and vertical shear are characteristic of the environment of supercell storms. The average time lag between the first echo and the first occurrence of severe weather of any type, or tornadoes alone, was approximately 2 h. There were no significant differences in the environmental parameters for the different modes of storm formation. 49 refs., 15 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
1974-03-08
Proposed construction of a 1.7-mile 34.5-kV double-circuit transmission line crossing Decatur Island from east to west. The new line would replace 0.7 of a mile of an existing BPA 24.5-kV line and would then parallel and existing 24.5-kV line for a distance of 1.0 mile. The proposal also requires the construction of a new substation to be located on the eastern side of Lopez Island, Washington. The additional easement required for the proposed transmission line would remove about 1.1 acres of forestland from timber production diverting it to nonforest uses compatable with the transmission line right-of-way. Depending upon the actualmore » site location the Lopez Island Substation could remove from 1 to 3.2 acres of forestland and 2 acres of pastureland from production. Disturbance of game in the immediate vicintiy of the transmission facilities will occur during construction, as will some soil erosion primarily during and immediately after construction, siltation in nearby streams, disturbance of nearby residents from noise and dust during construction, and some degradation of AM reception immediately adjacent to the right-of-way. 7 figs.« less
Chen, Zhiqi; Kapus, Andras; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald M
2018-06-01
In previous studies we had reported that the immunosuppressive cell membrane bound molecule CD200 is released from the cell following cleavage by matrix metalloproteases, with the released soluble CD200 acting as an immunosuppressant following binding to, and signaling through, its cognate receptor CD200R expressed on target cells. We now show that although the intracellular cytoplasmic tail (CD200 C-tail ) of CD200 has no consensus sites for adapter molecules which might signal the CD200 + cell directly, cleavage of the CD200 C-tail from the membrane region of CD200 by a consensus γ-secretase, leads to nuclear translocation and DNA binding (identified by chromatin immunoprecipitation followed by sequencing, Chip-sequencing) of the CD200 C-tail . Subsequently there occurs an altered expression of a limited number of genes, many of which are transcription factors (TFs) known to be associated with regulation of cell proliferation. Altered expression of these TFs was also prominent following transfection of CD200 + B cell lines and fresh patient CLL cells with a vector construct containing the CD200 C-tail . Artificial transfection of non CD200 + Hek293 cells with this CD200 C-tail construct resulted in altered expression of most of these same genes. Introduction of a siRNA for one of these TFs, POTEA, reversed CD200 C-tail regulation of altered cell proliferation. Copyright © 2018 Elsevier Ltd. All rights reserved.
3D gut-liver chip with a PK model for prediction of first-pass metabolism.
Lee, Dong Wook; Ha, Sang Keun; Choi, Inwook; Sung, Jong Hwan
2017-11-07
Accurate prediction of first-pass metabolism is essential for improving the time and cost efficiency of drug development process. Here, we have developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. This chip consists of two separate layers for gut (Caco-2) and liver (HepG2) cell lines, where cells can be co-cultured in both 2D and 3D forms. Both cell lines were maintained well in the chip, verified by confocal microscopy and measurement of hepatic enzyme activity. We investigated the PK profile of paracetamol in the chip, and corresponding PK model was constructed, which was used to predict PK profiles for different chip design parameters. Simulation results implied that a larger absorption surface area and a higher metabolic capacity are required to reproduce the in vivo PK profile of paracetamol more accurately. Our study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.
Zhao, Wei; Li, Xin; Liu, Wen-Hui; Zhao, Jian; Jin, Yi-Ming; Sui, Ting-Ting
2014-09-01
Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research. Copyright © 2014 Elsevier B.V. All rights reserved.
EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xue; Kan, Shifeng; Liu, Zhen
Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression ofmore » EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.« less
Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J
2009-06-01
Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.
Qiu, Youyi; Zhou, Bin; Yang, Xiaojuan; Long, Dongping; Hao, Yan; Yang, Peihui
2017-05-24
A novel single-cell analysis platform was fabricated using solid-state zinc-coadsorbed carbon quantum dot (ZnCQDs) nanocomposites as an electrochemiluminescence (ECL) probe for the detection of breast cancer cells and evaluation of the CD44 expression level. Solid-state ZnCQDs nanocomposite probes were constructed through the attachment of ZnCQDs to gold nanoparticles and then the loading of magnetic beads to amplify the ECL signal, exhibiting a remarkable 120-fold enhancement of the ECL intensity. Hyaluronic acid (HA)-functionalized solid-state probes were used to label a single breast cancer cell by the specific recognition of HA with CD44 on the cell surface, revealing more stable, sensitive, and effective tagging in comparison with the water-soluble CQDs. This strategy exhibited a good analytical performance for the analysis of MDA-MB-231 and MCF-7 single cells with linear range from 1 to 18 and from 1 to 12 cells, respectively. Furthermore, this single-cell analysis platform was used for evaluation of the CD44 expression level of these two cell lines, in which the MDA-MB-231 cells revealed a 2.8-5.2-fold higher CD44 expression level. A total of 20 single cells were analyzed individually, and the distributions of the ECL intensity revealed larger variations, indicating the high cellular heterogeneity of the CD44 expression level on the same cell line. The as-proposed single-cell analysis platform might provide a novel protocol to effectively study the individual cellular function and cellular heterogeneity.
2014-01-01
Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Conclusions Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention. PMID:24517413
Higgins, M J; Turmel, C; Noolandi, J; Neumann, P E; Lalande, M
1990-01-01
Pulsed-field gel electrophoresis (PFGE) and deletion mapping are being used to construct a physical map of the long arm of human chromosome 13. The present study reports a 2700-kilobase (kb) Not I long-range restriction map encompassing the 13q14-specific loci D13S10, D13S21, and D13S22, which are detected by the cloned DNA markers p7D2, pG24E2.4, and pG14E1.9, respectively. Analysis of a panel of seven cell lines that showed differential methylation at a Not I site between D13S10 and D13S21 proved physical linkage of the two loci to the same 875-kb Not I fragment. D13S22 mapped to a different Not I fragment, precluding the possibility that D13S22 is located between D13S10 and D13S21. PFGE analysis of Not I partial digests placed the 1850-kb Not I fragment containing D13S22 immediately adjacent to the 875-kb fragment containing the other two loci. The proximal rearrangement breakpoint in a cell line carrying a del13(q14.1q21.2) was detected by D13S21 but not by D13S10, demonstrating that D13S21 lies proximal to D13S10. Quantitative analysis of hybridization signals of the three DNA probes to DNA from the same cell line indicated that only D13S10 was deleted, establishing the order of these loci to be cen-D13S22-D13S21-D13S10-tel. Surprisingly, this order was estimated to be 35,000 times less likely than that favored by genetic linkage analysis. Images PMID:1970636
Efficient killing of CD22{sup +} tumor cells by a humanized diabody-RNase fusion protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Juergen; Arndt, Michaela A.E.; Vu, Bang K.
2005-06-03
We report on the generation of a dimeric immunoenzyme capable of simultaneously delivering two ribonuclease (RNase) effector domains on one molecule to CD22{sup +} tumor cells. As targeting moiety a diabody derived from the previously humanized scFv SGIII with grafted specificity of the murine anti-CD22 mAb RFB4 was constructed. Further engineering the interface of this construct (V{sub L}36{sub Leu{yields}}{sub Tyr}) resulted in a highly robust bivalent molecule that retained the same high affinity as the murine mAb RFB4 (K{sub D} 0.2 nM). A dimeric immunoenzyme comprising this diabody and Rana pipiens liver ribonuclease I (rapLRI) was generated, expressed as solublemore » protein in bacteria, and purified to homogeneity. The dimeric fusion protein killed several CD22{sup +} tumor cell lines with high efficacy (IC{sub 50} = 3-20 nM) and exhibited 9- to 48-fold stronger cytotoxicity than a monovalent rapLRI-scFv counterpart. Our results demonstrate that engineering of dimeric antibody-ribonuclease fusion proteins can markedly enhance their biological efficacy.« less
[Antiapoptotic Effect of the Leukemia Associated Gene MLAA-34 in HeLa Cells].
Zhang, Peng-Yu; Zhao, Xuan; Zhang, Wen-Juan; Zhang, Wang-Gang; Chen, Yin-Xia
2016-04-01
To study the antiapoptotic effect of leukemia-associated gene MLAA-34 in HeLa cells. The MLAA-34 recombinant lentiviral expression vector was constructed, and the stably transfected HeLa cell line with high expression of MLAA-34 was set up; As(2)O(3) was used to induce apoptosis; the MTT assay, colony formation test and flow cytometry were used to detect the ability of cell proliferation, colong formation, apoptosis and cell cycle changes respectively. After treatment with As(2)O(3), the survival rate of HeLa cells with MLAA-34 overexpression was significantly higher than that of the control cells, and the colony formation ability of MLAA-34 significantly increased, and the high expression of MLAA-34 gene significantly decreased the apoptosis rate of HeLa cells, and decreased the proportion of G(2)/M phase cells. The leukemia-associated gene MLAA-34 has been comfirmed to show antiapoptotic effect in HeLa cells which are induced by As(2)O(3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, J.Z.; Sapru, M.; Smith, D.
Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder characterized by ear malformations, cervical fistulae, hearing loss and renal abnormalities. We have integrated the Genethon YAC contig maps with additional markers in the chromosome 8q region genetically linked by a unique patient cell line. This cell line is from a patient who has both the branchio-oto-renal syndrome and tricho-rhino-phalangeal syndrome (TRPS). High resolution cytogenetics demonstrated a direct insertion of materials from 8q13.3q21.13 to 8q24.11. TRPS has been previously linked to deletions involving 8q24.11-q24.13. The rearrangement in this patient suggests that TRPS results from loss of gene function due to insertion atmore » the 8q24.11 breakpoint and the possible location for the BOR gene is at either of the two breakpoints of 8q13.3 and 8q21.13. We have constructed cosmid contigs in 8q24.11. In situ hybridization with cosmids mapped to these locations as probes has helped to narrow down the breakpoints. Combinations of cosmids on either side or overlapping the 8q24.11 breakpoint show split signals on one chromosome 8q arm due to insertion of the materials from the proximal region. Cosmids mapped to the TRPS deletion region have been used to hybridize to pulsed field gel genomic blots of DNA from the patient cell line and detected rearranged genomic fragments. Both in situ hybridization and genomic PFGE Southern blot will be used to precisely locate the breakpoints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.
2008-05-06
The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens,more » respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.« less
Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira
2018-01-01
Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Haiyan; Korzh, Svitlana; Li Zhen
2006-05-15
In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficientmore » in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development.« less
Sun, Jie; Luo, Jun; Liu, Jun-Xia; Li, Da-Quan
2009-08-01
To investigate the expression pattern and preliminary function of OPN gene in mammary gland of dairy goat during different lactation stages, using b-actin gene as the internal control, the SYBR Green quantitative real-time PCR (QPCR) analysis was conducted to determine the mRNA expression of OPN gene in mammary gland at the 28th, 60th, 100th, 190th, 270th and 330th day after kidding. Recombinant plasmid of pcDNA3.1-OPN was constructed by inserting the fragment of OPN gene into eukaryotic expression vector pcDNA3.1 and used to transfect the MCF-7 cell line following the restrictive endonuclease cleavage and sequence identification of the target gene segment, the effect of OPN gene on MCF-7 cell proliferation was assessed by MTT analysis. The results indicated that OPN gene exhibited the higher expression level in early (28 d) and late (190 d) lactation stages and the lowest level at dry stage (330 d), which demonstrated a high-low-high-low pattern. There was a significant difference (P < 0. 05) in the proliferation between OPN gene transfected and non-transfected MCF-7 cells, which suggested that the expression of OPN gene could stimulate the proliferation of MCF-7 cells.
46 CFR 46.10-65 - Construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Construction. 46.10-65 Section 46.10-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-65 Construction. (a) The watertight subdivision of every passenger vessel...
46 CFR 46.10-65 - Construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Construction. 46.10-65 Section 46.10-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-65 Construction. (a) The watertight subdivision of every passenger vessel...
46 CFR 46.10-65 - Construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Construction. 46.10-65 Section 46.10-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-65 Construction. (a) The watertight subdivision of every passenger vessel...
46 CFR 46.10-65 - Construction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Construction. 46.10-65 Section 46.10-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-65 Construction. (a) The watertight subdivision of every passenger vessel...
46 CFR 46.10-65 - Construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Construction. 46.10-65 Section 46.10-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-65 Construction. (a) The watertight subdivision of every passenger vessel...
The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors
NASA Astrophysics Data System (ADS)
Roizman, Bernard
1996-10-01
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G
2014-09-09
Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT-PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients.
Ziebell, Angela; Gjersing, Erica; Hinchee, Maud; ...
2016-01-20
Lignin reduction through breeding and genetic modification has the potential to reduce costs in biomass processing in pulp and paper, forage, and lignocellulosic ethanol industries. Here, we present detailed characterization of the extractability and lignin structure of Eucalyptus urophylla x Eucalyptus grandis RNAi downregulated in p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) or cinnamate-4-hydroxylase (C4H). Both the C3'H and C4H downregulated lines were found to have significantly higher extractability when exposed to NaOH base extraction, indicating altered cell wall construction. The molecular weight of isolated lignin was measured and lignin structure was determined by HSQC NMR-based lignin subunit analysis for control and themore » C3'H and C4H downregulated lines. The slight reductions in average molecular weights of the lignin isolated from the transgenic lines (C3'H = 7000, C4H = 6500, control = 7300) does not appear to explain the difference in extractability. The HSQC NMR-based lignin subunit analysis showed increases in H lignin content for the C3'H but only slight differences in the lignin subunit structure of the C3'H and C4H downregulated lines when compared to the control. The greatest difference between the C3'H and C4H downregulated lines is the total lignin content; therefore, it appears that overall lowered lignin content contributes greatly to reduced recalcitrance and increased extractability of cell wall biopolymers. Furthermore, studies will be conducted to determine how the reduction in lignin content creates a less rigid cell wall that is more prone to extraction and sugar release.« less
An ion channel library for drug discovery and safety screening on automated platforms.
Wible, Barbara A; Kuryshev, Yuri A; Smith, Stephen S; Liu, Zhiqi; Brown, Arthur M
2008-12-01
Ion channels represent the third largest class of targets in drug discovery after G-protein coupled receptors and kinases. In spite of this ranking, ion channels continue to be under exploited as drug targets compared with the other two groups for several reasons. First, with 400 ion channel genes and an even greater number of functional channels due to mixing and matching of individual subunits, a systematic collection of ion channel-expressing cell lines for drug discovery and safety screening has not been available. Second, the lack of high-throughput functional assays for ion channels has limited their use as drug targets. Now that automated electrophysiology has come of age and provided the technology to assay ion channels at medium to high throughput, we have addressed the need for a library of ion channel cell lines by constructing the Ion Channel Panel (ChanTest Corp., Cleveland, OH). From 400 ion channel genes, a collection of 82 of the most relevant human ion channels for drug discovery, safety, and human disease has been assembled.Each channel has been stably overexpressed in human embryonic kidney 293 or Chinese hamster ovary cells. Cell lines have been selected and validated on automated electrophysiology systems to facilitate cost-effective screening for safe and selective compounds at earlier stages in the drug development process. The screening and validation processes as well as the relative advantages of different screening platforms are discussed.
Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in a goat model.
Mi, Shengli; Yang, Xueyi; Zhao, Qingmei; Qu, Lei; Chen, Shuming; M Meek, Keith; Dou, Zhongying
2008-11-01
We describe a procedure to construct an artificial corneal epithelium from cryopreserved limbal stem cells (LSCs) for corneal transplantation. The LSCs were separated from limbal tissue of male goats. The primary LSCs were identified by flow cytometry and were expanded. They were examined for stem cell-relevant properties and cryopreserved in liquid nitrogen. Cryopreserved LSCs were thawed and then transplanted onto human amniotic membrane, framed on a nitrocellulose sheet, to construct corneal epithelium sheets. The artificial corneal epithelium was transplanted into the right eye of pathological models of total limbal stem cell deficiency (LSCD). Then, the effects of reconstruction were evaluated by clinical observation and histological examination. Polymerase chain reaction analysis was used to detect the SRY gene. The data showed that transplantation of cryopreserved LSCs, like fresh LSCs, successfully reconstructed damaged goat corneal surface gradually, but the SRY gene expression from male goat cells could only be detected in the first 2 months after transplantation. The therapeutic effect of the transplantation may be associated with the inhibition of inflammation-related angiogenesis after transplantation of cryopreserved LSCs. This study provides the first line of evidence that cryopreserved LSCs can be used for reconstruction of damaged corneas, presenting a remarkable potential source for transplantation in the treatment of corneal disorders.
Dominici, Luca; Guerrera, Elena; Villarini, Milena; Fatigoni, Cristina; Moretti, Massimo; Blasi, Paolo; Monarca, Silvano
2013-01-01
In tunnel construction, workers exposed to dust from blasting, gases, diesel exhausts, and oil mist have shown higher risk for pulmonary diseases. A clear mechanism to explain how these pollutants determine diseases is lacking, and alveolar epithelium's capacity to ingest inhaled fine particles is not well characterized. The objective of this study was to assess the genotoxic effect exerted by fine particles collected in seven tunnels using the cytokinesis-block micronuclei test in an in vitro model on type II lung epithelium A549 cells. For each tunnel, five fractions with different aerodynamic diameters of particulate matter were collected with a multistage cascade sampler. The human epithelial cell line A549 was exposed to 0.2 m(3)/mL equivalent of particulate for 24 h before testing. The cytotoxic effects of particulate matter on A549 cells were also evaluated in two different viability tests. In order to evaluate the cells' ability to take up fine particles, imaging with transmission electron microscopy of cells after exposure to particulate matter was performed. Particle endocytosis after 24 h exposure was observed as intracellular aggregates of membrane-bound particles. This morphologic evidence did not correspond to an increase in genotoxicity detected by the micronucleus test.
Dominici, Luca; Guerrera, Elena; Villarini, Milena; Fatigoni, Cristina; Moretti, Massimo; Blasi, Paolo; Monarca, Silvano
2013-01-01
In tunnel construction, workers exposed to dust from blasting, gases, diesel exhausts, and oil mist have shown higher risk for pulmonary diseases. A clear mechanism to explain how these pollutants determine diseases is lacking, and alveolar epithelium's capacity to ingest inhaled fine particles is not well characterized. The objective of this study was to assess the genotoxic effect exerted by fine particles collected in seven tunnels using the cytokinesis-block micronuclei test in an in vitro model on type II lung epithelium A549 cells. For each tunnel, five fractions with different aerodynamic diameters of particulate matter were collected with a multistage cascade sampler. The human epithelial cell line A549 was exposed to 0.2 m3/mL equivalent of particulate for 24 h before testing. The cytotoxic effects of particulate matter on A549 cells were also evaluated in two different viability tests. In order to evaluate the cells' ability to take up fine particles, imaging with transmission electron microscopy of cells after exposure to particulate matter was performed. Particle endocytosis after 24 h exposure was observed as intracellular aggregates of membrane-bound particles. This morphologic evidence did not correspond to an increase in genotoxicity detected by the micronucleus test. PMID:24069598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Holloway, L
Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less
Jaleco, A C; Stegmann, A P; Heemskerk, M H; Couwenberg, F; Bakker, A Q; Weijer, K; Spits, H
1999-10-15
Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a multiple cloning site connected to a gene encoding green fluorescent protein by an internal ribosomal entry site. Human CD34(+)CD38(-) fetal liver cells, cultured overnight in a combination of stem cell factor and interleukin-7 (IL-7), could be transduced with 30% efficiency. We ligated the gene encoding the dominant negative helix loop helix (HLH) factor Id3 that inhibits many enhancing basic HLH transcription factors into this vector. CD34(+)CD38(-) FL cells were transduced with Id3-IRES-GFP and cultured with the murine stromal cell line S17. In addition, we cultured the transduced cells in a reaggregate culture system with an SV-transformed human fibroblast cell line (SV19). It was observed that overexpression of Id3 inhibited development of B cells in both culture systems. B-cell development was arrested at a stage before expression of the IL-7Ralpha. The development of CD34(+)CD38(-) cells into CD14(+) myeloid cells in the S17 system was not inhibited by overexpression of Id3. Moreover, Id3(+) cells, although inhibited in their B-cell development, were still able to develop into natural killer (NK) cells when cultured in a combination of Flt-3L, IL-7, and IL-15. These findings confirm the essential role of bHLH factors in B-cell development and demonstrate the feasibility of retrovirus-mediated gene transfer as a tool to genetically modify human B-cell development.
Bessette, Darrell C.; Tilch, Erik; Seidens, Tatjana; Quinn, Michael C. J.; Wiegmans, Adrian P.; Shi, Wei; Cocciardi, Sibylle; McCart-Reed, Amy; Saunus, Jodi M.; Simpson, Peter T.; Grimmond, Sean M.; Lakhani, Sunil R.; Khanna, Kum Kum; Waddell, Nic; Al-Ejeh, Fares; Chenevix-Trench, Georgia
2015-01-01
Background Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. Materials and Methods Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. Results Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. Conclusions Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance. PMID:25969993
Tzeng, Wen-Pin; Matthews, Jason D; Frey, Teryl K
2006-04-01
The rubella virus capsid protein (C) has been shown to complement a lethal deletion (termed deltaNotI) in P150 replicase protein. To investigate this phenomenon, we generated two lines of Vero cells that stably expressed either C (C-Vero cells) or C lacking the eight N-terminal residues (Cdelta8-Vero cells), a construct previously shown to be unable to complement DeltaNotI. In C-Vero cells but not Vero or Cdelta8-Vero cells, replication of a wild-type (wt) replicon expressing the green fluorescent protein (GFP) reporter gene (RUBrep/GFP) was enhanced, and replication of a replicon with deltaNotI (RUBrep/GFP-deltaNotI) was rescued. Surprisingly, replicons with deleterious mutations in the 5' and 3' cis-acting elements were also rescued in C-Vero cells. Interestingly, the Cdelta8 construct localized to the nucleus while the C construct localized in the cytoplasm, explaining the lack of enhancement and rescue in Cdelta8-Vero cells since rubella virus replication occurs in the cytoplasm. Enhancement and rescue in C-Vero cells were at a basic step in the replication cycle, resulting in a substantial increase in the accumulation of replicon-specific RNAs. There was no difference in translation of the nonstructural proteins in C-Vero and Vero cells transfected with the wt and mutant replicons, demonstrating that enhancement and rescue were not due to an increase in the efficiency of translation of the transfected replicon transcripts. In replicon-transfected C-Vero cells, C and the P150 replicase protein associated by coimmunoprecipitation, suggesting that C might play a role in RNA replication, which could explain the enhancement and rescue phenomena. A unifying model that accounts for enhancement of wt replicon replication and rescue of diverse mutations by the rubella virus C protein is proposed.
Luo, Shun-Tao; Tian, Wen-Hong; Wang, Gang; Dong, Xiao-Yan; Yang, Li; Wu, Xiao-Bing
2009-11-01
GLuc (Gaussia luciferase) is a secreted luciferase with high sensitivity. In this study, we primarily compared expression character of PTTR with that of PCMV, relied on easy secretion, high sensitivity and simple and fast detection of GLuc. We firstly constructed two plasmids pAAV2-neo-TTR-GLuc and pAAV2-neo-CMV-GLuc. Then, 4 cell lines were transfected with the two plasmids in aid of Lipofectamine 2000, including Huh7 and HepG2, which are derived from liver cells, as well as HEK293 and HeLaS3 cells, which are non-liver cell lines. We monitored the expression of GLuc in the supernatant of these cell cultures at different time points post-transfection. Furthermore, we injected the two plasmids with different doses into BALB/c mice by the means of hydrodynamic delivery and monitored the GLuc expression in vivo with 2.5 microl tail tip blood since 2 h post-injection. The cell assay results suggested that the expression of GLuc driven by CMV promoter was significantly higher than that of GLuc driven by TTR promoter. And, the luciferase activity of GLuc driven by CMV promoter was 50-300 times higher than that of GLuc driven by TTR promoter in HEK293 and HeLaS3 cell lines, but less than 10 times higher than that of GLuc driven by TTR promoter in the HepG2 and Huh7 cell lines, indicating the relative liver-specificity of TTR promoter. In the animal assay, the higher luciferase activity was determined in CMV promoter group than in TTR promoter group at different doses of the two plasmids. But the expression patterns for the two promoters differed obviously. The expression of GLuc driven by CMV promoter reached the maximum 10 hours post-injection and declined rapidly; while the expression of GLuc driven by TTR promoter reached the maximum 48 hours after delivery, and declined very slowly. These results implied that PTTR could keep expression of driven gene in a long time although its expression intensity is lower than PCMV's. Thus, it is more suitable for maintaining longer expression of target genes in liver.
Kubo, Shuji; Kawasaki, Yoshiko; Yamaoka, Norie; Tagawa, Masatoshi; Kasahara, Noriyuki; Terada, Nobuyuki; Okamura, Haruki
2010-01-01
Background Malignant mesothelioma is a highly aggressive tumor with poor prognosis. Conventional therapies for mesothelioma are generally non-curative, and new treatment paradigms are urgently needed. We hypothesized that the tumor-specific midkine (Mdk) promoter could confer transcriptional targeting to oncolytic adenoviruses for effective treatment of malignant mesothelioma. Methods We analyzed Mdk expression by quantitative RT-PCR in six human mesothelioma cell lines, and tested Mdk promoter activity by luciferase reporter assay. Based on these data, we constructed a replication-selective oncolytic adenovirus, designated AdMdk-E1-iresTK, which contains an Mdk promoter-driven adenoviral E1 gene and HSV-thymidine kinase (TK) suicide gene, and CMV promoter-driven green fluorescent protein (GFP) marker gene. Selectivity of viral replication and cytolysis were characterized in normal vs. mesothelioma cells in vitro, and intratumoral spread and antitumor efficacy were investigated in vivo. Results Mdk promoter activity was restricted in normal cells, but highly activated in mesothelioma cell lines. AdMdk-E1-iresTK was seen to efficiently replicate, produce viral progeny, and spread in multiple mesothelioma cell lines. Lytic spread of AdMdk-E1-iresTK mediated efficient killing of these mesothelioma cells, and its in vitro cytocidal effect was significantly enhanced by treatment with the prodrug, ganciclovir. Intratumoral injection of AdMdk-E1-iresTK caused complete regression of MESO4 and MSTO human mesothelioma xenografts in athymic mice. In vivo fluorescence imaging demonstrated intratumoral spread of AdMdk-E1-iresTK-derived signals, which vanished after tumor eradication. Conclusions These data indicate that transcriptional targeting of viral replication by the Mdk promoter represents a promising general strategy for oncolytic virotherapy of cancers with upregulated Mdk expression, including malignant mesothelioma. PMID:20635326
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
Kasajima, Ichiro; Sasaki, Katsutomo
2016-05-03
The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.
Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C
2017-01-02
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.
Stamm, Hauke; Klingler, Felix; Grossjohann, Eva-Maria; Muschhammer, Jana; Vettorazzi, Eik; Heuser, Michael; Mock, Ulrike; Thol, Felicitas; Vohwinkel, Gabi; Latuske, Emily; Bokemeyer, Carsten; Kischel, Roman; Dos Santos, Cedric; Stienen, Sabine; Friedrich, Matthias; Lutteropp, Michael; Nagorsen, Dirk; Wellbrock, Jasmin; Fiedler, Walter
2018-05-31
Immune checkpoints are promising targets in cancer therapy. Recently, poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2) have been identified as novel immune checkpoints. In this investigation we show that acute myeloid leukemia (AML) cell lines and AML patient samples highly express the T-cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands PVR and PVRL2. Using two independent patient cohorts, we could demonstrate that high PVR and PVRL2 expression correlates with poor outcome in AML. We show for the first time that antibody blockade of PVR or PVRL2 on AML cell lines or primary AML cells or TIGIT blockade on immune cells increases the anti-leukemic effects mediated by PBMCs or purified CD3 + cells in vitro. The cytolytic activity of the BiTE® antibody construct AMG 330 against leukemic cells could be further enhanced by blockade of the TIGIT-PVR/PVRL2 axis. This increased immune reactivity is paralleled by augmented secretion of Granzyme B by immune cells. Employing CRISPR/Cas9-mediated knockout of PVR and PVRL2 in MV4-11 cells, the cytotoxic effects of antibody blockade could be recapitulated in vitro. In NSG mice reconstituted with human T cells and transplanted with either MV4-11 PVR/PVRL2 knockout or wildtype cells, prolonged survival was observed for the knockout cells. This survival benefit could be further extended by treating the mice with AMG 330. Therefore, targeting the TIGIT-PVR/PVRL2 axis with blocking antibodies might represent a promising future therapeutic option in AML.
Mechanisms of CTC Biomarkers in Breast Cancer Brain Metastasis
2015-10-01
from breast cancer patients are very distinct from breast cancer cell lines that are widely used for drug discovery, a finding which raises the...These findings are of relevance because the formation of invadopodia in CTC is required for the in vivo extravasation through blood-brain barrier as...Optimization of PCR conditions to prepare distinct Notch1/HPSE shRNAs with the establishment of an effective cloning protocol to construct pINDUCER11-shRNA
1988-10-14
Ion Ream Lithography Using Novolak Based Resist S. Matsui, Y. Kojima, and .7. Dchiai ......................................... 0, 448 FIB Direct Ion...to the line length, reflection effects occur. The impedance oscillates with small changes in frequency as constructive or destructive interference ...Materials and Chemical Sciences Division discharge rates by a factor of five. Na/ DMDS cell 1 Cyclotron Road, Berkeley, CA 94720 having I wt% CoPc were
2014-10-01
harnessed the latest genome editing tools of the CRISPR /Cas9 (Clustered Regulatory Interspaced Short Palindromic Repeats) system to generate...immortalized MEF reporter lines that stably express reporters under the control of the endogenous genes. The CRISPR /Cas9 system, which was recently developed...cells carrying different retroviral reporter constructs. Thus, even though using the CRISPR /Cas9 system is inherently a longer process, the use of
Self-assembly of high-nuclearity lanthanide-based nanoclusters for potential bioimaging applications
NASA Astrophysics Data System (ADS)
Yang, Xiaoping; Wang, Shiqing; Schipper, Desmond; Zhang, Lijie; Li, Zongping; Huang, Shaoming; Yuan, Daqiang; Chen, Zhongning; Gnanam, Annie J.; Hall, Justin W.; King, Tyler L.; Que, Emily; Dieye, Yakhya; Vadivelu, Jamuna; Brown, Katherine A.; Jones, Richard A.
2016-05-01
Two series of Cd-Ln and Ni-Ln clusters [Ln8Cd24L12(OAc)44(48)Cl4(0)] and [Ln8Ni6L6(OAc)24(EtOH)6(H2O)2] were constructed using a flexible ligand. The Cd-Ln clusters exhibit interesting nano-drum-like structures which allows direct visualization by TEM. Luminex MicroPlex Microspheres loaded with the Cd-Sm cluster were visualized using epifluorescence microscopy. Cytotoxicity studies on A549 and AGS cancer cell lines showed that the materials have mild to moderate cytotoxicity.Two series of Cd-Ln and Ni-Ln clusters [Ln8Cd24L12(OAc)44(48)Cl4(0)] and [Ln8Ni6L6(OAc)24(EtOH)6(H2O)2] were constructed using a flexible ligand. The Cd-Ln clusters exhibit interesting nano-drum-like structures which allows direct visualization by TEM. Luminex MicroPlex Microspheres loaded with the Cd-Sm cluster were visualized using epifluorescence microscopy. Cytotoxicity studies on A549 and AGS cancer cell lines showed that the materials have mild to moderate cytotoxicity. Electronic supplementary information (ESI) available: Full experimental and characterization details for 1-5. CCDC 1007468, 1007469 and 1007472-1007474. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6nr00642f
Weigent, Douglas A; Arnold, Robyn E
2005-03-01
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.
Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi
2012-01-01
Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574
Cho, Jun Sik; Lee, Shin-Wha; Kim, Yong-Man; Kim, Dongho; Kim, Dae-Yeon; Kim, Young-Tak
2015-05-01
This study was to identify small inhibitory RNAs (siRNAs) that are effective in inhibiting growth of cervical cancer cell lines harboring human papilloma virus (HPV) and to examine how siRNAs interact with interferon beta (IFN-β) and thimerosal. The HPV18-positive HeLa and C-4I cell lines were used. Four types of siRNAs were designed according to their target (both E6 and E7 vs. E6 only) and sizes (21- vs. 27-nucleotides); Ex-18E6/21, Ex-18E6/27, Sp-18E6/21, and Sp-18E6/27. Each siRNA-transfected cells were cultured with or without IFN-b and thimerosal and their viability was measured. The viabilities of HPV18-positive tumor cells were reduced by 21- and 27-nucleotide siRNAs in proportion to the siRNA concentrations. Of the two types of siRNAs, the 27-nucleotide siRNA constructs showed greater inhibitory efficacy. Sp-18E6 siRNAs, which selectively downregulates E6 protein only, were more effective than the E6- and E7-targeting Ex-18E6 siRNAs. siRNAs and IFN-β showed the synergistic effect to inhibit HeLa cell survival and the effect was proportional to both siRNA and IFN-β concentrations. Thimerosal in the presence of siRNA exerted a dose-dependent inhibition of C-4I cell survival. Finally, co-treatment with siRNA, IFN-β, and thimerosal induced the most profound decrease in the viability of both cell lines. Long (27-nucleotides) siRNAs targeting E6-E7 mRNAs effectively reduce the viability of HPV18-positive cervical cancer cells and show the synergistic effect in combination with IFN-b and thimerosal. It is necessary to find the rational design of siRNAs and effective co-factors to eradicate particular cervical cancer.
Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells
2011-01-01
Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492
MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines
Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.
2018-01-01
Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555
MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.
Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M
2018-01-01
Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.
NASA Astrophysics Data System (ADS)
Votava, O.; Mašát, M.; Pracna, P.; Mondelain, D.; Kassi, S.; Liu, A. W.; Hu, S. M.; Campargue, A.
2014-12-01
The absorption spectrum of 13CH4 was recorded at two low temperatures in the icosad region near 1.38 μm, using direct absorption tunable diode lasers. Spectra were obtained using a cryogenic cell cooled at liquid nitrogen temperature (80 K) and a supersonic jet providing a 32 K rotational temperature in the 7173-7367 cm-1 and 7200-7354 cm-1 spectral intervals, respectively. Two lists of 4498 and 339 lines, including absolute line intensities, were constructed from the 80 K and jet spectra, respectively. All the transitions observed in jet conditions were observed at 80 K. From the temperature variation of their line intensities, the corresponding lower state energy values were determined. The 339 derived empirical values of the J rotational quantum number are found close to integer values and are all smaller than 4, as a consequence of the efficient rotational cooling. Six R(0) transitions have been identified providing key information on the origins of the vibrational bands which contribute to the very congested and not yet assigned 13CH4 spectrum in the considered region of the icosad.
Tomography of the Red Supergiant Star MU Cep
NASA Astrophysics Data System (ADS)
Kravchenko, Kateryna
2018-04-01
We present a tomographic method allowing to recover the velocity field at different optical depths in a stellar atmosphere. It is based on the computation of the contribution function to identify the depth of formation of spectral lines in order to construct numerical masks probing different optical depths. These masks are cross-correlated with observed spectra to extract information about the average shape of lines forming at a given optical depth and to derive the velocity field projected on the line of sight. We applied this method to series of spectra of the red supergiant star mu Cep and derived velocities in different atmospheric layers. The resulting velocity variations reveal complex atmospheric dynamics and indicate that convective cells are present in the atmosphere of the mu Cep. The mu Cep velocities were compared with those obtained by applying the tomographic masks to series of snapshot spectra from 3D radiative-hydrodynamics CO5BOLD simulations.
Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Wang, Yu; Jiang, Wen G
2011-01-01
Death Decoy Receptor-3 (DcR3), otherwise known as tumour necrosis factor receptor superfamily member 6b, is suggested to be involved in the progression and immune evasion of malignant tumours. Its ligands include FASL and LIGHT (Tumour necrosis factor ligand superfamily member 14). DcR3 has been found to be amplified in certain solid tumours. However, its role in breast tumours remains unclear. In the present study, we examined the role played by DcR3 in MCF7 and MDA-MB-231 cell lines. The expression of DcR3 was examined in MCF7 and MDA-MB-231 cell lines using immunocytochemical staining and RT-PCR. Anti-DcR3 hammerhead ribozyme transgenes were constructed and transfected into cells to create DcR3 knock-down cell sublines. The biological impact of modifying DcR3 expression in breast cancer cells was evaluated using a variety of in vitro assays, including growth, adhesion, migration and invasion models. MCF7 and MDA-MB-231 cells, usually expressing DcR3, were transfected with the anti-DcR3 ribozyme transgene. Stable transfectants containing the DcR3 ribozyme transgene (MCF7DcR3KO, MDA-MB-231DcR3KO) displayed a reduction of DcR3 expression at mRNA and protein levels. DcR3 knockdown in MCF7 cells was found to significantly reduce invasive capacity compared to pEF6 control cell lines (30.78 +/- 6.40 vs.151.67 +/- 17.67 P < 0.001). The rate of migration in MCF7DcR3KO was significantly lower than MCF7pEF6 (P < 0.001). In contrast, no such significant differences was seen between MDA-MB-231DcR3KO and MDA-MB-231pEF6. Suppressing DcR3 expression was found to have an inhibitory effect on cellular invasion and migration in MCF7 breast cancer cells. This suggests that the invasion and migration capacity of this breast cancer cell line may, at least partly, depend on DcR3. DcR3 may be regarded as a negative regulator for aggressiveness during the development and progression of certain types of breast cancer.
The Reference Forward Model (RFM)
NASA Astrophysics Data System (ADS)
Dudhia, Anu
2017-01-01
The Reference Forward Model (RFM) is a general purpose line-by-line radiative transfer model, currently supported by the UK National Centre for Earth Observation. This paper outlines the algorithms used by the RFM, focusing on standard calculations of terrestrial atmospheric infrared spectra followed by a brief summary of some additional capabilities and extensions to microwave wavelengths and extraterrestrial atmospheres. At its most basic level - the 'line-by-line' component - it calculates molecular absorption cross-sections by applying the Voigt lineshape to all transitions up to ±25 cm-1 from line-centre. Alternatively, absorptions can be directly interpolated from various forms of tabulated data. These cross-sections are then used to construct infrared radiance or transmittance spectra for ray paths through homogeneous cells, plane-parallel or circular atmospheres. At a higher level, the RFM can apply instrumental convolutions to simulate measurements from Fourier transform spectrometers. It can also calculate Jacobian spectra and so act as a stand-alone forward model within a retrieval scheme. The RFM is designed for robustness, flexibility and ease-of-use (particularly by the non-expert), and no claims are made for superior accuracy, or indeed novelty, compared to other line-by-line codes. Its main limitations at present are a lack of scattering and simplified modelling of surface reflectance and line-mixing.
Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.
2011-01-01
Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830
RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy.
Kehler, James; Greco, Marianna; Martino, Valentina; Pachiappan, Manickam; Yokoe, Hiroko; Chen, Alice; Yang, Miranda; Auerbach, Jonathan; Jessee, Joel; Gotte, Martin; Milanesi, Luciano; Albertini, Alberto; Bellipanni, Gianfranco; Zucchi, Ileana; Reinbold, Rolland A; Giordano, Antonio
2017-06-01
Cellular reprogramming by epigenomic remodeling of chromatin holds great promise in the field of human regenerative medicine. As an example, human-induced Pluripotent Stem Cells (iPSCs) obtained by reprograming of patient somatic cells are sufficiently similar to embryonic stem cells (ESCs) and can generate all cell types of the human body. Clinical use of iPSCs is dependent on methods that do not utilize genome altering transgenic technologies that are potentially unsafe and ethically unacceptable. Transient delivery of exogenous RNA into cells provides a safer reprogramming system to transgenic approaches that rely on exogenous DNA or viral vectors. RNA reprogramming may prove to be more suitable for clinical applications and provide stable starting cell lines for gene-editing, isolation, and characterization of patient iPSC lines. The introduction and rapid evolution of CRISPR/Cas9 gene-editing systems has provided a readily accessible research tool to perform functional human genetic experiments. Similar to RNA reprogramming, transient delivery of mRNA encoding Cas9 in combination with guide RNA sequences to target specific points in the genome eliminates the risk of potential integration of Cas9 plasmid constructs. We present optimized RNA-based laboratory procedure for making and editing iPSCs. In the near-term these two powerful technologies are being harnessed to dissect mechanisms of human development and disease in vitro, supporting both basic, and translational research. J. Cell. Physiol. 232: 1262-1269, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
[The effect of Foxc2 overexpression on the osteogenic properties of C3H10T1/2 cells].
Wang, Min-Jiao; Si, Jia-Wen; Li, Hong-Liang; Ouyang, Ning-Juan; Shen, Guo-Fang
2016-08-01
To investigate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation of C3H10T1/2 cells. C3H10T1/2 cells were transfected with plenti-Foxc2 and selected with puromycin for stable clones. The expression of Foxc2 was determined by real-time PCR and Western blot. Cell proliferation was detected by CCK-8 kit. Cell cycle and apoptosis were detected by flow cytometry. The level of osteogenic biomarkers Runx2, OPN, OCN and adipogenic biomarker PPARγ were quantified by real-time PCR and Western blot. Alkaline phosphatase (ALP) staining and oil red staining were conducted to evaluate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation. Statistical analysis was performed using SPSS 17.0 software package. C3H10T1/2-Foxc2 cell line was successfully constructed and verified by direct sequencing and Foxc2 overexpression in vitro. Cell proliferation was reduced and cell cycle was blocked in G1/G0 phase. Enhanced ALP staining and reduced oil red staining were observed in C3H10T1/2-Foxc2 cells as compared with the control. Foxc2 overexpression up-regulated Runx2, OPN, OCN during osteogenic differentiation and down-regulated PPARγduring adipogenic differentiation. C3H10T1/2 cell line stably expressing Foxc2 gene was successfully established, cell proliferation was reduced, osteogenesis biomarkers were up-regulated during the osteogenesis by overexpression Foxc2, PPARγwas down-regulated during adipogenesis.
Cardiac tissue engineering using perfusion bioreactor systems
Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana
2009-01-01
This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955
Chun, Kwang-Rok; Bae, Eun Mi; Kim, Jae-Kwan; Suk, Kyoungho; Lee, Won-Ha
2009-01-01
The molecular action mechanism of MRP, one of the protein kinase C (PKC) substrates, has been under intense investigation, but reports on its role in macrophage function remain controversial. The treatment of macrophage cell lines with bacterial lipopolysaccharide (LPS) induced a high level of MRP expression suggesting that MRP plays a role in the function of activated macrophages. In order to investigate the role of MRP in activated RAW264.7 cells, we stably transfected MRP-specific shRNA expression constructs and tested for alterations in macrophage-related functions. The down-regulation of MRP expression resulted in a marked reduction in chemotaxis toward MCP-1 or extracellular matrix proteins. Furthermore, pharmacological inhibitors of PKC significantly inhibited the chemotaxis in RAW264.7 cells. These data reveals the pivotal role of MRP in the transmigration of activated RAW264.7 cells.
Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Kumar, Surender; Kumar, Sudarshan; Mohanty, Ashok K; Kaushik, Jai K; Malakar, Dhruba
2014-01-01
Nanog is a homeodomain containing protein which plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in stem cells. Because of its unique expression in stem cells it is also regarded as pluripotency marker. In this study goat Nanog (gNanog) gene has been amplified, cloned and characterized at sequence level with successful over-expression in CHO-K1 cell line using a lentiviral based system. gNanog ORF is 903 bp long which codes for Nanog protein of size 300 amino acids (aas). Complete nucleotide sequence shows some evolutionary mutation in goat in comparision to other species. Protein sequence of goat is highly similar to other species. Overall, gNanog nucleotide sequence and predicted protein sequence showed high similarity and minimum divergence with cattle (96 % identity/4 % divergence) and buffalo (94/5 %) while low similarity and high divergence with pig (84/15 %), human (81/23 %) and mouse (69/40 %) indicating evolutionary closeness of gNanog to cattle and buffalo. gNanog lentiviral expression construct was prepared for over-expression of Nanog gene in adult goat fibroblast cells. Lentiviral expression construct of Nanog enabled continuous protein expression for induction and maintenance of pluripotency. Western blotting revealed the expression of Nanog gene at protein level which supported that the lentiviral expression system is highly promising for Nanog protein expression in differentiated goat cell.
Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire
Schusser, Benjamin; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley Mettler; Harriman, William D.; Etches, Robert J.; Leighton, Philip A.
2013-01-01
Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens. PMID:24278246
Rebhandl, Stefan; Huemer, Michael; Zaborsky, Nadja; Gassner, Franz Josef; Catakovic, Kemal; Felder, Thomas Klaus; Greil, Richard; Geisberger, Roland
2014-01-01
Activation-induced deaminase (AID) is a DNA-mutating enzyme that mediates class-switch recombination as well as somatic hypermutation of antibody genes in B cells. Due to off-target activity, AID is implicated in lymphoma development by introducing genome-wide DNA damage and initiating chromosomal translocations such as c-myc/IgH. Several alternative splice transcripts of AID have been reported in activated B cells as well as malignant B cells such as chronic lymphocytic leukemia (CLL). As most commercially available antibodies fail to recognize alternative splice variants, their abundance in vivo, and hence their biological significance, has not been determined. In this study, we assessed the protein levels of AID splice isoforms by introducing an AID splice reporter construct into cell lines and primary CLL cells from patients as well as from WT and TCL1tg C57BL/6 mice (where TCL1 is T-cell leukemia/lymphoma 1). The splice construct is 5′-fused to a GFP-tag, which is preserved in all splice isoforms and allows detection of translated protein. Summarizing, we show a thorough quantification of alternatively spliced AID transcripts and demonstrate that the corresponding protein abundances, especially those of splice variants AID-ivs3 and AID-ΔE4, are not stoichiometrically equivalent. Our data suggest that enhanced proteasomal degradation of low-abundance proteins might be causative for this discrepancy. PMID:24668151
Design, synthesis, and testing of multivalent compounds targeted to melanocortin receptors
NASA Astrophysics Data System (ADS)
Dehigaspitiya, Dilani Chathurika
Our focus is on developing non-invasive molecular imaging reagents, which target human cancers that presently are difficult to detect, such as melanoma. We wish to apply the multivalency concept to differentiate between healthy cells and melanoma cells. Melanoma cells are known to over-express alpha melanocyte stimulating hormone receptors. A successful multivalent construct should show greater avidity towards melanoma cells than healthy cells due to the synergistic effects arising from multivalency. Both oligomeric and shorter linear constructs bearing the minimum active sequence of melanocyte stimulating hormone, His-DPhe-Arg-Trp-NH2(MSH4), which binds with low micromolar affinity to alpha melanocyte stimulating hormone receptors, were synthesized. Binding affinities of these constructs were evaluated in a competitive binding assay by competing with labeled ligands, Eu-DTPA-PEGO-MSH7 and/or Eu-DTPA-PEGO-NDP-alpha-MSH on the engineered cell line HEK293 CCK2R/hMC4R, which is genetically modified to over-express both the cholecystokinin 2 receptor (CCK2R) and human melanocortin 4 receptor (hMC4R). The oligomers were rapidly assembled using microwave-assisted copper catalyzed azide-alkyne cycloaddition between a dialkyne derivative of MSH4 and a diazide derivative of (Pro-Gly)3 as co-monomers. Three oligomer mixtures were further analyzed based on their degree of oligomerization and the route by which the MSH4 monomers were oligomerized, protected vs deprotected. Completive binding assay against Eu-DTPA-PEGO-MSH7 showed only a statistical enhancement of binding when calculated based on the total MSH4 concentration. However, when the calculation of avidity is based on an estimation of the particles numbers, there was a seven times enhancement of binding compared to a monovalent MSH4 control. The shorter linear multivalent MSH4 constructs were synthesized using ethylene glycol, glycerol, and mannitol as core scaffolds with maximum inter-ligand distances ranging from 27 - 37 A. The divalent construct with maximum inter-ligand distance of 27 A showed nanomolar binding with 29-fold and 18-fold enhancements in potency compared to a monovalent control when competed against the probes Eu-DTPA-PEGO-MSH7 and Eu-DTPA-PEGO-NDP-alpha-MSH, respectively. The trivalent and the tetravalent constructs showed only statistical enhancement when compared to the divalent construct. It is our hypothesis that clusters of two ligands with an inter-ligand distance of about 27 A distributed along an oligomeric backbone would have high potency towards melanocortin receptors.
Status of the Proton Therapy Project at IUCF and the Midwest Proton Radiotherapy Institute
NASA Astrophysics Data System (ADS)
Klein, Susan B.
2003-08-01
The first proton therapy patient was successfully treated for astrocytoma using a modified nuclear experimentation beam line and in-house treatment planning in 1993. In 1998, IUCF constructed an eye treatment clinic, and conducted a phase III clinical trial investigating proton radiation treatment of AMD. Treatment was planned using Eyeplan modified to match the IUCF beam characteristics. MPRI was conceptualized in 1996 by a consortium of physicians and physicists. Reconfiguration began in 2000; construction of the achromatic trunk line began in 2001, followed by manufacture of 4 energy selection lines and two fixed horizontal beam treatment lines. Two isocentric, rotational gantries will be installed following completion of the horizontal beam lines. A fifth line will supply the full-time radiation effects research station. Standard proton delivery out of the main stage is specified at 500 nA of 205 MeV. Clinic construction began in April, 2002 and will be completed by mid-December. Design, construction and operation of these proton facilities have been accomplished by the proton therapy group at IUCF.
Wang, Yuliang; Jeong, Younkoo; Jhiang, Sissy M.; Yu, Lianbo; Menq, Chia-Hsiang
2014-01-01
Cell behaviors are reflections of intracellular tension dynamics and play important roles in many cellular processes. In this study, temporal variations in cell geometry and cell motion through cell cycle progression were quantitatively characterized via automated cell tracking for MCF-10A non-transformed breast cells, MCF-7 non-invasive breast cancer cells, and MDA-MB-231 highly metastatic breast cancer cells. A new cell segmentation method, which combines the threshold method and our modified edge based active contour method, was applied to optimize cell boundary detection for all cells in the field-of-view. An automated cell-tracking program was implemented to conduct live cell tracking over 40 hours for the three cell lines. The cell boundary and location information was measured and aligned with cell cycle progression with constructed cell lineage trees. Cell behaviors were studied in terms of cell geometry and cell motion. For cell geometry, cell area and cell axis ratio were investigated. For cell motion, instantaneous migration speed, cell motion type, as well as cell motion range were analyzed. We applied a cell-based approach that allows us to examine and compare temporal variations of cell behavior along with cell cycle progression at a single cell level. Cell body geometry along with distribution of peripheral protrusion structures appears to be associated with cell motion features. Migration speed together with motion type and motion ranges are required to distinguish the three cell-lines examined. We found that cells dividing or overlapping vertically are unique features of cell malignancy for both MCF-7 and MDA-MB-231 cells, whereas abrupt changes in cell body geometry and cell motion during mitosis are unique to highly metastatic MDA-MB-231 cells. Taken together, our live cell tracking system serves as an invaluable tool to identify cell behaviors that are unique to malignant and/or highly metastatic breast cancer cells. PMID:24911281
Upton, Dana C; Unniraman, Shyam
2011-11-01
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).
2012-01-01
Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP) staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM) inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP) activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14), and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling. G3 expressing MC3T3-E1 cells showed inhibited cell growth and cell differentiation when cultured with TGF-β1 (1 ng/ml), and expressed enhanced cell apoptosis when cultured with TNF-α (2 ng/ml). Enhanced EGFR/JNK signaling appears to be responsible for G3 enhanced osteoblast apoptosis and inhibited osteoblast differentiation. Whereas repressed expression of GSK-3β (S9P) contributes to G3 inhibited osteoblast growth. Versican G3 functionality was dependent on its EGF-like motifs. Without the structure of EGF-like repeats, the G3 domain would not confer enhancement of tumor cell migration and invasion to bone with concordant inhibition of osteoblast differentiation and promotion of osteoblast apoptosis. Conclusions Versican enhances breast cancer bone metastasis not only through enhancing tumor cell mobility, invasion, and survival in bone tissues, but also by inhibiting pre-osteoblast cell growth, differentiation, which supply favorable microenvironments for tumor metastasis. PMID:22862967
Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE
Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave
2009-01-01
Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519
Wing Infrastructure and Development Outlook (WINDO) Final Environmental Assessment
2006-06-01
installation, and repair F Construct revetment , paint taxi lines, install runway shoulders, extend/repair flight line, maintain airfield pavement...RKMF990065 CONSTRUCT CHAPEL MEETING FAC C RKMF000041 CONSTRUCT REVETMENT LOLA SUPPORT FAC F RKMF010042 CONSTRUCT SHOULDERS RUNWAY 03L/21R F RKMF030054...100-foot transect intervals. Sampling utilized 100- foot intervals in blocks . Isolate artifacts were recorded on site forms until 1996. They were
Zhou, Niu; Xing, Gang; Zhou, Jianwei; Jin, Yulan; Liang, Cuiqin; Gu, Jinyan; Hu, Boli; Liao, Min; Wang, Qin; Zhou, Jiyong
2015-01-01
Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection. PMID:26431319
Surveillance imaging in mantle cell lymphoma in first remission lacks clinical utility.
Guidot, Daniel M; Switchenko, Jeffrey M; Nastoupil, Loretta J; Koff, Jean L; Blum, Kristie A; Maly, Joseph; Flowers, Christopher R; Cohen, Jonathon B
2018-04-01
Mantle cell lymphoma (MCL) is a heterogeneous disease with high relapse rates. Limited data guide the use of surveillance imaging following treatment. We constructed a retrospective cohort from two academic institutions of patients with MCL who completed first-line therapy and underwent follow-up for relapse, analyzing the effect of surveillance imaging on survival. Of 217 patients, 102 had documented relapse, with 38 (37%) diagnosed by surveillance imaging and 64 (63%) by other methods. Relapse diagnosis by surveillance imaging had no significant advantage in overall survival from diagnosis date (hazard ratio [HR] = 0.80, p = .39) or relapse date (HR = 0.72, p = .22). Of 801 surveillance images, PET/CT had a positive predictive value (PPV) of 24% and number needed-to-scan/treat (NNT) of 51 to detect one relapse, and CT had a PPV of 49% and NNT of 24. For MCL after first-line therapy, relapse detection by surveillance imaging was not associated with improved survival and lacks clinical benefit.
The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies
Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D.; Nystul, Todd G.; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E.; Murphy, Terence D.; Levis, Robert W.; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A.; Spradling, Allan C.
2007-01-01
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600–900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions. PMID:17194782
Coumar, Mohane Selvaraj; Chu, Chang-Ying; Lin, Cheng-Wei; Shiao, Hui-Yi; Ho, Yun-Lung; Reddy, Randheer; Lin, Wen-Hsing; Chen, Chun-Hwa; Peng, Yi-Hui; Leou, Jiun-Shyang; Lien, Tzu-Wen; Huang, Chin-Ting; Fang, Ming-Yu; Wu, Szu-Huei; Wu, Jian-Sung; Chittimalla, Santhosh Kumar; Song, Jen-Shin; Hsu, John T-A; Wu, Su-Ying; Liao, Chun-Chen; Chao, Yu-Sheng; Hsieh, Hsing-Pang
2010-07-08
A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogomilov, M.; Karadzhov, Y.; Kolev, D.
2012-05-01
The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In thismore » paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.« less
Status of the Beam Thermalization Area at the NSCL
NASA Astrophysics Data System (ADS)
Cooper, Kortney; Barquest, Bradley; Morrissey, David; Rodriguez, Jose Alberto; Schwarz, Stefan; Sumithrarachchi, Chandana; Kwarsick, Jeff; Savard, Guy
2013-10-01
Beam thermalization is a necessary process for the production of low-energy ion beams at projectile fragmentation facilities. Present beam thermalization techniques rely on passing high-energy ion beams through solid degraders followed by a gas cell where the remaining kinetic energy is dissipated through collisions with buffer gas atoms. Recently, the National Superconducting Cyclotron Laboratory (NSCL) upgraded its thermalization area with the implementation of new large acceptance beam lines and a large RF-gas catcher constructed by Argonne National Lab (ANL). Two high-energy beam lines were commissioned along with the installation and commissioning of this new device in late 2012. Low-energy radioactive ion beams have been successfully delivered to the Electron Beam Ion Trap (EBIT) charge breeder for the ReA3 reaccelerator, the SuN detector, the Low Energy Beam Ion Trap (LEBIT) penning trap, and the Beam Cooler and Laser Spectroscopy (BeCoLa) collinear laser beamline. Construction of a gas-filled reverse cyclotron dubbed the CycStopper is also underway. The status of the beam thermalization area will be presented and the overall efficiency of the system will be discussed.
Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia
2017-11-01
A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.
Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won
2016-10-01
We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC.
Transient expression of CCL21as recombinant protein in tomato.
Beihaghi, Maria; Marashi, Hasan; Bagheri, Abdolreza; Sankian, Mojtaba
2018-03-01
The main goal of this study was to investigate the possibility of expressing recombinant protein of C-C chemokine ligand 21 (CCL21) in Solanum lycopersicum via agroinfiltration. CCL21 is a chemokine can be used for anti-metastatic of cancer cell lines. To examine the expression of CCL21 protein in S. lycopersicum , the construct of ccl21 was synthesized. This construct was cloned into pBI121 and the resulting CCL21 plasmid was agro-infiltrated into S. lycopersicum leaves. Within three days after infiltration, Expression of the foreign gene was confirmed by quantitative Real-time PCR. A recombinant CCL21 protein was immunogenically detected by western blot, dot blot and ELISA assay. And results showed that the foreign gene was expressed in the transformed leaves in high level. Also scratch assay was used to investigate the role of this protein in anti-metastatic function. The results demonstrated anti-metastatic of cancer cells in the presence of this protein.
In vivo and in vitro disease modeling with CRISPR/Cas9.
Kato, Tomoko; Takada, Shuji
2017-01-01
In the past few years, extensive progress has been made in the development of genome-editing technology. Among several genome-editing tools, the clustered regularly interspaced short palindrome repeat-associated Cas9 nuclease (CRISPR/Cas9) system is particularly widely used owing to the ease of sequence-specific nuclease construction and the highly efficient introduction of mutations. The CRISPR/Cas9 system was originally constructed to induce small insertion and deletion mutations, but various methods have been developed to introduce point mutations, deletions, insertions, chromosomal translocations and so on. These methods should be useful for the reconstruction of disease-causing mutations in cultured cell lines and living organisms to elucidate disease pathogenesis and for disease prevention, treatment and drug discovery. This review summarizes the current technical aspects of the CRISPR/Cas9 system for disease modeling in cultured cells and living organisms, mainly mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Shi, Jingmiao; Lei, Meng; Wu, Wenkui; Feng, Huayun; Wang, Jia; Chen, Shanshan; Zhu, Yongqiang; Hu, Shihe; Liu, Zhaogang; Jiang, Cheng
2016-04-15
A series of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids were designed and synthesized. Their structures were elucidated by (1)H NMR, (13)C NMR, LC-MS and HRMS. These compounds were evaluated for their β5 subunit inhibitory activities of human proteasome. The results showed that dipeptidyl boronic acid inhibitors composed of αα-amino acids were as active as bortezomib. Interestingly, the activities of those derived from αβ-amino acids lost completely. Of all the inhibitors, compound 22 (IC50=4.82 nM) was the most potent for the inhibition of proteasome activity. Compound 22 was also the most active against three MM cell lines with IC50 values less than 5 nM in inhibiting cell growth assays. Molecular docking studies displayed that 22 fitted very well in the β5 subunit active pocket of proteasome. Copyright © 2016. Published by Elsevier Ltd.
Construction and evaluation of a novel humanized HER2-specific chimeric receptor
2014-01-01
Introduction The human epidermal growth factor receptor 2 (HER2) represents one of the most studied tumor-associated antigens (TAAs) for cancer immunotherapy. The monoclonal antibody (mAb) trastuzumab has improved the outcomes of patients with HER2+ breast cancer. However, a large number of HER2+ tumors are not responsive to, or become resistant to, trastuzumab-based therapy, and thus more effective therapies targeting HER2 are needed. Methods HER2-specific T cells were generated by the transfer of genes that encode chimeric antigen receptor (CAR). Using a multistep overlap extension PCR method, we constructed a novel, humanized HER2 CAR-containing, chA21 single-chain variable fragment (scFv) region of antigen-specific mAb and T-cell intracellular signaling chains made up of CD28 and CD3ζ. An interferon γ and interleukin 2 enzyme-linked immunosorbent assay and a chromium-51 release assay were used to evaluate the antitumor immune response of CAR T cells in coculture with tumor cells. Furthermore, SKBR3 tumor–bearing nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were treated with HER2 CAR T cells to evaluate antitumor activity. Human CD3+ T cell accumulation in tumor xenograft was detected by immunohistochemistry. Results chA21-28z CAR was successfully constructed, and both CD4+ and CD8+ T cells were transduced. The expanded HER2 CAR T cells expressed a central memory phenotype and specifically reacted against HER2+ tumor cell lines. Furthermore, the SKBR3 tumor xenograft model revealed that HER2 CAR T cells significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed robust accumulation of human CD3+ T cells in regressing SKBR3 lesions. Conclusions The results of this study show that novel chA21 scFv-based, HER2-specific CAR T cells not only recognized and killed HER2+ breast and ovarian cancer cells ex vivo but also induced regression of experimental breast cancer in vivo. Our data support further exploration of the HER2 CAR T-cell therapy for HER2-expressing cancers. PMID:24919843
White, K L; Bunch, T D; Mitalipov, S; Reed, W A
1999-01-01
Cloning mammalian species from cell lines of adult animals has been demonstrated. Aside from its importance for cloning multiple copies of genetically valuable livestock, cloning now has the potential to salvage endangered or even extinct species. The aim of this study was to investigate the effect of the bovine and domestic (Ovis aries) ovine oocyte cytoplasm on the nucleus of an established cell line from an endangered argali wild sheep (Ovis ammon) after nuclear transplantation. A fibroblast cell line was established from skin biopsies from an adult argali ram from the People's Republic of China. Early karyotype analysis of cells between 3-6 passages revealed a normal diploid chromosome number of 56. The argali karyotype consisted of 2 pairs of biarmed and 25 pairs of acrocentric autosomes, a large acrocentric and minute biarmed Y. Bovine ovaries were collected from a local abattoir, oocytes aspirated, and immediately placed in maturation medium consisting of M-199 containing 10% fetal bovine serum, 100 IU/mL penicillin, 100 microg/mL streptomycin, 0.5 microg/mL follicle-stimulating hormone (FSH), 5.0 microg/mL luetinizing hormone (LH) and 1.0 microg/mL estradiol. Ovine (O. aries) oocytes were collected at surgery 25 hours postonset of estrus from the oviducts of superovulated donor animals. All cultures were carried out at 39 degrees C in a humidified atmosphere of 5% CO2 and air. In vitro matured MII bovine oocytes were enucleated 16-20 hours after onset of maturation and ovine oocytes within 2-3 hours after collection. Enucleation was confirmed using Hoechst 33342 and UV light. The donor argali cells were synchronized in G0-G1 phase by culturing in Dulbecco's modified Eagle's medium (DMEM) plus 0.5% fetal bovine serum for 5-10 days. Fusion of nuclear donor cell to an enucleated oocyte (cytoplast) to produce nuclear transfer (NT) embryos was induced by 2 electric pulses of 1.4 kV/cm for 30 microsc. Fused NT embryos were activated after 24 hours of maturation by exposure to ionomycin (5 microM, 4 minutes) followed by incubation in 6-dimethylaminopurine (0.2 mM, 4 hours) and cultured in microdrops of CR1aa medium. From a total of 166 constructed nuclear donor cell-bovine cytoplasm NT couples, 128 (77%) successfully fused, 100 (78%) developed to 8-16 cell stage, and 2 (1.56%) developed to the blastocyst stage. The presence of argali nuclei in 8-16 cell stage embryo clones was confirmed after observation of Hoechst 33342 stained embryos under UV light and chromosome analysis of metaphase spreads from blastomeres. A total of 127 constructed nuclear donor cell-ovine cytoplasm NT couples were produced, 101 (80%) successfully fused, 81 (80% of fused) developed to the 16- to 32-cell stage. A total of 28 hybrid (argali-sheep) and 21 sheep-sheep NT embryos were transferred into 6 recipients and 4 recipients, respectively. Two of these recipients, 1 carrying argali-sheep and 1 sheep-sheep, were confirmed pregnant at 49 days by ultrasound, but both pregnancies terminated by 59 days. The results of this study demonstrate the possibility of using xenogenic oocytes to produce early-stage embryos and pregnancies from an established fibroblast cell line of an endangered species.
Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.
1999-01-01
Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression during neoplastic development may result in a pervasive change in the islet cell growth properties with selection of a transformed phenotype as a possible requirement for cell viability. PMID:10393850
Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.
Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang
2016-04-01
Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.
Liu, Xiaodan; Liao, Wang; Peng, Hongxia; Luo, Xuequn; Luo, Ziyan; Jiang, Hua; Xu, Ling
2016-01-01
Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML). Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined. We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro. The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.
Thyroid cell lines in research on goitrogenesis.
Gerber, H; Peter, H J; Asmis, L; Studer, H
1991-12-01
Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.
NASA Astrophysics Data System (ADS)
Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari
2017-05-01
The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.
Human cell culture in a space bioreactor
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
1988-01-01
Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.
Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A
2009-12-30
Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.
DNA Assembly Line for Nano-Construction
Oleg Gang
2017-12-09
Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl
Evaluating cell lines as tumour models by comparison of genomic profiles
Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus
2013-01-01
Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242
Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira
2011-02-01
Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.
Boedeker, J C; Doolittle, M H; White, A L
2001-11-01
Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.
Heading-vector navigation based on head-direction cells and path integration.
Kubie, John L; Fenton, André A
2009-05-01
Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal, heading-based navigation is used in small mammals and humans. Copyright 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.
2014-09-10
Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less
Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research.
Drexler, H G; Matsuo, A Y; MacLeod, R A
2000-11-01
Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell lines should provide important and informative core data, attesting to their scientific significance. Large percentages of LL cell lines are contaminated with mycoplasma (about 30%) or are cross-contaminated with other cell lines (about 15-20%). Solutions to these problems are sensitive detection, effective elimination and rigorous prevention of mycoplasma infection, and proper, regular authentication of cell lines. The underlying cause, however, appears to be negligent cell culture practice. The willingness of investigators to make their LL cell lines available to others is all too often limited. There is a need in the scientific community for clean and authenticated high-quality LL cell lines to which every scientist has access. These are offered by various institutionalized public cell line banks. It has been argued that LL cell lines are genetically unstable (both cytogenetically and molecular genetically). For instance, cell lines are supposed to acquire numerical and structural chromosomal alterations and various types of mutations (e.g. point mutations) in vitro. We present evidence that while nearly 100% of all LL cell lines indeed carry genetic alterations, these alterations appear to be stable rather than unstable. As an example of the practical utility of LL cell lines, the recent advances in studies of classical and molecular cytogenetics, which in large part were made possible by cell lines, are highlighted. A list of the most useful, robust and publicly available reference cell lines that may be used for a variety of experimental purposes is proposed. Clearly, by opening new avenues for investigation, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia. Over a period of nearly four decades, these initially rather exotic cell cultures, known only to a few specialists, have become ubiquitous powerful research tools that are available to every investigator.
Zuffa, Elisa; Mancini, Manuela; Brusa, Gianluca; Pagnotta, Eleonora; Hattinger, Claudia Maria; Serra, Massimo; Remondini, Daniel; Castellani, Gastone; Corrado, Patrizia; Barbieri, Enza; Santucci, Maria Alessandra
2008-07-01
To investigate the impact of TP53 (tumor protein 53, p53) on genomic stability of osteosarcoma (OS). In first instance, we expressed in OS cell line SAOS-2 (lacking p53) a wild type (wt) p53 construct, whose protein undergoes nuclear import and activation in response to ionizing radiations (IR). Thereafter, we investigated genomic imbalances (amplifications and deletions at genes or DNA regions most frequently altered in human cancers) associated with radio-resistance relative to p53 expression by mean of an array-based comparative genomic hybridization (aCGH) strategy. Finally we investigated a putative marker of radio-induced oxidative stress, a 4,977 bp deletion at mitochondrial (mt) DNA usually referred to as 'common' deletion, by mean of a polimerase chain reaction (PCR) strategy. In radio-resistant subclones generated from wt p53-transfected SAOS-2 cells DNA deletions were remarkably reduced and the accumulation of 'common' deletion at mtDNA (that may let the persistence of oxidative damage by precluding detoxification from reactive oxygen species [ROS]) completely abrogated. The results of our study confirm that wt p53 has a role in protection of OS cell DNA integrity. Multiple mechanisms involved in p53 safeguard of genomic integrity and prevention of deletion outcome are discussed.
A multi-landing pad DNA integration platform for mammalian cell engineering
Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron
2018-01-01
Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873
Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse
Lou, Shan; Adam, Yoav; Weinstein, Eli N.; Williams, Erika; Williams, Katherine; Parot, Vicente; Kavokine, Nikita; Liberles, Stephen; Madisen, Linda; Zeng, Hongkui
2016-01-01
Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus. In Optopatch-expressing animals, we tested for overall health, genetically targeted expression, and function of the optogenetic components. In offspring of Floxopatch mice crossed with a variety of Cre driver lines, we observed spontaneous and optically evoked activity in vitro in acute brain slices and in vivo in somatosensory ganglia. Cell-type-specific expression allowed classification and characterization of neuronal subtypes based on their firing patterns. The Floxopatch mouse line is a useful tool for fast and sensitive characterization of neural activity in genetically specified cell types in intact tissue. SIGNIFICANCE STATEMENT Optical recordings of neural activity offer the promise of rapid and spatially resolved mapping of neural function. Calcium imaging has been widely applied in this mode, but is insensitive to the details of action potential waveforms and subthreshold events. Simultaneous optical perturbation and optical readout of single-cell electrical activity (“Optopatch”) has been demonstrated in cultured neurons and in organotypic brain slices, but not in acute brain slices or in vivo. Here, we describe a transgenic mouse in which expression of Optopatch constructs is controlled by the Cre-recombinase enzyme. This animal enables fast and robust optical measurements of single-cell electrical excitability in acute brain slices and in somatosensory ganglia in vivo, opening the door to rapid optical mapping of neuronal excitability. PMID:27798186
A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1
Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael
2015-01-01
A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952
Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G
2014-01-01
Background: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Methods: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Results: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Conclusions: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients. PMID:25010864
miR-Sens--a retroviral dual-luciferase reporter to detect microRNA activity in primary cells.
Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A; Voorhoeve, P Mathijs
2012-05-01
MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.
miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells
Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A.; Voorhoeve, P. Mathijs
2012-01-01
MicroRNA–mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3′ UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3′ UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3′ UTR–mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs. PMID:22417692
Yang, Dong; Dai, Xiaoyu; Li, Keqiang; Xie, Yangyang; Zhao, Jianpei; Dong, Mingjun; Yu, Hua; Kong, Zhenfang
2018-06-01
Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca 2+ sensor which has been reported to be overexpressed in numerous types of cancer, and is involved in the cell proliferation, invasion, migration and metastasis frequently observed in cancer. However, the role of STIM1 in colorectal cancer (CRC) remains unknown. The purpose of the present study was to investigate the effect of STIM1 in human CRC. The expression of STIM1 was specifically knocked down using lentivirus-mediated small hairpin RNA (shRNA) interference techniques in the CRC cell lines HCT116 and SW1116. Subsequently, the efficiency of infection was confirmed using green fluorescent protein (GFP)-positive signals. The knockdown efficiency was further determined using the reverse transcription-quantitative polymerase chain reaction and western blotting analysis. As a result, CRC cell lines with STIM1 silenced were successfully constructed and subsequently employed in a series of cell function assays. Knockdown of STIM1 significantly suppressed cell proliferation and colony formation, as revealed by an MTT and colony formation assay. Furthermore, it was identified that STIM1 silencing may promote cell apoptosis through the induction of mitochondria-associated apoptosis, as was identified by increased expression levels of B-cell lymphoma 2 (Bcl-2)-associated death promoter, Bcl-2-associated X protein and poly(ADP-ribose) polymerase cleavage. Therefore, STIM1 may serve a critical role in the progression of CRC by regulating cell proliferation and apoptosis, which may provide a potential therapeutic target for the treatment of CRC.
Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun
2017-12-21
Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.
Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Yarimizu, Tohru; Iwakiri, Ryo; Hoshida, Hisashi; Akada, Rinji
2015-08-01
Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.
Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells.
Shim, Eun Kyung; Jung, Seung Hee; Lee, Jong Ran
2011-03-01
Previously, we identified p85, a subunit of PI3K, as one of the molecules that interacts with the N-terminal region of Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76). We also demonstrated that tyrosine phosphorylation either at the 113 and/or 128 position is sufficient for the association of SLP-76 with the Src homology 2 domain near the N terminus of p85. The present study further examines the role of the association of these two molecules on the activation of PI3K signaling cascade. Experiments were done to determine the role of SLP-76, either wild-type, tyrosine mutants, or membrane-targeted forms of various SLP-76 constructs, on the membrane localization and phosphorylation of Akt, which is an event downstream of PI3K activation. Reconstitution studies with these various SLP-76 constructs in a Jurkat variant cell line that lacks SLP-76 or linker for activation of T cells (LAT) show that the activation of PI3K pathway following TCR ligation requires both SLP-76 and LAT adaptor proteins. The results suggest that SLP-76 associates with p85 after T cell activation and that LAT recruits this complex to the membrane, leading to Akt activation.
Kumagai, Katsuyoshi; Takanashi, Masakatsu; Ohno, Shin-Ichiro; Kuroda, Masahiko; Sudo, Katsuko
2017-05-03
Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of the biological functions of genes, and gene targeting technologies using mouse embryonic stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial chromosome (BAC) recombineering system was established for the construction of targeting vectors. However, gene retrieval from BACs for the generation of gene targeting vectors using this system remains difficult. Even when construction of a gene targeting vector is successful, the efficiency of production of targeted mutant mice from ES cells derived from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the generation of gene targeting vectors using the BAC recombineering system. Then, we attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice, by culturing in serum-free medium. In conclusion, we established an improved strategy for the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful for the in vivo analysis of gene functions and regulation.
Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro
2017-03-01
Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.
Zhou, Q; Zhao, J; Hüsler, T; Sims, P J
1996-10-01
CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.
A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone
Thibaudeau, Laure; Taubenberger, Anna V.; Holzapfel, Boris M.; Quent, Verena M.; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D.; Dalton, Paul D.; Power, Carl A.; Hollier, Brett G.; Hutmacher, Dietmar W.
2014-01-01
ABSTRACT The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276
Protein PSMD8 may mediate microgravity-induced cell cycle arrest
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning
Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line
Homozygous deletions at 3p12 in breast and lung cancer.
Sundaresan, V; Chung, G; Heppell-Parton, A; Xiong, J; Grundy, C; Roberts, I; James, L; Cahn, A; Bench, A; Douglas, J; Minna, J; Sekido, Y; Lerman, M; Latif, F; Bergh, J; Li, H; Lowe, N; Ogilvie, D; Rabbitts, P
1998-10-01
We have constructed a physical map of the region homozygously deleted in the U2020 cell line at 3p12, including the location of putative CpG islands. Adjacent to one of these islands, we have identified and cloned a new gene (DUTT1) and used probes from this gene to detect two other homozygous deletions occurring in lung and breast carcinomas: the smallest deletion is within the gene itself and would result in a truncated protein. The DUTT1 gene is a member of the neural cell adhesion molecule family, although its widespread expression suggests it plays a less specialized role compared to other members of the family.
Establishment and characterization of three immortal bovine muscular epithelial cell lines.
Jin, Xun; Lee, Joong-Seob; Kwak, Sungwook; Lee, Soo-Yeon; Jung, Ji-Eun; Kim, Tae-Kyung; Xu, Chenxiong; Hong, Zhongshan; Li, Zhehu; Kim, Sun-Myung; Pian, Xumin; Lee, Dong-Hee; Yoon, Jong-Taek; You, Seungkwon; Choi, Yun-Jaie; Kim, Huunggee
2006-02-28
We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack p16(INK4a) regulatory function, compared to primary BME cells that were growth arrested by enforced expression of p16(INK4a). In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.
GursesCila, Hacer E; Acar, Muradiye; Barut, Furkan B; Gunduz, Mehmet; Grenman, Reidar; Gunduz, Esra
2016-12-01
Recent studies have shown that cancer stem cells are resistant to chemotherapy. The aim of this study was to compare RIF1 gene expression in head and neck, pancreatic cancer and glioma cell lines and the cancer stem cells isolated from these cell lines. UT-SCC-74 from Turku University and UT-SCC-74B primary tumor metastasis and neck cancer cell lines, YKG-1 glioma cancer cell line from RIKEN, pancreatic cancer cell lines and ASPC-1 cells from ATCC were grown in cell culture. To isolate cancer stem cells, ALDH-1 for UT-SCC-74 and UT-SCC-74B cell line, CD-133 for YKG-1 cell line and CD-24 for ASPC-1 cell line, were used as markers of cancer stem cells. RNA isolation was performed for both cancer lines and cancer stem cells. RNAs were converted to cDNA. RIF1 gene expression was performed by qRT-PCR analysis. RIF1 gene expression was compared with cancer cell lines and cancer stem cells isolated from these cell lines. The possible effect of RIF1 gene was evaluated. In the pancreatic cells, RIF1 gene expression in the stem cell-positive cell line was 256 time that seen in the stem cell-negative cell line. Considering the importance of RIF1 in NHEJ and of NHEJ in pancreatic cancer, RIF1 may be one of the genes that plays an important role in the diagnoses and therapeutic treatment of pancreatic cancer. The results of head and neck and brain cancers are inconclusive and further studies are required to elucidate the connection between RIF1 gene and these other types of cancers.
Mix-ups and mycoplasma: the enemies within.
Drexler, Hans G; Uphoff, Cord C; Dirks, Willy G; MacLeod, Roderick A F
2002-04-01
Human leukemia-lymphoma (LL) cell lines represent important tools for experimental research. Among the various problems associated with cell lines, the two most common concern contaminations: (1) cross-contamination with unrelated cells and (2) contamination with microorganisms, in particular mycoplasma. The bad news is that about one-third of the cell lines are either cross-contaminated or mycoplasma-infected or both. The good news is that there are means to recognize and overcome these problems. In cases where, during attempts to establish new LL cell lines, primary LL cultures are cross-contaminated with continuous cell lines, intended new cell lines simply cannot be established ("early" cross-contamination). In cases of "late" cross-contamination of existing LL cell lines where the intrusive cells have a growth advantage, the original ("uncontaminated") cell lines may still be available elsewhere. DNA fingerprinting and cytogenetic analysis appear to be the most suitable approaches to detect cross-contaminations and to authenticate LL cell lines. A different but related aspect of "false" LL cell lines is the frequent misclassification of cell lines whereby the actual cell type of the cell line does not correspond to the purported model character of the cell line. Mycoplasma infection can have a multitude of effects on the eukaryotic cells which, due to the variety of infecting mycoplasma species and many other contributing parameters, cannot be predicted, rendering resulting data questionable at best. Practical procedures for the detection and elimination of mycoplasma contamination have been developed. Diagnostic and preventive strategies in order to hem the alarming increase in "false" and mycoplasma-positive LL cell lines are recommended.
Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L
1996-05-01
In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene. The interactions between CREs and the transcription factor Pit-1 in mediating GH gene expression were also examined. In HeLa cells, a human cervical cancer cell line deficient in Pit-1, both basal and cAMP-induced expression of pGH.CAT were apparent only with the cotransfection of a Pit-1 expression vector. These results taken together indicate that the two CREs in the chinook salmon GH gene are functionally associated with the cAMP-dependent pathway and that their promoter activity is dependent on the presence of Pit-1
Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper
HU, LIGANG; GREER, JUSTIN B.; SOLO-GABRIELE, HELENA; FIEBER, LYNNE A.; CAI, YONG
2013-01-01
As, Cr, and Cu represent one potential combination of multiple metals/metalloids exposures since these three elements are simultaneously leached from chromated copper arsenate (CCA)-treated wood, a common product used for building construction, at levels that can be potentially harmful. This study investigated the neurotoxicity of As associated with CCA-treated wood when accompanied by Cr and Cu. The toxicity was evaluated on basis of a cytotoxicity model using human neuroblastoma cell line SK-N-SH. The cells were cultured with CCA-treated wood leachates or with solutions containing arsenate [As(V)], divalent copper [Cu(II)], trivalent chromium [Cr(III)] alone or in different combinations of the three elements. The toxicity was evaluated using variations in cell replication compared to controls after 96 hrs exposure. Among the three elements present in wood leachates, As played the primary role in the observed toxic effects, which exerted through multiple pathways, including the generation of oxidative stress. DOM affected the absorption of metals/metalloids into the test cells, which however did not obviously appear to impact toxicity. As toxicity was enhanced by Cu(II) and inhibited by Cr(III) at concentrations below U.S. EPA’s allowable maximum contaminant levels in drinking waters. Thus assessing As toxicity in real environments is not sufficient if based solely on the result from As. PMID:23473430
Engineering bone tissue substitutes from human induced pluripotent stem cells.
de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja
2013-05-21
Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.
From 3D Bioprinters to a fully integrated Organ Biofabrication Line
NASA Astrophysics Data System (ADS)
Passamai, V. E.; Dernowsek, J. A.; Nogueira, J.; Lara, V.; Vilalba, F.; Mironov, V. A.; Rezende, R. A.; da Silva, J. V.
2016-04-01
About 30 years ago, the 3D printing technique appeared. From that time on, engineers in medical science field started to look at 3D printing as a partner. Firstly, biocompatible and biodegradable 3D structures for cell seeding called “scaffolds” were fabricated for in vitro and in vivo animal trials. The advances proved to be of great importance, but, the use of scaffolds faces some limitations, such as low homogeneity and low density of cell aggregates. In the last decade, 3D bioprinting technology emerged as a promising approach to overcome these limitations and as one potential solution to the challenge of organ fabrication, to obtain very similar 3D human tissues, not only for transplantation, but also for drug discovery, disease research and to decrease the usage of animals in laboratory experimentation. 3D bioprinting allowed the fabrication of 3D alive structures with higher and controllable cell density and homogeneity. Other advantage of biofabrication is that the tissue constructs are solid scaffold-free. This paper presents the 3D bioprinting technology; equipment development, stages and components of a complex Organ Bioprinting Line (OBL) and the importance of developing a Virtual OBL.
Investigation on Low Firing Copper for Front Electrode of Si-Based Solar Cell Applications.
Chiang, Chen-Su; Wu, Yia-Ming; Lee, Wen-Hsi
2018-04-01
Solar cell is one of the most popular alternative energies. The aim of this study is to construct an ohmic contact between front electrode and Si-based solar cell by a Newly-invented low-cost paste and low temperature sintering process. The core-shell of CucoreAgshell powders were prepared for making high solid content paste, then screen printing the fine line on laser-opening H-pattern silicon substrate and applying firing process. Because the silver coverage is more than 95% and silver nanoparticles start to melt at 200 °C. The shell of nanoparticles of silver not only is used to prevent copper from oxidized, but also connected core Cu particles for enhancing the conductivity of CucoreAgshell. TEM, EDS, SEM were used to examine the microstructure of CucoreAgshell. Fourpoint probe and transmission line model were employed to analyze the sheet resistance and the specific contact resistance. The lowest specific contact resistivity is 0.005 Ωcm2, sheet resistance is 0.0138 Ω/ and the lowest resistivity of front electrode measured is 2.65 × 10-5 Ωcm when CucoreAgshell paste with 94 wt% solid content was fired at 550 °C.