Science.gov

Sample records for constructed wetland treating

  1. Environmental footprint of constructed wetlands treating wastewater.

    PubMed

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2015-01-01

    The aim of the study is to determine environmentally friendlier construction materials for constructed wetland facilities treating wastewater. This is done by computing the environmental footprint of the facility based on the methodology of life cycle assessment (LCA). This methodology reveals the dominant aggravating processes during the construction of a constructed wetland (CW) and can help to create alternative environmentally friendlier solutions. This methodology was applied for the determination of the overall environmental profile of a hybrid CW facility. The LCA was applied first to the facility as originally designed, where reinforced concrete was used in some components. Then, alternative construction materials to reinforced concrete were used, such as earth covered with high density polyethylene (HDPE) or clay, and LCA was applied again. Earth structures were found to have reduced environmental impact compared to concrete ones, and clay was found environmentally friendlier compared to HDPE. Furthermore, estimation of the construction costs of the three scenarios indicate that the last scenario is also the least expensive.

  2. Construction and operation costs of constructed wetlands treating wastewater.

    PubMed

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2014-01-01

    Design data from nine constructed wetlands (CW) facilities of various capacities (population equivalent (PE)) are used to estimate construction and operation costs, and then to derive empirical equations relating the required facility land area and the construction cost to PE. In addition, comparisons between the costs of CW facilities based on various alternative construction materials, i.e., reinforced concrete and earth structures (covered with either high density polyethylene or clay), are presented in relation to the required area. The results show that earth structures are economically advantageous. The derived equations can be used for providing a preliminary cost estimate of CW facilities for domestic wastewater treatment.

  3. Constructed Wetlands

    EPA Pesticide Factsheets

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  4. Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater.

    PubMed

    Behrends, L; Houke, L; Bailey, E; Jansen, P; Brown, D

    2001-01-01

    Scientists at the Tennessee Valley Authority (TVA), and in collaboration with the U.S. Environmental Protection Agency (EPA), are continuing to develop and refine an innovative wastewater treatment system referred to as reciprocating subsurface-flow constructed wetlands. Reciprocation relates to patented improvements in the design and operation of paired subsurface-flow constructed wetlands, such that contiguous cells are filled and drained on a frequent and recurrent basis. This operating technique turns the entire wetland system into a fixed-film biological reactor, in which it is possible to control redox potential in alternating aerobic and anaerobic zones. Reciprocating systems enable manipulation of wastewater treatment functions by controlling such parameters as hydraulic retention time, frequency of reciprocation, reciprocation cycle time, depth of reciprocation, and size and composition of substrate. These improved wetland technologies have been used for treating municipal/domestic wastewater, high strength animal wastewater, and mixed wastewater streams containing acids, recalcitrant compounds, solvents, antifreeze compounds, heavy metals, explosives, and fertilizer nutrients. Results from selected treatability studies and field demonstrations will be summarized with respect to conceptual design and treatment efficacy.

  5. The ecological value of constructed wetlands for treating urban runoff.

    PubMed

    Pankratz, S; Young, T; Cuevas-Arellano-, H; Kumar, R; Ambrose, R F; Suffet, I H

    2007-01-01

    The Sweetwater Authority's urban runoff diversion system (URDS) comprises constructed wetlands on a hillside between the town of Spring Valley and the Sweetwater Reservoir, California, USA. The URDS were designed to divert dry-weather and first-flush urban runoff flows from the Sweetwater reservoir. However, these constructed wetlands have developed into ecologically valuable habitat. This paper evaluates the following ecological questions related to the URDS: (1) the natural development of the species present and their growth pattern; (2) the biodiversity and pollutant stress on the plants and invertebrates; and (3) the question of habitat provided for endangered species. The URDS wetlands are comprised primarily of rush (Scirpus spp.) and cattails (Typha spp.). This vegetative cover ranged from 39-78% of the area of the individual wetland ponds. Current analyses of plant tissues and wetland sediment indicates the importance of sediment sorption for metals and plant uptake of nutrients. Analyses of URDS water following runoff events show the URDS wetlands do reduce the amount of nutrients and metals in the water column. Invertebrate surveys of the wetland ponds revealed lower habitat quality and environmental stress compared to unpolluted natural habitat. The value of the wetlands as wildlife habitat is constrained by low plant biodiversity and pollution stress from the runoff. Since the primary Sweetwater Authority goal is to maintain good water quality for drinking, any secondary utilization of URDS habitat by species (endangered or otherwise) is deemed an added benefit.

  6. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    NASA Astrophysics Data System (ADS)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The

  7. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Marsh-pond-marsh (M-P-M) constructed wetlands have been used to treat wastewater from swine anaerobic lagoons. To mitigate undesired ammonia emission from M-P-M, ponds were covered with floating wetlands (M-FB-M). The pond sections of the M-FB-M were covered with floating wetlands consisted of recyc...

  8. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Marsh-pond-marsh (M-P-M) constructed wetlands have been used to treat wastewater from swine anaerobic lagoons. To mitigate undesired ammonia emission from M-P-M, ponds were covered with floating wetlands (M-FB-M). The pond sections of the M-FB-M were covered with floating wetlands consisted of recyc...

  9. Nitrogen dynamics in a constructed wetland system treating landfill leachate.

    PubMed

    Kinsley, C B; Crolla, A M; Kuyucak, N; Zimmer, M; Laflèche, A

    2007-01-01

    A pilot scale treatment system was established in 2002 at the Laflèche Landfill in Eastern Ontario, Canada. The system consists of a series of treatment steps: a stabilisation basin (10,000 m3), a woodland peat trickling filter (5,200 m2), a subsurface flow constructed wetland planted in Phragmites sp. (2,600 m2), a surface flow constructed wetland planted in Typha sp. (3,600 m2) and a polishing pond (3,600 m2). The system operates from May to December with leachate being recycled within the landfill during the winter months. Hydraulic loading was increased three-fold over four operating seasons with nitrogen and organic mass loading increasing six-fold. Excellent removal efficiencies were observed with 93% BOD5, 90% TKN and 97% NH4-N removed under the highest loading conditions. Almost complete denitrification was observed throughout the treatment system with NO3-N concentrations never exceeding 5mg L(-1). The peat filter reached treatment capacity at a hydraulic loading of 4cm d(-1) and organic loading rate of 42 kg BOD ha(-1) d(-1), which is consistent with design criteria for vertical flow wetland systems and intermittent sand filters, The first order plug flow kinetic model was effective at describing TKN and ammonium removal in the SSF and FWS wetlands when background concentrations were taken into account. Ammonium removal k-values were consistent with the literature at 52.6 and 57.7 yr(-1) for the SSF and FWS wetlands, respectively, while TKN k-values at 6.9 and 7.7 yr(-1) were almost an order of magnitude lower than literature values, suggesting that leachate TKN could contain refractory organics not found in domestic wastewater.

  10. Regulatory Implications of Using Constructed Wetlands to Treat Selenium-Laden Wastewater

    Treesearch

    A. Dennis Lemly; Harry M. Ohlendorf

    2002-01-01

    The practice of using constructed wetlands to treat selenium-laden wastewater is gaining popularity in the linited States and elsewhere. However, proponents of treatment wetlands often overlook important ecological liabilities and regulatory implications when developing new methods and applications. Their research studies typically seek to answer a basic performance...

  11. [Limestone and pyrite-limestone constructed wetlands for treating river water].

    PubMed

    Zhang, Jing; Li, Rui-hua; Li, Jie; Hu, Jun-song; Sun, Qian-qian

    2013-09-01

    Polluted river water was treated with limestone and pyrite-limestone subsurface horizontal constructed wetlands. The aims were to know the performance of two wetlands on removal of common pollutants, especially nitrogen and phosphorus, and analyze the actions of these minerals. The relationship between hydraulic retention time and purification performance of two constructed wetlands was studied. The optimal hydraulic retention time for pollutant removal was about 3 d, The average removal efficiency of COD, TN and TP were 51%, 70% and 95%, respectively. With same influent and hydraulic loading, the average removal efficiency of COD, NH4+ -N, TN and TP were 53.93%, 82.13%, 66%, 50.9%, and 51.66%, 77.43%, 72.06%, 97.35% for limestone and pyrite-limestone constructed wetlands, respectively. There were few differences between limestone and pyrite-limestone wetlands on COD removal, but the nitrogen and phosphorus removal of pyrite-limestone constructed wetland was higher than that of limestone constructed wetland. The phosphorus removal of pyrite-limestone wetland was more efficiency and stable, not affected by temperature.

  12. Construction simplicity and cost as selection criteria between two types of constructed wetlands treating highway runoff.

    PubMed

    Manios, Thrassyvoulos; Fountoulakis, Michalis S; Karathanasis, Anastasios D

    2009-05-01

    Two free water surface (FWS) and two subsurface flow (SSF) pilot-size wetlands were constructed for the evaluation of their performance in treating highway runoff (HRO) in the heart of the Mediterranean region, the island of Crete, at the southernmost point of Greece. Detailed recordings of the resources involved during the construction allowed a thorough calculation of the cost of the systems and the requirements in materials, man-hours, and equipment. The two identical FWS systems had a surface area of 33 m(2) each, while the two identical SSF covered 32 m(2) each. One FWS and one SSF, named FWS12 and SSF12, respectively, were designed with a hydraulic retention time (HRT) of 12 h, with each one capable of treating a maximum HRO of 12.6 m(3)/day. The other couple, named FWS24 and SSF24, respectively, was designed with an HRT of 24 h, with each receiving a maximum HRO of 6.3 m(3)/days. An influent storage tank was required to hold the runoff during the common storm events and control the flow rate (and the hydraulic retention time) into the wetlands. This construction represented 25% of the total construction cost, while 5% was spent on the influent automated (and sun-powered) control and distribution system, from the storage tank to the wetlands. The respective total cost allocated to the two SSF systems (euro 14,676) was approximately 10% higher than that of the FWS (euro 13,596), mainly due to the three different-sized gravel layers used in the SSF substrate compared to the topsoil used in the FWS, which tripled the cost and placement time. The Total Annual Economic Cost (TAEC) was euro 1799/year and euro 1847/year for the FWS and SSF pair, respectively. TAEC was also used to compare the economic efficiency of the systems per cubic meter of HRO treated and kilograms of COD and TSS removed from the wetlands during their first operational year. Based on these estimations, FWS12 recorded the lowest TAEC(COD) and TAEC(TSS) values (euro 89.09/kg and euro 43.69/kg

  13. Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater.

    PubMed

    Coban, Oksana; Kuschk, Peter; Wells, Naomi S; Strauch, Gerhard; Knoeller, Kay

    2015-09-01

    Pathways of ammonium (NH4 (+)) removal were investigated using the stable isotope approach in constructed wetlands (CWs). We investigated and compared several types of CWs: planted horizontal subsurface flow (HSSF), unplanted HSSF, and floating plant root mat (FPRM), including spatial and seasonal variations. Plant presence was the key factor influencing efficiency of NH4 (+) removal in all CWs, what was illustrated by lower NH4 (+)-N removal by the unplanted HSSF CW in comparison with planted CWs. No statistically significant differences in NH4 (+) removal efficiencies between seasons were detected. Even though plant uptake accounted for 32-100 % of NH4 (+) removal during spring and summer in planted CWs, throughout the year, most of NH4 (+) was removed via simultaneous nitrification-denitrification, what was clearly shown by linear increase of δ(15)N-NH4 (+) with decrease of loads along the flow path and absence of nitrate (NO3 (-)) accumulation. Average yearly enrichment factor for nitrification was -7.9 ‰ for planted HSSF CW and -5.8 ‰ for FPRM. Lack of enrichment for δ(15)N-NO3 (-) implied that other processes, such as nitrification and mineralization were superimposed on denitrification and makes the stable isotope approach unsuitable for the estimation of denitrification in the systems obtaining NH4 (+) rich inflow water.

  14. Ammonia and greenhouse gas emissions from constructed wetlands treating swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Ammonia and greenhouse gas emissions from marsh-pond-marsh constructed wetlands treating swine wastewater were measured with closed-chamber technique using a photoacoustic multigas analyzer. Theory behind the technique was discussed and the technique was demonstrated with actual field data. Nitrous ...

  15. Phosphorus removal in a surface-flow constructed wetland treating agricultural runoff.

    PubMed

    Beutel, Marc W; Morgan, Matthew R; Erlenmeyer, Jonathan J; Brouillard, Elaine S

    2014-05-01

    Agricultural runoff is a leading source of phosphorus (P) pollution to lakes and streams. The objective of this study was to evaluate P removal dynamics in a constructed treatment wetland (CTW) treating agricultural irrigation return flows. The CTW included a sedimentation basin (SB) followed by two surface-flow wetlands in parallel. Typical retention times and total P (TP) loading were 1.4 d and 50 to 110 g m yr P, respectively, for the SB and 5 to 6 d and 4 to 10 g m yr P, respectively, for wetlands. On the basis of this multiyear study, concentration removal efficiency in the SB averaged 21% for TP and 32% for reactive phosphorus (RP). Concentration removal efficiency in wetlands averaged 37 and 43% for TP and 22 and 33% for RP. Areal first-order removal rates for TP averaged 22 and 31 m yr in wetlands. Total P removal in wetlands exhibited a strong seasonal pattern, with minimum removal in the summer when high temperatures likely enhanced P release from decaying plant biomass. The performance of the CTW was stochastic, with removal unpredictably poorer in some years in part as a result of muskrat bioturbation and plant harvesting. In years before muskrat impacts, concentration removal efficiencies in wetlands were 50% for TP and 65% for RP. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Regulatory implications of using constructed wetlands to treat selenium-laden wastewater.

    PubMed

    Lemly, A Dennis; Ohlendorf, Harry M

    2002-05-01

    The practice of using constructed wetlands to treat selenium-laden wastewater is gaining popularity in the United States and elsewhere. However, proponents of treatment wetlands often overlook important ecological liabilities and regulatory implications when developing new methods and applications. Their research studies typically seek to answer a basic performance question--are treatment wetlands effective in improving water quality--rather than answering an implicit safety question-are they hazardous to wildlife. Nevertheless, wetland owners are responsible for both the operational performance of treatment wetlands and the health of animals that use them. This is true even if wetlands were not created with the intent of providing wildlife habitat; the owner is still legally responsible for toxic hazards. If poisoning of fish and wildlife occurs, the owner can be prosecuted under a variety of federal and state laws, for example, the Migratory Bird Treaty Act and the Endangered Species Act. In considering this type of treatment technology it is important to document the selenium content of the wastewater, understand how it cycles and accumulates in the environment, and evaluate the threat it may pose to fish and wildlife before deciding whether or not to proceed with construction. Many of the potential hazards may not be obvious to project planners, particularly if there is no expressed intention for the wetland to provide wildlife habitat. Ecological risk assessment provides an approach to characterizing proposed treatment wetlands with respect to wildlife use, selenium contamination, and possible biological impacts. Proper application of this approach can reveal potential problems and the associated liabilities, and form the basis for selection of an environmentally sound treatment option.

  17. [Characteristics of microbial biomass in subsurface constructed wetland treating eutrophic water].

    PubMed

    Fu, Rong-Bing; Zhu, Yi-Ping; Yang, Hai-Zhen; Gu, Guo-Wei

    2008-10-01

    A subsurface horizontal-flow constructed wetland planted with Phragmites australis was developed and used to treat eutrophic water for nearly two years at fixed hydraulic loading rate. Substrate samples were taken at different depths respectively in the front, middle and back sites of wetland in January, May, August and October in the second year. Microbial biomass (MB) content was measured using the chloroform fumigation incubation method. The results show that the front sites have higher levels of microbial biomass carbon (MB-C), microbial biomass nitrogen (MB-N) and microbial biomass phosphorous (MB-P) than that in middle sites and back sites. The upper layers have higher levels of MB than that in the deeper layers. The MB content of wetland in January and May is higher than that in October and August. The relationship between MB and TN, TP removal efficiency of the constructed wetland was investigated. The wetland shows no apparent correlation of MB and TN removal efficiency. However, strong negative correlation is observed between MB-C and TP removal efficiency (r = -0.98, p < 0.05) and between MB-N, MB-P and TP removal efficiency (r = -0.99, p < 0.01). In constructed wetland, MB is also an active nutrient storage involved in nutrient cycling and can be used by wetland plant. MB content varies among a range level with plant growth and temperature in a growth year. Under experiment conditions, the range of MB-C, MB-N and MB-P was respectively 85.0-160.6, 16.3-34.9 and 3.12-5.77 microg x g(-1) in the second year. Seasonal variation of MB and nutrient removal is resulted from the factors integrated with temperature, microorganisms, plant, substrate and enzyme.

  18. The performance of constructed wetlands treating primary, secondary and dairy soiled water in Ireland (a review).

    PubMed

    Healy, M G; O' Flynn, C J

    2011-10-01

    In Ireland, no database detailing the design, influent loading rates or performance of constructed wetlands (CWs) exists. On account of this, they are designed without any protocol based on empirical data. The aim of this paper was to provide the first published data on the performance of free-water surface flow (FWSF) CWs treating primary and secondary-treated municipal wastewater, and agricultural dairy soiled water (DSW) in Ireland. In total, the performance of thirty-four FWSF CWs, comprising fourteen CWs treating primary-treated municipal wastewater, thirteen CWs treating secondary-treated municipal wastewater, and seven CWs treating DSW, were examined. In most CWs, good organic, suspended solids (SS) and nutrient removal was measured. At an average organic loading rate (OLR) of 10 and 9 g biochemical oxygen demand (BOD) m(-2) d(-1), CWs treating primary and secondary wastewater removed 95 and 84% of influent BOD. Constructed wetlands treating DSW had an average BOD removal of 98%. At average SS loading rates of 6 and 14 g m(-2) d(-1), CWs treating primary and secondary wastewater had a 96 and an 82% reduction, and produced a final effluent with a concentration of 14 and 13 mg L(-1). Constructed wetlands treating DSW produced a final effluent of 34 mg L(-1) (94% reduction). Similar to other studies, all CWs examined had variable performance in ammonium-N (NH(4)(+)-N) removal, with average removals varying between 37% (for CWs treating secondary wastewater) and 88% (for CWs treating DSW). Variable ortho-phosphorus (PO(4)(3-)-P) removal was attributable to different durations of operation, media types and loading rates.

  19. The potential for constructed wetlands to treat alkaline bauxite residue leachate: laboratory investigations.

    PubMed

    R, Buckley; T, Curtin; R, Courtney

    2016-07-01

    High alkalinity (pH > 12) of bauxite residue leachates presents challenges for the long-term storage and managements of the residue. Whilst the use of constructed wetlands is gaining in interest for its use in the treatment of alkaline waters, thus far, there is limited evidence of its suitability for treating NaOH dominated bauxite residue leachate. A series of batch trials were conducted to investigate the potential for constructed wetland conferred mechanisms (dilution water quality, contact with CO2, and substrate type) for treating NaOH solutions to levels permissible for discharge (p < 9). Results demonstrate that significant reductions in solution pH can be achieved depending on the diluting water quality. Levels achieved may not always be suitable for direct discharge (i.e. pH ≤ 9), but further reductions occur with carbonation and soil contact. The extent of pH decrease and the timeframe required are influenced by soil quality, with greater efficiency observed in soils with higher organic matter content. Decrease in solution pH to discharge permit values are possible through a combination of the mechanisms occurring in a constructed wetland. Formation of a calcite precipitate was observed in some treatments and further characterisation by XRD and XPS suggested surface coating with Na2CO3. It is therefore suggested that, under suitable conditions, constructed wetland technology can reduce leachate pH to <9 through mechanisms supporting the precipitation of sodium carbonate from solution. Further trials should investigate the activity under biological conditions representative of an operating constructed wetland.

  20. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%.

  1. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.

    PubMed

    Türker, Onur Can; Böcük, Harun; Yakar, Anıl

    2013-05-15

    This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l(-1) (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg(-1) whereas P. australis in the PCW absorbed a total of 38 mg kg(-1) B during the research period.

  2. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review.

    PubMed

    Verlicchi, Paola; Zambello, Elena

    2014-02-01

    This review presents and discusses the data from 47 peer-reviewed journal articles on the occurrence of 137 pharmaceutical compounds in the effluent from various types of constructed wetlands treating urban wastewater. We analyse the observed removal efficiencies of the investigated compounds in order to identify the type of constructed wetland that best removes those most frequently detected. The literature reviewed details experimental investigations carried out on 136 treatment plants, including free water surface systems, as well as horizontal and vertical subsurface flow beds (pilot or full-scale) acting as primary, secondary or tertiary treatments. The occurrence of selected pharmaceuticals in sediments and gravel and their uptake by common macrophytes are also presented and discussed. We analyse the main removal mechanisms for the selected compounds and investigate the influence of the main design parameters, as well as operational and environmental conditions of the treatment systems on removal efficiency. We also report on previous attempts to correlate observed removal values with the chemical structure and chemical-physical properties (mainly pKa and LogKow) of pharmaceutical compounds. We then use the literature data to calculate the average pharmaceutical mass loadings in the effluent from constructed wetlands, comparing the ability of such systems to remove selected pharmaceuticals with the corresponding conventional secondary and tertiary treatments. Finally, the environmental risk posed by pharmaceutical residues in effluents from constructed wetlands acting as secondary and tertiary treatment steps is calculated in the form of the risk quotient ratio. This approach enabled us to provide a ranking of the most critical compounds for the two scenarios, to discuss the ramifications of the adoption of constructed wetlands for removing such persistent organic compounds, and to propose avenues of future research. © 2013.

  3. [Pilot-scale comparison research of different constructed wetland types to treat eutrophic lake water].

    PubMed

    Nie, Zhi-Dan; Nian, Yue-Gang; Jin, Xiang-Can; Song, Ying-Wei; Li, Lin-Feng; Xie, Ai-Jun

    2007-08-01

    Comparison research of different constructed wetland types to treat lake Wulihu water was carried out. Under the condition of the loading rates 0.8 m3/(m2 x d), the removal efficiencies of the vertical flow wetland (VFW), subsurface flow wetland (SFW) and free surface wetland(FSW) had the following results: To ammonia nitrogen (NH4(+)-N) the average removal rates were 33.2%, 27.4% and 14.1%, respectively; To total nitrogen (TN) the average removal rates were 52.3% , 50.1% and 19.2%, respectively; To total phosphorus (TP) the average removal rates were 58.8%, 57.9% and 26.3%, respectively; To permanganate index the average removal rates were 37.2%, 38.3% and 14.8%, respectively; To chlorophyll a (Chl-a) the average removal rates were 86.9%, 96.1% and 55.3%, respectively. Obviously, VFW and SFW are more effective than FSW at treating eutrophicated water such as Lake Wulihu which with characters of low organically pollution and with high nitrogen and phosphorus pollution, and the VFW is the most effective on the removal of NH4(+)-N, TN and TP. SFW is the most effective on the removal of permanganate index and Chl-a. The effluent stability of VFW is better than SFW, and the SFW is better than FSW.

  4. Winery wastewater treatment by constructed wetlands and the use of treated wastewater for cash crop production.

    PubMed

    Mulidzi, A R

    2007-01-01

    A 45 m long, 4 m wide and 1 m deep wetland was constructed at Goudini in 2002 to treat distillery and winery effluent. After the plants were fully established, the wastewater with an average chemical oxygen demand (COD) of 14,000 mg/l was introduced to the wetland system at a rate of 4,050 litres per day. After treatment, wastewater at the outlet had an average COD of 500 mg/l, indicating more than 90% COD removal. After treatment, the wastewater was used to irrigate cash crops as part of poverty alleviation for farm workers. The experiment consisted of four treatment: clean irrigation water with fertilizer applied (B1); clean irrigation water without fertilizer applied (B2); wastewater irrigation with fertilizer applied (B3); and wastewater irrigation without fertilizer applied (B4). These were replicated seven times. Cabbage was cultivated as a cash crop. The results indicated that cabbage could be irrigated with winery wastewater treated by wetlands. The study found that there was significant difference between treatments that were fertilized compared with those that were not fertilized. The results indicated that wastewater irrigation improved the nutritional status of the soil.

  5. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater.

    PubMed

    VanderZaag, A C; Gordon, R J; Burton, D L; Jamieson, R C; Stratton, G W

    2010-01-01

    Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an effective treatment option. During treatment, however, some C and N are converted to CH(4), N(2)O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH(4), N(2)O, and CO(2) emissions from surface flow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m(2) each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fluxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were significantly (p < 0.01) different between SF and SSF wetlands changed significantly with time. Overall, SF wetlands had significantly (p < 0.01) higher emissions of CH(4) N(2)O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N(2)O to CH(4) emissions (CO(2)-equivalent) was nearly 1:1 in both wetland types. Emissions of CH(4)-C as a percentage of C removal varied seasonally from 0.2 to 27% were 2 to 3x higher in SF than SSF wetlands. The ratio of N(2)O-N emitted to N removed was between 0.1 and 1.6%, and the difference between wetland types was inconsistent. Thus, N(2)O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH(4) while removing more C from the wastewater than SF wetlands.

  6. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp growout systems.

    PubMed

    Shi, Yonghai; Zhang, Genyu; Liu, Jianzhong; Zhu, Yazhu; Xu, Jiabo

    2011-10-01

    A recirculating aquaculture system was developed for treating Pacific white shrimp (Litopenaeus vannamei) production wastewater using an integrated vertical-flow (IVF) and five connected integrated horizontal flow (IHF) constructed wetlands as water treatment filters for mesohaline conditions (8.25‰-8.26‰ salinity). The constructed wetlands demonstrated the ability to reduce total nitrogen, total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total phosphorous, chemical oxygen demand, and total suspended solids to levels significantly lower than those in effluents from culture tanks. Various water quality parameters in the culture tanks were deemed suitable for shrimp culture. The actual ratio of wetland area (A(w)) to culture tank area (A(t)) was 1.1439, and the estimated optimal ratio A(w)/A(t) was approximately 1. The IVF-IHF wetlands showed flexibility and reliability in consistently removing the main pollutants from commercial recirculating and super-intensive shrimp growout systems throughout the culture period.

  7. An analysis of the effectiveness of a constructed wetland treating acid mine drainage

    SciTech Connect

    Huddleston, G.M. III; Grant, A.J.; Ramey, B.A.

    1994-12-31

    Acid mine drainage (AMD) from an abandoned coal mine in southcentral Kentucky had pH levels as low as 2.3 and iron concentrations as high as 641 mg/L. In the summer of 1992, the US Soil Conservation Service constructed a wetland system to treat the AMD that incorporated both physical and biological treatments. The AMD was initially fed into three anoxic limestone beds followed by an aeration pond and four cattail cells. A polishing pond served as the final stage of treatment. Flow of AMD was initiated in the fall of 1992, and treatment effectiveness was monitored for the next year. Chemical analysis and the cladoceran (Ceriodaphnia dubia) survival and reproduction test were performed on water samples collected along the flow path. Water chemistry analysis and determination of toxic levels indicated a substantial increase in pH and removal of metals prior to entering the cattail cells. Water quality in the cattail cells and polishing pond varied throughout the seasons, but had improved substantially by the end of the one-year monitoring period. The use of the wetland system by macroinvertebrates also was evaluated. Results indicated that a limited number of species were found in the cattail cells, while larger numbers were recovered from the polishing pond.

  8. Effect of loading rate on performance of constructed wetlands treating an anaerobic supernatant.

    PubMed

    Chazarenc, F; Maltais-Landry, G; Troesch, S; Comeau, Y; Brisson, J

    2007-01-01

    The effect of organic loading, season and plant species on the treatment of fish farm effluent was tested using three-year old mesocosm wetland systems. During one year, nine 1 m2 mesocosms (horizontal subsurface flow), located in a controlled greenhouse environment, were fed with a reconstituted fish farm effluent containing a high fraction of soluble components (1,600 microS/cm and in mg/L: 230 +/- 80 COD, 179 +/- 60 sCOD, 100 +/- 40 TSS, 37 +/- 7 TKN, 14 +/- 2 TP). Combinations of three hydraulic loading rates (30, 60 and 90 L.m(-2) d(-1)) and two plant species (Phragmites australis, Typha angustifolia) and an unplanted control were tested for treatment performance and hydraulic behaviour. Loadings higher than 15 g COD m(-2) d(-1) resulted in a net decrease of hydraulic performances (generation of short circuiting) coupled with low TKN removal. Maximal TKN removal rates (summer: 1.2, winter: 0.6 g.m(-2) d(-1)) were reached in planted units. In all mesocosms, phosphorus was removed during summer (maximal removal rate: 0.3 g TP m(-2) d(-1)) and was released in winter (release rate = approximately half of summer removal rate). This study confirmed that constructed wetlands are susceptible to clogging when treating anaerobic storage tank supernatant rich in highly biodegradable compounds. Contributions of plants to hydraulic efficiency were mainly observed in summer, associated with high evapotranspiration rates. Both plant species gave a similar removal efficiency for all pollutants.

  9. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    PubMed

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions.

  10. The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth.

    PubMed

    Higgins, D; Curtin, T; Pawlett, M; Courtney, R

    2016-12-01

    High alkalinity (pH > 12) of bauxite-residue leachates presents challenges for the long-term storage and managements of the residue. Recent evidence has highlighted the potential for constructed wetlands to effectively buffer the alkalinity, but there is limited evidence on the potential for wetland plants to establish and grow in soils inundated with residue leachate. A pot-based trial was conducted to investigate the potential for Phragmites australis to establish and grow in substrate treated with residue leachate over a pH range of 8.6-11.1. The trial ran for 3 months, after which plant growth and biomass were determined. Concentrations of soluble and exchangeable trace elements in the soil substrate and also in the aboveground and belowground biomass were determined. Residue leachate pH did not affect plant biomass or microbial biomass. With the exception of Na, there was no effect on exchangeable trace elements in the substrate; however, increases in soluble metals (As, Cd and Na) were observed with increasing leachate concentration. Furthermore, increases in Al, As and V were observed in belowground biomass and for Cd and Cr in aboveground biomass. Concentrations within the vegetation biomass were less than critical phytotoxic levels. Results demonstrate the ability for P. australis to grow in bauxite-residue leachate-inundated growth media without adverse effects.

  11. Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.

    PubMed

    Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn

    2016-01-01

    Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period.

  12. Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth.

    PubMed

    Song, Hai-Liang; Nakano, Kazunori; Taniguchi, Takashi; Nomura, Munehiro; Nishimura, Osamu

    2009-06-01

    The presence of estrone (E1), 17 beta-estradiol (E2) and 17 alpha-ethynylestradiol (EE2) in sewage treatment work (STW) effluent pose a potential risk to aquatic ecosystem. The objectives of this study were to evaluate the effectiveness of vertical-flow wetland as polishing step of conventional wastewater treatment in the removal of estrogens and to examine the effect of sand depth. The highest removal efficiency of 67.8+/-28.0%, 84.0+/-15.4% and 75.3+/-17.6% for E1, E2 and EE2, respectively, was achieved by the shallowest wetland among three constructed wetlands with different filter layer depth (i.e. 7.5, 30 and 60 cm). Together with the result that the performance of wetlands when operating in unsaturated condition was superior to that when operating in water-saturated condition, it is suggested that maintaining sufficient aerobic circumstance in constructed wetlands was important for estrogens removal. Core sampling indicated that the highest efficiency achieved in extremely shallow wetland might be due partly to the highest root density, besides the superior condition for penetration of oxygen. The adsorbed estrogens in sand accounted for less than 12% of the removed estrogens irrespective of the depth, indicating biotic processes play a major role in the estrogens removal.

  13. Performance of a wall cascade constructed wetland treating surfactant-polluted water.

    PubMed

    Tamiazzo, Jessica; Breschigliaro, Simone; Salvato, Michela; Borin, Maurizio

    2015-09-01

    Carwashes are highly water-consuming processes that require wastewater treatment before discharge into a sewer system due to the complex composition of leachate. Anionic surfactants (AS) are the main constituents of this wastewater because of their cleaning and solubilization properties; they can be potentially dangerous for the environment if not adequately treated. Constructed wetlands (CWs) are low-cost systems increasingly used to treat different types of wastewater; however, there are few studies on their use for the treatment of carwash wastewater. In this study, an innovative constructed wetland arranged in a "cascade" to simulate a wall system (WCCW) was experimented in 2010 and 2011 to treat AS. Three plant species were tested at different AS inlet concentrations (10, 50, and 100 mg L(-1)) with two hydraulic retention times (HRTs; 3 and 6 days): ribbon grass (Typhoides arundinacea (L.) Moench (syn. Phalaris arundinacea L.) var. picta; Ta), water mint (Mentha aquatica L.; Ma), and divided sedge (Carex divisa Hudson; Cd). All plant species grew constantly over the experimental period, showing a capacity to tolerate even the highest AS concentration. Using the HRT of 6 days, raising the inlet concentration increased the AS outlet concentration, with similar values for the treatments (median values of 0.13-0.15, 0.47-0.78, and 1.19-1.46 mg L(-1) at inlet concentrations in the order 10, 50, and 100 mg L(-1)). The shorter HRT led to significant differences among treatments in the reduction of outlet concentration, the best result being given by the tanks vegetated with Ma (A = 97.7 % with outlet concentration 0.35 mg L(-1)). After treatments of the WCCW, the AS content was reduced almost completely, with removal in the ranges 0.07-10.2 g m(-2) day(-1) for tanks planted with Ta, 0.10-9.1 g m(-2) day(-1) for Ma tanks, and 0.11-9.5 g m(-2) day(-1) for Cd tanks depending on the inlet concentration.

  14. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan.

    PubMed

    Jing, Shuh-Ren; Lin, Ying-Feng

    2004-01-01

    A pilot-scale constructed wetland (CW) system, combining a free water surface wetland and a subsurface wetland in series, was used to purify highly polluted river water. The concentrations of constituents varied seasonally. The effects of season-dependent parameters, such as temperature, mass loading rate and inflow salinity, on the removal of ammonia nitrogen (AN) in the wetland system were examined at a constant hydraulic loading rate, based on data from June 1998 to February 2000. AN removal of the CW varied cyclically with the seasons. The removal efficiency and the first-order volumetric removal rate constant (k(V)) increased exponentially with water temperature, yielding a high temperature coefficient (theta). However, the mass removal rate decreased exponentially as temperature increased. These contradictory results made the actual effect of temperature uncertain. The inhibition of high water salinity on AN removal was also unclear because k(V) (as well as k(V20)) and mass removal rate were inversely proportional to salinity. However, mass loading rate (MLR) predominantly affected both the removal efficiency and the mass removal rate of AN, both of which were factors that explicitly determined seasonality. A power equation, k(V20)' alpha MLR(-n), was proposed to correct the variation of the mass loading rate in estimating k(V) and thus in designing a constructed wetland.

  15. The Revival of a Failed Constructed Wetland Treating of a High Fe Load AMD

    Treesearch

    A.D. Karathanasis; C.D. Barton

    1999-01-01

    Acid mine drainage (AMD) from abandoned mines has significantly impaired water quality in eastern Kentucky. A small surface flow wetland constructed in 1989 to reduce AMD effects and subsequently failed after six months of operation was renovated by incorporating anoxic limestone drains (ALDs) and anaerobic subsurface drains promoting vertical flow through successive...

  16. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.

    PubMed

    Greenway, M

    2003-01-01

    From a botanical perspective the major difference between waste stabilisation ponds and wetlands is the dominance of algae or floating plants in the former and emergent plants in the latter. Algae, floating and submerged plants remove nutrients directly from the water column whereas emergent species remove nutrients from the sediment. Water depth is a crucial factor in determining which plant types will become established. Surface flow constructed wetlands offer the greatest potential to grow a wide variety of different types of macrophytes. In assessing the suitability of plant species for nutrient removal, consideration must be given not only to nutrient uptake for growth but also storage of nutrients as plant biomass. A survey of macrophytes in 15 surface flow constructed wetlands treating secondary effluent was conducted in Queensland; 63 native species and 14 introduced species were found. Emergent species have been able to tolerate deeper water than in their natural environment and permanent waterlogging. All species grew well in the higher nutrient enriched wastewater. Submerged, floating leaved-attached and free floating species had the highest tissue nutrient content, followed by aquatic creepers. All these species remove nutrients from the water column. Emergent species had lower nutrient content but a greater biomass and were therefore able to store more nutrients per unit area of wetland. In order to maximise the efficiency of constructed wetlands for nutrient removal, a range of species should be used. Native species should be selected in preference to introduced/exotic species.

  17. Establishing a design for passive vertical flow constructed wetlands treating small sewage discharges to meet British Standard EN 12566.

    PubMed

    Weedon, Christopher Michael; Murphy, Clodagh; Sweaney, Geoff

    2017-01-01

    Owing to legislation change (which made General Binding Rules effective from 1 January 2015) unless discharge is to specified environmentally sensitive sites, small sewage discharges (SSDs) in England - that is, <2 m(3) d(-1) to ground; <5 m(3) d(-1) to surface waters - no longer require an Environmental Permit (EP) and need not be registered for exemption, provided discharge to surface waters is preceded by treatment using equipment complying with BS EN 12566. This effectively excludes the use of treatment wetlands, unless covered by an EP, because the cost of certification to EN 12566 for bespoke designs is prohibitive. EPs take up to four months to obtain. Therefore, the new legislation has created a commercial disadvantage for constructed wetlands treating SSDs, compared with mass-produced sewage treatment plants. However, the UK statutory pollution regulators have maintained a dialogue with the Constructed Wetland Association (CWA), with a view to assessing whether treatment of SSD using constructed wetlands might be allowable, without requiring EPs. This paper presents treatment performance data obtained over 15 years, from a variety of full-scale operational treatment wetlands, as supporting evidence for design guidelines, proposed by the CWA to the UK regulators, for the implementation of constructed wetlands continuously passively treating SSD to 20:30:20 mg l(-1) BOD/SS/NH4-N under a wide range of loading rates. Relevant experience of UK designers, installers and operators since the early 1990s is included, resulting in recommended physical design criteria and loading rates for compact vertical flow reed beds, presented here as key elements of the draft guidelines.

  18. Chemical characterization of iron oxide precipitates from wetlands constructed to treat polluted mine drainage

    SciTech Connect

    Fish, C.L.; Partezana, J.M.; Hedin, R.S.

    1996-12-31

    The passive treatment of abandoned mine drainage using wetlands will produce a significant amount of iron rich sludge which will require costly removal and disposal. An alternative to disposal may be the use of this iron oxide material as pigments which could defray some of these costs. In this research, iron deposits from five alkaline mine drainage wetlands were collected and a series of standard tests were run. The tests included loss on ignition, moisture, pH, acid soluble metals, oil absorption, and water soluble matter. The results of these tests were compared to those achieved using commercially available natural and synthetic iron oxides. The results indicate that iron oxides from constructed wetlands have chemical properties that are intermediate to those of natural and synthetic iron oxide products.

  19. Removal of Salmonella and indicator micro-organisms in integrated constructed wetlands treating agricultural wastewater.

    PubMed

    McCarthy, Gemma; Lawlor, Peadar G; Gutierrez, Montserrat; Gardiner, Gillian E

    2011-01-01

    The purpose of this study was to investigate the removal of pathogenic and indicator micro-organisms in integrated constructed wetland (ICW) systems treating agricultural wastewater. Nine ICW's treating piggery (3) or dairy (6) wastewaters were sampled and indicator micro-organisms were enumerated in the influent as well as the effluent from the first, mid- and final cells. The presence/absence of Salmonella was also determined and any Salmonella isolates recovered were characterized. Mean counts of coliform, E. coli and Enterococcus across all nine ICW systems were lower in the final effluent than in the effluent from cell 1 (P < 0.001). An antibiotic susceptible isolate of Salmonella Dublin, a bovine-adapted serotype, was isolated from the influent to one dairy ICW but was not detected in any of the ICW cells. An antibiotic sensitive Salmonella Dublin isolate with the same molecular fingerprint was also recovered from the cell 1 effluent of another dairy ICW but was absent from the influent and the mid-cell and final effluents. Salmonella Typhimurium DT104b was detected in the liquid fraction of anaerobically digested pig manure as well as in the effluent from the first cell and mid-cell of an ICW treating this material, but was absent in the final effluent. Molecular fingerprinting by pulsed field gel electrophoresis demonstrated that the recovered isolates were highly related. However, they had different antimicrobial resistance profiles, with some highly resistant isolates recovered. In conclusion, counts of indicator micro-organisms were reduced significantly within ICW, with E. coli and Enterococcus non-detectable in the final effluent. Moreover, Salmonella, when present in the influent, appears to have been removed.

  20. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Johnson, Melvin H; Matheny, Terry A; Forbes, Dean; Reddy, Gudigopuram B

    2010-01-01

    Oxygen transfer efficiencies of various components of the marsh-pond-marsh (M-P-M) and marsh-floating bed-marsh (M-FB-M) wetlands treating swine wastewater were determined by performing oxygen mass balance around the wetlands. Biological oxygen demand (BOD) and total nitrogen (TN) loading and escaping rates from each wetland were used to calculate carbonaceous and nitrogenous oxygen demands. Ammonia emissions were measured using a wind tunnel. Oxygen transfer efficiencies of the aerated ponds were estimated by conducting the ASCE standard oxygen transfer test in a tank using the same aeration device. Covering pond water surface with the floating bed slightly decreased oxygen transfer efficiency. The diffused membrane aeration (26.7 kg O2 ha-1 d-1) of M-P-M was surprisingly not as effective as plant aeration in the marsh (38.9 to 42.0 kg O2 ha-1 d-1). This unusually low oxygen transfer efficiency of the diffused aeration was attributed to its low submergence depth of 0.8 m compared to typical depth of 4.5 m. The wetlands consisting entirely of marsh removed similar amounts of C and N without investing additional equipment and energy costs of aerating ponds in the middle of wetlands.

  1. Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.

    PubMed

    Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H

    2015-01-01

    This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study.

  2. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater.

    PubMed

    Xu, Jingcheng; Zhao, Gang; Huang, Xiangfeng; Guo, Haobo; Liu, Wei

    2017-03-04

    According to the characteristics of the reverse osmosis concentrate (ROC) generated from iron and steel company, we used three sets of parallel horizontal subsurface flow (HSF) constructed wetlands (CWs) with different plants and substrate layouts to treat the high-salinity wastewater. The plant growth and removal efficiencies under saline condition were evaluated. The evaluation was based entirely on routinely collected water quality data and the physical and chemical characteristics of the plants (Phragmites australis, Typha latifolia, Iris wilsonii, and Scirpus planiculmis). The principal parameters of concern in the effluent were chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The results showed that the CWs were able to remove COD, TN, and TP from ROC. S. planiculmis was not suitable for the treatment of high-saline wastewater. The sequence of metals accumulated in CW plants was K>Ca>Na>Mg>Zn>Cu. More than 70% of metals were accumulated in the aboveground of P. australis. The CW filled with gravel and manganese ore and planted with P. australis and T. latifolia had the best performance of pollutant removal, with average removal of 49.96%, 39.45%, and 72.01% for COD, TN, and TP, respectively. The effluent water quality met the regulation in China. These results suggested that HSF CW planted with P. australis and T. latifolia can be applied for ROC pollutants removal.

  3. A pilot study of a subsurface-flow constructed wetland treating membrane concentrate produced from reclaimed water.

    PubMed

    Chakraborti, Rajat K; Bays, James S; Ng, Thien; Balderrama, Lou; Kirsch, Terry

    2015-01-01

    A pilot study was conducted for 7 months for the City of Oxnard, California, on the use of constructed wetlands to treat concentrate produced by microfiltration and reverse osmosis (RO) of reclaimed wastewater. The treatment performance of a transportable subsurface-flow wetland was investigated by monitoring various forms of nitrogen, orthophosphate, oxygen demand, organic carbon, and selenium. Significant mass removal of constituents was measured under two hydraulic residence times (HRTs) (2.5 and 5 days). Inflow and outflow concentrations of nitrate-N and ammonia-N were significantly different for both HRTs, whereas nitrite-N and total organic carbon (TOC) were significantly different during HRT2. Mass removal by the constructed wetland averaged 61% of nitrate-N, 32% of nitrite-N, 42% of ammonia-N, 43% of biochemical oxygen demand, 19% of orthophosphate as P, 18% of TOC and 61% of selenium. Mass removal exceeded concentration reductions through water volume loss through evapotranspiration. Calibrated first-order area-based removal rates were consistent with literature ranges, and were greater during HRT1 consistent with greater mass loads, higher hydraulic loading and shorter HRTs. The rate constants may provide a basis for sizing a full-scale wetland receiving a similar quality of water. The results indicated that engineered wetlands can be useful in the management of RO membrane concentrate for reclaimed water reuse.

  4. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment.

    PubMed

    Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang

    2016-02-01

    Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.

  5. Manufactured Soil Field Demonstration for Constructing Wetlands to Treat Acid Mine Drainage on Abandoned Minelands

    DTIC Science & Technology

    2007-11-01

    constructing the wetlands including dredged material, residual waste paper fiber, sawdust, mush- room compost , cow manure, processed cow manure, and...Bony + Waste Paper Fiber + Mushroom Compost + BionsoilTM The RSMT procedures (Sturgis and Lee 1999) were applied in a randomized complete block design...than 100 percent Bony, 100 percent Donora, 3BD, and the 4 ERDC TN-DOER-D9 November 2007 fertile commercial potting soil. Blend 1BD was selected for

  6. Methane emissions from a constructed wetland treating wastewater--seasonal and spatial distribution and dependence on edaphic factors.

    PubMed

    Johansson, A E; Gustavsson, A-M; Oquist, M G; Svensson, B H

    2004-11-01

    Constructed wetlands for wastewater treatment have many advantages. They can be used for several purposes, for example, to reduce levels of organic matter and nutrients, and to retain toxic metals. However, most wetlands are inherently net sources of gaseous compounds like methane and nitrous oxide, which are of environmental concern due to their rapid current accumulation in the atmosphere and their potent global warming capacity. In order to determine the flux of methane from a constructed wetland a study was conducted over two growth seasons on a pilot scale wetland constructed to reduce nutrient levels in secondary treated wastewater. The emissions for the spring to autumn period averaged 141 mg CH(4)m(-2)d(-1) (S.D.=187), ranging from consumption of 375 mg CH(4)m(-2)d(-1) to emissions of 1739 mg CH(4)m(-2)d(-1). The spatial and temporal variations were large, but could be accounted for by measured environmental factors. Among these factors, sediment and water temperatures were significant in all cases and independent of the scale of analysis (r(2) up to 0.88).

  7. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios.

    PubMed

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao

    2016-05-01

    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present.

  8. Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater.

    PubMed

    Chen, Liang; Liu, Feng; Jia, Fen; Hu, Ya-Jun; Lai, Cui; Li, Xi; Luo, Pei; Xiao, Run-Lin; Li, Yong; Wu, Jin-Shui

    2017-02-01

    Anaerobic ammonium oxidation (anammox) was suggested to be involved in the nitrogen (N) removal process in constructed wetlands (CWs). Nevertheless, its occurrence and role in CWs treating swine wastewater have not been well evaluated yet. In this study, we investigated the diversity, activity, and role of anammox bacteria in sediments of mesoscale surface flow CWs (SFCWs) subjected to different N loads of swine wastewater. We found that anammox bacteria were abundant in SFCW sediments, as indicated by 7.5 × 10(5) to 3.5 × 10(6) copies of the marker hzsB gene per gram of dry soil. Based on stable isotope tracing, potential anammox rates ranged from 1.03 to 12.5 nmol N g(-1) dry soil h(-1), accounting for 8.63-57.1% of total N2 production. We estimated that a total N removal rate of 0.83-2.68 kg N year(-1) was linked to the anammox process, representing ca. 10% of the N load. Phylogenetic analyses of 16S ribosomal RNA (rRNA) revealed the presence of multiple co-occurring anammox genera, including "Candidatus Brocadia" as the most common one, "Ca. Kuenenia," "Ca. Scalindua," and four novel unidentified clusters. Correlation analyses suggested that the activity and abundance of anammox bacteria were strongly related to sediments pH, NH4(+)-N, and NO2(-)-N. In conclusion, our results confirmed the presence of diverse anammox bacteria and indicated that the anammox process could serve as a promising N removal pathway in the treatment of swine wastewater by SFCWs.

  9. Clogging of vertical-flow constructed wetlands treating urban wastewater contaminated with a diesel spill.

    PubMed

    Al-Isawi, Rawaa; Scholz, Miklas; Wang, Yu; Sani, Abdulkadir

    2015-09-01

    Clogging often leads to a decrease of the treatment performance of wetlands. The aims of this study were to compare the impact of different design and operational variables on the treatment efficiency and clogging processes and to model suspended solid (SS) accumulation within the saturated wetland zone using the Wang-Scholz model. Different vertical-flow constructed wetlands were operated from June 2011 until April 2014. Four treatment periods were assessed: set-up, first year after set-up period, second year after set-up period and diesel spill (for selected filters only). The filter with the highest chemical oxygen demand (COD) loading but no diesel contamination performed the best in terms of COD and biochemical oxygen demand (BOD) removal for the fourth and final treatment period. Filters contaminated by diesel performed worse in terms of COD and BOD but considerably better regarding nitrate-nitrogen removal. Serious clogging phenomena impacting negatively on the treatment performance and the hydraulic conductivity were not observed. Modelling results were generally poor for the set-up period, adequate for the first 2 years after the set-up period and variable after the diesel spill. The Wang-Scholz model performed well for less complex operations.

  10. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique.

    PubMed

    Dong, Xiuli; Reddy, Gudigopuram B

    2010-02-01

    Marsh-pond-marsh (MPM) constructed wetlands were designed for the treatment of swine wastewater. The goal of this study was to characterize bacterial communities in these wetlands and determine the nutrient removal from influent to effluent. Surface soil samples were collected and analyzed by culture-dependent and culture-independent techniques. The results showed that the bacterial colony forming units (CFU) and the average concentrations of total nitrogen, NH(4)(+), total phosphorous (TP) and PO(4)(3-) from the influent to the effluent decreased. The NH(4)(+) and the PO(4)(3-) concentrations showed the most dramatic changes, with decreases of 39.97% and 16.92%, respectively. Data of culture-independent samples produced by using PCR-denaturing gradient gel electrophoresis (DGGE) technique showed that the Shannon diversity index and richness decreased significantly (P<0.05) from influent to effluent. Bacterium species distributions strongly correlated with the concentrations of TP, NH(4)(+) and the PO(4)(3-). Sequencing of partial 16S rRNA genes fragments revealed that the total bacterial community composition was dominated by Pseudomonas sp., Arthrobacter sp., Bacillus sp. and other soil bacteria. Anammox (anaerobic ammonium oxidation) stains were detected. Phylogenetic analysis demonstrated that some of the partial 16S rRNA gene sequences had close relationships with unculturable denitrification bacteria. The activities of these bacteria might contribute to the nutrient removal in the wetlands.

  11. Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater.

    PubMed

    Pelissari, Catiane; Ávila, Cristina; Trein, Camila Maria; García, Joan; de Armas, Rafael Dultra; Sezerino, Pablo Heleno

    2017-01-01

    The aim of this study was to characterize the nitrogen transforming bacterial communities within a partially saturated vertical subsurface flow constructed wetland (VF) treating urban wastewater in southern Brazil. The VF had a surface area of 3144m(2), and was divided into four wetland cells, out of which two were operated while the other two rested, alternating cycles of 30days. The nitrifying and denitrifying bacterial communities were characterized in wetland cell 3 (764m(2) surface area) over a period of 12months by using the FISH technique. Samples were collected monthly (from Feb 2014 to Feb 2015) from different layers within the vertical profile, during operation and rest periods, comprising a total of 6 sampling campaigns while the cell was in operation and another 6 when the cell was at rest. This wetland cell operated with an average organic loading rate (OLR) of 4gCODm(-2)d(-1) and a hydraulic loading rate of 24.5mmd(-1). The rest periods of the wetland cell presented influences on the abundance of ammonia-oxidizing bacteria (AOB) (8% and 3% for feed and rest periods, respectively), and nitrite-oxidizing bacteria (NOB) (5% and 2% for feed and rest periods, respectively). However, there was no influence of the rest periods on the denitrifying bacteria. AOB were only identified in the top layer (AOB β-proteobacteria) in both operational and rest periods. On the other hand, the NOB (Nistrospirae and Nitrospina gracilis) were identified in feed periods just in the top layer and during rest periods just in the intermediate layer. The denitrifying bacteria (Pseudomonas spp. and Thiobacillus denitrificans) were identified from the intermediate layer downwards, and remained stable in both periods. Based on the identified bacterial dynamics, the partially saturated VF wetland operated under low OLR enabled favorable conditions for simultaneous nitrification and denitrification. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage.

    PubMed

    Ren, Yong-Xiang; Zhang, Hai; Wang, Chao; Yang, Yong-Zhe; Qin, Zhen; Ma, Yun

    2011-01-01

    The depth of substrate in constructed wetlands (CWs) has a significant effect on the construction investment and the purification performance of CWs. In this study, a pilot scale CW system was operated in a domestic sewage treatment plant in Xi'an, China. The experimental systems included three-series CWs systems with substrate depths of 0.1m, 0.3 m and 0.6 m, respectively. Each series was composed of a hydroponic ditch, a horizontal subsurface flow CW and a vertical flow CW. The effluent from the primary clarifier in the sewage treatment plant was intermittently conducted to the wetlands at a flow rate of 0.3 m(3)/d. The hydraulic loading rate of each CWs system was regulated at 0.1 m(3)/m(2).d and the hydraulic retention time was 3 days. Canna indica L. was planted both in the hydroponic ditches and the CWs systems. Results showed that the highest removal efficiency of NH(+)(4)-N and TP was obtained in the hybrid CW with 0.1 m substrate depth. The average removal efficiency for NH(+)(4)-N and TP were 90.6 % and 80.0 %, respectively. The highest average removal efficiency of COD was obtained in hybrid CWs system with 0.6 m substrate depth. Therefore, a simultaneous removal of COD and nutrients can be achieved through the combination of different wetlands using different substrate depths. In addition, the substrate depth presents significant effects on the concentration of DO and root growth characteristics of canna in the system. As a result, the highest concentration of DO (>2 mg/L) and the highest amount of roots production were achieved in the 0.1 m substrate depth horizontal and vertical flow CWs.

  13. Treating surface water with low nutrients concentration by mixed substrates constructed wetlands.

    PubMed

    Li, Chun J; Wan, Ming H; Dong, Yang; Men, Zhen Y; Lin, Yan; Wu, De Y; Kong, Hai N

    2011-01-01

    Constructed wetland (CW) has been widely applied in nutrients reduction for eutrophication control, especially in the advanced treatment of effluent of municipal sewage plants or the in-lake river treatment with high hydraulic loads and low nutrient concentrations. But in real application, it shows lower nutrient removal efficiency. The main reason is that traditional substrates, such as soil and gravel have low capacity for nitrogen and phosphorus removal. This study aims to enhance nutrients removal in constructed wetland systems by using series of substrates including calcium silicate hydrate (CSH), vermiculite and ceramsite which are all investigated individually in static experiment or mixed in batch and continuous flow experiments. The result showed that the efficiency of phosphorus removal by CSH could reach 97%, much higher than the other substrates. However, when it was applied in CW, the removal efficiency decreased. Although vermiculite showed the highest ammonia nitrogen removal efficiency of 65.91%, the ammonia nitrogen removal efficiency may have depended on the action of microorganism. High total nitrogen removal efficiency was obtained in continuous-flow mixed substrate CW. Under a hydraulic retention time (HRT) of 18h and hydraulic loading rate (HLR) of 0.496 m(3)/m(3).d, average total nitrogen removal efficiency of above 91% was achieved, but the average phosphorus removal efficiency was around 65% and this needs to be improved further.

  14. Operation of a horizontal subsurface flow constructed wetland--microbial fuel cell treating wastewater under different organic loading rates.

    PubMed

    Villaseñor, J; Capilla, P; Rodrigo, M A; Cañizares, P; Fernández, F J

    2013-11-01

    The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the system was monitored. The installation consisted of a synthetic domestic wastewater-feeding system and a pilot-scale constructed wetland for wastewater treatment, which also included coupled devices necessary to function as an MFC. The wetland worked under continuous operation for 180 d, treating three types of synthetic wastewater with increasing organic loading rates: 13.9 g COD m(-2) d(-1), 31.1 g COD m(-2) d(-1), and 61.1 g COD m(-2) d(-1). The COD removal efficiencies and the cell voltage generation were continuously monitored. The wetland worked simultaneously as an MFC generating electric power. Under low organic loading rates, the wastewater organic matter was completely oxidised in the lower anaerobic compartment, and there were slight aerobic conditions in the upper cathodic compartment, thus causing an electrical current. Under high organic loading rates, the organic matter could not be completely oxidised in the anodic compartment and flowed to the cathodic one, which entered into anaerobic conditions and caused the MFC to stop working. The system developed in this work offered similar cell voltage, power density, and current density values compared with the ones obtained in previous studies using photosynthetic MFCs, sediment-type MFCs, and plant-type MFCs. The light/darkness changes caused voltage fluctuations due to the photosynthetic activity of the macrophytes used (Phragmites australis), which affected the conditions in the cathodic compartment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Assessment of diesel-contaminated domestic wastewater treated by constructed wetlands for irrigation of chillies grown in a greenhouse.

    PubMed

    Al-Isawi, Rawaa H K; Scholz, Miklas; Al-Faraj, Furat A M

    2016-12-01

    In order to avoid environmental pollution and eliminate the need for using fertiliser, this study assessed for the first time the optimum performance of mature (in operation since 2011) vertical flow constructed wetlands in treating domestic wastewater (with and without hydrocarbon) and the subsequent recycling of the outflow to irrigate chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group 'De Cayenne') grown in a greenhouse. Various variables were investigated to assess the treatment performance. Concerning chilli fruit numbers, findings showed that the highest fruit yields for all wetland filters were associated with those that received inflow wastewater with a high loading rate, reflecting the high nutrient availability in treated wastewater, which is of obvious importance for yield production. Findings also indicated that wetlands without hydrocarbon, small aggregate size, low contact time and low inflow loading rate provided high marketable yields (expressed in economic return). In comparison, chillies irrigated by filters with hydrocarbon contamination, small aggregate size, high contact time and high loading rate also resulted in high marketable yields of chillies, which pointed out the role of high contact time and high inflow load for better diesel degradation rates.

  16. [Characteristics and contribution of the strengthening units of composite constructed wetland for treating urban sewage].

    PubMed

    Ren, Feng; Lu, Yi-Xia; Liu, Qin; Tang, Yang-Yang; Wang, Shi-He; Gao, Hai-Ying; Qiao, Hong-Jie; Wang, Wei-Jin

    2013-02-01

    There are some defects in constructed wetland, including the uneven distribution of flow, easily blocked, lack of oxygen supply systems and the unsatisfactory phosphorus adsorption capacity of the substrates, etc. The research mainly studied the function and contribution of the pool of hydrolysis acidification, the natural reoxygenation/sinking device and strengthen slot for reducing nitrogen and phosphorus. The results showed the removal efficiency of COD and SS in hydrolysis-acidification pool accounted for 38.05% and 34.82% of the total removal efficiency of system. The SS removal efficiency of the natural reoxygenation/sinking device accounted for 22.01% of the total removal efficiency of system, and the concentration of DO kept above 2.5 mg.L-1. The two strengthen slots can ensure the TP, TN, COD up to the standard of the level 1 of GB 18918-2002.

  17. Comparison of vertical-flow constructed wetlands with and without supplementary aeration treating decentralized domestic wastewater.

    PubMed

    Zhu, Liandong; Takala, Josu; Hiltunen, Erkki; Li, Zhaohua; Kristianto, Yohanes

    2013-01-01

    Constructed wetlands (CWs) are efficient in reducing excessive contamination from wastewaters. However, oxygen inside CW beds is frequently low especially when substrate clogging problems appear after long-term operation, and this may become a limited factor for the treatment of wastewaters. Aimed at dealing with the issue of a low oxygen content in CW systems, two laboratory-scale vertical-flow constructed wetlands (VFCWs) with and without an aeration device (called VFCW-a and VFCW-c, respectively) were designed in this study to test the contribution of supplementary aeration to the treatment of decentralized domestic wastewater. Results showed that under the intermittent operation of about 45 days, two VFCW units were successfully started up by using activated sludge as seed sludge. Compared to VFCW-c, VFCW-a had a better resistance ability to organic shock loads and its removal function could be effectively recovered within a short period after the introduction of organic shock loads. Under intermittent operation with a 12 h idling time, the ideal hydraulic retention time (HRT) of VFCW-a was 42 h, about 6 h shorter than that of VFCW-c. Likewise, under intermittent operation with 42 h HRT, the ideal idling time of VFCW-a was 12 h, still about 6 h shorter than that of VFCW-c. Under intermittent operation with HRT-42 h and an idling time of 12 h, SS, COD, TN and TP removal efficiencies in VFCW-a could reach 81.2%, 85%, 89.9% and 77.9%, respectively. The VFCW unit with supplementary aeration is an efficient innovation for the treatment of decentralized domestic wastewater.

  18. Ten years experience of treating all flows from combined sewerage systems using package plant and constructed wetland combinations.

    PubMed

    Griffin, P

    2003-01-01

    Severn Trent Water have been using constructed wetlands since 1991 as part of a flowsheet in which 6 DWF (Dry Weather Flow) is treated by rotating biological contactors (RBCs), and constructed reed beds used to provide both tertiary treatment and stormwater treatment. The company now has over 50 such sites using this flowsheet. Dimensioning and effluent quality achievable is reported and data presented showing the performance of reed beds treating stormwater alone or in admixture with RBC effluent. After 8-10 years of operation the condition of a number of storm reed beds was assessed to determine the remaining asset life. The majority seem likely to achieve at least another five years of operation before further review is needed.

  19. Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water.

    PubMed

    Guan, Wei; Yin, Min; He, Tao; Xie, Shuguang

    2015-10-01

    Microorganisms attached on the surfaces of substrate materials in constructed wetland play crucial roles in the removal of organic and inorganic pollutants. However, the impact of substrate material on wetland microbial community structure remains unclear. Moreover, little is known about microbial community in constructed wetland purifying polluted surface water. In this study, Illumina high-throughput sequencing was applied to profile the spatial variation of microbial communities in three pilot-scale surface water constructed wetlands with different substrate materials (sand, zeolite, and gravel). Bacterial community diversity and structure showed remarkable spatial variation in both sand and zeolite wetland systems, but changed slightly in gravel wetland system. Bacterial community was found to be significantly influenced by wetland substrate type. A number of bacterial groups were detected in wetland systems, including Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Cyanobacteria, Nitrospirae, Planctomycetes, Actinobacteria, Firmicutes, Chlorobi, Spirochaetae, Gemmatimonadetes, Deferribacteres, OP8, WS3, TA06, and OP3, while Proteobacteria (accounting for 29.1-62.3 %), mainly composed of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, showed the dominance and might contribute to the effective reduction of organic pollutants. In addition, Nitrospira-like microorganisms were abundant in surface water constructed wetlands.

  20. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.

    PubMed

    Wu, Shubiao; Jeschke, Christina; Dong, Renjie; Paschke, Heidrun; Kuschk, Peter; Knöller, Kay

    2011-12-15

    Current understanding of the dynamics of sulfur compounds inside constructed wetlands is still insufficient to allow a full description of processes involved in sulfur cycling. Experiments in a pilot-scale horizontal subsurface flow constructed wetland treating high sulfate-containing contaminated groundwater were carried out. Application of stable isotope approach combined with hydro-chemical investigations was performed to evaluate the sulfur transformations. In general, under inflow concentration of about 283 mg/L sulfate sulfur, sulfate removal was found to be about 21% with a specific removal rate of 1.75 g/m(2)·d. The presence of sulfide and elemental sulfur in pore water about 17.3 mg/L and 8.5 mg/L, respectively, indicated simultaneously bacterial sulfate reduction and re-oxidation. 70% of the removed sulfate was calculated to be immobilized inside the wetland bed. The significant enrichment of (34)S and (18)O in dissolved sulfate (δ(34)S up to 16‰, compared to average of 5.9‰ in the inflow, and δ(18)O up to 13‰, compared to average of 6.9‰ in the inflow) was observed clearly correlated to the decrease of sulfate loads along the flow path through experimental wetland bed. This enrichment also demonstrated the occurrence of bacterial sulfate reduction as well as demonstrated by the presence of sulfide in the pore water. Moreover, the integral approach shows that bacterial sulfate reduction is not the sole process controlling the isotopic composition of dissolved sulfate in the pore water. The calculated apparent enrichment factor (ɛ = -22‰) for sulfur isotopes from the δ(34)S vs. sulfate mass loss was significantly smaller than required to produce the observed difference in δ(34)S between sulfate and sulfide. It indicated some potential processes superimposing bacterial sulfate reduction, such as direct re-oxidation of sulfide to sulfate by oxygen released from plant roots and/or bacterial disproportionation of elemental sulfur. Furthermore

  1. Nutrient and organic matter removal from low strength sewage treated with constructed wetlands.

    PubMed

    Mello, D; Carvalho, K Q; Passig, F H; Freire, F B; Borges, A C; Lima, M X; Marcelino, G R

    2017-09-11

    In this study, the role of Eichhornia crassipes for removing pollutants from low strength sewage was evaluated. For that, three pilot scale constructed wetlands (CW) were built: CW 1, planted with E. crassipes in a filter media; CW 2, unplanted, composed only by filter media; and CW 3 composed only of E. crassipes floating on the sewage. The operation of these systems was divided in three stages varying the nominal hydraulic retention time (HRT) in: (I) 24 h; (II) 48 h; and (III) 72 h. Temporal sampling profiles were carried out with collection of samples from the influent and effluent of the CWs to determine temperature, pH, COD, TKN and TP. Contents of TP and TN were analyzed in the plant tissue of the macrophyte. The best removal efficiency for phosphorus, and TKN were obtained in CW 3 38% (72 h) and 47% (72 h), respectively. The highest COD removal was observed in the CW 2 with 80% for HRT 48 h. The macrophyte Eichhornia crassipes contributed to the absorption process with uptake rate percentages of 8.3% (CW 1) and 9.0% (CW 3) for TN and 0.78% (CW 1) and 1.56% (CW 3) for TP on the dry matter of the plant. The chosen species planted in the systems contributed to the achievement of higher nutrient removal.

  2. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water.

    PubMed

    Long, Yan; Yi, Hao; Chen, Sili; Zhang, Zhengke; Cui, Kai; Bing, Yongxin; Zhuo, Qiongfang; Li, Bingxin; Xie, Shuguang; Guo, Qingwei

    2016-10-01

    Both bacteria and archaeal communities can play important roles in biogeochemical processes in constructed wetland (CW) system. However, the influence of plant type on microbial community in surface water CW remains unclear. The present study investigated bacterial and archaeal communities in five surface water CW systems with different plant species. The abundance, richness, and diversity of both bacterial and archaeal communities considerably differed in these five CW systems. Compared with the other three CW systems, the CW systems planted with Vetiveria zizanioides or Juncus effusus L. showed much higher bacterial abundance but lower archaeal abundance. Bacteria outnumbered archaea in each CW system. Moreover, the CW systems planted with V. zizanioides or J. effusus L. had relatively lower archaeal but higher bacterial richness and diversity. In each CW system, bacterial community displayed much higher richness and diversity than archaeal community. In addition, a remarkable difference of both bacterial and archaeal community structures was observed in the five studied CW systems. Proteobacteria was the most abundant bacterial group (accounting for 33-60 %). Thaumarchaeota organisms (57 %) predominated in archaeal communities in CW systems planted with V. zizanioides or J. effusus L., while Woesearchaeota (23 or 24 %) and Euryarchaeota (23 or 15 %) were the major archaeal groups in CW systems planted with Cyperus papyrus or Canna indica L. Archaeal community in CW planted with Typha orientalis Presl was mainly composed of unclassified archaea. Therefore, plant type exerted a considerable influence on microbial community in surface water CW system.

  3. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy.

    PubMed

    Mietto, Anna; Borin, Maurizio

    2013-01-01

    The performance of a vertical and a horizontal subsurface flow wetland (v-SSF and h-SSF), designed for treating domestic wastewater from a single family, was investigated by monitoring total nitrogen (TN), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total phosphorus (TP), chemical oxygen demand (COD) and the dissolved oxygen (DO) content of the influent and the effluent wastewater of each system during the first two years of operation. The growth of Phragmites australis in each system was recorded by measuring the height and observing their general conditions. The treated domestic wastewater presented similar chemical-physical characteristics in the two systems which operated in analogous environmental conditions. The median influent characteristics were: TN 81.9mg L(-1), NO3-N 0.19 mg L(-1), NH4-N 33.5 mg L(-1), TP 11.9 mg L(-1) and COD 354.5 mg L(-1). During the whole monitoring period median reductions in the v-SSF were TN 71%, NH4-N 94%, TP 27% and COD 92% whereas in the h-SSF they were TN 59%, NH4-N 21%, TP 52% and COD 70%. Internal production of NO3-N was observed, mainly in the v-SSF probably due to the difference in oxygen availability in the medium and the design of the system. DO concentration increased in the effluents in both years, with higher values measured in v-SSF than in h-SSF. The reduction performance increased in the second year, particularly in v-SSF, whereas no statistical differences were observed between spring-summer and autumn-winter periods. P. australis reached maximum development at the end of summer in both systems and maintained a stable height during autumn-winter. In h-SSF the vegetation located close to the influent showed lower growth than in the rest of the bed.

  4. A Constructed Wetland: From Monitoring To Action.

    ERIC Educational Resources Information Center

    Kowal, Dan

    1998-01-01

    Presents a water-quality monitoring project in a Denver school that has evolved into an experiment using a constructed wetland system to treat the acid-mine drainage from an abandoned gold mine. (PVD)

  5. A Constructed Wetland: From Monitoring To Action.

    ERIC Educational Resources Information Center

    Kowal, Dan

    1998-01-01

    Presents a water-quality monitoring project in a Denver school that has evolved into an experiment using a constructed wetland system to treat the acid-mine drainage from an abandoned gold mine. (PVD)

  6. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater.

    PubMed

    Jia, Fen; Lai, Cui; Chen, Liang; Zeng, Guangming; Huang, Danlian; Liu, Feng; Li, Xi; Luo, Pei; Wu, Jinshui; Qin, Lei; Zhang, Chen; Cheng, Min; Xu, Piao

    2017-10-01

    Microorganisms are the main mechanisms of pollutants removals in constructed wetlands (CWs) used for wastewater treatment. However, the different biological processes and variations of prokaryotic community in CWs remain poorly understood. In this study, we applied a high-throughput sequencing technique to investigate the prokaryotic communities associated with sediments from pilot-scale surface-flow constructed wetlands (SFCWs) treating swine wastewater (SW) of varying strengths. Our results revealed that highly diverse prokaryotic communities were present in the SFCWs, with Proteobacteria (16.44-44.44%), Acidobacteria (3.25-24.40%), and Chloroflexi (5.77-14.43%) being the major phyla, and Nitrospira (4.14-12.02%), the most dominant genus. The prokaryotic communities in the sediments varied greatly with location and season, which markedly altered the microenvironmental conditions. Principal co-ordinates analysis indicated that SW strength significantly influenced the community structure in sediments of the SFCWs, and canonical correspondence analysis illustrated that the shifts in prokaryotic communities were strongly related to NO3(-)-N and TN in winter; and in summer with NH4(+)N, NO3(-)-N, NO2(-)-N, TN, TP, SOM, and pH. In conclusion, the use of high-throughput sequencing greatly enhanced our understanding of prokaryotic communities with different functional groups in SFCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparison of nutrient cycling in a surface-flow constructed wetland and in a facultative pond treating secondary effluent.

    PubMed

    Sajn Slak, A; Bulc, T G; Vrhovsek, D

    2005-01-01

    There is a growing interest in the possibilities offered by combinations of waste stabilisation ponds (WSP) and constructed wetlands (CW). The purpose of our study was to compare treatment performances and nutrient cycling in a surface-flow wetland (SFW) and in a WSP treating secondary effluent. In the period between 2000 and 2003, a pilot SFW and a pilot WSP were constructed at the outlet of the wastewater treatment plant and their performance monitored while both were active under the same conditions. The SFW was planted with Phragmites australis and Eichhornia crassipes, while in the WSP development of algae was spontaneous. Performance efficiency was monitored by means of evaluation of physical and chemical parameters in water, by measurement of plant productivity and by analysis of N and P contents in biomass. The SFW with macrophytes proved more efficient in decreasing the suspended solids (64.6%), settleable solids (91.8%), organic N (59.3%), total N (38%), COD (67.2%) and BOD5 (72.1%) than the WSP. The WSP with algae was more efficient in treatment of ammonia nitrogen (48.9%) and ortho-phosphate (43.9%). The results of this study provide data that are of help in optimising combinations of SFW and WSP.

  8. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    PubMed

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE.

  9. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters.

    PubMed

    Hernández-Crespo, C; Gargallo, S; Benedito-Durá, V; Nácher-Rodríguez, Beatriz; Rodrigo-Alacreu, M A; Martín, M

    2017-10-01

    Three medium size constructed wetlands (CWs) with a total surface of 90ha are working since 2009 in the Albufera de Valencia Natural Park (Spain). Two of them are fed with eutrophic waters from l'Albufera Lake. Their objectives are both reduce the phytoplankton biomass and increase the biodiversity; consequently, improved water quality is returned to the lake. A "science based governance" of these CWs is ongoing inside the LIFE+12 Albufera Project to demonstrate the environmental benefits of these features. In this paper, results and relationships among hydraulic operation, physicochemical variables and plankton in two different CWs typologies, five free water surface CW (FWSCW) and one horizontal subsurface flow CW (HSSFCW), were analysed showing that CWs were capable of improving the water quality and biodiversity but showing clear differences depending on the CW type. The CWs worked under different hydraulic load rates (HLR) from <0.12 to 54.75myr(-1). Inflow water quality was typical from eutrophic waters with mean values of chlorophyll a (Chl a) about 22-90μgChlal(-1) and mean total phosphorus (TP) between 0.122 and 0.337mgl(-1). The main conclusion is that HSSFCW was much more efficient than FWSCW in the removal of organic matter, suspended solids and nutrients. The biological role of several shallow lagoons located at the end of the CWs has also been evaluated, showing that they contribute to increase the zooplankton biomass, a key factor to control the phytoplankton blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.

    PubMed

    Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato

    2015-10-01

    One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone.

  11. Environmental impact of irrigation with greywater treated by recirculating vertical flow constructed wetlands in two climatic regions.

    PubMed

    Gross, Amit; Alfiya, Yuval; Sklarz, Menachem; Maimon, Adi; Friedler, Eran

    2014-01-01

    Reuse of greywater (GW) has raised environmental and public health concerns. Specifically, these concerns relate to onsite treatment operated by non-professionals; systems must therefore be reliable, simple to use and also economically feasible if they are to be widely used. The aims of this study were to: (a) investigate GW treatment efficiency using 20 full-scale recirculating vertical flow constructed wetlands (RVFCWs) operated in households in arid and Mediterranean regions; and (b) study the long-term effects of irrigation with treated GW on soil properties. RVFCW systems were installed and monitored routinely over 3 years. Raw, treated and disinfected treated GW samples were analyzed for various physicochemical and microbial parameters. Native soil plots and nearby freshwater (FW) and treated GW irrigated soil plots were sampled twice a year - at the end of the winter and at the end of the summer. Soil samples were analyzed for various physicochemical and microbial parameters. Overall, the RVFCW proved to be a robust and reliable GW treatment system. The treated GW quality met strict Israeli regulations for urban irrigation. Results also suggest that irrigation with sufficiently treated GW has no adverse effects on soil properties. Yet, continued monitoring to follow longer term trends is recommended.

  12. Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater.

    PubMed

    Pelissari, Catiane; Guivernau, Miriam; Viñas, Marc; de Souza, Samara Silva; García, Joan; Sezerino, Pablo Heleno; Ávila, Cristina

    2017-04-15

    The dynamics of the active microbial populations involved in nitrogen transformation in a vertical subsurface flow constructed wetland (VF) treating urban wastewater was assessed. The wetland (1.5m(2)) operated under average loads of 130gCODm(-2)d(-1) and 17gTNm(-2)d(-1) in Period I, and 80gCODm(-2)d(-1) and 19gTNm(-2)d(-1) in Period II. The hydraulic loading rate (HLR) was 375mmd(-1) and C/N ratio was 2 in both periods. Samples for microbial characterization were collected from the filter medium (top and bottom layers) of the wetland, water influent and effluent at the end of Periods I (Jun-Oct) and II (Nov-Jan). The combination of qPCR and high-throughput sequencing (NGS, MiSeq) assessment at DNA and RNA level of 16S rRNA genes and nitrogen-based functional genes (amoA and nosZ-clade I) revealed that nitrification was associated both with ammonia-oxidizing bacteria (AOB) (Nitrosospira) and ammonia-oxidizing archaea (AOA) (Nitrososphaeraceae), and nitrite-oxidizing bacteria (NOB) such as Nitrobacter. Considering the active abundance (based in amoA transcripts), the AOA population revealed to be more stable than AOB in both periods and depths of the wetland, being less affected by the organic loading rate (OLR). Although denitrifying bacteria (nosZ copies and transcripts) were actively detected in all depths, the denitrification process was low (removal of 2gTNm(-2)d(-1) for both periods) concomitant with NOx-N accumulation in the effluent. Overall, AOA, AOB and denitrifying bacteria (nosZ) were observed to be more active in bottom than in top layer at lower OLR (Period II). A proper design of OLR and HLR seems to be crucial to control the activity of microbial biofilms in VF wetlands on the basis of oxygen, organic-carbon and NOx-N forms, to improve their capacity for total nitrogen removal.

  13. Nitrogen removal and ammonia-oxidising bacteria in a vertical flow constructed wetland treating inorganic wastewater.

    PubMed

    Domingos, Sergio S; Dallas, Stewart; Skillman, Lucy; Felstead, Stephanie; Ho, Goen

    2011-01-01

    Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.

  14. Stable isotope fractionation related to microbial nitrogen turnover in constructed wetlands treating contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Voloshchenko, O.; Knoeller, K.

    2013-12-01

    To improve the efficiency of ground- and wastewater treatment in constructed wetlands (CWs), better understanding of the occurring processes is necessary. This research explores N-isotope fractionations associated with the removal of ammonium from contaminated groundwater in pilot-scale CWs downstream of the chemical industrial area Leuna, Germany. The groundwater at the site is contaminated mainly by organic (BTEX, MTBE) and inorganic compounds (ammonium). We assume that the anaerobic ammonium oxidation (ANAMMOX) plays an important role in nitrogen removal in these CWs. However, to date, interactions between processes of aerobic and anaerobic ammonium oxidation in CWs still have not been well explored. Especially, the importance of the ANAMMOX process for the nitrogen removal is generally accepted, but its role in CWs is quite unknown. For this aim, three CWs were chosen: planted horizontal subsurface flow (HSSF); unplanted HSSF, and floating plant root mat (FPRM). Water samples were taken at the inflow and outflow as well as from the pore space at different distances (1, 2.5 and 4 m) from the inlet and at different depths (20, 30 and 40 cm in the HSSF-CWs, 30 cm in the FPRM). Samples were collected in a time interval of 1 to 6 weeks during 1 year with the exception of the winter season. Physicochemical parameters, nitrogen isotope signatures of ammonium, as well as nitrogen and oxygen isotope signatures of nitrate were analysed. Within the CWs, spatial concentration gradients of the nitrogen species (ammonium and nitrate) are observed. N-isotope variations of ammonium and nitrate are interpreted according to the prevailing processes of the N-transformations. Based on isotope mass-balance approach microbial processes such as nitrification, denitrification, and ANAMMOX are quantified. DNA from biofilms at roots and gravel was extracted using FastDNA Spin Kit For Soil (MP Biomedicals). PCR, quantitative PCR, cloning, and sequencing were applied with the purpose of

  15. Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review

    NASA Astrophysics Data System (ADS)

    Jahangir, M. M. R.; Richards, K. G.; Healy, M. G.; Gill, L.; Müller, C.; Johnston, P.; Fenton, O.

    2016-01-01

    The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3-) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that

  16. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    USDA-ARS?s Scientific Manuscript database

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  17. Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic.

    PubMed

    Vymazal, Jan; Březinová, Tereza; Koželuh, Milan

    2015-12-01

    Estrogenic hormones, progesterone and testosterone are endocrine-disrupting chemicals and their presence in aquatic environments represents a potentially adverse environmental and public health impact. There is a considerable amount of information about removal of estrogens, progesterone and testosterone in conventional wastewater treatment plants, namely activated sludge systems. However, the information about removal of these compounds in constructed wetlands is very limited. Three constructed wetlands with horizontal subsurface flow in the Czech Republic have been selected to evaluate removal of estrogens (estrone, estriol, 17β-estradiol, 17α-ethinylestradiol), testosterone and progesterone. Monitored constructed wetlands for 100, 150 and 200 PE have been in operation for more than 10 years and all systems exhibit very high treatment efficiency for organics and suspended solids. The results indicate that removal of all estrogens, progesterone and testosterone was high and only estrone was found in the outflow from one constructed wetland in concentrations above the limit of quantification 1 ng l(-1). The limits of quantification for other estrogens, i.e., 10 ng l(-1) for estriol, 1 ng l(-1) for 17β-estradiol and 2 ng l(-1) for 17α-ethinylestradiol were not exceeded in the outflow of all monitored constructed wetlands. Also, for progesterone and testosterone, all outflow concentrations were below the LOQ of 0.5 ng l(-1). The results indicated that constructed wetlands with horizontal subsurface flow are a promising technology for elimination of estrogens, progesterone and testosterone from municipal sewage but more information is needed to confirm this finding. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reuse of a dyehouse effluent after being treated with the combined catalytic wet peroxide oxidation process and the aerated constructed wetland.

    PubMed

    Lee, D K; Kim, S C; Yoon, J H

    2007-01-01

    A catalytic wet peroxide oxidation process was combined with the aerated constructed wetland in order to treat the raw dyehouse wastewater to in acceptable level for reuse as washing process water. More than 90% of BOD and CODs could be removed with the wet peroxide oxidation reactor and the remaining pollutants in the treated water were transformed into biodegradable ones which could have been successfully treated at the following aerated constructed wetland. The highest values of BOD5, CODMn, CODCr, SS and T-N in the treated water were 1.6, 1.8, 2.1, 0.5 and 12.8 mg/L, respectively. These values were low enough for the treated water to be reused at the washing process.

  19. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  20. Can constructed wetlands treat wastewater for reuse in agriculture? Review of guidelines and examples in South Europe.

    PubMed

    Lavrnić, Stevo; Mancini, Maurizio L

    2016-01-01

    South Europe is one of the areas negatively affected by climate change. Issues with water shortage are already visible, and are likely to increase. Since agriculture is the biggest freshwater consumer, it is important to find new water sources that could mitigate the climate change impact. In order to overcome problems and protect the environment, a better approach towards wastewater management is needed. That includes an increase in the volume of wastewater that is treated and a paradigm shift towards a more sustainable system where wastewater is actually considered as a resource. This study evaluates the potential of constructed wetlands (CWs) to treat domestic wastewater and produce effluent that will be suitable for reuse in agriculture. In South Europe, four countries (Greece, Italy, Portugal and Spain) have national standards that regulate wastewater reuse in agriculture. Wastewater treatment plants (WWTPs) that are based on CWs in these four countries were analysed and their effluents compared with the quality needed for reuse. In general, it was found that CWs have trouble reaching the strictest standards, especially regarding microbiological parameters. However, their effluents are found to be suitable for reuse in areas that do not require water of the highest quality.

  1. Influence of loading rate and modes on infiltration of treated wastewater in soil-based constructed wetland.

    PubMed

    Bisone, Sara; Gautier, Mathieu; Masson, Matthieu; Forquet, Nicolas

    2017-01-01

    Over the last 10 years soil-based constructed wetlands for discharge of treated wastewater (TWW) are commonly presented as a valuable option to provide tertiary treatment. The uncomplete knowledge in soil modifications and a lack of clear design practices laid the foundation of this work. The aim of this study was to determine optimal hydraulic loads and to observe the main critical parameters affecting treating performances and hydraulic loads acceptance. For this purpose, a soil rich in clay and backfill was chosen to perform column infiltration tests with TWW. Two loading rates and two loading modes were compared to study the influence of an intermittent feeding. Inlet and outlet waters were periodically analysed and columns were instrumented with balances, tensiometers, O2 and temperature probes. Soil physico-chemical characteristics were also taken into account to better understand the modification of the soil. One of the main expectations of tertiary treatment is to improve phosphate removal. A particular attention was thus given to phosphorus retention. The interest of an intermittent feeding in presence of a soil with high clay content was showed. This study highlighted that an intermittent feeding could make possible the use of a clay-rich soil for water infiltration.

  2. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  3. Potential pathogens, antimicrobial patterns, and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater

    USDA-ARS?s Scientific Manuscript database

    The treatment and removal of contaminants such as nutrients, salts, microbes, and pharmaceutically active compounds from swine waste by constructed wetlands involves complex biological processes. However, little is known about the population structure and antibiotic resistant patterns of E. coli em...

  4. Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage.

    PubMed

    Wiessner, A; Rahman, K Z; Kuschk, P; Kästner, M; Jechorek, M

    2010-12-01

    The knowledge regarding the dynamics of sulphur compounds inside constructed wetlands is still insufficient. Experiments in planted (Juncus effusus) and unplanted horizontal sub-surface-flow laboratory-scale constructed wetlands fed with artificial wastewater were carried out to evaluate the sulphate reduction, the composition and dynamics of generated sulphur compounds, as well as the influence of carbon load and plants on processes of sulphur transformation. In planted and unplanted wetlands, the addition of organic carbon (TOC of about 120 mg L(-1)) immediately affected the transformation of up to 90% of the incoming sulphate (150 mg L(-1)), directing it mainly towards elemental sulphur (30%) and sulphide (8%). During this experimental period, nearly 52% of the transformed sulphate-sulphur was calculated to be immobilized inside the planted wetland and 66% inside the unplanted one. In subsequent experiments, the deficiency of organic carbon inside the planted wetlands favoured the decrease of elemental sulphur in the pore water coupled to retransformation of depot-sulphur to dissolved sulphate. Nearly 90% of the deposited and reduced sulphur was found to be reoxidized. In principle, the results indicate a substantial improvement of this reoxidation of sulphur by oxygen released by the helophytes. Surplus of organic carbon promotes the ongoing sulphate reduction and the stability of deposed and dissolved reduced sulphur compounds. In contrast, inside the unplanted control wetland, a relative stability of the formed sulphur depots and the generated amount of dissolved sulphur compounds including elemental sulphur could be observed independently of the different loading conditions.

  5. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water.

    PubMed

    Dong, Huiyu; Qiang, Zhimin; Li, Tinggang; Jin, Hui; Chen, Weidong

    2012-01-01

    Three lab-scale vertical-flow constructed wetlands (VFCWs), including the non-aerated (NA), intermittently aerated (IA) and continuously aerated (CA) ones, were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water. Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA, which significantly favored the removal of organic matter and NH(4+)-N. The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN). Although the removal efficiencies of COD(Cr), NH(4+)-N and TN in the three VFCWs all decreased with an increase in HLR, artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings. The maximal removal efficiencies of COD(Cr), NH(4+)-N and total phosphorus (TP) (i.e., 81%, 87% and 37%, respectively) were observed in CA at 19 cm/day HLR, while the maximal TN removal (i.e., 57%) was achieved in IA. Although the improvement of artificial aeration on TP removal was limited, this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted river water, particularly at a high HLR.

  6. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  7. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  8. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site.

  9. Biomonitoring study of a constructed wetland site treating acid mine drainage. Research report, July 1990-June 1992

    SciTech Connect

    Ramey, B.A.; Halverson, H.G.; Taylor, L.A.

    1992-01-01

    Acid Mine Drainage (AMD) from an underground coal mine in the Jones Branch watershed in McCreary County, KY, substantially reduced water quality in Jones Branch. Downstream from the mine seeps, the pH was routinely below 4.5 and concentrations of most heavy metals, especially iron, were elevated. A cattail wetland (1,022 m2) was constructed on Jones Branch in 1989 to obviate the effects of the AMD. Monthly chemical monitoring was performed on the water from above, from below, and from the 26 cells within the wetland. Based on chemical monitoring, the wetland initially improved water quality, increasing the pH and removing substantial amounts of heavy metals. Beginning in the spring of 1991, water quality at the wetland outfall began to decline, and has not improved to date. To augment the chemical monitoring, a biomonitoring study was initiated in the spring of 1990. Acute 48-hr. static tests were conducted with newly hatched fathead minnows (Pimephales promelas). Median lethal concentration (LC50) values determined monthly reflects the decline in water quality at the outfall over time.

  10. Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka.

    PubMed

    Athapattu, B C L; Thalgaspitiya, T W L R; Yasaratne, U L S; Vithanage, Meththika

    2017-03-13

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20-85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K(+), Ca(+2), Mg(+2), etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  11. Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water.

    PubMed

    Zhang, Shuai; Song, Hai-Liang; Yang, Xiao-Li; Huang, Shan; Dai, Zhe-Qin; Li, Hua; Zhang, Yu-Yue

    2017-07-01

    Microbial fuel cell-coupled constructed wetlands (CW-MFCs) use electrochemical, biological, and ecological functions to treat wastewater. However, few studies have investigated the risks of antibiotic resistance genes (ARGs) when using such systems to remove antibiotics. Therefore, three CW-MFCs were designed to assess the dynamics of ARGs in filler biofilm and effluent over 5000 h of operation. The experimental results indicated that relatively high steady voltages of 605.8 mV, 613.7 mV, and 541.4 mV were obtained at total influent antibiotic concentrations of 400, 1,000, and 1600 μg L(-1), respectively. The 16S rRNA gene level in the cathode layer was higher than those in the anode and two middle layers, but the opposite trend was observed for the sul and tet genes. The relative abundance of the three tested sul genes were in the order sulI > sulII > sulIII, and those of the five tet genes were in the order tetA > tetC > tetW > tetO > tetQ. The levels of sul and tet genes in the media biofilm showed an increase over the treatment period. The effluent water had relatively low abundances of sul and tet genes compared with the filler biofilm. No increases were observed for most ARGs over the treatment period, and no significant correlations were observed between the ARGs and 16S rRNA gene copy numbers, except for sulI and tetW in the effluent. However, significant correlations were observed among most of the ARG copy numbers.

  12. Phosphorus Sorption Capacities of Steel Slag in Pilot-Scale Constructed Wetlands for Treating Urban Runoff: Saturation Potential and Longevity

    NASA Astrophysics Data System (ADS)

    Guo, W. J.; Zhao, L. Y.; Zhao, W. H.; Li, Q. Y.; Wu, Z. B.

    2017-01-01

    Two parallel pilot-scale integrated constructed wetland (ICW) systems were constructed on the bank of Nanfeihe River. The phosphate (PO4 3-) isothermal adsorption properties of the upper substrate steel furnace slag (SFS) in up-flow chamber was investigated during one-year operation period. The maximum phosphorus (P) adsorption capacity of SFS 9, 11, 13, 15, 17, 19 months service time were 848.9 mg/kg, 968.1 mg/kg, 824.5 mg/kg, 788.7 mg/kg, 864.7 mg/kg and 960.3 mg/kg, respectively. The saturated adsorption amount of SFS had not decreased with the service time prolonging in ICW. The longevity of a full-scale system could not be reliably estimated only based on the theoretical saturated adsorption capacity from laboratory experiments.

  13. Removal of metals in constructed wetlands

    SciTech Connect

    Crites, R.W.; Watson, R.C.; Williams, C.R.

    1996-12-31

    Trace metals are difficult to remove from municipal wastewater by conventional wastewater treatment methods. Constructed wetlands have the potential to trap and remove metals from the water column. Long term removal is expected to occur by accumulation and burial in the plant detritus in a manner similar to the removal of phosphorus. Few data are available in the literature on removal of metals by constructed wetlands. A free water surface constructed wetland at Sacramento Regional Wastewater Treatment Plant treating secondary municipal effluent has been operating since the spring of 1994. Removal data for 13 metals are presented for the period from August 1994 to May 1995. About 3,785 m{sup 3}/d (1 mgd) of pure oxygen activated sludge effluent, disinfected using UV light, is further treated through a 8 ha (20 acre) constructed wetlands Ten separate, parallel treatment cells are available to demonstrate the effects of detention time, vegetation management, and application frequency on the removal of metals, organics and ammonia. Detention time can be varied from 3 to 13 days by varying the flow and the water depth. The vegetation, primarily bulrush with some cattails, will be managed by different techniques to minimize mosquito production. Application frequency varies from continuous flow to batch flow (1 to 2 days of loading with 1 day of discharge).

  14. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater.

    PubMed

    Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang

    2016-06-01

    Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.

  15. Response of removal rates to various organic carbon and ammonium loads in laboratory-scale constructed wetlands treating artificial wastewater.

    PubMed

    Wu, Shubiao; Kuschk, Peter; Wiessner, Arndt; Kästner, Matthias; Pang, Changle; Dong, Renjie

    2013-01-01

    High levels (92 and 91%) of organic carbon were successfully removed from artificial wastewater by a laboratory-scale constructed wetland under inflow loads of 670 mg/m2 x d (100 mg/d) and 1600 mg/m2d (240 mg/d), respectively. Acidification to pH 3.0 was observed at the low organic carbon load, which further inhibited the denitrification process. An increase in carbon load, however, was associated with a significant elevation of pH to 6.0. In general, sulfate and nitrate reduction were relatively high, with mean levels of 87 and 90%, respectively. However, inhibition of nitrification was initiated with an increase in carbon loads. This effect was probably a result of competition for oxygen by heterotrophic bacteria and an inhibitory effect of sulfide (S2) toxicity (concentration approximately 3 mg/L). In addition, numbers of healthy stalks of Juncus effusus (common rush) decreased from 14 000 to 10 000/m2 with an increase of sulfide concentration, indicating the negative effect of sulfide toxicity on the wetland plants.

  16. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater.

    PubMed

    Ibekwe, A M; Murinda, Shelton E; DebRoy, Chitrita; Reddy, Gudigopura B

    2016-02-01

    Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment.

  17. Are constructed treatment wetlands sustainable sanitation solutions?

    PubMed

    Langergraber, Guenter

    2013-01-01

    The main objective of sanitation systems is to protect and promote human health by providing a clean environment and breaking the cycle of disease. In order to be sustainable, a sanitation system has to be not only economically viable, socially acceptable and technically and institutionally appropriate, but it should also protect the environment and the natural resources. 'Resources-oriented sanitation' describes the approach in which human excreta and water from households are recognized as resource made available for reuse. Nowadays, 'resources-oriented sanitation' is understood in the same way as 'ecological sanitation'. For resources-oriented sanitation systems to be truly sustainable they have to comply with the definition of sustainable sanitation as given by the Sustainable Sanitation Alliance (SuSanA, www.susana.org). Constructed treatment wetlands meet the basic criteria of sustainable sanitation systems by preventing diseases, protecting the environment, and being an affordable, acceptable, and simple technology. Additionally, constructed treatment wetlands produce treated wastewater of high quality, which is fostering reuse, which in turn makes them applicable in resources-oriented sanitation systems. The paper discusses the features that make constructed treatment wetlands a suitable solution in sustainable resources-oriented sanitation systems, the importance of system thinking for sustainability, as well as key factors for sustainable implementation of constructed wetland systems.

  18. [Development characteristics of aquatic plants in a constructed wetland for treating urban drinking water source at its initial operation stage].

    PubMed

    Zheng, Jun; Ma, Xin-Tang; Zhou, Lan; Zhou, Qing-Yuan; Wang, Zhong-Qiong; Wang, Wei-Dong; Yin, Cheng-Qing

    2011-08-01

    The development characteristics and improvement measures of aquatic plants were studied in Shijiuyang Constructed Wetland (SCW) at its initial operation stage. SCW was a large-scale wetland aiming to help relieve the source water pollution in Jiaxing City. A checklist of vascular plants in SCW was built, and species composition, life forms, biomass and association distributions were examined. Our objectives were to examine the diversity and community structure of aquatic plants in SCW at its initial operation stage, and to find out the possible hydrophyte improvement measures. The survey results showed that there were 49 vascular plant species belonging to 41 genera, 25 families in SCW, which greatly exceeded the artificially transplanted 13 species. The life forms of present aquatic plants in SCW were dominated by hygrophilous plants (20 species) and emerged plants (17 species), which accounted for 75.5% of the total number of aquatic plants. The aquatic plants transplanted artificially were dominated by emerged plants (accounted for 69.2%), while those naturally developed were predominated by hygrophilous plants (accounted for 47.2%). The horizontal distribution of aquatic plant community in SCW was mixed in the form of mosaics, which made up typical association complex. Except association Aeschynomene indica L., the dominant species of other associations were all those transplanted artificially. The naturally grown species scattered throughout the SCW and only occupied a small percentage. A marked difference was detected on the species and species richness of aquatic plants in different regions of SCW. Biomass of aquatic plant associations in SCW was 167.7 t. SCW has shown a trend of succession heading for quick increase of plant diversity at the primary operation stage. This trend provides a good material base for the future stable community of aquatic plants in SCW. According to the current status of aquatic plants, some suggestions were put forward on the

  19. Lead and zinc removal by laboratory-scale constructed wetlands.

    PubMed

    Song, Y; Fitch, M; Burken, J; Nass, L; Chilukiri, S; Gale, N; Ross, C

    2001-01-01

    Constructed wetlands have the potential to trap and remove metals in mine wastewater. To determine the effectiveness of constructed wetlands for treating selected heavy metals in neutral mine effluent typical of lead mines, eight laboratory-scale constructed wetlands were set up to treat a synthetic, slightly alkaline, mine water containing 34.2 mg/L sulfate (SO4(2-)), 50 micrograms/L lead (Pb), and 300 micrograms/L zinc (Zn). After 45 days, one of the wetlands was switched to treat a synthetic smelter effluent with a much greater load of SO4(2-), sodium (Na+), and Pb. Temperature, hydraulic loading, and substrate composition typically did not affect treatment efficiency. The pH of the effluent was reduced from 8.0 to 8.5 to near neutral. The average removal in the eight wetlands was 90% for Pb and 72% for Zn. In wetlands operating on synthetic mine water, SO4(2-) was completely removed, likely by conversion to sulfide by sulfate-reducing bacteria. In the wetland operating on synthetic smelter effluent, only approximately 25% of 6 g/L influent sulfate was removed, and a breakthrough period of 4 days for Na+ was observed. Whole effluent toxicity assays on undiluted wetland effluent from wetlands treating mine and smelter water had 100% survival of fathead minnows and Daphnia magnia. Survival of Ceriodaphnia dubia was zero in undiluted effluent, but 75 to 100% survival was observed when the effluent was diluted to one-half strength.

  20. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.

    PubMed

    da Costa, Jocilene Ferreira; Martins, Weber Luiz Pinto; Seidl, Martin; von Sperling, Marcos

    2015-01-01

    The main objective of the work is to characterize the role of plants in a constructed wetland in the removal of nitrogen (N) and phosphorus (P). The experiments were carried out in a full-scale system in the city of Belo Horizonte, Brazil, with two parallel horizontal subsurface-flow constructed wetland units (one planted with Typha latifolia and one unplanted) treating the effluent from a system composed of an upflow anaerobic sludge blanket reactor and a trickling filter (TF). Each wetland unit received a mean flow of approximately 8.5 m³ d⁻¹ (population equivalent around 60 inhabitants each), with a surface hydraulic loading rate 0.12 m³m⁻²d⁻¹. The experiments were conducted from September 2011 to July 2013. Mean effluent concentrations from the wetlands were: (a) planted unit total nitrogen (TN) 22 mg L⁻¹, ammonia-N 19 mg L⁻¹, nitrite-N 0.10 mg L⁻¹, nitrate-N 0.25 mg L⁻¹, P-total 1.31 mg L⁻¹; and (b) unplanted unit TN 24 mg L⁻¹, ammonia-N 20 mg L⁻¹, nitrite-N 0.54 mg mL⁻¹, nitrate-N 0.15 mg L⁻¹, P-total 1.31 mg L⁻¹. The aerial part of the plant contained mean values of 24.1 gN (kg dry matter)⁻¹ and 4.4 gP (kg dry matter)⁻¹, and the plant root zone was composed of 16.5 gN (kg dry matter)⁻¹ and 4.1 gP (kg dry matter)⁻¹. The mean extraction of N by the plant biomass was 726 kgN ha⁻¹y⁻¹, corresponding to 17% of the N load removed. For P, the extraction by the plant biomass was 105 kgP ha⁻¹y⁻¹, corresponding to 9% of the P load removed. These results reinforce the reports that N and P removal due to plant uptake is a minor mechanism in horizontal subsurface-flow constructed wetlands operating under similar loading rates, typical for polishing of sanitary effluent.

  1. The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater.

    PubMed

    Zapater-Pereyra, M; Kyomukama, E; Namakula, V; van Bruggen, J J A; Lens, P N L

    2016-08-01

    The Duplex-constructed wetland (CW) is a hybrid system composed of a vertical flow (VF) CW on top of a horizontal flow filter (HFF). Each compartment is designed to play a different role: aerobic treatment in the VF CW due to intermittent feeding and anoxic treatment in the HFF due to saturated conditions. Three Duplex-CWs were used in this study: Control, Aerated and Recirculating. The role of each compartment was tested for pollutant removal and micro-invertebrate abundance. In all systems, the VF CW removed mainly organic matter, solids and NH4(+)-N. Pathogens were removed in both compartments. Likewise, total nitrogen removal occurred in both compartments, only the Recirculating HFF was not able to denitrify the nitrogen due to the slightly more oxic conditions as compared to the other systems. All systems met discharge guidelines for organic matter, but only the Control and Aerated systems met those for total nitrogen. At the applied loading rates, the pollutant removal was not significantly enhanced by the use of aeration and recirculation. Therefore, operation as in the Control system, without aeration or recirculation, is recommended for the tested Duplex-CWs. If artificial aeration will be used in CWs, the support material should be carefully selected to allow a proper air distribution.

  2. Phragmites sp. physiological changes in a constructed wetland treating an effluent contaminated with a diazo dye (DR81).

    PubMed

    Ferreira, Renata Alexandra; Duarte, Joana Gouveia; Vergine, Pompilio; Antunes, Carlos D; Freire, Filipe; Martins-Dias, Susete

    2014-01-01

    The role of Phragmites sp. in phytoremediation of wastewaters containing azo dyes is still, in many ways, at its initial stage of investigation. This plant response to the long-term exposure to a highly conjugated di-azo dye (Direct Red 81, DR81) was assessed using a vertical flow constructed wetland, at pilot scale. A reed bed fed with water was used as control. Changes in photosynthetic pigment content in response to the plant contact with synthetic DR81 effluent highlight Phragmites plasticity. Phragmites leaf enzymatic system responded rapidly to the stress imposed; in general, within 1 day, the up-regulation of foliar reactive oxygen species-scavenging enzymes (especially superoxide dismutase, ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxidase) was noticed as plants entered in contact with synthetic DR81 effluent. This prompt activation decreased the endogenous levels of H₂O₂ and the malonyldialdehyde content beyond reference values. Glutathione S-transferase (GST) activity intensification was not enough to cope with stress imposed by DR81. GPX activity was pivotal for the detoxification pathways after a 24-h exposure. Carotenoid pool was depleted during this shock. After the imposed DR81 stress, plants were harvested. In the next vegetative cycle, Phragmites had already recovered from the chemical stress. Principal component analysis (PCA) highlights the role of GPX, GST, APX, and carotenoids along catalase (CAT) in the detoxification process.

  3. [Problems and countermeasures in the application of constructed wetlands].

    PubMed

    Huang, Jin-Lou; Chen, Qin; Xu, Lian-Huang

    2013-01-01

    Constructed wetlands as a wastewater eco-treatment technology are developed in recent decades. It combines sewage treatment with the eco-environment in an efficient way. It treats the sewage effectively, and meanwhile beautifies the environment, creates ecological landscape, and brings benefits to the environment and economics. The unique advantages of constructed wetlands have attracted intensive attention since developed. Constructed wetlands are widely used in treatment of domestic sewage, industrial wastewater, and wastewater from mining and petroleum production. However, many problems are found in the practical application of constructed wetland, e. g. they are vulnerable to changes in climatic conditions and temperature, their substrates are easily saturated and plugged, they are readily affected by plant species, they often occupy large areas, and there are other problems including irrational management, non-standard design, and a single function of ecological service. These problems to a certain extent influence the efficiency of constructed wetlands in wastewater treatment, shorten the life of the artificial wetland, and hinder the application of artificial wetland. The review presents correlation analysis and countermeasures for these problems, in order to improve the efficiency of constructed wetland in wastewater treatment, and provide reference for the application and promotion of artificial wetland.

  4. Effects of tidal operation on pilot-scale horizontal subsurface flow constructed wetland treating sulfate rich wastewater contaminated by chlorinated hydrocarbons.

    PubMed

    Chen, Zhongbing; Vymazal, Jan; Kuschk, Peter

    2017-01-01

    Three different flow regimes were carried out in a pilot-scale horizontal subsurface flow constructed wetland-treating sulfate rich wastewater contaminated with monochlorobenzene (MCB) and perchloroethene (PCE). The three regimes were continuous flow, 7-day cycle discontinuous flow, and 2.5-day cycle discontinuous flow. The results show that intensifying the tidal regime (2.5-day cycle) significantly enhanced MCB removal before 2 m from the inlet and increasing PCE removal efficiency at 0.5 m. The PCE dechlorination process was promoted with tidal operation, especially under the 2.5-day cycle regime, with significant increases of cis-1,2- dichloroethenes (DCEs), vinyl chloride (VC), and ethene, but trans-1,2-DCE was significantly decreased after tidal operation. Due to the high sulfate concentration in the influent, sulfide was observed in pore water up to 20 and 23 mg L(-1) under continuous flow and 7-day cycle regime, respectively. However, sulfide concentrations decreased to less than 4 mg L(-1) under intensified tidal operation (2.5-day cycle). The increase of oxygen concentration in pore water through intensified tidal operation resulted in better MCB removal performance and the successful inhibition of sulfate reduction. In conclusion, intensifying tidal operation is an effective approach for the treatment of chlorinated hydrocarbons and inhibiting sulfide accumulation in horizontal subsurface flow constructed wetland.

  5. Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation.

    PubMed

    Calheiros, Cristina S C; Rangel, António O S S; Castro, Paula M L

    2008-10-01

    The aim of this study was to investigate the performance of horizontal subsurface flow constructed wetlands planted with Typha latifolia treating tannery wastewater under long-term operation. Two expanded clay aggregates (Filtralite MR3-8-FMR and Filtralite NR3-8-FNR) and a fine gravel-FG were used as substrate for the constructed wetland units plus one unit with FMR was left as an unvegetated control. The systems were subject to three hydraulic loadings, 18, 8 and 6cmd(-1), and to periods of interruption in the feed. The relationship between the substrate, plant development and removal efficiency, especially of organic matter, was investigated. Organic loadings up to 1800kg BOD(5)ha(-1)d(-1) and 3849kg COD ha(-1)d(-1) were applied leading to mass removals of up to 652kg BOD(5)ha(-1)d(-1) and 1869kg COD ha(-1)d(-1), respectively. The three different substrates were adequate for the establishment of T. latifolia, although the clay aggregates allowed for higher plant propagation levels. The units with FNR and FMR achieved significantly higher COD and BOD5 removal when compared to the FG and to the unplanted units. The systems proved to be tolerant to high organic loadings and to interruptions in feed suggesting this technology as a viable option for the biological treatment of tannery wastewater.

  6. Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent.

    PubMed

    Chen, Yi; Wen, Yue; Zhou, Junwei; Tang, Zhiru; Li, Ling; Zhou, Qi; Vymazal, Jan

    2014-08-01

    Sulfate is frequently found in the influent of subsurface-flow constructed wetlands (SSF CWs) used as tertiary treatments. To reveal the effects of plants and litters on sulfate removal, as well as the competition for organic carbon among microorganisms in SSF CWs, five laboratory-scale SSF CW microcosms were set up and were operated as a batch system with HRT 5 d. The results showed that the presence of Typha latifolia had little effect on sulfate removal in CWs, with or without additional carbon sources. Cattail litter addition greatly improved sulfate removal in SSF CWs. This improvement was linked to the continuous input of labile organic carbon, which lowers the redox level and supplies a habitat for sulfate reducing bacteria (SRB). The presence of SRB in cattail litter indicated the possibility of sulfate removal around the carbon supplier, but the quantity of microbes in cattail litter was much lower than that in gravel. Stoichiometry calculations showed that the contribution of SRB to COD removal (21-26%) was less than that of methane-producing bacteria (MPB) (47-61%) during the initial stage but dominated COD removal (42-65%) during the terminal stage. The contributions of aerobic bacteria (AB) and denitrification bacteria (DB) to COD removal were always lower than that of SRB. It was also observed that the variations in COD: S ratio had a great influence on the relative abundance of genes between SRB and MPB and both of them could be used as good predictors of carbon competition between SRB and MPB in CWs.

  7. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate.

    PubMed

    Yin, Tingru; Chen, Huiting; Reinhard, Martin; Yi, Xinzhu; He, Yiliang; Gin, Karina Yew-Hoong

    2017-09-01

    Landfill leachate is often an important source of emerging organic contaminants including perfluoroalkyl and polyfluoroalkyl substances (PFASs) requiring proper treatment to protect surface water and groundwater resources. This study investigated the occurrence of PFASs in the leachate of a capped landfill site in Singapore and the efficacy of PFASs removal during flow through a constructed wetland (CW) treatment system. The CW treatment system consists of equalization tank, aeration lagoons, sedimentation tank, reed beds and polishing ponds. Target compounds included 11 perfluoroalkyl acids (PFAAs) (7 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkane sulfonates (PFSAs)) and 7 PFAA precursors. Although total PFASs concentrations in the leachate varied widely (1269 to 7661 ng/L) over the one-year sampling period, the PFASs composition remained relatively stable with PFCAs consistently being predominant (64.0 ± 3.8%). Perfluorobutane sulfonate (PFBS) concentrations were highly correlated with total PFASs concentrations and could be an indicator for the release of PFASs from this landfill. The release of short-chain PFAAs strongly depended on precipitation whereas concentrations of the other PFASs appeared to be controlled by partitioning. Overall, the CW treatment system removed 61% of total PFASs and 50-96% of individual PFASs. PFAAs were removed most efficiently in the reed bed (42-49%), likely due to the combination of sorption to soils and sediments and plant uptake, whereas most of the PFAA precursors (i.e. 5:3 fluorotelomer carboxylate (5:3 acid), N-substituted perfluorooctane sulfonamides (N-MeFOSAA and N-EtFOSAA)) were removed in the aeration lagoon (>55%) by biodegradation. The sedimentation tank and polishing ponds were relatively inefficient, with only 7% PFASs removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    SciTech Connect

    HALVERSON, NANCY

    2004-09-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  9. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  10. Use of Constructed Wetlands for Polishing Recharge Wastewater

    NASA Astrophysics Data System (ADS)

    Cardwell, W.

    2009-12-01

    The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter

  11. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron.

    PubMed

    Zhu, Hui; Bañuelos, Gary

    2017-03-21

    Wetland mesocosms were constructed to assess two hybrid poplar clones (Populustrichocarpa×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se), and a hydroponic experiment was performed to test the B tolerance and B accumulation in both clones. In the mesocosm experiment, clone 345-1 exhibited no toxic symptoms at an EC of 10mScm(-1), while clone 347-14 showed slight toxic symptoms at 7.5mScm(-1). The removal percentages of B, Se, sodium (Na), and chloride (Cl) ranged from 26.7-45.6%, 50-69.4%, 18.4-24.0%, and 15.8-23.2%, respectively, by clone 345-1, and from 22.9-29.4%, 31.7-43.8%, 16.5-24.2%, and 14.9-23.9%, respectively, by clone 347-1. In the hydroponic experiment, B toxic symptoms were observed at treatments of 150 and 200mg B L(-1) for clones 345-1 and 347-14, respectively. The greatest leaf B concentrations of 3699 and 1913mgkg(-1) were found in clone 345-1 and clone 347-14, respectively. The translocation factor (TF) of clone 347-14 was less than clone 345-1. Clone 345-1 only showed significantly greater (P<0.05) B removal percentages than clone 347-14 when B treatment was <20mg B L(-1). In conclusion, both tested poplar clones competitively accumulated and removed B and Se in constructed wetlands.

  12. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works.

    PubMed

    Mburu, Njenga; Tebitendwa, Sylvie M; van Bruggen, Johan J A; Rousseau, Diederik P L; Lens, Piet N L

    2013-10-15

    The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.

    PubMed

    Wu, Shubiao; Chen, Zhongbing; Braeckevelt, Mareike; Seeger, Eva M; Dong, Renjie; Kästner, Matthias; Paschke, Heidrun; Hahn, Anja; Kayser, Gernot; Kuschk, Peter

    2012-04-15

    Long-term investigations were carried out in two pilot-scale horizontal subsurface flow constructed wetlands (planted and unplanted) with an iron-rich soil matrix for treating sulphate-rich groundwater which was contaminated with low concentrations of chlorinated hydrocarbons. The temporal and spatial dynamics of pore-water sulphide, Fe(II) and phosphate concentrations in the wetland beds were characterized and the seasonal effects on sulphide production and nitrification inhibition were evaluated. The results demonstrated that the pore-water sulphide concentrations gradually increased from less than 0.2 mg/L in 2005 to annual average concentrations of 15 mg/L in 2010, while the pore-water Fe(II) concentrations decreased from 35.4 mg/L to 0.3 mg/L. From 2005 to 2010, the phosphate removal efficiency declined from 91% to 10% under a relatively constant inflow concentration of 5 mg/L. The pronounced effect of plants was accompanied by a higher sulphate reduction and ammonium oxidation in the planted bed, as compared to the unplanted control. A high tolerance of plants towards sulphide toxicity was observed, which might be due to the detoxification of sulphide by oxygen released by the roots. However, during the period of 2009-2010, the nitrification was negatively impacted by the sulphide production as the reduction in the removal of ammonium from 75% to 42% (with inflow concentration of 55 mg/L) correlated with the increasing mean annual sulphide concentrations. The effect of the detoxification of sulphide and the immobilization of phosphate by the application of the iron-rich soil matrix in the initial years was proven; however, the life-span of this effect should not only be taken into consideration in further design but also in scientific studies.

  14. Pesticide mitigation capacities of constructed wetlands

    Treesearch

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  15. Biogeochemical Characterization of Constructed Wetland Functions

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Parker, G. R.; Filley, T. R.

    2001-12-01

    Agricultural productions areas of the Midwestern United States are recognized as significant contributors of nonpoint source pollution and influence many aspects of water quality at both local and regional scales. In addition, ambitious land "improvement" programs stemming back to the mid-1800s have resulted in widespread loss of wetlands throughout the U.S., including heavy losses in agricultural production areas of the Mississippi River Basin. The combination of these two factors has been directly implicated as a contributing factor to high-profile environmental problems such as exacerbation of the zone of hypoxia in the Gulf of Mexico. Constructed wetlands are recognized for their potential to help mitigate the effects of agricultural nonpoint source pollution and previous loss of wetlands. The vast majority of previous studies of constructed wetlands have focused on the bulk movement of water quality constituents such as nitrogen, phosphorus, total carbon and sediment. While insightful, these studies do not address more detailed aspects of wetland function as it pertains to carbon flux and storage. In this study, we present results from biogeochemical analyses of influent and effluent of an experimental wetland constructed near row crop and animal production facilities in North-central Indiana. Cross flow utrafiltration and chemolytic techniques were used to collect and characterize organic components of wetland influent and effluent. Biomarker molecules were used to describe functions of the constructed wetland.

  16. Redox properties of a constructed wetland: theoretical and practical aspects.

    PubMed

    Síma, Jan; Diáková, Katerina; Pavelcová, Lenka; Havelka, Michal

    2009-03-01

    Constructed wetlands represent a progressive approach to the wastewater treatment. A fundamental prerequisite of the efficient water quality improvement is the presence of redox potential gradients (connected with the aeration of the system) inside the vegetation bed. Redox properties of a constructed wetland were tested in three longitudinal transects crossing the vegetation bed from the inflow zone to the outflow using diverse indicators (e.g., Fe(III)/Fe(II), SO(2-)(4)/S(2-)). Approximately 10-25% of iron was reoxidized in samples taken 10 m from the inflow zone in 2006. Redox processes of iron in artificial (constructed wetland) and natural (peat bog) ecosystems were compared. The peat bog was characterized with higher percentages of Fe(II) (usually ca. 90-100%). Thus, the aeration of the peat land was lower in comparison with the constructed wetland. The constructed wetland efficiently reduced sulfates (average concentrations of 44.7 and 11.2 mg/l at the inflow and the outflow, resp., in 2007). Organics, expressed as COD(Cr) and BOD(5), and NH+(4) were removed with efficiencies of 86.4, 92.2, and 60.4%, respectively. However, total phosphorus (redox processes play a negligible role in this case) was removed only with 39.6% efficiency. Redox properties of the wetland did not significantly depend on the heterogeneity of the treated wastewater flow.

  17. Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing filters for treating dairy wastewater.

    PubMed

    Lee, Martin S; Drizo, Aleksandra; Rizzo, Donna M; Druschel, Greg; Hayden, Nancy; Twohig, Eamon

    2010-07-01

    The performance and temporal variation of three hybrid and three integrated, saturated flow, pilot-scale constructed wetlands (CWs) were tested for treating dairy farm effluent. The three hybrid systems each consisted of two CWs in-series, with horizontal and vertical flow. Integrated systems consisted of a CW (horizontal and vertical flow) followed by a steel slag filter for removing phosphorus. Time series temporal semivariogram analyses of measured water parameters illustrated different treatment efficiencies existed over the course of one season. As a result, data were then divided into separate time period groups and CW systems were compared using ANOVA for parameter measurements within each distinct time period group. Both hybrid and integrated CWs were efficient in removing organics; however, hybrid systems had significantly higher performance (p<0.05) during peak vegetation growth. Compared to hybrid CWs, integrated CWs achieved significantly higher DRP reduction (p<0.05) throughout the period of investigation and higher ammonia reduction (p<0.05) in integrated CWs was observed in late summer. Geochemical modeling demonstrates hydroxyapatite and vivianite minerals forming on steel slag likely control the fate of phosphate ions given the reducing conditions prevalent in the system. The model also demonstrates how the wastewater:slag ratio can be adjusted to maximize phosphorus removal while staying at a near-neutral pH.

  18. Experiences with constructed wetland systems in Korea

    NASA Astrophysics Data System (ADS)

    Youngchul, Kim; Gilson, Hwang; Jin-Woo, Lee; Je-Chul, Park; Dong-Sup, Kim; Min-Gi, Kang; in-Soung, Chang

    2006-10-01

    In spite of the low temperature during the winter season and the high land environment, the wetland treatment system is gaining popularity in Korea because of its lower construction cost and simplicity in operation and maintenance. Many different types of wetland treatment systems have been built during the last 10 years, among which the free water surface wetland has been predominant. Most of the large-scale systems are government projects for improving the water quality of the streams flowing into the estuary dikes and reservoirs. The covering plants used in this system are different in different areas but cattails and reeds or their combinations are common. Constructed wetlands in Korea can be characterized by their shallow depths and short hydraulic residence times. There is no established flow pattern and configuration rules for constructing wetlands, but many efforts have been made with a view to improving their ecological function. Flow control is the most difficult problem in designing a riverbed or riparian wetland. There have been scores of flow rate control devices developed for wetlands, but none of them guarantee wetlands’ safety against flooding. In earlier wetland construction, the building materials were mainly soil. Recently, strong and durable building materials such as rocks, gravel beds, concrete and steel are used at vulnerable places to protect them from erosion. Our investigation indicated that the wetland system would be an appropriate technology because it is not only cheaper to construct, but also requires less maintenance work. However, we suffer from the reduced effectiveness in performance during the winter. We need to evaluate the partial treatment accomplished during 6 to 7 months per year.

  19. Denitrification in constructed wetlands used for treatment of swine wastewater.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Szögi, Ariel A

    2003-01-01

    Constructed wetland treatment of swine wastewater probably involves substantial denitrification. Our objective was to assess denitrification and denitrification enzyme activity (DEA) in such wetlands in relation to plant communities, N loading, carbon or nitrogen limitations, and water depth. Two wetland cells each 3.6 m wide and 33.5 m long were connected in series. One set of cells was planted with rushes and bulrushes, including soft rush (Juncus effusus L.), softstem bulrush [Schoenoplectus tabernaemontani (K.C. Gmel.) Pallal, American bulrush [Schoenoplectus americanus (Pers.) Volkart ex Schinz & R. Keller], and woolgrass bulrush [Scirpus cyperinus (L.) Kunth]. Another set was planted with bur-reeds and cattails, including American bur-reed (Sparganium americanum Nutt.), broadleaf cattail (Typha latifolia L.), and narrowleaf cattail (Typha angustifolia L.). The sets will be referred to herein as bulrush and cattail wetlands, respectively. Denitrification and DEA were measured via the acetylene inhibition method in intact soil cores and disturbed soil samples that were taken during four years (1994-1997). Although DEA in the disturbed samples was greater than denitrification in the core samples, the measurements were highly correlated (r2 > or = 0.82). The DEA was greater in the bulrush wetlands than the cattail wetlands, 0.516 and 0.210 mg N kg(-1) soil h(-1), respectively; and it increased with the cumulative applied N. The DEA mean was equivalent to 9.55 kg N ha(-1) d(-1) in the bulrush wetlands. We hypothesized and confirmed that DEA was generally limited by nitrate rather than carbon. Moreover, we determined that one of the most influential factors in DEA was wetland water depth. In bulrush wetlands, the slope and r2 values of the control treatment were -0.013 mg N kg(-1) soil h(-1) mm(-1) depth and r2 = 0.89, respectively. Results of this investigation indicate that DEA can be very significant in constructed wetlands used to treat swine wastewater.

  20. Municipal wastewater treatment with pond-constructed wetland system: a case study.

    PubMed

    Wang, X; Bai, X; Qiu, J; Wang, B

    2005-01-01

    The performance of a pond-constructed wetland system in the treatment of municipal wastewater in Kiaochow city was studied; and comparison with oxidation ponds system was conducted. In the post-constructed wetland, the removal of COD, TN and TP is 24%, 58.5% and 24.8% respectively. The treated effluent from the constructed wetland can meet the Chinese National Agricultural and Irrigation Standard. The comparison between pond-constructed wetland system and oxidation pond system shows that total nitrogen removal in a constructed wetland is better than that in an oxidation pond and the TP removal is inferior. A possible reason is the low dissolved oxygen concentration in the wetland. Constructed wetlands can restrain the growth of algae effectively, and can produce obvious ecological and economical benefits.

  1. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2003-03-01

    should be constructed in an area where the contaminated water can be efficiently pumped into the wetland. Locating the wetland near the... water into the piezometer, and then back out again repeatedly. Pumping water in and out of the piezometer clears the screen of any clogging by...tests where the rate of receding water was so quick so as to allow gathering only a few head measurements, amounting to about half of all the pump

  2. Influence of high organic loads during the summer period on the performance of hybrid constructed wetlands (VSSF + HSSF) treating domestic wastewater in the Alps region.

    PubMed

    Foladori, P; Ortigara, A R C; Ruaben, J; Andreottola, G

    2012-01-01

    One of the limits for the application of constructed wetlands (CWs) in mountain regions (such as the Alps) is associated with the considerable land area requirements. In some mountain areas, the treatment of domestic wastewater at popular tourist destinations is particularly difficult during the summer, when the presence of visitors increases hydraulic and organic loads. This paper aims to evaluate whether a hybrid CW plant designed on the basis of the resident population only, can treat also the additional load produced by the floating population during the tourist period (summer, when temperatures are favourable for biological treatment), without a drastic decrease of efficiency and without clogging problems. The research was carried out by considering two operational periods: the first one was based on literature indications (3.2 m(2)/PE in the VSSF unit) and the second one assumed higher hydraulic and organic loads (1.3 m(2)/PE in the VSSF unit). The removal efficiency in the hybrid CW system decreased slightly from 94 to 88% for COD removal and from 78 to 75% for total N removal, even after applying a double hydraulic (from 55 to 123 L m(-2) d(-1)) and organic load (from 37 to 87 g COD m(-2) d(-1) and from 4.4 to 10.3 g TKN m(-2) d(-1)). The results showed that in the summer period the application of high loads did not affect the efficiency of the hybrid CW plant significantly, suggesting that it is possible to refer the CW design to the resident population only, with subsequent considerable savings in superficial area.

  3. The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater.

    PubMed

    Chen, Zhongbing; Kuschk, Peter; Paschke, Heidrun; Kästner, Matthias; Köser, Heinz

    2015-03-01

    A rarely used hydroponic plant root mat filter (PRMF, of 6 m(2)) and a horizontal subsurface flow constructed wetland (HSSF CW, of 6 m(2)), operating in continuous flow and discontinuous outflow flushing modes, were investigated for treating sulfate-rich and organic carbon-lean groundwater contaminated with monochlorobenzene (MCB); 1,2-dichlorobenzene (1,2-DCB); 1,4-dichlorobenzene (1,4-DCB); and 2-chlorotoluene. Whereas the mean inflow loads ranged from 1 to 247 mg m(-2) days(-1), the range of mean inflow concentrations of the chlorobenzenes recorded over a period of 7 months was within 0.04 and 8 mg L(-1). A hydraulic surface loading rate of 30 L m(-2) days(-1) was obtained in both systems. The mean load removal efficiencies were found to vary between 87 and 93 % in the PRMF after a flow path of 4 m, while the removal efficiencies were found to range between 46 and 70 % and 71 to 73 % in the HSSF CW operating in a continuous flow mode and a discontinuous outflow flushing mode, respectively. Seasonal variations in the removal efficiencies were observed for all low-chlorinated hydrocarbons both in the PRMF and the HSSF CW, whereby the highest removal efficiencies were reached during the summer months. Sulfide formation occurred in the organic carbon-lean groundwater particularly in summer, which is probably due to the plant-derived organic carbon that fostered the microbial dissimilatory sulfate reduction. Higher redox potential in water was observed in the PRMF. In conclusion, the PRMF could be an option for the treatment of water contaminated with compounds which in particular need oxic conditions for their microbial degradation, such as in the case of low-chlorinated benzenes.

  4. Constructed wetlands as biofuel production systems

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  5. Constructed wetlands for wastewater treatment in cold climate - A review.

    PubMed

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  6. The use of hydrologically altered wetlands to treat wastewater in coastal Louisiana

    SciTech Connect

    Breaux, A.M.

    1992-01-01

    Two major environmental problems currently affecting Louisiana are a high rate of coastal wetland loss and high levels of surface water pollution. The application of secondarily treated wastewater to wetlands is proposed to dealing with these problems. The benefits of wetland wastewater treatment include improved surface water quality, increased accretion rates to balance subsidence, improved plant productivity, and decreased capital outlays for conventional engineering treatment systems. Wetland treatment systems can be designed and operated to restore deteriorating wetlands to previous levels of productivity. Hydrologically altered wetlands in the Louisiana coastal zone are appropriate for receiving municipal and some industrial effluent. While the US EPA has determined that wetland wastewater treatment is effective in treating municipal effluent, it has discouraged the use of natural wetlands for this purpose. As a result, hydrologically altered wetlands in the Louisiana coastal zone are being neglected and ultimately lost, while scarce funds are used to construct artificial wetlands to treat municipal effluent. Effluent discharge to existing wetlands can be incorporated into a comprehensive management plan designed to increase sediment and nutrient input into subsiding wetlands in the Louisiana coastal zone. Secondarily treated effluent discharged from industrial and municipal facilities in the Louisiana coastal zone were reviewed for suitability for wetland wastewater treatment. Selection criteria for wetland treatment systems were developed for both dischargers and receiving wetlands. Designs for two potential case studies based on established selection criteria for wetland wastewater treatment systems are presented. An economic analysis of the four case studies indicates a high potential for financial savings when wetlands replace conventional engineering methods for tertiary treatment.

  7. Constructed wetland treatment system in textile industry and sustainable development.

    PubMed

    Davies, L C; Pedro, I S; Ferreira, R A; Freire, F G; Novais, J M; Martins-Dias, S

    2008-01-01

    This study focuses on the evaluation of the adequacy and sustainability of a constructed wetland (CW), with vertical flow (VF) design to treat a strongly coloured textile wastewater.Secondly an accidental AO7 overloaded discharge (700 mg l(-1)) was studied. A set of three similar VFCW beds (3x1 m2), operating in series, allowed also the efficient treatment of the AO7 heavy loaded wastewaters. The treated effluent quality enables water reuse for irrigation purposes or within the process.

  8. Mitigation of methane emissions from constructed farm wetlands.

    PubMed

    Pangala, Sunitha R; Reay, David S; Heal, Kate V

    2010-01-01

    Constructed wetlands are increasingly used for water pollution treatment but may also be sources of the greenhouse gas CH(4). The effect of addition of two potential inhibitors of methanogenesis - iron ochre and gypsum - on net CH(4) emissions was investigated in a constructed wetland treating farm runoff in Scotland, UK. CH(4) fluxes from three 15-m(2) wetland plots were measured between January and July 2008 in large static chambers incorporating a tunable diode laser, with application of 5tonha(-1) ochre and gypsum in May. CH(4) fluxes were also measured from control and ochre- and gypsum-treated wetland sediment cores incubated at constant and varying temperature in the laboratory. Ochre addition suppressed CH(4) emissions by 64+/-13% in the field plot and >90% in laboratory incubations compared to controls. Gypsum application of 5tonha(-1) in the field and laboratory experiments had no effect on CH(4) emissions, but application of 10tonha(-1) to a sediment core reduced CH(4) emissions by 28%. Suppression of CH(4) emissions by ochre application to sediment cores also increased with temperature; the reduction relative to the control increased from 50% at 17.5 degrees C to >90% at 27.5 degrees C. No significant changes in N removal or pH and potentially-toxic metal content of sediments as the result of inhibitor application were detected in the wetland during the study.

  9. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  10. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  11. Removal of Pharmaceutical Products in a Constructed Wetland

    PubMed Central

    Özengin, Nihan; Elmaci, Ayse

    2016-01-01

    Background There is growing interest in the natural and constructed wetlands for wastewater treatment. While nutrient removal in wetlands has been extensively investigated, information regarding the degradation of the pharmaceuticals and personal care products (PPCPs) has only recently been emerging. PPCPs are widely distributed in urban wastewaters and can be removed to some extent by the constructed wetlands. The medium-term (3-5 years) behavior of these systems regarding PPCP removal is still unknown. Objectives The efficiency of a Leca-based laboratory-scale constructed wetland planted with Phragmites australis (Cav.) Trin. Ex. Steudel in treating an aqueous solution of the pharmaceuticals, namely, carbamazepine, ibuprofen, and sulfadiazine, was to investigate. Materials and Methods The two pilot-scale constructed wetlands (CW) were operated in parallel; one as an experimental unit (a planted reactor with P. australis) and the other as a control (an unplanted reactor with Leca). Pretreatment and analyses of the carbamazepine, ibuprofen, sulfadiazine, and tissue samples (Leca, P. australis body and P.australis leaf) were conducted using HPLC. Results The carbamazepine, ibuprofen, and sulfadiazine removal efficiencies for the planted and unplanted reactors were 89.23% and 95.94%, 89.50% and 94.73%, and 67.20% and 93.68%, respectively. The Leca bed permitted an efficient removal. Leca has a high sorption capacity for these pharmaceuticals, with removal efficiencies of 93.68-95.94% in the unplanted reactors. Conclusions Sorption processes might be of a major importance in achieving efficient treatment of wastewater, particularly in the removal of organic material that are resistant to biodegradation, in which case the materials composing the support matrix may play an important role. The results obtained in the present study indicate that a constructed wetland with Leca as a substrate and planted with P. australis is effective in the treatment of wastewater

  12. Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater.

    PubMed

    Ávila, Cristina; Pelissari, Catiane; Sezerino, Pablo H; Sgroi, Massimiliano; Roccaro, Paolo; García, Joan

    2017-04-15

    The effect of effluent recirculation on the removal of total nitrogen (TN) and eight pharmaceuticals and personal care products (PPCPs) was evaluated during 9months in an experimental hybrid constructed wetland (CW) system applied in the treatment of urban wastewater. An Imhoff tank was followed by three stages of CWs (two 1.5-m(2) vertical subsurface flow (VF) beds alternating feed-rest cycles, a 2-m(2) horizontal (HF) and a 2-m(2) free water surface (FWS) wetland in series). A fraction of the final effluent was recycled back to the Imhoff tank with a recirculation rate of 50% (hydraulic loading rate=0.37md(-1)). The system's performance varied throughout the study. In Period I (summer) consistently high load removal efficiencies of TN (89±5%) and a removal rate of 6.6±1.4gTNm(-2)d(-1) were exhibited. In Period II (fall), the poor performance of the FWS during the senescence of macrophytes caused a large increase in organic matter, solids and nutrient concentrations, drastically deteriorating water quality. The determination of PPCPs was conducted during this period. Recalcitrant compounds, namely sulfamethoxazole, carbamazapine, TCEP and sucralose were negligibly removed in all CWs. However, noteworthy was the ≈30% removal of sucralose in the VF wetland. Caffeine (80%) and fluoxetine (27%) showed similar elimination rates in both VF and HF units, whereas trimethoprim and DEET were significantly better removed in the VF than in the HF. The concentration of the four latter compounds showed a severe increase in the FWS, indicating possible desorption from the sediment/biomass during adverse conditions. Harvesting of the aboveground biomass in this unit returned the system's performance back to normality (Period III), achieving 77±7% TN removal despite the winter season, proving effluent recirculation as an effective strategy for TN removal in hybrid CW systems when stringent restrictions are in place.

  13. Forested wetlands constructed for mitigation of destroyed natural wetlands

    USGS Publications Warehouse

    Perry, M.C.; Pugh, S.B.; Deller, A.S.

    1995-01-01

    Forested wetlands constructed for mitigation were evaluated at six sites in Maryland to determine the success of these areas for providing suitable wildlife habitat. Natural forested wetlands were used as reference sites. Initial mortality of planted woody shrubs and trees was high (avg. 55%) and mostly attributed to excessive moisture. The number of woody seedlings from natural regeneration was inversely proportional to the amount of grass cover on the site, which was planted for erosion control. The number of volunteer woody seedlings was also inversely proportional to the distance from adjacent natural forests. Preliminary data indicate that cost does not support use of transplants and that enhancement of soil with organic supplements, followed by widespread and heavy seeding of woody plants would be more efficient and effective. Wildlife use of areas measured by avian surveys and trapping of mammals, reptiles, and amphibians showed that in general wildlife species were more representative of open grassland areas than forested habitats. Natural succession of the sites probably will take at least 20-30 years before typical values and functions of forested wetlands are obtained.

  14. Hydraulic characteristics of a constructed wetland: Implications for pollutant removal

    NASA Astrophysics Data System (ADS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.; Ozimek, T.

    2003-04-01

    Constructed wetlands are built in order to treat wastewaters of various origin with some degree of control over purification processes. Treatment wetlands improve water quality through removal of suspended solids, organics, nitrogen, phosphorus, pathogens (bacteria, parasites, viruses) and metals. Transformation and removal of pollutants from wastewaters occur via numerous interrelated physical, chemical and biological processes. The efficiency of soluble pollutants removal is related to the degree of contact between wastewaters and the reactive surfaces. Therefore knowledge of hydraulic phenomena is crucial in studies of wetland functioning. A subsurface flow wetland in Nowa Slupia, Poland was studied in order to find out relationships between hydraulic phenomena and wetland performance. The wetland consists of three parallel gravel beds overgrown by common reed with a total surface area of 6400 sq m, total active volume of around 900 cubic m and the average loading of around 4 l/s. Three tracer tests with bromide and tritium accompanied by observations of water quality, plant distribution and biomass were performed in summer and winter conditions. Tracer breakthrough curves obtained from tracer tests were used to identify sub-systems within the wetland and to infer their hydraulic properties (water residence times, active volumes, dispersive characteristics). Three reed beds receive different wastewater loadings and show different water residence times and dispersive characteristics. Wastewater flow occurs partly via surface overflow with apparent stagnant zones and preferential flow pathways. These flow patterns are reflected in complex structure of breakthrough curves. Inhomogenous wastewater distribution within the wetland is due to operation practices and clogging of the gravel beds with refractory organic matter. Observations of effluent water quality, plant distribution and biomass reflect these apparent inhomogenities in wastewater flow patterns. This work

  15. Removal processes for arsenic in constructed wetlands.

    PubMed

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems.

  16. Spatial distribution of metals in the constructed wetlands.

    PubMed

    Kongroy, Porntawee; Tantemsapya, Netnapid; Lin, Ying-Feng; Jing, Shuh Ren; Wirojanagud, Wanpen

    2012-02-01

    Investigation of the spatial distribution of metals was conducted for two constructed wetlands used as tertiary treatment in Chia Nan University of Pharmacy and Science (CNU) and Metal Processing Industries (MPI) located in Tainan, Taiwan. These two distinguished sites were selected to compare the distribution of metals for constructed wetlands treating different types of wastewater. Along the distance, samples of water, sediment, and macrophytes were analyzed for metals including Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Additionally, measurements of water quality including temperature, pH, EC, ORP, DO, TSS, BOD, COD, and turbidity were performed. Results show that, at CNU, wastewater contained higher organic consititute (BOD 29.3 +/- 11.7 mg/, COD 46.7 +/- 33.6 mg/L) with low metals content. Wastewater at MPI contained low level of organic consititute (BOD 7.1 +/- 3.3 mg/L, and COD 66.0 +/- 56.5 mg/L) and higher metals content. Metals distribution of both sites showed similar results where metals in the sediments in the inlet zone have greater concentrations than other areas. The constructed wetlands can remove Cd, Cu, Ni, Pb, and Zn. However, there was no removal of Al, Cr, Fe, and Mn. A distance along the constructed wetlands had no effect on metal concentrations in macrophyte and water.

  17. Ciliate communities in a constructed mangrove wetland for wastewater treatment.

    PubMed

    Chen, Qing-Hua; Tam, Nora Fung-Yee; Shin, Paul K S; Cheung, Siu-Giu; Xu, Run-Lin

    2009-05-01

    In wetlands constructed for treating municipal and industrial wastewater, including mangroves, the effect of wastewater discharged on the substrate has often been neglected. Ciliates, an important group of protozoa, are sensitive to pollutants and any changes in ciliate diversity and community structure reflects the habitat quality. The ciliate communities at six sections along a constructed mangrove belt (33 m in length) planted with Aegicerascorniculatum were investigated in Shenzhen, South China. In all samples collected in both rainy and dry seasons, 183 ciliate species were observed. Most species (56%) were free-swimming forms, while only 10.8% were sessile ciliates. The abundance and species number of ciliates were both found to decrease from the anterior (the wastewater inlet) to the posterior (the outlet) parts of the wetland belt, indicating that organic matter and bacteria in wastewater, which served as food for most ciliates, were gradually removed by the constructed wetland. The r/K (number of r- and K-selected species) ratios at the six sections were relatively small, between 0.2 and 0.4, whereas the C/P (abundance of colpodids and polyhymenophorans) quotient at some sections was higher than 1. These results indicate that although most of the environments along the constructed wetland belt were not stressful for ciliate communities, there were habitats that favored colpodids in high abundances.

  18. Estimating evapotranspiration in natural and constructed wetlands

    USGS Publications Warehouse

    Lott, R. Brandon; Hunt, Randall J.

    2001-01-01

    Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.

  19. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    EPA Science Inventory

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. This report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, whic...

  20. Constructed wetlands for wastewater treatment: five decades of experience.

    PubMed

    Vymazal, Jan

    2011-01-01

    The first experiments on the use of wetland plants to treat wastewaters were carried out in the early 1950s by Dr. Käthe Seidel in Germany and the first full-scale systems were put into operation during the late 1960s. Since then, the subsurface systems have been commonly used in Europe while free water surface systems have been more popular in North America and Australia. During the 1970s and 1980s, the information on constructed wetland technology spread slowly. But since the 1990 s the technology has become international, facilitated by exchange among scientists and researchers around the world. Because of the need for more effective removal of ammonia and total nitrogen, during the 1990 s and 2000s vertical and horizontal flow constructed wetlands were combined to complement each other to achieve higher treatment efficiency. Today, constructed wetlands are recognized as a reliable wastewater treatment technology and they represent a suitable solution for the treatment of many types of wastewater.

  1. Hydrology and hydraulics of treatment wetlands constructed on drained peatlands

    NASA Astrophysics Data System (ADS)

    Postila, Heini; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    Treatment wetlands are globally used for wastewater purification purposes. In Finland, these wetlands are commonly peatland-based and are used to treat runoff from peat extraction sites and peatland forestry. Wetlands are also used for polishing municipal wastewaters and mining waters. In peat extraction the structures are usually called overland flow areas (OFAs), which are traditionally established on pristine peatlands. However, nowadays establishing of new peat extraction sites is guided to drained peatland areas due to the Finnish Peat Use Strategy, which leads difficulties to find undisturbed peatland area for OFA. Therefore treatment wetlands have had to construct also on drained peatland areas. In drained areas peat physical properties have changed due to oxidation and subsidence and the water flow pathways differs from OFAs flow patterns, which maybe have effect on purification results. Thus in the present study we aim to clarify the hydrology and hydraulic properties of treatment wetlands constructed on drained peatland areas. For this purposes, 20 treatment wetlands on drained peatland areas across Finland were detailed measured for peat hydraulic conductivity. In selected areas, runoff was continuously monitored, flow distribution at treatment areas was studied and water residence times measured with tracer tests using potassium iodide (KI). Generally, in the study areas, the ditches had been completely blocked, partly blocked e.g with peat dams or not blocked at all. The ditches were located partly parallel to the flow direction and partly perpendicular to it. The distribution of water to the wetlands has been implemented in many different ways e.g. by distribution ditch or by perforated pipes. Based on the results, in majority of the wetlands, the peat drainage has clearly affected the hydraulic properties of wetlands, but not on all sites. In more than half of the wetlands (12), the median hydraulic conductivity of peat drastically decreased at the

  2. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  3. Clay particle retention in small constructed wetlands.

    PubMed

    Braskerud, B C

    2003-09-01

    Constructed wetlands (CWs) can be used to mitigate non-point source pollution from arable fields. Previous investigations have shown that the relative soil particle retention in small CWs increases when hydraulic load increases. This paper investigates why this phenomenon occurs, even though common retention models predict the opposite, by studying clay and silt particle retention in two Norwegian CWs. Retention was measured with water flow proportional sampling systems in the inlet and outlet of the wetlands, and the texture of the suspended solids was analyzed. The surface area of the CWs was small compared to the watershed area (approximately 0.07%), giving high average hydraulic loads (1.1 and 2.0 md(-1)). One of the watersheds included only old arable land, whereas the other included areas with disturbed topsoil after artificial land leveling. Clay particle retention was 57% for the CW in the first watershed, and 22% for the CW in the disturbed watershed. The different behavior of the wetlands could be due to differences in aggregate size and stability of the particles entering the wetlands. Results showed that increased hydraulic loads did affect CW retention negatively. However, as runoff increased, soil particles/aggregates with higher sedimentation velocities entered the CWs (e.g., the clay particles behaved as silt particles). Hence, clay particle settling velocity is not constant as assumed in many prediction models. The net result was increased retention.

  4. Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions.

    PubMed

    Gui, P; Inamori, R; Matsumura, M; Inamori, Y

    2007-01-01

    Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.

  5. The removal of pathogens in surface-flow constructed wetlands and its implications for water reuse.

    PubMed

    Ghermandi, A; Bixio, D; Traverso, P; Cersosimo, I; Thoeye, C

    2007-01-01

    Microbiological quality represents the biggest concern to the reuse of treated wastewater. This paper reports and discusses the results of an international survey on the removal of indicators of microbiological contamination in surface-flow constructed wetlands. Constructed wetlands consistently provide a reduction of 90-99% (1-2 log-removal) in the concentration of indicators such as coliform bacteria and faecal streptococci. This removal is found in wetlands treating water from different types of pretreatment (primary sedimentation, activated sludge, trickling filter, maturation ponds). On the other hand, when the influent is of high microbiological quality, wetlands act as sources of pathogenic contamination. The final water quality, however, is still compatible with medium to no-contact recreational activities and other final water uses. High variability in the effluent quality and seasonality might limit the opportunities for reuse. The role of constructed wetlands in different treatment schemes and the remaining open questions concerning removal mechanisms and reference pathogens are discussed.

  6. Constructed wetland treatment system for upper blackfoot mining complex

    SciTech Connect

    Sanders, F.S.

    1996-12-31

    A combined passive oxidation/sedimentation (pre-treatment) and constructed wetland (polishing) system has been designed and installed to treat mine drainage at the inactive Upper Blackfoot River Mining Complex northeast of Lincoln, MT. The system is designed to treat up to 100 gpm flow with moderate heavy metal concentrations (25 to 95 mg/L Zn; lower concentrations of Pb, Cu, and As), moderate Fe concentrations (< 100 mg/L), and periodic high acidity (pH 2.6 to 3.5). The treatment scheme is flexible to accommodate a wide range of flows, metal concentrations, and acidity in order to gain cost-efficiencies and to meet restrictive discharge standards for the environmentally-sensitive Blackfoot River watershed. The wetland treatment system presently is undergoing start-up testing and initial tuning and will be operational during summer, 1996. Conceptual and engineering designs are presented along with preliminary data.

  7. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent.

    PubMed

    Torrens, Antonina; Molle, Pascal; Boutin, Catherine; Salgot, Miquel

    2009-04-01

    With the aim of improving the quality of the effluent from a waste stabilization pond (WSP) different types of vertical-flow constructed wetlands (VFCWs) and intermittent sand filters (ISFs) were tested at a pilot plant in Aurignac (France). The effectiveness of each design at upgrading the pond effluent was studied over a period of 2 years. Physicochemical parameters were monitored by taking composite samples over 24h and grab samples every week. The hydraulic behaviour of the filters was studied using (NaCl) tracer tests and monitoring the infiltration rate. This paper describes the influence on the performance of the beds of: (a) the characteristics of the medium (type of sand, depth, and presence of Phragmites); (b) feed modes; and (c) the presence of an algae clogging layer. The study demonstrates the viability of VFCWs and ISFs as means of upgrading effluent from WSPs. For hydraulic loads (HL) of up to 80cm/day, both technologies effectively retain algae, complete organic matter degradation, and nitrify the pond effluent. The presence of plants did not significantly affect the performance of the filters although it was important in terms of maintenance. The deeper filters presented better removals for all the parameter tested, due to higher hydraulic detention times (HDTs). The dosing regime and resting period duration all affected the hydraulic performance and purification efficiency of the filters.

  8. Norwegian study on microbial source tracking for water quality control and pollution removal in constructed wetland treating catchment run-off.

    PubMed

    Paruch, Lisa; Paruch, Adam M; Blankenberg, Anne-Grete Buseth; Haarstad, Ketil; Mæhlum, Trond

    2017-09-01

    This study describes the first Norwegian microbial source tracking (MST) approach for water quality control and pollution removal from catchment run-off in a nature-based treatment system (NBTS) with a constructed wetland. The applied MST tools combined microbial analyses and molecular tests to detect and define the source(s) and dominant origin(s) of faecal water contamination. Faecal indicator bacteria Escherichia coli and host-specific Bacteroidales 16 s rRNA gene markers have been employed. The study revealed that the newly developed contribution profiling of faecal origin derived from the Bacteroidales DNA could quantitatively distinguish between human and non-human pollution origins. Further, the outcomes of the MST test have been compared with the results of both physicochemical analyses and tests of pharmaceutical and personal care products (PPCPs). A strong positive correlation was discovered between the human marker and PPCPs. Gabapentin was the most frequently detected compound and it showed the uppermost positive correlation with the human marker. The study demonstrated that the NBTS performs satisfactorily with the removal of E. coli but not PPCPs. Interestingly, the presence of PPCPs in the water samples was not correlated with high concentrations of E. coli. Neither has the latter an apparent correlation with the human marker.

  9. Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE.

    PubMed

    Chen, Zhongbing; Kuschk, Peter; Reiche, Nils; Borsdorf, Helko; Kästner, Matthias; Köser, Heinz

    2012-03-30

    In order to evaluate technology options for the treatment of groundwater contaminated with benzene and MTBE in constructed wetlands (CWs), a scarcely applied plant root mat system and two horizontal subsurface-flow (HSSF) CWs were investigated. The inflow load of benzene and MTBE were 188-522 and 31-90 mg d(-1)m(-2), respectively. Higher removal efficiencies were obtained during summer in all systems. The benzene removal efficiencies were 0-33%, 24-100% and 22-100% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively; the MTBE removal efficiencies amounted to 0-33%, 16-93% and 8-93% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively. The volatilisation rates in the plant root mat amounted to 7.24 and 2.32 mg d(-1)m(-2) for benzene and MTBE, which is equivalent to 3.0% and 15.2% of the total removal. The volatilisation rates in the HSSF-CW reached 2.59 and 1.07 mg d(-1)m(-2), corresponding to 1.1% and 6.1% of the total removal of benzene and MTBE, respectively. The results indicate that plant root mats are an interesting option for the treatment of waters polluted with benzene and MTBE under moderate temperatures conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Albuquerque's constructed wetland pilot project for wastewater polishing

    Treesearch

    Michael D. Marcus; Shannon M. House; Nathan A. Bowles; Robert T. Sekiya; J. Steven Glass

    1999-01-01

    The City of Albuquerque has funded the Constructed Wetland Pilot Project (CWPP) since 1995 at the City's Southside Water Reclamation Plant (SWRP). Results from CWPP and other wetland treatment projects indicate that appropriately designed surface-flow wetlands could increase the cost-efficiencies of wastewater treatment, as well as help the City meet present and...

  11. Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater.

    PubMed

    Imfeld, Gwenaël; Aragonés, Cristian Estop; Fetzer, Ingo; Mészáros, Eva; Zeiger, Simone; Nijenhuis, Ivonne; Nikolausz, Marcell; Delerce, Sylvain; Richnow, Hans H

    2010-04-01

    The dynamics and composition of microbial communities in the aqueous phase of a model wetland supplied with cis- and trans-1,2-dichloroethenes (DCE)-contaminated groundwater was characterized. PCR-denaturing gradient gel electrophoresis analysis of water samples obtained from different parts of the wetland revealed that changes of the bacterial community structure coincided with a succession of the hydrochemical conditions in the wetland, from oxic towards anoxic conditions. During this transition phase, the appearance of vinyl chloride and ethene correlated with the presence of putative dechlorinating bacteria (Dehalococcoides spp., Geobacter spp. and Dehalobacter spp.). Additionally, a shift of the DCE isotopic composition indicated the progressive prevalence of reductive dechlorination in the wetland. Although the DCE degradation processes varied over time, biodegradation activity was maintained in the wetland system. 16S rRNA gene libraries revealed that Proteobacteria accounted for >50% of 16S rRNA genes clone libraries, whereas approximately 17% of the sequences from the wetland were related to sulphate reducers. Based on a multiple-method approach, this study illustrates the linkage between microbial community dynamics and composition, changes of hydrochemical conditions and processes of DCE degradation in a wetland system.

  12. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.

    PubMed

    Hsieh, Chi-Ying; Yang, Lei; Kuo, Wen-Chien; Zen, Yi-Peng

    2013-10-01

    We examined the distribution and removal efficiencies of phenolic endocrine disruptors (EDs), namely nonylphenol diethoxylates (NP2EO), nonylphenol monoethoxylates (NP1EO), nonylphenol (NP), and octylphenol (OP), in wastewater treated by estuarine and freshwater constructed wetland systems in Dapeng Bay National Scenic Area (DBNSA) and along the Dahan River in Taiwan. Water samples were taken bimonthly at 30 sites in three estuarine constructed wetlands (Datan, Pengcun and Linbian right bank (A and B)) in DBNSA, for eight sampling campaigns. The average removal efficiencies were in the range of 3.13-97.3% for wetlands in DBNSA. The highest average removal occurred in the east inlet to the outlet of the Tatan wetland. The most frequently detected compound was OP (57.7%), whose concentration was up to 1458.7 ng/L in DBNSA. NP was seen in only 20.5% of the samples. The temporal variation of EDs showed a decrease across seasons, where summer>spring>winter>autumn in these constructed wetlands. The removal efficiencies of EDs by estuarine wetlands, in decreasing order, were Datan>Pengcun>Linbian right bank in DBNSA. Water samples collected at 18 sites in three freshwater constructed wetlands (Daniaopi, Hsin-Hai I, and Hsin-Hai II) along the riparian area of Dahan River. NP2EO was the most abundant compound, with a concentration of up to 11,200 ng/L. Removal efficiencies ranged from 55% to 91% for NP1EO, NP2EO, and NP in Hsin-Hai I. The average removal potential of EDs in freshwater constructed wetlands, in decreasing order, was Hsin-Hai II>Daniaopi>Hsin-Hai I constructed wetlands. The lowest concentrations of the selected compounds were observed in the winter. The highest removal efficiency of the selected phenolic endocrine disruptors was achieved by Hsin-Hai I wetland. The calculated risk quotients used to evaluate the ecological risk were up to 30 times higher in the freshwater wetlands along Dahan River than in the estuarine (DBNSA) constructed wetlands, indicating

  13. Removal of Selected Metals from Wastewater Using a Constructed Wetland.

    PubMed

    Šíma, Jan; Svoboda, Lubomír; Pomijová, Zuzana

    2016-05-01

    Removal of selected metals from municipal wastewater using a constructed wetland with a horizontal subsurface flow was studied. The objective of the work was to determine the efficiency of Cu, Zn, Ni, Co, Sr, Li, and Rb removal, and to describe the main removal mechanisms. The highest removal efficiencies were attained for zinc and copper (89.8 and 81.5%, respectively). It is apparently due to the precipitation of insoluble sulfides (ZnS, CuS) in the vegetation bed where the sulfate reduction takes place. Significantly lower removal efficiencies (43.9, 27.7, and 21.5%) were observed for Li, Sr, and Rb, respectively. Rather, low removal efficiencies were also attained for Ni and Co (39.8 and 20.9%). However, the concentrations of these metals in treated water were significantly lower compared to Cu and Zn (e.g., 2.8 ± 0.5 and 1.7 ± 0.3 μg/l for Ni at the inflow and outflow from the wetland compared to 27.6 ± 12.0 and 5.1 ± 4.7 μg/l obtained for Cu, respectively). The main perspective of the constructed wetland is the removal of toxic heavy metals forming insoluble compounds depositing in the wetland bed. Metal uptake occurs preferentially in wetland sediments and is closely associated with the chemism of sulfur and iron. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Pretreatment methods for aquatic plant biomass as carbon sources for potential use in treating eutrophic water in subsurface-flow constructed wetlands.

    PubMed

    Huang, Xiang-Feng; Liu, Xin; Shang, Jia-Jia; Feng, Yi; Liu, Jia; Lu, Li-Jun

    2012-01-01

    Plant biomass is usually added to constructed wetlands (CW) to enhance denitrification. In this study, we investigated effects of different pretreatments on two common external plant carbon sources, cattail and reed litter. We determined the average ratio of chemical oxygen demand (COD) to total nitrogen (TN), designated as C/N, in water samples after addition of litter subjected to various pretreatments. The C/N in the water samples ranged from 4.8 to 6.4 after addition of NaOH-pretreated cattail litter, which was four to six times greater than that of water from the Yapu River and 3.84-39.15% higher than that of systems that received untreated cattail litter. The C/N of systems that received H(2)SO(4)-pretreated carbon sources varied from 1.7 to 3.6. These two methods resulted in TN and total phosphorus (TP) levels lower than those in river water. The C/N was 1.4-1.7 after addition of CH(3)COOH-pretreated reed litter, which was 34.87-53.83% higher than that of river water. The C/N was 2.5 in systems that received mild alkali/oxidation-pretreated reeds, which was 30.59% higher than that of systems that received non-pretreated reeds. The residue rates of cattail and reed litter subjected to various pretreatments were greater than 60%. Our results showed that NaOH, H(2)SO(4), and mild alkali/oxidation pretreatments were useful to rapidly improve the C/N of river water and enhance denitrification.

  15. Wastewater treatment performance efficiency of constructed wetlands in African countries: a review.

    PubMed

    Mekonnen, Andualem; Leta, Seyoum; Njau, Karoli Nicholas

    2015-01-01

    In Africa, different studies have been conducted at different scales to evaluate wastewater treatment efficiency of constructed wetland. This paper aims to review the treatment performance efficiency of constructed wetland used in African countries. In the reviewed papers, the operational parameters, size and type of wetland used and the treatment efficiency are assessed. The results are organized and presented in six tables based on the type of wetland and wastewater used in the study. The results of the review papers indicated that most of the studies were conducted in Tanzania, Egypt and Kenya. In Kenya and Tanzania, different full-scale wetlands are widely used in treating wastewater. Among wetland type, horizontal subsurface flow wetlands were widely studied followed by surface flow and hybrid wetlands. Most of the reported hybrid wetlands were in Kenya. The results of the review papers indicated that wetlands are efficient in removing organic matter (biochemical oxygen demand and chemical oxygen demand) and suspended solids. On the other hand, nutrient removal efficiency appeared to be low.

  16. Performance of a subsurface-flow constructed wetland in southern China.

    PubMed

    Shi, Lei; Wang, Bao-zhen; Cao, Xiang-dong; Wang, Jin; Lei, Zhi-hong; Wang, Zhi-ren; Liu, Zheng-ying; Lu, Bing-nan

    2004-01-01

    The operational performance of a full-scale subsurface-flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD5/COD mean ratio of 0.33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m3/d, and the actual influent flow is in the range of < 2000 to > 10000 m3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard (GB 8978-1996), with the following parameters(mean values): COD 33.90 mg/L, BOD, 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0.56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year-round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.

  17. Constructed wetlands as an alternative restoration measure for shallow lakes.

    PubMed

    Bozic, M; Nikolic, G; Rudic, Z; Raicevic, V; Lalevic, B

    2013-01-01

    This paper deals with the consequences of cultural eutrophication and unconventional solutions for shallow lake restoration. Cultural eutrophication is the primary problem that affects especially shallow lakes, due to their physical characteristics (e.g. shallow depth, lack of stratification). Palic Lake, a very shallow Pannonian lake, received treated municipal wastewaters coming from the lagoons of a wastewater treatment plant. The sewage discharge mainly increased the nutrient load to the lake in the last decades. The lake sustainability is affected by inappropriate quality of water that flows into the lake, and abundance of deposited sediment. The technology that can provide both improvement of water quality and resolution of the sediment problem is a constructed wetland, which is designed to utilise the natural processes involving wetland vegetation, soil and their associated microbial assemblages to assist in additional water treatment. The technical solution is based on three key aspects: quality and quantity of deposited sediment, enriched by nutrients; effluent quality; desired lake water quality. A designed constructed wetland can accomplish the desired water quality and gradually remediate deposited sediment.

  18. Environmental impact of preservative-treated wood in a wetland boardwalk.

    Treesearch

    Stan T. Lebow; Patricia K. Lebow; Daniel O. Foster; Kenneth M. Brooks

    Forest Service, Bureau of Land Management, and industry partners are cooperating in a study of the leaching and environmental effects of a wetland boardwalk. The construction project is considered bworst casec because the site has high rainfall and large volumes of treated wood were used. Separate boardwalk test sections were constructed using untreated wood or wood...

  19. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  20. Application of constructed wetlands for wastewater treatment in Nepal.

    PubMed

    Shrestha, R R; Haberl, R; Laber, J; Manandhar, R; Mader, J

    2001-01-01

    Surface water pollution is one of the serious environmental problems in urban centers in Nepal due to the discharge of untreated wastewater into the river-system, turning them into open sewers. Wastewater treatment plants are almost non-existent in the country except for a few in the Kathmandu Valley and even these are not functioning well. Successful implementation of a few constructed wetland systems within the past three years has attracted attention to this promising technology. A two-staged subsurface flow constructed wetland for hospital wastewater treatment and constructed wetlands for treatment of greywater and septage is now becoming a demonstration site of constructed wetland systems in Nepal. Beside these systems, five constructed wetlands have already been designed and some are under construction for the treatment of leachate and septage in Pokhara municipality, wastewater in Kathmandu University, two hospitals and a school. This paper discusses the present condition and treatment performance of constructed wetlands that are now in operation. Furthermore, the concept of the treatment wetlands under construction is also described here. With the present experience, several recommendations are pointed out for the promotion of this technology in the developing countries.

  1. Nitrogen compounds in drain sewage after constructed wetlands.

    PubMed

    Paweska, K; Malczewska, B

    2009-01-01

    Constructed wetlands, commonly known as ground filters, are well suited mostly for wastewater treatment in areas with no central sewage system. The basic difficulty with exploitation of constructed wetlands is connected with irregular hydraulic overload of its surface. However, irregular wastewater inflow can be reduced by cyclical irrigation which increases efficiency. The unquestionable advantage of the constructed wetlands is inexpensive construction and exploitation as well as low energy consumption. The constructed wetlands also fit very well in surrounding area. The investigation concerned the analysis of two constructed wetlands which are composed of mechanical separation (septic tank) and a filter bed with subsurface flow. The research has been undertaken in a period from July to December 2008, with regard to concentration distribution of nitrogen compounds in municipal sewage after constructed wetlands. The preliminary investigation on constructed wetland which has been exploited for 10 years showed variable removal efficiency of nitrogen compounds. The continuation of the research can indicate the efficiency of wastewater treatment in summer and winter season.

  2. Domestic wastewater treatment by constructed wetlands enhanced with bioremediating rhizobacteria.

    PubMed

    Salgado, Irina; Cárcamo, Herlen; Carballo, María Elena; Cruz, Mario; Del Carmen Durán, María

    2017-06-23

    Constructed wetlands (CWs) offer several advantages for treating waters; however, the successful application of these systems remains a challenge. Practical solutions to pollution through CWs remain incipient because wetlands are still studied as "black boxes"; further studies are required regarding the involvement of rhizosphere bacteria in the removal of pollutants. This research focused on increasing the performance of CWs treatment systems for the removal of inorganic and organic pollutants from domestic wastewater, by the application of native bioremediating rhizobacteria. A bacterial consortium (CAD/1S) was designed with four rhizobacteria strains isolated from Typha domingensis plants of natural wetlands. Each individual strain was identified by 16S ribosomal RNA (rRNA) gene sequencing. This consortium removed organic matter, ammonium, and phosphate with percentages over 70% from model wastewater. The evaluation of abiotic and biotic factors' influence on pollutant removal indicated the best conditions to remove pollutants: a neutral pH, a 72-h contact time, and an inoculum from single growth of each strain. The subsequent bioaugmentation with the consortium of CWs at laboratory scale allowed 100%, greater than 70 and 55% removal of organic matter, ammonium, and phosphate, respectively. The set of results allowed the proposal of a new strategy for the improvement of CWs technology for the treatment of domestic wastewater pollutants.

  3. Technical and Regulatory Guidance Document for Constructed Treatment Wetlands

    DTIC Science & Technology

    2003-12-01

    Wetlands Research Program Technical Report WRP-DE-4. Brix , H., 1993, “Wastewater Treatment in Constructed Wetlands: System Design, Removal...Opelousas, La. Constituents of Concern Influent BOD, 500– 3000 mg/L Regulatory Contact Name Robert Crawford, Louisiana DEQ Plant Hardiness Deep South

  4. The use of Bassia indica for salt phytoremediation in constructed wetlands.

    PubMed

    Shelef, Oren; Gross, Amit; Rachmilevitch, Shimon

    2012-09-01

    The treatment and reuse of wastewater in constructed wetlands offers a low-cost, environmentally-friendly alternative for common engineered systems. Salinity in treated wastewater is often increased, especially in arid and semi-arid areas, and may harm crops irrigated from wetlands. We have strong evidence that halophyte plants are able to reduce the salinity of wastewater by accumulating salts in their tissues. Bassia indica is an annual halophyte with unique adaptations for salt tolerance. We performed three experiments to evaluate the capability of B. indica for salt phytoremediation as follows: a hydroponic system with mixed salt solutions, a recirculated vertical flow constructed wetland (RVFCW) with domestic wastewater, and a vertical flow constructed wetland (VFCW) for treating goat farm effluents. B. Indica plants developed successfully in all three systems and reduced the effluent salinity by 20-60% in comparison with unplanted systems or systems planted with other wetland plants. Salinity reduction was attributed to the accumulation of salts, mainly Na and K, in the leaves. Our experiments were carried out on an operative scale, suggesting a novel treatment for green desalination in constructed wetlands by salt phytoremediation in desert regions and other ecosystems.

  5. Study on treatment of aquaculture wastewater using a hybrid constructed wetland

    NASA Astrophysics Data System (ADS)

    Hu, Jinzhao; Hu, Rui; Qi, Dan; Lu, Xujie

    2017-04-01

    This paper reported the pollutant removal performances of a hybrid wetland system for the treatment of aquaculture wastewater. The system consisted of two treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF). The aquaculture wastewater with the different concentrations such as eutrophy and mesotrophy was treated using hybrid constructed wetland. The experimental results showed that the removal efficiencies of eutrophy aquaculture wastewater achieved 56%, 71%, 73% for nitrite, phosphate and nitrate, respectively. At the same conditions, it can be found that the removal efficiencies of mesotrophy aquaculture wastewater achieved 39%, 74%, 73% for nitrite, phosphate and nitrate, respectively.

  6. Phosphorus removal from trout farm effluents by constructed wetlands.

    PubMed

    Comeau, Y; Brisson, J; Réville, J P; Forget, C; Drizo, A

    2001-01-01

    Freshwater trout farms need a high and continuous clean water flow to keep fish exposed to a non-toxic ammonium concentration. As a result, the concentration of effluents from these farms are even below standard effluent criteria for municipal wastewater effluent for solids, nitrogen and phosphorus. Nevertheless, the mass of pollutants discharged, originating mostly from excreta and undigested fish food, must be reduced by simple and economical treatment processes. We designed and operated a three-stage system aimed at retaining solids by a 60 pm nylon rotating microscreen followed by treatment with a phosphorus-retaining constructed wetland system. Washwater from the microscreen was pumped to a series of two horizontal flow beds of 100 m3 each (0.6 m deep). Coarse (2 mm) and finer (< 2 mm) crushed limestone were used in each bed, respectively, with the first one being planted with reeds (Phragmites australis) and the second one designed to remove even more phosphorus by adsorption and precipitation. Preliminary results indicated that the microscreen captured about 60% of the suspended solids and that greater than 95% of the suspended solids and greater than 80% of the total phosphorus mass loads were retained by the beds. The potential of constructed wetlands as an ecologically attractive and economical method for treating fish farm effluents to reduce solids and phosphorus discharge appears promising.

  7. Constructed wetlands design for enhanced phytoremediation of effluents

    SciTech Connect

    Stewart, A.J.; Sparks, B.J.; Carder, J.P.; Sumner, J.R.

    1996-12-31

    The Oak Ridge National Laboratory (ORNL) uses constructed wetlands to solve an environmental compliance problem. Effluents from a coal yard runoff treatment facility (CYRTF) and a sewage treatment plant are both intermittently toxic based on effluent testing conducted under ORNL`s wastewater discharge permit. The CYRTF uses conventional technology (lime neutralization, flocculation); its effluent is toxic due primarily to the presence of high concentrations of calcium. Effluent from the sewage treatment plant is occasionally toxic due to a semivolatile, low-molecular weight constituent, perhaps generated when the wastewater is chlorinated prior to discharge. The two effluent are blended (about 2:8, volume:volume) before being passed through a pair of constructed wetland (CW) cells, each 1.8 m wide and 20 m long, for final equilibration. The CW system treats about 1,800 gallons of blended effluent per day. The effluent blend`s toxicity, as determined by testing with Ceriodaphnia dubia, is reduced by passage through the CW system. This simple aqueous-phase phytoremediation system is environmentally benign and provides the necessary minimal level of treatment for both effluents at low cost. We provide {open_quotes}lessons learned{close_quotes} in building and operating the CW system, and summarize the results of the chemical and toxicological tests used to demonstrate this technology`s application.

  8. Estrogenic activity and steroid hormones in swine wastewater through a lagoon constructed-wetland system.

    PubMed

    Shappell, Nancy W; Billey, Lloyd O; Forbes, Dean; Matheny, Terry A; Poach, Matthew E; Reddy, Gudigopuram B; Hunt, Patrick G

    2007-01-15

    Anaerobic lagoons and treatment wetlands are used worldwide to treat wastewater from dense livestock production facilities; however, there is very limited data on the hormonal activity of the wastewater effluent produced by these treatment systems. The objectives of this experiment were to measure (1) the hormonal activity of the initial effluent and (2) the effectiveness of a lagoon-constructed wetland treatment system for producing an effluent with a low hormonal activity. Wastewater samples were taken in April, July, and November 2004 and July 2005 from a lagoon-constructed wetland system at a swine farrowing facility. Estrogenic activity (in vitro E-screen assay), 17 beta-estradiol (E2), and testosterone concentrations (LC/MS-MS) were measured. A high correlation was found between estradiol equivalents determined by E-screen and LC/MS-MS (R2 = 0.82). Nutrient removal was measured to ensure that the wetlands were functioning in a manner similar to literature reports. Nutrient removals were typical for treatment wetlands: TKN 59-75% and orthophosphate 0-18%. Wetlands decreased estrogenic activity by 83-93%. Estrone was the most persistent estrogenic compound. Constructed wetlands produced effluents with estrogenic activity below the lowest equivalent E2 concentration known to have an effect on fish (10 ng/L or approximately 37 x 10(-12) M).

  9. Assessing hydrogeochemical heterogeneity in natural and constructed wetlands

    USGS Publications Warehouse

    Hunt, R.J.; Krabbenhoft, D.P.; Anderson, M.P.

    1997-01-01

    While 'water quality function' is cited as an important wetland function to design for and preserve, we demonstrate that the scale at which hydrochemical samples are collected can significantly influence interpretations of biogeochemical processes in wetlands. Subsurface, chemical profiles for both nutrients and major ions were determined at a site in southwestern Wisconsin that contained areas of both natural and constructed wetlands. Sampling was conducted on three different scales: (1) a large scale (3 m between sampling points), (2) an intermediate scale (0.15 m between sampling points), and (3) a small scale (1.5 cm between sampling points). In most cases, significant vertical heterogeneity was observed at the 0.15 m scale, which was much larger than previously reported for freshwater wetlands and not detected by sampling water table wells screened over the same interval. However, profiles of ammonia and total phosphorus showed tenfold changes in the upper 0.2 meters of the saturated zone when sampled at the small (1.5 cm) scale, that was not depicted by sampling at the intermediate scale. At the intermediate scale of observation, one constructed wetland site differed geochemically from the natural wetlands and the other constructed wetland site due to application of off-site salvaged marsh surface and downward infiltration of rain. While important differences in dissolved inorganic phosphorus and dissolved inorganic carbon concentrations existed between the constructed wetland and the natural wetlands, we also observed substantial differences between the natural wetland sites for these constituents. A median-polishing analysis of our data showed that temporal variations in constituent concentrations within profiles, although extensively recognized in the literature, were not as important as spatial variability.

  10. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  11. Enzyme and root activities in surface-flow constructed wetlands.

    PubMed

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm).

  12. [Treatment of oilfield produced water by biological methods-constructed wetland process and degradation characteristics of organic substances].

    PubMed

    Huang, Xiang-feng; Shen, Jie; Wen, Yue; Liu, Jia; Lu, Li-jun; Zhou, Qi

    2010-02-01

    Hydrolysis acidification-aerobic-constructed wetland process and hydrolysis acidification-constructed wetland were used to treat oilfield produced water after the pretreatment of oil separation-coagulation. Gas chromatography-mass spectrometry was used to study the degradation characteristics of organic substances during the treatment process. The results showed that COD and ammonia nitrogen of both the two process effluents were below 80 mg/L and 15 mg/L, respectively, when HRT was 20 h for hydrolysis acidification, 10 h for aeration and 2 d for constructed wetlands or when HRT was 20 h for hydrolysis acidification and 4 d for constructed wetland. The results of GC-MS analysis showed that biodegradability of the oil produced water was significantly improved in hydrolysis acidification. Substantial removal of benzene compounds was achieved in aerobic and constructed wetland.

  13. 'Halophyte filters': the potential of constructed wetlands for application in saline aquaculture.

    PubMed

    De Lange, H J; Paulissen, M P C P; Slim, P A

    2013-01-01

    World consumption of seafood continues to rise, but the seas and oceans are already over-exploited. Land-based (saline) aquaculture may offer a sustainable way to meet the growing demand for fish and shellfish. A major problem of aquaculture is nutrient waste, as most of the nutrients added through feed are released into the environment in dissolved form. Wetlands are nature's water purifiers. Constructed wetlands are commonly used to treat contaminated freshwater effluent. Experience with saline systems is more limited. This paper explores the potential of constructed saline wetlands for treating the nutrient-rich discharge from land-based saline aquaculture systems. The primary function of constructed wetlands is water purification, but other ancillary benefits can also be incorporated into treatment wetland designs. Marsh vegetation enhances landscape beauty and plant diversity, and wetlands may offer habitat for fauna and recreational areas. Various approaches can be taken in utilizing plants (halophytes, macro-algae, micro-algae) in the treatment of saline aquaculture effluent. Their strengths and weaknesses are reviewed here, and a conceptual framework is presented that takes into account economic and ecological benefits as well as spatial constraints. Use of the framework is demonstrated for assessing various saline aquaculture systems in the southwestern delta region of the Netherlands.

  14. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.

    PubMed

    Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun

    2013-01-01

    Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.

  15. [Difference of P content in different area substrate of constructed wetland].

    PubMed

    Cao, Xue-Ying; Chong, Yun-Xiao; Yu, Guang-Wei; Zhong, Hai-Tao

    2012-11-01

    Adsorption of substrate is the main removal mechanisms of phosphorus in constructed wetland. It is easily impacted by various environmental factors existing in the wetland bed. The contents of substrate TP and the main inorganic P in different areas of both horizontal sub-surface flow constructed wetland with plant and one without plant were measured after treating wastewater five months. Different areas of the wetland with plant differed greatly in the substrate TP. Rhizosphere substrate in front area had the highest TP content and achieved 0.75 g x kg(-1), and the TP content of non-rhizosphere substrate in back area was only 0.21 g x kg(-1). The TP content of substrate in different areas of the wetland without plant had a little variety and ranged only between 0.21 and 0.27 g x kg(-1). Averagely, the substrate TP content in the wetland with plant was higher than the one in the wetland without plant. The phosphorous with Fe-bound (Fe-P), Al-bound (Al-P), and Ca-bound (Ca-P) were main inorganic phosphorous existing in the substrate in both wetlands, their contents in different areas substrate all increased, compared with the one before experiment. Fe-P and Al-P in different substrates in both wetlands had a similar variety. Their content between rhizosphere and intermediate substrate of front area in the wetland with plant and other area substrate in both wetlands differed greatly because the former increased greatly. Compared with Fe-P and Al-P, the variety of Ca-P in different substrates in both wetlands was low. But the content of Ca-P in rhizosphere substrate in wetland with plant was higher than other two parts respectively in front and back areas. Obviously, the plant root had an impact on the phosphorous content of substrate in constructed wetland. For TP, Fe-P, Al-P, Ca-P and loosely sorbed phosphorous in substrate, it increased with distance of the root.

  16. Design and performance of a pilot-scale constructed wetland treatment system for natural gas storage produced water.

    PubMed

    Kanagy, Laura E; Johnson, Brenda M; Castle, James W; Rodgers, John H

    2008-04-01

    To test the hypothesis that water produced from natural gas storage wells could be treated effectively by constructed wetland treatment systems, a modular pilot-scale system was designed, built, and used for treating gas storage produced waters. Four simulated waters representing the range of contaminant concentrations typical of actual produced waters were treated, and the system's performance was monitored. Freshwater wetland cells planted with Schoenoplectus californicus and Typha latifolia were used to treat fresh and brackish waters. Saline and hypersaline waters were treated by saltwater wetland cells planted with Spartina alterniflora and by reverse osmosis. Effective removal of cadmium, copper, lead, and zinc was achieved by the pilot-scale system. Results suggest that use of specifically designed constructed wetland treatment systems provides a flexible and effective approach for treating gas storage produced waters over a wide range of compositions.

  17. Simultaneous removal of nitrate and sulfate from greenhouse wastewater by constructed wetlands.

    PubMed

    Gruyer, Nicolas; Dorais, Martine; Alsanius, Beatrix W; Zagury, Gérald J

    2013-07-01

    This study evaluated the effectiveness of C-enriched subsurface-flow constructed wetlands in reducing high concentrations of nitrate (NO) and sulfate (SO) in greenhouse wastewaters. Constructed wetlands were filled with pozzolana, planted with common cattail (), and supplemented as follows: (i) constructed wetland with sucrose (CW+S), wetland units with 2 g L of sucrose solution from week 1 to 28; (ii) constructed wetland with compost (CW+C), wetland units supplemented with a reactive mixture of compost and sawdust; (iii) constructed wetland with compost and no sucrose (CW+CNS) from week 1 to 18, and constructed wetland with compost and sucrose (CW+CS) at 2 g L from week 19 to 28; and (iv) constructed wetland (CW). During 28 wk, the wetlands received a typical reconstituted greenhouse wastewater containing 500 mg L SO and 300 mg L NO. In CW+S, CW+C, and CW+CS, appropriate C:N ratio (7:3.4) and redox potential (-53 to 39 mV) for denitrification resulted in 95 to 99% NO removal. Carbon source was not a limiting factor for denitrification in C-enriched constructed wetlands. In CW+S and CW+CS, the dissolved organic carbon (DOC)/SO ratios of 0.36 and 0.28 resulted in high sulfate-reducing bacteria (SRB) counts and high SO removal (98%), whereas low activities were observed at DOC/SO ratios of 0.02 (CW) to 0.11 (CW+C, CW+CNS). On week 19, when organic C content was increased by sucrose addition in CW+CS, SRB counts increased from 2.80 to 5.11 log[CFU+1] mL, resulting in a level similar to the one measured in CW+S (4.69 log[CFU+1] mL). Consequently, high sulfate reduction occurred after denitrification, suggesting that low DOC (38-54 mg L) was the limiting factor. In CW, DOC concentration (9-10 mg L) was too low to sustain efficient denitrification and, therefore, sulfate reduction. Furthermore, the high concentration of dissolved sulfides observed in CW+S and CW+CS treated waters were eliminated by adding FeCl.

  18. Simulation of arsenic retention in constructed wetlands.

    PubMed

    Valles-Aragón, M C; Alarcón-Herrera, M T; Llorens, E; Obradors-Prats, J; Leyva, A

    2017-01-01

    The software RCB-arsenic was developed previously to simulate the metalloid behavior in a constructed wetland (CW). The model simulates water flow and reactive transport by contemplating the major processes of arsenic (As) retention inside of CW. The objective of this study was to validate the RCB-arsenic model by simulating the behavior of horizontal flow CW for As removal from water. The model validation was made using data from a 122-day experiment. Two CWs prototypes were used: one planted with Eleocharis macrostachya (CW_planted) and another one unplanted (CW_unplanted) as a control. The prototypes were fed with synthetic water prepared using well water and sodium arsenite (NaAsO2). In the RCB-arsenic model, a CW prototype was represented using a 2D mesh sized in accordance with the experiment. For simulation of As retention in CW, data addition was established in two stages that considered the mechanisms in the system: (1) aqueous complexation, precipitation/dissolution, and adsorption on granular media and (2) retention by plants: uptake (absorption) and rhizofiltration (adsorption). Simulation of As outlet (μg/L) in stage_1 was compared with CW_unplanted; the experimental mean was 40.79 ± 7.76 and the simulated 39.96 ± 6.32. As concentration (μg/L) in stage_2 was compared with CW_planted, the experimental mean was 9.34 ± 4.80 and the simulated 5.14 ± 0.72. The mass-balance simulation and experiment at 122 days of operation had a similar As retention rate (94 and 91%). The calibrated model RCB-arsenic adequately simulated the As retention in a CW; therefore, it constitutes a powerful tool of design.

  19. Paracetamol removal in subsurface flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.

    2011-07-01

    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  20. Microbial biomass, activity and community composition in constructed wetlands.

    PubMed

    Truu, Marika; Juhanson, Jaanis; Truu, Jaak

    2009-06-15

    The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given. Microbially mediated processes in constructed wetlands are mainly dependent on hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and different environmental factors. Microbial biomass is within similar ranges in both horizontal and vertical subsurface flow and surface flow constructed wetlands. Stratification of the biomass but also a stratified structural pattern of the bacterial community can be seen in subsurface flow systems. Microbial biomass C/N ratio is higher in horizontal flow systems compared to vertical flow systems, indicating the structural differences in microbial communities between those two constructed wetland types. The total activity of the microbial community is in the same range, but heterotrophic growth is higher in the subsurface (vertical flow) system compared to the surface flow systems. Available species-specific data about microbial communities in different types of wetlands is scarce and therefore it is impossible make any general conclusions about the dynamics of microbial community structure in wetlands, its relationship to removal processes and operational parameters.

  1. Seafood wastewater treatment in constructed wetland: tropical case.

    PubMed

    Sohsalam, Prapa; Englande, Andrew Joseph; Sirianuntapiboon, Suntud

    2008-03-01

    A series of investigations were conducted to evaluate the feasibility of using constructed wetlands to remove pollutants from seafood processing wastewater. Six emergent plant species; Cyperus involucratus, Canna siamensis, Heliconia spp., Hymenocallis littoralis, Typha augustifolia and Thalia deabata J. Fraser were planted in surface flow wetland. They were fed with seafood wastewater that was 50% diluted with treated seafood wastewater from an aerated lagoon. All macrophytes were found to meet satisfying treatment efficiency (standard criteria for discharged wastewater) at 5 days hydraulic retention time (HRT). While C. involucratus, T. deabata and T. augustifolia met acceptable treatment efficacy at 3 days HRT. Nutrient uptake rate of these species was observed in the range of 1.43-2.30 g Nitrogen/m(2)day and 0.17-0.29 g Phosphorus/m(2)day, respectively at 3 days HRT. The highest treatment performances were found at 5 days HRT. Average removal efficiencies were 91-99% for BOD(5), 52-90% for SS, 72-92% for TN and 72-77% for TP. Plant growth and nitrogen assimilation were experienced to be most satisfactory for C. involucratus, T. deabata and T. augustifolia. Lower HRTs affected contaminant removal efficiency for all species. C. involucratus, T. deabata and T. augustifolia can remove all contaminants efficiently even at the lowest hydraulic retention time (1 day).

  2. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  3. ASSESSMENT OF AN INFILTRATION BASIN AND CONSTRUCTED WETLAND FOR REMOVAL OF PATHOGENS FROM FEEDLOT RUNOFF

    EPA Science Inventory

    The use of an infiltration basin and constructed wetland to treat process wastewater from a cattle feedlot prior to discharge to an adjacent waterway was explored in regards to fecal pathogens. Weekly sampling of typical operating conditions and rainfall-generated runoff during 2...

  4. ASSESSMENT OF AN INFILTRATION BASIN AND CONSTRUCTED WETLAND FOR REMOVAL OF PATHOGENS FROM FEEDLOT RUNOFF

    EPA Science Inventory

    The use of an infiltration basin and constructed wetland to treat process wastewater from a cattle feedlot prior to discharge to an adjacent waterway was explored in regards to fecal pathogens. Weekly sampling of typical operating conditions and rainfall-generated runoff during 2...

  5. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage.

    PubMed

    Kim, Seong-Heon; Cho, Ju-Sik; Park, Jong-Hwan; Heo, Jong-Soo; Ok, Yong-Sik; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    To investigate the long-term nitrogen treatment efficiency in vertical-flow (VF)-horizontal-flow (HF) hybrid constructed wetlands (CWs), the nitrogen removal efficiency under different seasons, N loads, and three operating stages (representing age of the wetland) were evaluated over a 12-year period. The average total nitrogen (TN) removal efficiencies in the effluent during the operation period were in the following order: summer (75.2%) > spring (73.4%) ≒ autumn (72.6%) > winter (66.4%). The removal efficiencies of TN in summer, autumn, and spring were generally higher than those in winter. At different stages of operation (years), the average TN removal rates in the effluent were in the following order: middle stage (73.4%; years 2006-2009) > last stage (72.0%; years 2010-2013) > beginning stage (70.1%; years 2002-2005). In VF-HF CWs, the amount of average TN removal (mg N m(-2) day(-1)) over the 12-year period was in the order of summer (5.5) ≒ autumn (5.1) > spring (4.3) ≒ winter (4.2) for the VF bed and in the order of summer (3.5) ≒ spring (3.5) ≒ autumn (3.3) > winter (2.7) for the HF bed, showing that the amount of TN removal per unit area (m(2)) in summer was slightly greater than that in other seasons. The amount of TN removal in the VF bed was slightly greater than that in the HF bed. Using three-dimensional simulation graphs, the maximum TN removal rate was at inflow N loads below 2.7 g m(-2) day(-1) in the summer season, whereas the minimum TN removal rate was at inflow N loads below 1.4 g m(-2) day(-1) in the winter season. Consequently, the TN removal efficiency was very stable over the 12 years of operation in VF-HF hybrid CWs. Results demonstrate that the VF-HF hybrid CWs possess good buffer capacity for treating TN from domestic sewage for extended periods of time.

  6. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures.

    PubMed

    Sherrard, R M; Bearr, J S; Murray-Gulde, C L; Rodgers, J H; Shah, Y T

    2004-01-01

    Chlorpyrifos (an insecticide) and chlorothalonil (a fungicide) are transported in stormwater runoff and can be lethal to receiving aquatic system biota. This study determined removal rates of chlorpyrifos and chlorothalonil in simulated stormwater runoff treated in constructed wetland mesocosms. Using sentinel species, Ceriodaphnia dubia and Pimephales promelas, observed declines in toxicity of the simulated runoff after treatment were 98 and 100%, respectively. First order removal rates were 0.039/h for chlorpyrifos and 0.295/h for chlorothalonil in these experiments. Constructed wetland mesocosms were effective for decreasing concentrations of chlorpyrifos and chlorothalonil in simulated stormwater runoff, and decreasing P. promelas and C. dubia mortality resulting from these exposures. The results from this study indicate that constructed wetlands could be part of an efficient mitigation strategy for stormwater runoff containing these pesticides.

  7. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    PubMed

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes.

  8. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.

    PubMed

    Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F

    2014-01-01

    The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.

  9. The performance of constructed wetlands for, wastewater treatment: a case study of Splash wetland in Nairobi Kenya

    NASA Astrophysics Data System (ADS)

    Nzengy'a, Daniel Muasya; Wishitemi, B. E. L.

    2001-12-01

    The performance of a constructed wetland for wastewater treatment was examined for four months (December 1995 to March 1996). The study area, hereby referred to as the Splash wetland, is approximately 0·5 ha, and is located in the southern part of Nairobi city. Splash wetland continuously receives domestic sewage from two busy restaurants. Treated wastewater is recycled for re-use for various purposes in the restaurants. Both wet and dry season data were analysed with a view of determining the impact of seasonal variation on the system performance. The physical and chemical properties of water were measured at a common intake and at series of seven other points established along the wetland gradient and at the outlet where the water is collected and pumped for re-use at the restaurants. The physico-chemical characteristics of the wastewater changed significantly as the wastewater flowed through the respective wetland cells. A comparison of wastewater influent versus the effluent from the wetland revealed the system's apparent success in water treatment, especially in pH modification, removal of suspended solids, organic load and nutrients mean influent pH = 5·7 +/- 0·5, mean effluent pH 7·7 +/- 0·3; mean influent BOD5 = 1603·0 +/- 397·6 mg/l, mean effluent BOD5 = 15·1 +/- 2·5 mg/l; mean influent COD = 3749·8 +/- 206·8 mg/l, mean effluent COD = 95·6 +/- 7·2 mg/l; mean influent TSS = 195·4 +/- 58·7 mg/l, mean effluent TSS = 4·7 +/- 1·9 mg/l. As the wastewater flowed through the wetland system dissolved free and saline ammonia, NH4+, decreased from 14·6 +/- 4·1 mg/l to undetectable levels at the outlet. Dissolved oxygen increased progressively through the wetland system. Analysis of the data available did not reveal temporal variation in the system's performance. However, significant spatial variation was evident as the wetland removed most of the common pollutants and considerably improved the quality of the water, making it safe for re-use at the

  10. Modeling pollutant fate and transport in constructed wetlands

    SciTech Connect

    Brown, R.T.; Field, J.J.; Zanoli, M.J.; Crites, R.W.

    1994-12-31

    The Constructed Wetlands Fate and Aquatic Transport Evaluation Model (CWFATE) was developed to evaluate alternative design and operations of the constructed wetlands treatment system (CWTS) at the Sacramento Regional Wastewater Treatment Plant in Elk Grove, California. The model simulates the daily fate and transport of metals and other influent pollutants in an effort to predict CWTS effluent concentrations, removal efficiency, and long-term bioaccumulation of pollutants in sediment, vegetation, organic material, and aquatic organisms. Due to the difficulty of obtaining scientific information for model verification, final calibration is postponed until further field data become available.

  11. Removal of nutrients in various types of constructed wetlands.

    PubMed

    Vymazal, Jan

    2007-07-15

    The processes that affect removal and retention of nitrogen during wastewater treatment in constructed wetlands (CWs) are manifold and include NH(3) volatilization, nitrification, denitrification, nitrogen fixation, plant and microbial uptake, mineralization (ammonification), nitrate reduction to ammonium (nitrate-ammonification), anaerobic ammonia oxidation (ANAMMOX), fragmentation, sorption, desorption, burial, and leaching. However, only few processes ultimately remove total nitrogen from the wastewater while most processes just convert nitrogen to its various forms. Removal of total nitrogen in studied types of constructed wetlands varied between 40 and 55% with removed load ranging between 250 and 630 g N m(-2) yr(-1) depending on CWs type and inflow loading. However, the processes responsible for the removal differ in magnitude among systems. Single-stage constructed wetlands cannot achieve high removal of total nitrogen due to their inability to provide both aerobic and anaerobic conditions at the same time. Vertical flow constructed wetlands remove successfully ammonia-N but very limited denitrification takes place in these systems. On the other hand, horizontal-flow constructed wetlands provide good conditions for denitrification but the ability of these system to nitrify ammonia is very limited. Therefore, various types of constructed wetlands may be combined with each other in order to exploit the specific advantages of the individual systems. The soil phosphorus cycle is fundamentally different from the N cycle. There are no valency changes during biotic assimilation of inorganic P or during decomposition of organic P by microorganisms. Phosphorus transformations during wastewater treatment in CWs include adsorption, desorption, precipitation, dissolution, plant and microbial uptake, fragmentation, leaching, mineralization, sedimentation (peat accretion) and burial. The major phosphorus removal processes are sorption, precipitation, plant uptake (with

  12. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.

    PubMed

    Liu, Jianguo; Dong, Yuan; Xu, Hai; Wang, Deke; Xu, Jiakuan

    2007-08-25

    Uptake and distribution of Cd, Pb and Zn by 19 wetland plant species were investigated with experiments in small-scale plot constructed wetlands, into which artificial wastewater dosed with Cd, Pb and Zn at concentrations of 0.5, 2.0 and 5.0mgl(-1) was irrigated. The results showed that the removal efficiency of Cd, Pb and Zn from the wastewater were more than 90%. Generally, there were tens differences among the 19 plant species in the concentrations and quantity accumulations of the heavy metals in aboveground part, underground part and whole plants. The distribution ratios into aboveground parts for the metals absorbed by plants varied also largely from about 30% to about 90%. All the plants accumulated, in one harvest, 19.85% of Cd, 22.55% of Pb and 23.75% of Zn that were added into the wastewater. Four plant species, e.g. Alternanthera philoxeroides, Zizania latifolia, Echinochloa crus-galli and Polygonum hydropiper, accumulated high amounts of Cd, Pb and Zn. Monochoria vaginalis was capable for accumulating Cd and Pb, Isachne globosa for Cd and Zn, and Digitaria sanguinalis and Fimbristylis miliacea for Zn. The results indicated that the plants, in constructed wetland for the treatment of wastewater polluted by heavy metals, can play important roles for removal of heavy metals through phytoextraction. Selection of plant species for use in constructed wetland will influence considerably removal efficiency and the function duration of the wetland.

  13. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.

  14. Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment.

    PubMed

    Puigagut, Jaume; Salvadó, Humbert; García, David; Granes, Francesc; García, Joan

    2007-04-01

    In order to evaluate the microfauna composition and distribution in two horizontal subsurface flow constructed wetlands used as secondary and tertiary treatment a full-scale wastewater treatment plant was monitored during five months. Results indicate that total microfauna abundance in the wetland treating primary influents is around five times higher than that found in the wetland treating secondary influents. Ciliated protozoa and microflagellates are the most important microfauna groups in both wetlands; microflagellates in terms of abundance and ciliates in terms of biomass. The most abundant ciliate species in the wetland treating primary influents are polysaprobic organisms as Dexiostoma campylum, Trimyema compressum, and to a lesser extend Metopus spp. On the other hand, the most important ciliate species found in the wetland treating secondary influents are mainly aerobic ciliates as Vorticella comvallaria-complex, Aspidisca cicada, Litonotus lamella and some ciliates belonging to the group of the scuticociliates and Hypotrichidae. The sort of the organic matter treated (particulated or dissolved) is at least as important as the amount of it in order to explain microfauna dynamics in constructed wetlands.

  15. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands.

    PubMed

    Olmos-Márquez, Mario Alberto; Alarcón-Herrera, Maria Teresa; Martín-Domínguez, Ignacio Ramiro

    2012-03-01

    Arsenic (As) can be removed from water via rhizofiltration using phytostabilizing plants. The aim of this study was to investigate the performance of Eleocharis macrostachya in constructed wetland prototypes, as well as the plant's arsenic mass retention and the distribution of As along the wetland flow gradient and the soil in the wetland mesocosmos. Experiments were carried out in laboratory-scale wetland prototypes, two planted with E. macrostachya and one without plants. Samples of water were taken at the inlet and outlet of the wetlands during the 33-week test period. At the end of the experiment, plants and soil (silty-sand) from each prototype were divided in three equal segments (entrance, middle and exit) and analyzed for their arsenic content. Results revealed that the planted wetlands have a higher As-mass retention capacity (87-90% of the total As inflow) than prototypes without plants (27%). As mass balance in the planted wetlands revealed that 78% of the total inflowing As was retained in the soil bed. Nearly 2% was absorbed in the plant roots, 11% was flushed as outflow, and the fate of the remaining 9% is unknown. In the prototype without plants, the soil retained 16% of As mass, 72% of the arsenic was accounted for in the outflow, and 12% was considered unknown. Although E. macrostachya retained only 2% of the total arsenic mass in their roots, its presence was a determining factor for arsenic retention in the wetland soil medium. Hence, planted wetlands might be a suitable option for treating As-contaminated water.

  16. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy.

    PubMed

    Yao, Yuan; Li, Yun-Zhen; Guo, Xu-Jing; Huang, Tao; Gao, Ping-Ping; Zhang, Ying-Pei; Yuan, Feng

    2016-06-01

    Domestic wastewater was treated by five constructed wetland beds in series. Dissolved organic matter (DOM) collected from influent and effluent samples from the constructed wetland was investigated using fluorescence spectroscopy combined with fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and two-dimensional correlation spectroscopy (2D-COS). This study evaluates the capability of these methods in detecting the spectral characteristics of fluorescent DOM fractions and their changes in constructed wetlands. Fluorescence excitation-emission matrix (EEM) combined with FRI analysis showed that protein-like materials displayed a higher removal ratio compared to humic-like substances. The PARAFAC analysis of wastewater DOM indicated that six fluorescent components, i.e., two protein-like substances (C1 and C6), three humic-like substances (C2, C3 and C5), and one non-humic component (C4), could be identified. Tryptophan-like C1 was the dominant component in the influent DOM. The removal ratios of six fluorescent components (C1-C6) were 56.21, 32.05, 49.19, 39.90, 29.60, and 45.87 %, respectively, after the constructed wetland treatment. Furthermore, 2D-COS demonstrated that the sequencing of spectral changes for fluorescent DOM followed the order 298 nm → 403 nm → 283 nm (310-360 nm) in the constructed wetland, suggesting that the peak at 298 nm is associated with preferential tryptophan fluorescence removal. Variation of the fluorescence index (FI) and the ratio of fluorescence components indicated that the constructed wetland treatment resulted in the decrease of fluorescent organic pollutant with increasing the humification and chemical stability of the DOM.

  17. On the use of photothermal techniques for monitoring constructed wetlands

    NASA Astrophysics Data System (ADS)

    Gatts, C. E. N.; Faria, R. T.; Vargas, H.; Lannes, L. S.; Aragon, G. T.; Ovalle, A. R. C.

    2003-01-01

    Wetlands are a valued part of landscapes throughout the world. The steady increase of industrial facilities and disorganized urbanization processes, especially in developing countries, became a serious menace to these systems. The capability of wetlands to serve as a sink for nonpoint pollutants, particularly nutrients, is remarkable, but not limitless. For this reason, efforts to preserve them are considered a strategic issue for several countries. In addition, due to the exploding costs for sewage treatment, constructed wetlands for wastewater treatment (reed-bed systems) have been widely used under a variety of different conditions. Wetlands present unique characteristics related to biogeochemical cycles, the transport and transformation of chemicals due to interrelated physical, and chemical, and biological processes. Particularly, vegetated wetlands can act as a source for greenhouse gases through the emission of sediment-produced methane (CH4) to atmosphere. From studies concerning the behavior of Salvinia auriculata Aublet., we intend to demonstrate the potential use of photothermal techniques for monitoring gaseous emissions in wetlands.

  18. Macroinvertebrates Associated With Emergent Macrophyte Decomposition in a Constructed Wetland.

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Thullen, J.; Sartoris, J.

    2005-05-01

    This study took place at the San Jacinto constructed wetland in California. Wetland water is supplied to irrigators in this cooperative venture between Reclamation and the Eastern Municipal Water District. One of the problems at this highly productive site is that plant litter accumulates to where it needs to be managed by taking the wetland off-line, thus impacting O&M costs and water delivery schedules for extended periods. Information on decomposition rates and conditions needed to encourage invertebrate decomposers was required to improve wetland reliability and decrease biomass management costs. Standing dead culms of bulrush (Schoenoplectus) were collected and air-dried to constant weight. Twenty-gram culm packs were placed in the wetland and then collected at two month intervals. Comparisons between fine-mesh and coarse-mesh packs demonstrated that exclusion of aquatic invertebrates decreased processing. This was also demonstrated in laboratory studies. It also appeared that culm pack decomposition rate varied with the macroinvertebrate community, and that community distribution was influenced by water quality. Study results confirm the importance of vegetation management through water management and wetland design. Maintaining healthy, sustainable ecosystems will help to encourage natural decomposition processes and maintain better water quality.

  19. Conservative and reactive solute transport in constructed wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, Diane M.; Wass, R.D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater-dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first-order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  20. Constructed wetlands as green tools for management of boron mine wastewater.

    PubMed

    Türker, Onur Can; Türe, Cengiz; Böcük, Harun; Yakar, Anil

    2014-01-01

    Constructed wetlands are of increasing interest worldwide given that they represent an eco-technological solution to many environmental problems such as wastewater treatment. Turkey possesses approximately 70% of the world's total boron (B) reserves, and B contamination occurs in both natural and cultivated sites throughout Turkey, particularly in the north-west of the country. This study analyzes B removal and plant uptake of B in pilot plots of subsurface horizontal-flow constructed wetlands. Constructed wetlands were vegetated with Typha latifolia (referred to as CW1) and Phragmites australis (referred to as CW2) to treat wastewater from a borax reserve in Turkey--the largest of its type in the world and were assessed under field conditions. The B concentrations of water inflows to the systems were determined to be 10.2, 28.2, 84.6, 232.3, 716.4, and 2019.1 mg l(-1). The T. latifolia in the CW1 treatment group absorbed a total of 1300 mg kg(-1) B, whereas P. australis absorbed 839 mg kg(-1). As a result, CW1 had an average removal efficiency of 40.7%, while that of CW2 was 27.2%. Our results suggest that constructed wetlands are an effective, economic and eco-friendly solution to treating B mine wastewater and controlling the adverse environmental effects of B mining.

  1. Analysis of trends in water quality: constructed wetlands in metropolitan Taipei.

    PubMed

    Cheng, B-Y; Liu, T-C; Shyu, G-S; Chang, T-K; Fang, W-T

    2011-01-01

    Meandering through the most densely populated metropolitan areas of Taipei, Taiwan, the Danshui River and its tributaries have undergone the construction of 14 wetlands since 2004, as a means to improve water quality. This study was conducted to examine the functional capabilities associated with treating non-point source pollution through these riparian wetlands. Trend analysis was used to differentiate dissolved oxygen, biochemical oxygen demand, suspended solids, ammonia, and Escherichia coli, among 13 sampling sites using both functions of a Mann-Kendall test and a seasonal Mann-Kendall test. The results show that water quality in Taipei metropolitan rivers has been improving since increasing the number of constructed wetlands and connecting households to the public sewage system. The concentration of pollutants such as those influencing biochemical oxygen demand have gradually declined in drought seasons because riparian wetlands contribute a base flow to dilute riverine pollutants. This paper indicates that the creation of treatment systems influences dissolved oxygen conditions at the municipal scale, suggesting that constructed wetlands could stabilize water quality during extreme hydrological events and improve water quality particularly in times of drought.

  2. Removal mechanisms and fate of insecticides in constructed wetlands.

    PubMed

    Budd, Robert; O'geen, Anthony; Goh, Kean S; Bondarenko, Svetlana; Gan, Jay

    2011-06-01

    Constructed wetlands (CWs), along with other vegetative systems, are increasingly being promoted as a mitigation practice to treat non-point source runoff to reduce contaminants such as pesticides. However, studies so far have mostly focused on demonstrating contaminant removal efficiency. In this study, using two operational CWs located in the Central Valley of California, we explored the mechanisms underlying the removal of pyrethroids and chlorpyrifos from agricultural runoff water, and further evaluated the likelihood for the retained pesticides to accumulate within the CWs over time. In the runoff water passing through the CWs, pyrethroids were associated overwhelmingly with suspended solids >0.7 μm, and the sorbed fraction accounted for 38-100% of the total concentrations. The derived K(d) values for the suspended solids were in the order of 10(4)-10(5), substantially greater than those reported for bulk soils and sediments. Distribution of pyrethroids in the wetland sediments was found to mimic organic carbon distribution, and was enriched in large particles that were partially decomposed plant materials, and clay-size particles (<2 μm). Retention of suspended particles, especially the very large particles (>250 μm) and the very fine particles, is thus essential in removing pyrethroids and chlorpyrifos in CWs. Under flooded and anaerobic conditions, most pyrethroids and chlorpyrifos showed moderate persistence, with DT(50) values between 106-353 d. However, the retained pyrethroids were very stable in dry and aerobic sediments between irrigation seasons, suggesting a possibility for accumulation over time. Therefore, the long-term ecological risks of CWs should be further understood before their wide adoption.

  3. Effect of N:P ratio of influent on biomass, nutrient allocation, and recovery of Typha latifolia and Canna 'Bengal Tiger' in a laboratory-scale constructed wetland

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands (CWs) are an effective low-technology approach for treating agricultural, industrial, and municipal wastewater. Recovery of phosphorous by constructed wetland plants may be affected by wastewater nitrogen to phosphorous (N:P) ratios. Varying N:P ratios were supplied to Canna '...

  4. Reuse of constructed wetland effluents for irrigation of energy crops.

    PubMed

    Barbagallo, S; Barbera, A C; Cirelli, G L; Milani, M; Toscano, A

    2014-01-01

    The aim of this study was to evaluate biomass production of promising 'no-food' energy crops, Vetiveria zizanoides (L.) Nash, Miscanthus × giganteus Greef et Deu. and Arundo donax (L.), irrigated with low quality water at different evapotranspiration restitutions. Two horizontal subsurface flow (H-SSF) constructed wetland (CW) beds, with different operation life (12 and 6 years), were used to treat secondary municipal wastewaters for crop irrigation. Water chemical, physical and microbiological parameters as well as plant bio-agronomic characters were evaluated. The results confirm the high reliability of CWs for tertiary wastewater treatment given that the H-SSF1 treatment capacity remained largely unchanged after 12 years of operation. Average total suspended solids, chemical oxygen demand and total nitrogen removal for CWs were about 68, 58 and 71%, respectively. The Escherichia coli removal was satisfactory, about 3.3 log unit for both CW beds on average, but caution should be taken as this parameter did not achieve the restrictive Italian law limits for wastewater reuse. The average above-ground dry matter productions were 7 t ha⁻¹ for Vetiveria zizanoides, 24 t ha⁻¹ for Miscanthus × giganteus and 50 t ha⁻¹ for Arundo donax. These results highlight attractive biomass yield by using treated wastewater for irrigation with a complete restitution of evapotranspiration losses.

  5. Intensification of constructed wetlands for land area reduction: a review.

    PubMed

    Ilyas, Huma; Masih, Ilyas

    2017-03-11

    The large land area requirement of constructed wetlands (CWs) is a major limitation of its application especially in densely populated and mountainous areas. This review paper provides insights on different strategies applied for the reduction of land area including stack design and intensification of CWs with different aeration methods. The impacts of different aeration methods on the performance and land area reduction were extensively and critically evaluated for nine wetland systems under three aeration strategies such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) applied on three types of CWs including vertical flow constructed wetland (VFCW), horizontal flow constructed wetland (HFCW), and hybrid constructed wetland (HCW). The area reduction and pollutant removal efficiency showed substantial variation among different types of CWs and aeration strategies. The ER-VFCW designated the smallest footprint of 1.1 ± 0.5 m(2) PE(-1) (population equivalent) followed by TF-VFCW with the footprint of 2.1 ± 1.8 m(2) PE(-1), and the large footprint was of AA-HFCW (7.8 ± 4.7 m(2) PE(-1)). When footprint and removal efficiency both are the major indicators for the selection of wetland type, the best options for practical application could be TF-VFCW, ER-HCW, and AA-HCW. The data and results outlined in this review could be instructive for futures studies and practical applications of CWs for wastewater treatment, especially in land-limited regions.

  6. Effectiveness of mitigation measures with constructed forested wetlands in Maryland

    USGS Publications Warehouse

    Perry, M.C.

    1997-01-01

    Intensive research on six constructed forested wetlands in Central Maryland was conducted in 1993-1996 to determine success of these habitats as functional forested wetlands for wildlife. Areas studied ranged in size from 2 to 35 acres and were constructed by private companies under contract with three mitigation agencies. Adjacent natural forested wetlands were used as reference sites where similar data were collected. Based on data from the first four years of this study it appears that it will take 35-50 years before these areas have forested wetland vegetation and wildlife similar to that found on mature forested wetlands. This long-time period is based on the high mortality and slow growth of nursery-stock trees and shrubs transplanted on the areas. Mortality and slow growth resulted mostly from excessive surface water on the sites. The level of ground water did not appear to be a factor in regard to transplant mortality. Green ash was the woody transplant species that had the least mortality. Sampling of vegetative ground cover with one-meter square quadrats showed the predominance of grasses and herbs. [abridged abstract

  7. Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden.

    PubMed

    Schäfer, M L; Lundström, J O; Pfeffer, M; Lundkvist, E; Landin, J

    2004-09-01

    In southern Sweden, many wetlands have been constructed, and maintaining or increasing biological diversity is often included in the aims. Some wetlands are constructed near human settlements, thus raising the problem of wetlands being associated with mosquitoes (Diptera: Culicidae). Increased biodiversity (including mosquito diversity) is considered desirable, whereas mosquito nuisance from a human point of view is not. Adult mosquito abundance, diversity and species assemblages of constructed wetlands were compared to natural wetlands. The potential of constructed wetlands for mosquito nuisance and transmission of mosquito-borne viruses was evaluated. The study areas included five constructed and four natural wetlands. Mosquito abundance and species richness were higher in the natural than in the constructed wetlands, and showed a positive correlation with wetland size. Mosquito species assemblages formed three clusters, which were not explained by origin, size and water permanence of wetlands. In a redundancy analysis, however, mosquito faunas showed significant relationships with these variables, and size and origin of wetlands were most important. Major nuisance species (multivoltine species feeding on mammals and laying eggs on soil) were found in all wetlands, although in relatively low numbers. Risk assessment for Sindbis virus transmission showed moderate risk for two constructed wetlands near human settlements. It is concluded that small size of constructed wetlands has the advantage of low mosquito numbers from a human point of view. The use of functional groups is recommended as a tool for presenting mosquito data to the public, and for helping communication between scientists and administrative decision makers.

  8. INVENTORY OF CONSTRUCTED WETLANDS IN THE UNITED STATES

    EPA Science Inventory

    During 1990 and 1991 the U.S. Environmental Production Agency (EPA) sponsored an effort to identify existing and planned constructed wetlands in the U.S. and to collect readily available information from operating systems. In addition to inquiries by telephone and mail, the effor...

  9. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  10. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  11. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  12. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  13. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  14. Metals Retention in Constructed Wetland Sediments

    SciTech Connect

    KNOX, ANNA

    2004-10-27

    The A-01 wetland treatment system (WTS) was designed to remove metals from the effluent at the A-01 NPDES outfall at the Savannah River Site, Aiken, SC. Sequential extraction data was used to evaluate remobilization and retention of Cu, Pb, Zn, Mn, and Fe in the wetland sediment. Remobilization of metals was determined by the Potentially Mobile Fraction (PMF) and metal retention by the Recalcitrant Factor (RF). The PMF, which includes water soluble, exchangeable, and oxides fractions, is the contaminant fraction that has the potential to enter into the mobile aqueous phase under changeable environmental conditions. PMF values were low for Cu, Zn and Pb (about 20 percent) and high for Fe and Mn (about 60 to 70 percent). The RF, which includes crystalline oxides, sulfides or silicates and aluminosilicates, is the ratio of strongly bound fractions to the total concentration of elements in sediment. RF values were about 80 percent for Cu, Zn and Pb, indicating high retention in the sediment and 30 percent to above 40 percent for Fe and Mn indication low retention.

  15. Hydraulics and flow modelling of water treatment wetlands constructed on peatlands in Northern Finland.

    PubMed

    Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2008-08-01

    In this study, we evaluated flow structure, effective flow area (A(eff)) and effective porosity (theta(eff)) in three peatlands using the stable isotope (18)O/(16)O ratio and tracer tests. We also applied the readily available groundwater modelling MODFLOW code for wetland flow modelling and simulated in one study site how the hydraulic performance of the wetland will be improved by changing the design of the distribution ditch. Preferential flow paths occurred in all three studied wetlands and A(eff) varied from 40% to 90% of total wetland area while theta(eff) was 0.75-0.99. Constructed flow models accurately simulated the hydraulic head across wetlands (r(2)=0.95-0.99). Similarities between the flow models and the stable isotope distributions observed in this study suggest possibilities in using MODFLOW to design peatlands. The improvement of the inlet ditch configuration (ditch length/wetland width>0.45) can prevent or reduce short-circuiting and dead zones in peatlands treating wastewater.

  16. Establishment of a constructed wetland in extreme dryland.

    PubMed

    Tencer, Yoram; Idan, Gil; Strom, Marjorie; Nusinow, Uri; Banet, Dorit; Cohen, Eli; Schröder, Peter; Shelef, Oren; Rachmilevitch, Shimon; Soares, Ines; Gross, Amit; Golan-Goldhirsh, Avi

    2009-11-01

    The project was set to construct an extensive wetland in the southernmost region of Israel at Kibbutz Neot Smadar (30 degree 02'45" N and 35 degree 01'19" E). The results of the first period of monitoring, summary, and perspectives are presented. The constructed wetland (CW) was built and the subsequent monitoring performed in the framework of the Southern Arava Sustainable Waste Management Plan, funded by the EU LIFE Fund. The specific aims were: (1) To end current sewage disposal and pollution of the ground, the aquifer, and the dry river bed (wadi) paths by biologically treating the sewage as part of the creation of a sustainable wetland ecosystem. (2) Serve as an example of CW in the Negev highlands and the Arava Valley climates for neighboring communities and as a test ground for plants and building methods appropriate to hyper arid climate. (3) Serve as an educational resource and tourist attraction for groups to learn about water reuse, recycling, local wildlife and migrating birds, including serving the heart of a planned Ecological-Educational Bird Park. This report is intended to allow others who are planning similar systems in hyper arid climates to learn from our experience. The project is located in an extreme arid desert with less than 40 mm of rain annually and temperature ranges of -5 degree C to +42 degree C. The site receives 165-185 m3 of municipal and agricultural wastes daily, including cowshed and goat wastes and winery outflow. The CW establishment at Neot Smadar was completed in October 2006. For 8 months, clean water flowed through the system while the plants were taking root. In June 2007, the wetland was connected to the oxidation pond and full operation began. Because of seepage and evaporation, during the first several months, the water level was not high enough to allow free flow from one bed to the next. To bed A, the water was pumped periodically from the oxidation pond (Fig. 1) and from there flowed by gravitation through the rest

  17. Tolerance to hydraulic and organic load fluctuations in constructed wetlands.

    PubMed

    Masi, F; Martinuzzi, N; Bresciani, R; Giovannelli, L; Conte, G

    2007-01-01

    This paper describes a two-year performance evaluation of four different constructed wetland (CW) treatment systems designed by IRIDRA Srl, located in central Italy. All four CW systems were established to treat wastewater effluent from different tourist activities: (1) one single-stage CW for secondary treatment of domestic wastewater (30 p.e.) at a holiday farm site; (2) a hybrid compact system consisting of two stages, a horizontal flow (HF) system followed by a vertical flow (VF) system for the secondary treatment of effluent from a 140 p.e. tourist resort; (3) a single-stage vertical flow (VF) CW for a 100 p.e. mountain shelter; and (4) a pair of single-stage, HF CWs for the secondary treatment of segregated grey and black water produced by an 80 p.e. camping site. These tourism facilities are located in remote areas and share some common characteristics concerning their water management: they have high variability of water consumption and wastewater flow, depending on the season, weather and weekly regularities; they have no connection to a public sewer and most sites are located in a sensitive environment. Total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium (N-NH4+), nitrate (N-NOx), total nitrogen (Ntot), total phosphorus (Ptot), total coliform (TC), faecal coliform (FC), E. coli removal efficiencies for all four CW systems are presented. The results from this study demonstrate the potential of CWs as a suitable technology for treating wastewater from tourism facilities in remote areas. A very efficient COD reduction (83-95%) and pathogen elimination (3-5 logs) have been achieved. Furthermore, the CWs are easily maintained, robust (not sensitive to peak flows), constructed with local materials, and operate with relatively low cost.

  18. compartment transfer rates in horizontal flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Maier, Uli; Oswald, Sascha; Thullner, Martin; Grathwohl, Peter

    2010-05-01

    A conceptual computer model has been constructed to simulate the compartment transfer rates in horizontal flow constructed wetlands. The model accounts for flow and transport in the variably saturated porous medium as well as biogeochemical change reactions. The most concentrated contaminants such as BTEX, MTBE and gasoline hydrocarbons and dissolved as well as mineral phase electron acceptors are considered. Also of major interest are reduced species with high oxygen demand such as ammonium. The influence of marsh plants on microbial activity, gas transport, water balance and contaminant fate in general is matter of current investigation. The constructed wetlands consist of a coarse sand or fine gravel porous medium. Marsh plants were introduced after installation, however, a number of control basins are operated unplanted. Water levels and through flow rates are adjusted to optimize the remediation efficiency. The system is likely to be neither reaction nor mixing limited, thus both, values of dispersivity and degradation kinetics may be crucial for remediation efficiency. Biogeochemical modelling is able to delineate in detail (i) the zonation of processes, (ii) temporal variation (breakthrough curves) and (iii) mass balance information. The contributions of biodegradation and volatilisation and the influence of plants (compartment transfer) can generally best be evaluated by the component's mass balance. More efficient mixing is expected in the wetlands with open water body which leads to both, more biodegradation and volatilisation. An important task is to quantify the role of plants and root systems for contaminant attenuation in constructed wetlands. The long term goal of investigation is to allow for predictions for the design of large scale compartment transfer wetlands that may be applied to remediate the site as a whole.

  19. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    PubMed

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  20. Triclosan removal in wetlands constructed with different aquatic plants.

    PubMed

    Liu, Jianing; Wang, Jingmin; Zhao, Congcong; Hay, Anthony G; Xie, Huijun; Zhan, Jian

    2015-10-22

    Triclosan (TCS) is widely used in consumer products as an antimicrobial agent. Constructed wetlands have the potential for TCS removal, but knowledge about the relative importance of sediment, plants, and microbes is limited. TCS removal performance was investigated in well-operated constructed wetlands planted with three different types of aquatic plants: emergent Cattail (C-T), submerged Hornwort (H-T), and floating Lemnaminor (L-T). Results showed that the TCS removal efficiencies from water were all greater than 97 %. Maximal TCS adsorption to sediment in the C-T wetland (13.8 ± 0.6 ng/g) was significantly lower than in the H-T wetland (21.0 ± 0.3 ng/g) or the L-T wetland (21.4 ± 0.6 ng/g). The maximal TCS concentrations in plants were 5.7 ± 0.2 and 7.2 ± 0.5 μg/g for H-T and L-T, respectively, and it was below the minimal detection limit (MDL) in C-T. Deep 16S rRNA gene sequencing results revealed that C-T wetland had the highest community richness and diversity. Some bacteria, like beta-Proteobacteria, gamma-Proteobacteria, and Bacteroidetes were detected and might have significant correlations with TCS degradation. Overall, with regard to soils, plants, and microorganism, accumulation in sediment and plants in H-T and L-T was high, while in C-T biodegradation likely played an important role.

  1. Performance of constructed wetland system for public water supply.

    PubMed

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.

  2. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  3. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands.

    PubMed

    Pollard, Peter C

    2010-12-01

    Biofilm-bacterial communities have been exploited in the treatment of wastewater in 'fixed-film' processes. Our understanding of biofilm dynamics requires a quantitative knowledge of bacterial growth-kinetics in these microenvironments. The aim of this paper was to apply the thymidine assay to quantify bacterial growth without disturbing the biofilm on the surfaces of emergent macrophytes (Schoenoplectus validus) of a constructed wetland. The isotope was rapidly and efficiently taken-up and incorporated into dividing biofilm-bacteria. Isotope diffusion into the biofilm did not limit the growth rate measurement. Isotope dilution was inhibited at >12 μM thymidine. Biofilm-bacterial biomass and growth rates were not correlated to the plant surface area (r(2) < 0.02). The measurements of in situ biofilm-bacterial growth rates both displayed, and accommodated, the inherent heterogeneity of the complex wetland ecosystem. Biofilm-bacterial respiratory activities, measured using the redox dye CTC, and growth rates were measured simultaneously. The dye did not interfere with bacterial growth. Biofilm-bacterial specific growth rates ranged from 1.4 ± 0.6 d(-1) to 3.3 ± 1.3 d(-1). In the constructed wetlands of this study biofilm-bacterial specific growth rates, compared to those of natural ecosystems, could be markedly improved through changes in wetland design that increased bacterial respiration while minimising biofilm growth.

  4. Study of oyster shell as a potential substrate for constructed wetlands.

    PubMed

    Wang, Zhen; Dong, Jian; Liu, Lin; Zhu, Gefu; Liu, Chaoxiang

    2013-01-01

    We tested the suitability of oyster shell (OS) as a substrate for phosphorus removal in constructed wetlands (CWs) treating swine wastewater. OS is proven to have a significant phosphorus adsorption capacity; significant phosphorus removal was achieved in vertical subsurface flow constructed wetlands (VSSFs) that were filled with OS and used to treat swine wastewater. In the VSSF system, OS adsorption and precipitation played the greatest role in phosphorus removal, and the phosphorus distribution in the substrate layers was attributed to the vertical flow state of wastewater in the system. Ca-P was the predominant form of phosphorus in the system. Overall, the study results showed that OS could be used for phosphorus removal in CWs. OS also allowed for reuse of a waste substance, making the overall system more environmentally friendly.

  5. Microbial and vegetative changes associated with development of a constructed wetland

    USDA-ARS?s Scientific Manuscript database

    Wetlands may be constructed to provide several ecosystem functions. A constructed wetland receiving agricultural runoff water was observed prior to, and for more than two years after, establishment. The excavated portion of this wetland was compared to an undisturbed, upland area and to an adjacent...

  6. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan

    2003-01-01

    A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD5, 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO2-N, 90%) and nitrate nitrogen (NO3-N, 68%). Phosphate (PO4-P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO3-N in the culture tank water in RAS were significantly (Pwetland treatment. However, no significant difference (Pconstructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system.

  7. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland.

    PubMed

    Xu, Defu; Li, Yingxue; Howard, Alan; Guan, Yidong

    2013-06-01

    The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica>T. augustifolia>P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (P<0.05). The total number of bacteria was significantly correlated with nitrification potentials (r=913, P<0.01) and denitrification potentials (r=840, P<0.01), respectively. The N concentration of stems and leaves of C. indica were significantly higher in the constructed wetland with earthworms (P<0.05). Earthworms had greater impact on nitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  9. Application of a constructed wetland system for polluted stream remediation

    NASA Astrophysics Data System (ADS)

    Tu, Y. T.; Chiang, P. C.; Yang, J.; Chen, S. H.; Kao, C. M.

    2014-03-01

    In 2010, the multi-function Kaoping River Rail Bridge Constructed Wetland (KRRBW) was constructed to improve the stream water quality and rehabilitate the ecosystem of the surrounding environment of Dashu Region, Kaohsiung, Taiwan. The KRRBW consists of five wetland basins with a total water surface area of 15 ha, a total hydraulic retention time (HRT) of 10.1 days at a averaged flow rate of 14 740 m3/day, and an averaged water depth of 1.1 m. The influent of KRRBW coming from the local drainage systems containing untreated domestic, agricultural, and industrial wastewaters. Based on the quarterly investigation results of water samples taken in 2011-2012, the overall removal efficiencies were 91% for biochemical oxygen demand (BOD), 75% for total nitrogen (TN), 96% for total phosphorus (TP), and 99% for total coliforms (TC). The calculated first-order decay rates for BOD, TN, TP, NH3-N, and TC ranged from 0.14 (TN) to 0.42 (TC) 1/day. This indicates that the KRRBW was able to remove organics, TC, and nutrients effectively. The high ammonia/nitrate removal efficiency indicates that nitrification and denitrification processes occurred simultaneously in the wetland system, and the detected nitrite concentration confirmed the occurrence of denitrification/nitrification. Results from sediment analyses reveal that the sediment contained high concentrations of organics (sediment oxygen demand = 1.9-5.2 g O2/m2 day), nutrients (up to 15.8 g total nitrogen/kg of sediment and 1.48 g total phosphorus/kg of sediment), and metals (up to 547 mg/kg of Zn and 97 mg/kg of Cu). Appropriate wetland management strategies need to be developed to prevent the release of contaminants into the wetland system. The wetland system caused the variations in the microbial diversities and dominant microbial bacteria. Results show the dominant nitrogen utilization bacteria including Denitratisoma oestradiolicum, Nitrosospira sp., Nitrosovibrio sp., D. oestradiolicum, Alcaligenes sp

  10. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  11. Performance and cost evaluation of constructed wetland for domestic waste water treatment.

    PubMed

    Deeptha, V T; Sudarsan, J S; Baskar, G

    2015-09-01

    Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour.

  12. Invertebrates associated with a horizontal-flow, subsurface constructed wetland in a northern climate.

    PubMed

    Giordano, Rosanna; Weber, Everett; Darby, Brian J; Soto-Adames, Felipe N; Murray, Robert E; Drizo, Aleksandra

    2014-04-01

    Wetlands function as buffers between terrestrial and aquatic ecosystems, filtering pollutants generated by human activity. Constructed wetlands were developed to mimic the physical and biological filtering functions of natural systems for the treatment of human and animal waste under controlled conditions. Previous studies on the effect of constructed wetlands on native invertebrate populations have concentrated almost exclusively on mosquitoes. Here, we present the first study investigating the relationship between vegetation cover and aeration regime, and the diversity and abundance of nematodes and springtails (Collembola) in a constructed wetland designed to treat dairy farm wastewater in northwestern Vermont. We investigated four treatment cells differing in aeration regime and vegetation cover, but equally overlaid by a layer of compost to provide insulation. Analysis showed that nematodes were most abundant in the nonplanted and nonaerated cells, and that bacterivorous nematodes dominated the community in all cells. Springtails were found to be most numerous in the planted and nonaerated cells. We hypothesize that the vegetation provided differing environmental niches that supported a more diverse system of bacteria and fungi, as well as offering protection from predators and inclement weather. Nematodes were likely imported with the original compost material, while springtails migrated into the cells either via air, water, or direct locomotion.

  13. A LOW-COST THREE-DIMENSIONAL SAMPLE COLLECTION ARRAY TO EVALUATE AND MONITOR CONSTRUCTED WETLANDS

    USDA-ARS?s Scientific Manuscript database

    Artificially constructed wetlands are gaining acceptance as a low cost treatment alternative to remove a number of undesirable constituents from water. Wetlands can be used to physically remove compounds such as suspended solids through sedimentation. Dissolved nutrients, biochemical oxygen demand, ...

  14. Study of constructed wetlands effluent disinfected with ozone.

    PubMed

    Miranda, N D; Oliveira, E L; Silva, G H R

    2014-01-01

    The purpose of this research was to study the disinfection of sanitary effluent from constructed wetlands, evaluating the oxidation of organic matter, the formation of formaldehyde, as well as the efficiency of total coliforms and Escherichia coli inactivation. A constant flow of ozone was applied to the batch system in 5 and 10 mg.O3 L(-1) doses with contact times of 5 and 10 min. This study revealed that the average values of formaldehyde formation ranged between 259.00 and 379.00 μg L(-1), which means that the values are within World Health Organization recommended values. The total coliforms and E. coli showed complete inactivation in almost all tests. The dose of ozone 5 mg.O3 L(-1) and contact time of 5 min were sufficient for a significant reduction of the concentration levels of pathogens in constructed wetlands effluent with similar characteristics, thus allowing for its agricultural reuse.

  15. FUNDAMENTAL INVESTIGATION ON CONSTRUCTED WETLAND DESIGN FOR WASTE WATER PURIFICATION

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tadaharu; Gao, Shuang

    In designing a constructed wetland for water purification, a homogeneous vegetation bed is often adopted in order to prevent short circuit which reduces the efficiency of SS trapping. However, vegetation naturally becomes inhomogeneous under the action of water flow, causing unexpected short circuit. This paper discusses a possibility to design a channel for a "stable short circuit", which distributes SS to vegetation zones by large horizontal eddies between the channel and vegetation zones. A series of numerical experiments show that even one slightly bended channel can distribute a high ratio of SS supplied through the channel to vegetation zones with the aid of horizontal eddies. This fact suggests that hydraulic design of artificial short circuit can be an alternative strategy for design of constructed wetlands.

  16. Disinfection capacity of seven constructed wetlands and ponds.

    PubMed

    Rühmland, S; Barjenbruch, M

    2013-01-01

    The disinfection performance of three subsurface flow constructed wetlands (SSF), a free-water surface-constructed wetland and three ponds were investigated. They functioned as advanced treatment stage following treatment in a large municipal wastewater treatment plant equipped with nutrient removal. Despite low influent concentrations of 10(3.9)/100 mL, Escherichia coli underwent a reduction of 1.7 (ditch) to 2.3 (sandy loamy SSF) orders of magnitude. After passing through these treatment plants E. coli was lowered sufficiently to within the permitted levels thus allowing it to be used in drip irrigation of fruits and vegetables. The change of seasons and hydraulic loading (in the range of 50-150 mm/day) as well as short-term overloadings did not impact the effluents' quality.

  17. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent.

  18. Innovative approach for restoring coastal wetlands using treated drill cuttings

    SciTech Connect

    Veil, J. A.; Hocking, E. K.

    1999-11-02

    The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

  19. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2002-03-01

    state conditions. Various methods for analyzing transient time-drawdown data from aquifer pump tests exist in the literature. Many employ a curve...Huang, for the many patient hours of instruction and support with the numerical modeling portion of this thesis; without your help, my product...Recommendations for Further Study ................. 5-5 Appendix A: Piezometer Grid and Construction Data ....... A-1 Appendix B: Contours of

  20. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands.

    PubMed

    Ansola, Gemma; Arroyo, Paula; Sáenz de Miera, Luis E

    2014-03-01

    In the present study, the pyrosequencing of 16S ribosomal DNA was used to characterise the soil bacterial community composition of a constructed wetland receiving municipal wastewater and a nearby natural wetland. Soil samples were taken from different locations in each wetland (lagoon, zone with T. latifolia, zone with S. atrocinerea). Moreover, the water quality parameters were evaluated (pH, Tª, conductivity, dissolved oxygen, redox potential, nutrients and suspended solids), revealing that the organic matter and nutrient contents were significantly higher in the constructed wetland than in the natural one. In general, the bacterial communities of the natural wetland were more diverse than those of the constructed wetland. The major phylogenic groups of all soils included Proteobacteria, Verrucomicrobia and Chloroflexi, with Proteobacteria being the majority of the community composition. The Verrucomicrobia and Chloroflexi phyla were more abundant in the natural wetland than the constructed wetland; in contrast, the Proteobacteria phylum was more abundant in the constructed wetland than the natural wetland. Beta diversity analyses reveal that the soil bacterial communities in the natural wetland were less dissimilar to each other than to those of the constructed wetland.

  1. Field investigation of advanced filtration for phosphorus removal from constructed treatment wetland effluents.

    PubMed

    Calder, N; Anderson, B C; Martin, D G

    2006-10-01

    Three sorptive media, blast furnace slag, cement clinker, and gravel were investigated for their capacity to remove phosphorus in a subsurface flow constructed treatment wetland post-treatment filter. Three filters were designed: two containing a mixture of either slag and gravel or clinker and gravel, and one with gravel only as the control filter. They were installed as a demonstration polishing treatment step to a constructed treatment wetland treating residential wastewater collected from 137 mobile home units at the Sunny Creek Estates Mobile Home Park. The filters were commissioned during the summer of the field season, with the data gathering taking place over a period of one year. The slag filter consistently had the lowest outflow dissolved phosphorus concentrations (0.27 +/- 0.08 mg l(-1), n=21), whereas the clinker filter had the highest outflow dissolved phosphorus concentrations (0.72 +/- 0.20 mg l(-1), n=23). The clinker filter performed well below expectations based on previous laboratory investigations, possibly due to lower pH conditions encountered in the field study. All of the filters maintained relatively constant outflow concentrations of phosphorus below 1 mg l(-1), despite varying input conditions and environmental factors such as temperature and phosphorus loading, and the occurrence of net export of phosphorus from the wetland. Net export of phosphorus from the filters occurred in the winter months, which was attributed to the decrease in input phosphorus concentrations below the maintained outflow concentrations (leading to phosphorus desorption), rather than cold temperatures or failure of the filter. Although the exact mechanisms of phosphorus removal are still under investigation, the results from this field study allowed for recommendations to be made for improving phosphorus removal at the Sunny Creek Estates constructed treatment wetland, in addition to providing valuable information for new and existing constructed treatment

  2. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW).

    PubMed

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin; Anderson, Bruce; Cheng, Shuiping

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg · L(-1)). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (ΦPS II) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities.

  3. The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse.

    PubMed

    Ghermandi, A; Bixio, D; Thoeye, C

    2007-07-15

    In Europe, the last two decades witnessed growing water stress, both in terms of water scarcity and quality deterioration, which prompted many municipalities for a more efficient use of the water resources, including a more widespread acceptance of water reuse practices. Treatment technology encompasses a vast variety of options. Constructed wetlands are regarded as key elements in polishing conventionally treated wastewater for recreational and environmental applications. A survey was conducted to assess the performance of tertiary free water surface constructed wetlands in treating both key and emerging contaminant categories in the perspective of water reuse. A database was created with information concerning systems with emerging and free-floating macrophytes. The database includes results from both full- and pilot-scale systems, and considers a broad variety of operating conditions. This paper provides an overview of the treatment performances of the constructed wetlands in the database and discusses their significance in the optic of water reclamation and reuse practices.

  4. Metal removal by sulphate-reducing bacteria from natural and constructed wetlands.

    PubMed

    Webb, J S; McGinness, S; Lappin-Scott, H M

    1998-02-01

    The use of wetlands is a promising technology to treat acid mine drainage, yet there is little understanding of the fundamental biological processes involved. They are considered to centre on the complex anaerobic ecology within sediments and involve the removal of metals by sulphate-reducing bacteria (SRB). These bacteria generate hydrogen sulphide and cause precipitation of metals from solution as the insoluble metal sulphide. Sulphate-reducing bacteria have been isolated from natural and constructed wetlands receiving acid mine drainage. Sulphide production by isolates and removal of the metals iron, manganese and zinc were measured, as well as utilization of a range of carbon sources. Marked ecological differences between the wetlands were reflected in population composition of SRB enrichments, and these consortia displayed significant differences in sulphide generation and rates of metal removal from solution. Rates of metal removal did not correlate with sulphide generation in all cultures, suggesting the involvement of other biological mechanisms of metal removal. Differences in substrate utilization have highlighted the need for further investigation of carbon flow and potential carbon sources within constructed wetlands.

  5. Nutrient removal as a function of benzene supply within vertical-flow constructed wetlands.

    PubMed

    Tang, Xianqiang; Scholz, Miklas; Eke, Paul Emeka; Huang, Suiliang

    2010-05-01

    The role of benzene, macrophytes and temperature in terms of nutrient removal within constructed wetlands is unknown. Therefore, a research study over approximately 30 months was conducted to assess the potential of vertical-flow constructed wetlands to treat nutrients and to examine the effect of benzene concentration, presence of Phragmites australis (Cav.) Trin. ex Steud (common reed), and temperature control on nutrient removal. Experimental wetlands removed between 72% and 90% of benzene at an influent concentration of 1000 mg L(-1). A statistical analysis indicated that benzene is linked to increased effluent chemical oxygen demand and biochemical oxygen demand concentrations. However, there was no significant relationship between benzene treatment and both nitrogen and phosphorus removal. Phragmites australis played a negligible role in organic matter (chemical oxygen demand, biochemical oxygen demand, nitrogen and phosphorus) removal. Control of temperature favoured biochemical oxygen demand removal. However, no significant difference in chemical oxygen demand, and nitrogen and phosphorus removal was detected. Only the combination of the benzene and temperature variables had a significant impact on biochemical oxygen demand removal. The effluent biochemical oxygen demand concentrations in temperature-controlled benzene treatment wetlands were much lower than those located in the natural environment. However, any other combination between benzene, P. australis and the environmental control variables had no significant effect on biochemical oxygen demand, chemical oxygen demand, or nitrogen and phosphorus removal.

  6. Contaminant removal in septage treatment with vertical flow constructed wetlands operated under batch flow conditions.

    PubMed

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2016-01-01

    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.

  7. Nitrogen management in reservoir catchments through constructed wetland systems.

    PubMed

    Tunçiper, B; Ayaz, S C; Akça, L; Samsunlu, A

    2005-01-01

    In this study, nitrogen removal was investigated in pilot-scale subsurface flow (SSF) and in free water surface flow (FWS) constructed wetlands installed in the campus of TUBITAK-Marmara Research Center, Gebze, near Istanbul, Turkey. The main purposes of this study are to apply constructed wetlands for the protection of water reservoirs and to reuse wastewater. Experiments were carried out at continuous flow reactors. The effects of the type of plants on the removal were investigated by using emergent (Canna, Cyperus, Typhia spp., Phragmites spp., Juncus, Poaceae, Paspalum and Iris.), submerged (Elodea, Egeria) and floating (Pistia, Salvina and Lemna) marsh plants at different conditions. During the study period HLRs were 30, 50, 70, 80 and 120 L m(2)d(-1) respectively. The average annual NH4-N, NO(3)-N, organic N and TN treatment efficiencies in SSF and FWS wetlands are 81% and 68%, 37% and 49%, 75% and 68%, 47% and 53%, respectively. Nitrification, denitrification and ammonification rate constant (k20) values in SSF and FNS systems have been found as 0.898 d(-1) and 0.541 d(-1), 0.488 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908 respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances.

  8. Use of macrophyte plants, sand & gravel materials in constructed wetlands for greywater treatment

    NASA Astrophysics Data System (ADS)

    Qomariyah, S.; Ramelan, AH; Sobriyah; Setyono, P.

    2017-02-01

    Greywater discharged without any treatments into drainage channels or natural water bodies will lead to environmental degradation and health risk. Local macrophyte plants combined with natural materials of sand and gravel have been used in a system of constructed wetland for the treatment of the greywater. This paper presents the results of some studies of the system carried out in Indonesia, Thailand, and Costa Rica. The studies demonstrate the success of the constructed wetland systems in removing some pollutants of BOD, COD, TSS, pathogen, and detergent. The studies resulted in the treated water in a level of treatment that fulfils the requirement of the local standards for wastewater reuse as irrigation water, fishery, or other outdoor needs.

  9. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    SciTech Connect

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  10. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development.

    PubMed

    Vymazal, Jan

    2013-09-15

    The hybrid systems were developed in the 1960s but their use increased only during the late 1990 s and in the 2000s mostly because of more stringent discharge limits for nitrogen and also more complex wastewaters treated in constructed wetlands (CWs). The early hybrid CWs consisted of several stages of vertical flow (VF) followed by several stages of horizontal flow (HF) beds. During the 1990 s, HF-VF and VF-HF hybrid systems were introduced. However, to achieve higher removal of total nitrogen or to treat more complex industrial and agricultural wastewaters other types of hybrid constructed wetlands including free water surface (FWS) CWs and multistage CWs have recently been used as well. The survey of 60 hybrid constructed wetlands from 24 countries reported after 2003 revealed that hybrid constructed wetlands are primarily used on Europe and in Asia while in other continents their use is limited. The most commonly used hybrid system is a VF-HF constructed wetland which has been used for treatment of both sewage and industrial wastewaters. On the other hand, the use of a HF-VF system has been reported only for treatment of municipal sewage. Out of 60 surveyed hybrid systems, 38 have been designed to treat municipal sewage while 22 hybrid systems were designed to treat various industrial and agricultural wastewaters. The more detailed analysis revealed that VF-HF hybrid constructed wetlands are slightly more efficient in ammonia removal than hybrid systems with FWS CWs, HF-VF systems or multistage VF and HF hybrid CWs. All types of hybrid CWs are comparable with single VF CWs in terms of NH4-N removal rates. On the other hand, CWs with FWS units remove substantially more total nitrogen as compared to other types of hybrid constructed wetlands. However, all types of hybrid constructed wetlands are more efficient in total nitrogen removal than single HF or VF constructed wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland.

    PubMed

    Maine, M A; Suñe, N; Hadad, H; Sánchez, G; Bonetto, C

    2009-01-01

    A free water surface wetland was built to treat wastewater containing metals (Cr, Ni, Zn) and nutrients from a tool factory in Argentina. Water, sediment and macrophytes were sampled in the inlet and outlet area of the constructed wetland during three years. Three successive phases of vegetation dominance were developed and three different patterns of contaminant retention were observed. During the Eichhornia crassipes dominance, contaminants were retained in the macrophyte biomass; during the E. crassipes+Typha domingensis stage, contaminants were retained in the sediment and in the T. domingensis dominance stage, contaminants were retained in sediment and in the macrophyte biomass. Removal efficiency was not significantly different among the three vegetation stages, except for NH(4)(+) and i-P(diss). Because of its highest tolerance, T. domingensis is the best choice to treat wastewater of high pH and conductivity with heavy metals, a common result from many industrial processes.

  12. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  13. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(III) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  14. Integrated Constructed Wetlands (ICW) for livestock wastewater management.

    PubMed

    Harrington, Rory; McInnes, Robert

    2009-11-01

    Social, economic and environmental coherence is sought in the management of livestock wastewater. Wetlands facilitate the biogeochemical processes that exploit livestock wastewater and provide opportunities to achieve such coherence and also to deliver on a range of ecosystem services. The Integrated Constructed Wetland (ICW) concept integrates three inextricably linked objectives: water quantity and quality management, landscape-fit to improve aesthetic site values and enhanced biodiversity. The synergies derived from this explicit integration allow one of the key challenges for livestock management to be addressed. An example utilizing twelve ICW systems from a catchment on the south coast of Ireland demonstrates that over an eight year period mean reduction of total and soluble phosphorus (molybdate reactive phosphorus) exceeded 95% and the mean removal of ammonium-N exceeded 98%. This paper reviews evidence regarding the capacity of ICWs to provide a coherent and sustainable alternative to conventional systems.

  15. Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review.

    PubMed

    Valipour, Alireza; Ahn, Young-Ho

    2016-01-01

    Recently, a range of novel and cost-effective engineered wetland technologies for decentralization practices of domestic wastewater treatment have been developed with ecological process modification, the use of functionalized plants, and advanced biofilm formation. However, selecting the one that can be more appreciated for on-site sanitation is still uncertain. This paper reviews the role of plants, media materials, microorganisms, and oxygen transfer in domestic wastewater purification through constructed wetlands (CWs). The effectiveness of traditional and recently developed CWs and the necessity of an induced biofilm attachment surface (BAS) in these systems for the treatment of domestic sewage are presented. This review also elucidates the idea of CWs for domestic wastewater characteristics highly stressed by total dissolved solids and the adaptive strategies in mitigating the cold climate impacts on their efficiencies. Further research needed to enhance the stability and sustainability of CWs is highlighted. By a more advanced investigation, BAS CWs can be specified as an ideal treatment process in decentralization.

  16. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  17. Constructed wetland attenuation of nitrogen exported in subsurface drainage from irrigated and rain-fed dairy pastures.

    PubMed

    Tanner, C C; Nguyen, M L; Sukias, J P S

    2005-01-01

    Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.

  18. Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan.

    PubMed

    Akinbile, Christopher O; Yusoff, Mohd Suffian; Ahmad Zuki, A Z

    2012-07-01

    Performance evaluation of pilot scale sub-surface constructed wetlands was carried out in treating leachate from Pulau Burung Sanitary Landfill (PBSL). The constructed wetland was planted with Cyperus haspan with sand and gravel used as substrate media. The experiment was operated for three weeks retention time and during the experimentation, the influent and effluent samples were tested for its pH, turbidity, color, total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), ammonia nitrogen (NH(3)-N), Total phosphorus (TP), total nitrogen (TN) and also for heavy metals such as iron (Fe), magnesium (Mg), manganese (Mn) and zinc (Zn) concentrations. The results showed that the constructed wetlands with C. haspan were capable of removing 7.2-12.4% of pH, 39.3-86.6% of turbidity, 63.5-86.6% of color, 59.7-98.8% of TSS, 39.2-91.8% of COD, 60.8-78.7% of BOD(5), 29.8-53.8% of NH(3)-N, 59.8-99.7% of TP, 33.8-67.0% of TN, 34.9-59.0% of Fe, 29.0-75.0% of Mg, 51.2-70.5% of Mn, and 75.9-89.4% of Zn. The significance of removal was manifested in the quality of the effluent obtained at the end of the study. High removal efficiencies in the study proved that leachate could be treated effectively using subsurface constructed wetlands with C. haspan plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Heterotrophic bacterial activities and treatment performance of surface flow constructed wetlands receiving woodwaste leachate.

    PubMed

    Tao, Wendong; Hall, Ken J; Duff, Sheldon J B

    2006-07-01

    Heterotrophic activities were investigated by measuring 3H-leucine incorporation to bacterial protein and 14C-glucose turnover in surface flow constructed wetlands receiving woodwaste leachate. No significant longitudinal variation was found in heterotrophic activities of bacterioplankton. An open wetland, a vegetated wetland, and a fertilized vegetated wetland were used to examine the effects of vegetation and ammonium nitrate amendment. There was not a significant difference in treatment performance among the three wetlands, except for a significant pH increase and more efficient volatile fatty acids removal in the fertilized wetland. The fertilized wetland had the highest leucine incorporation rate and shortest glucose turnover time accompanied by the lowest glucose mineralization percentage, followed by the open wetland, then the vegetated wetland. Planktonic and sedimentary bacteria contributed to the majority of the total heterotrophic activities; epiphytic bacteria played a minor role. Heterotrophic activities were influenced by the availability of nutrient, electron acceptor, and organic substrate.

  20. Environmental effect of constructed wetland as biofuel production system

    NASA Astrophysics Data System (ADS)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  1. Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland.

    PubMed

    Weaver, M A; Zablotowicz, R M; Locke, M A

    2004-11-01

    Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of

  2. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    NASA Astrophysics Data System (ADS)

    Wang, Changhai

    2016-09-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  3. Area Estimation and Distribution Analysis of Subsurface Flow Constructed Wetlands at Regional Scale--Take Guangzhou City for Example

    NASA Astrophysics Data System (ADS)

    Yuan, S. X.; Tang, G. L.; Xiong, H. X.; Chen, J.; Yin, X. L.; Huang, G. Q.

    2017-01-01

    In this paper, Area of Constructed Wetlands (CWs) required for treatment of domestic sewage generated by 13 million people was calculated in accordance with the distribution of existing population in Guangzhou City and mathematical model of CWs. By comparing this with land use data, the distribution of constructed wetlands at construction regional scale was simulated with GIS. The results show that, Guangzhou generate about 3.88 million m3 domestic sewage per day, which shall be treated with 59.37 km2 CWs. Assuming that a single wetland bed is 300 m2, total 197,905 wetland beds shall be required in the city. Based on the analysis and statistics on data of second national land survey of Guangzhou City with GIS, there are enough ponds, bare lands, other grasslands and other garden plots in Guangzhou that can be used for construction of regional scale CWs, but the distribution of available lands in different regions is uneven. Constructed wetlands at regional scale are mainly distributed around Baini Channel, Tianma River, Xinjie River, Liuxi River Valley, Zengjiang River Valley and on both sides of the Pearl River through Panyu and Nansha.

  4. Mosquito production from four constructed treatment wetlands in peninsular Florida.

    PubMed

    Rey, Jorge R; O'Meara, George F; O'Connell, Sheila M; Cutwa-Francis, Michele M

    2006-06-01

    Several techniques were used to sample adult and immature mosquitoes in 4 constructed treatment wetlands in Florida. Adults of 19 species (7 genera) of mosquitoes were collected, and immatures of the most abundant species and of 60% of all species also were collected. Few significant differences between sites and stations in the numbers of mosquitoes collected were discovered. Culex nigripalpus Theobald was the most abundant mosquito found in adult (carbon dioxide-baited suction traps) and ovitrap collections, whereas Mansonia spp. and Uranotaenia spp. were most common in pump-dip-grab samples. The roles of rooted and floating vegetation and of water quality in determining mosquito production from these areas are discussed.

  5. Soil and sediment concentrations of chromium, copper, and arsenic adjacent to a chromated copper arsenate-treated wetland boardwalk

    Treesearch

    Stan Lebow; Daniel Foster

    2010-01-01

    Environmental accumulation of preservative adjacent to a chromated copper arsenate (type C)–treated wetland boardwalk was evaluated. The site is considered a realistic ‘‘worst case’’ because of the large volume of treated wood, low current speeds, high annual rainfall, and environmental sensitivity. Soil and sediment samples were collected before construction and 0.5,...

  6. Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater.

    PubMed

    Zhao, Yongjun; Zhang, Yuejin; Ge, Zhigang; Hu, Changwei; Zhang, Hui

    2014-03-01

    This research focused on the nutrient removal and the simultaneous CO2, CH4, and N2O emission rates of various combinations of vertical subsurface flow constructed wetlands (VSFCWs) and earthworm eco-filters (EEs) under different influent C/N ratios in synthetic wastewater. The optimal parameters for nutrient removal were influent C/N ratios of 5 : 1 and 10 : 1 as well as the combination VSFCW-EE. Relatively low values of greenhouse gas (GHG) emission rates measured in situ were obtained at a C/N ratio of 5 : 1. The emission rates of CH4 and N2O were considerably lower than that of CO2. The VSFCW-EE and EE-VSFCW combinations showed similar GHG emission results. The C/N ratio of 5 : 1 and the VSFCW-EE combination exhibited the highest nutrient removal efficiency with the lowest GHG emission rate. Wastewater nutrient removal and GHG emission were both high during summer (June to August) and low during winter (December to February).

  7. Removal of N, P, BOD5, and coliform in pilot-scale constructed wetland systems.

    PubMed

    Jin, Guang; Kelley, Tim; Freeman, Mike; Callahan, Mike

    2002-01-01

    Pilot-scale surface-flow (SF), subsurface-flow (SSF), and floating aquatic plant (FAP) constructed wetland system designs were installed and evaluated to determine the effectiveness of constructed wetlands to treat tertiary effluent wastewater in a Midwestern U.S. climate (central Illinois). Average ammonia-nitrogen (N) concentrations decreased approximately 50% in the SSF system design, suggesting that this design had the highest nitrification rate. Nitrate-N concentrations decreased by over 60% in the FAP system design, possibly due to dissimilatory reduction or plant uptake. Total phosphorus (P) concentration reductions of 25 to 40% were observed in all three system designs. Five-day biochemical oxygen demand (BOD5) and dissolved oxygen (DO) results suggested that biodegradation was highest in the SSF system design and lowest in the FAP system design. Greater than 90% concentration reductions of total coliform and E. coli recovered were also observed following treatment in all three system designs. The FAP system design appeared to yield the highest concentration reduction efficiency for E. coli, possibly due to increased sunlight and related bacteriocidal ultraviolet light exposure. Ongoing experiments will test regularly for a variety of vegetative, water quality, and biological conditions for longer time periods in order to gain a better understanding of the pilot constructed wetland system design kinetics.

  8. Performance and cost comparison of a FWS and a VSF constructed wetland system.

    PubMed

    Tsihrintzis, V A; Akratos, C S; Gikas, G D; Karamouzis, D; Angelakis, A N

    2007-06-01

    Two constructed wetland systems, treating domestic wastewater, are compared in terms of performance and costs. One is a free water surface (FWS) wetland system located in Pompia, Crete, south Greece, and the other one is a vertical subsurface flow (VSF) wetland system located in Comati, Chalkidiki, north Greece. The FWS system is designed for 1200 p.e. Its construction cost was Euro 305,000, and the capital, operation and maintenance cost was Euro 22.07 p.e.(-1) yr(-1) or Euro 0.50 m(-3) of influent. The VSF system is designed for 1000 p.e. Its construction cost was Euro 410,850, and the capital, operation and maintenance cost was Euro 36.81 p.e.(-1) yr(-1) or Euro 0.56 m(-3) of influent. Both systems achieved high removal rates for BOD5, COD, TSS, TKN, phosphorus, TC, and FC, which makes them ideal for small communities in the Mediterranean region.

  9. Water Purification Characteristic of the Actual Constructed Wetland with Carex dispalata in a Cold Area

    NASA Astrophysics Data System (ADS)

    Tsuji, Morio; Yamada, Kazuhiro; Hiratsuka, Akira; Tsukada, Hiroko

    Carex dispalata, a native plant species applied in cold districts for water purification in constructed wetlands, has useful characteristics for landscape creation and maintenance. In this study, seasonal differences in purification ability were verified, along with comparison of frozen and non-frozen periods' performance. A wetland area was constructed using a “hydroponics method” and a “coir fiber based method”. Results show that the removal rates of BOD, SS, and Chl-a were high. On this constructed wetland reduces organic pollution, mainly phytoplankton, but the removal of nitrogen and phosphorus was insufficient. The respective mean values of influent and treated water during three years were 26.6 mg/L and 12.2 mg/L for BOD, and 27.9 mg/L and 7.5 mg/L for SS. The mean value of the BOD removal rate for the non-frozen period was 2.99 g/m2/d that for the frozen period was 1.86 g/m2/d. The removal rate followed the rise of the BOD load rate. The removal rate limits were about 4 g/m2/d during the frozen period and 15 g/m2/d during the non-frozen period. For operations, energy was unnecessary. The required working hours were about 20 h annually for all maintenance and management during operations.

  10. Nutrient removal and bacterial communities in swine wastewater lagoon and constructed wetlands.

    PubMed

    Dong, Xiuli; Reddy, Gudigopuram B

    2010-10-01

    Surface constructed wetlands, including marsh-pond-marsh (MPM) and continuous marsh (CtM) were used to treat swine wastewater in this study. The objectives of this research were to evaluate the surface constructed wetland effects on swine wastewater treatment, and to investigate bacterial distribution shifts along treatment flows. Water quality parameters and bacterial community diversity were analyzed in each section of the entire wastewater treatment system, which was from the anaerobic lagoons (La1 and La2), through the wetlands, to the storage lagoon (La3) receiving wetland effluent. The results of water quality parameters demonstrated that the concentration of TKN, NH4+, o-PO4(3-), and COD decreased significantly (P<0.05) from La1 to La3. If ammonia volatilization is integrated for N removal in MPM wetland cell, then there was no difference between MPM and CtM cells. The total bacterial community in each section of the system was examined by using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) technique. Our finding disclosed that the bacterial communities in different sections of the wastewater treatment system showed high diversities. The bacterial community compositions shifted gradually with the wastewater treatment procedure. Principal component analysis (PCA) and redundancy analysis (RDA) confirmed that the bacterium species distribution was strongly related to the COD, o-PO4(3-), and TKN concentrations, whereas moderately related to the NH4+ concentration. Flavobacterium sp. and Methylomonas sp. were detected according to partial 16S rRNA gene sequences.

  11. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    SciTech Connect

    Myers, J. E.; Jackson, L. M.

    2001-10-13

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.

  12. Performance of pilot-scale constructed wetlands for secondary treatment of chromium-bearing tannery wastewaters.

    PubMed

    Dotro, Gabriela; Castro, Silvana; Tujchneider, Ofelia; Piovano, Nancy; Paris, Marta; Faggi, Ana; Palazolo, Paul; Larsen, Daniel; Fitch, Mark

    2012-11-15

    Tannery operations consist of converting raw animal skins into leather through a series of complex water- and chemically-intensive batch processes. Even when conventional primary treatment is supplemented with chemicals, the wastewater requires some form of biological treatment to enable the safe disposal to the natural environment. Thus, there is a need for the adoption of low cost, reliable, and easy-to-operate alternative secondary treatment processes. This paper reports the findings of two pilot-scale wetlands for the secondary treatment of primary effluents from a full tannery operation in terms of resilience (i.e., ability to produce consistent effluent quality in spite of variable influent loads) and reliability (i.e., ability to cope with sporadic shock loads) when treating this hazardous effluent. Areal mass removal rates of 77.1 g COD/m2/d, 11 g TSS/m2/d, and 53 mg Cr/m2/d were achieved with a simple gravity-flow horizontal subsurface flow unit operating at hydraulic loading rates of as much as 10 cm/d. Based on the findings, a full-scale wetland was sized to treat all the effluent from the tannery requiring 68% more land than would have been assumed based on literature values. Constructed wetlands can offer treatment plant resilience for minimum operational input and reliable effluent quality when biologically treating primary effluents from tannery operations.

  13. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism.

    PubMed

    Li, Yifei; Zhu, Guibing; Ng, Wun Jern; Tan, Soon Keat

    2014-01-15

    This paper presents a comprehensive review of the current state of research activities on the application of constructed wetlands for removing pharmaceutical contaminants from wastewater. The focus of the review was placed on the application of constructed wetlands as an alternative secondary wastewater treatment system or as a wastewater polishing treatment system. The design parameters of the reported constructed wetlands including the physical configuration, hydraulic mode, vegetation species, and targeting pharmaceuticals were summarized. The removal efficiencies of pharmaceuticals under different conditions in the wetlands were evaluated at the macroscopic level. In addition, the importance of the three main components of constructed wetlands (substrate, plants and microbes) for pharmaceutical removal was analyzed to elucidate the possible removal mechanisms involved. There is a general consensus among many researchers that constructed wetlands hold great potential of being used as an alternative secondary wastewater treatment system or as a wastewater polishing treatment system for the removal of pharmaceuticals, but relevant reported studies are scarce and are not conclusive in their findings. Current knowledge is limited on the removal efficiencies of pharmaceuticals in constructed wetlands, the removal mechanisms involved, the toxicity to constructed wetlands caused by pharmaceuticals, and the influences of certain important parameters (configuration design, hydraulic mode, temperature and seasonality, pH, oxygen and redox potential, etc.). This review promotes further research on these issues to provide more and better convincing evidences for the function and performance of larger laboratory-scale, pilot-scale or full-scale constructed wetlands. © 2013.

  14. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-09-02

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  15. Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO.

    PubMed

    Llorens, Esther; Saaltink, Maarten W; Poch, Manel; García, Joan

    2011-01-01

    The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs.

  16. Physiological parameters of plants as indicators of water quality in a constructed wetland.

    PubMed

    Shelef, Oren; Golan-Goldhirsh, Avi; Gendler, Tanya; Rachmilevitch, Shimon

    2011-08-01

    Increasing demand for water has stimulated efforts to treat wastewater for reuse in agriculture. Decentralized facilities for wastewater treatment became popular as a solution to remote and small communities. These systems mimic natural wetlands, cleaning wastewater as they flow through a complex of filter media, microbial fauna, and vegetation. The function of plants in constructed wetlands (CWs) has not been fully elucidated yet. In the research reported here, we provide evidence for a new use of plant physiological parameters in CWs as bioindicators of water quality along the system. We measured improved plant performance downstream of the CW by means of photochemical efficiency, CO(2) assimilation rate, and cell membrane stability. In addition, we found evidence for temporal improvement of plant performance, which was correlated to the establishment phase of plants in a newly operating CW. It is suggested that improved monitoring and management of CWs should take into planning consideration the promising potential of phyto-indicators.

  17. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    NASA Astrophysics Data System (ADS)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is <15%. However, the efficiency dramatically increases in the 2nd aeration cell, which is over 90%. Simultaneously, almost all of the hydrochemical properties, including EC, Ca, Mg, As Fe, Mn and other heavy metals, decrease while dissolve oxygen increases close to saturated level and aluminum is almost doubled in the exit of constructed wetland. However, the removal of sulfate and phosphate is very weak. It is worth to note that arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high

  18. Integrated Cr(VI) removal using constructed wetlands and composting.

    PubMed

    Sultana, Mar-Yam; Chowdhury, Abu Khayer Md Muktadirul Bari; Michailides, Michail K; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V

    2015-01-08

    The present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted. Influent concentrations of Cr(VI) ranged from 0.5 to 10mg/L. The effect of temperature and hydraulic residence time (8-0.5 days) on Cr(VI) removal were studied. Temperature was proved to affect Cr(VI) removal in both units. In the planted unit maximum Cr(VI) removal efficiencies of 100% were recorded at HRT's of 1 day with Cr(VI) concentrations of 5, 2.5 and 1mg/L, while a significantly lower removal rate was recorded in the unplanted unit. Harvested reed biomass from the CWs was co-composted with olive mill wastes. The final product had excellent physicochemical characteristics (C/N: 14.1-14.7, germination index (GI): 145-157%, Cr: 8-10mg/kg dry mass), fulfills EU requirements and can be used as a fertilizer in organic farming.

  19. Efficiency of subsurface flow constructed wetland with trickling filter.

    PubMed

    Vucinic, Aleksandra Anic; Hrenovic, Jasna; Tepes, Predrag

    2012-06-01

    Effective wastewater purification in subsurface flow constructed wetlands must include adequate pretreatment and ensure a sufficient amount of dissolved oxygen. In a pilot-scale operation, a subsurface flow constructed wetland (CW) consisted of a primary settlement tank, a trickling filter for pretreatment and two serially assembled basins. The trickling filter was added to ensure sufficient aeration, increase purification of the wastewater and shorten the wastewater purification time. The estimated nominal flow was 0.7 m3/d. The experiments were conducted using the wastewater from the municipal sewage canal of the city of Zagreb, with utilization of three different flows: 0.72 (A), 1.44 (B) and 2.88 (C) m3/d. The efficiency of the purification process was monitored over a period of three years (TSS, BOD5, COD, NH4-N, NO2-N, PO4-P, dissolved oxygen, temperature and pH). The experimental results showed an increase in the removal efficiency with a doubling of the nominal flow from 0.7 to 1.44 m3/d, which could be related to the implementation of the trickling filter where high removal rates were achieved.

  20. Stormwater treatment: do constructed wetlands yield improved pollutant management performance over a detention pond system?

    PubMed

    Bavor, H J; Davies, C M; Sakadevan, K

    2001-01-01

    Constructed wetland systems have been proposed as representing an improved ecotechnological option over detention basins, in terms of their abilities to reduce stormwater bacterial and nutrient loads to receiving waters. Concentrations of microbial and pollutants were determined in inflow and outflow samples collected from each type of system. Removal efficiencies for the wetland although higher than for the pond, were lower than some previously reported values for the treatment of municipal wastewater by constructed wetlands. Performance of a number of constructed wetland systems for stormwater treatment is evaluated considering the functional components of the systems.

  1. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands.

    PubMed

    Tyroller, Lina; Rousseau, Diederik P L; Santa, Santa; García, Joan

    2010-07-01

    The oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L x W x d 125 x 50 x 35 cm filled with a 30-cm layer of 10-11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L x W x d 110 x 70 x 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O(2) m(-2) d(-1) in the unplanted gravel bed and from 0.3 to 3.2 g O(2) m(-2) d(-1) in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR.

  2. [Treatment of 1, 2-dichlorobenzene in wastewater by using horizontal subsurface flow constructed wetlands].

    PubMed

    Ding, Cheng; Yang, Tang-Yi; Yu, Qian; Li, Zhao-Xia; Yang, Chun-Sheng

    2011-09-01

    Pilot-scale horizontal subsurface flow constructed wetlands (SFCW) planted with Phragmites australis were constructed to treat in 1,2-dichlorobenzene (o-DCB) wastewater. Different soil substrates of loam (W-L), fine sand (W-F) and coarse sand (W-C) were used in the three SFCW and a loam wetland with no reeds W-Z was taken as control. Results showed that the optimal hydraulic retention time (HRT) and pollutants surface loading rate(ALR)were 5 d and 150 mg x (m2 x d)(-1). Removal efficiencies for o-DCB of W-L, W-F, W-C and W-Z were 81.2%, 71.1%, 72.4% and 65.2%, respectively. The performance of systems achieved in mid-August and declined from October, with order of W-L > W-C > W-Z > W-F. Spatial concentration dynamics of o-DCB and dissolved oxygen (DO) were also investigated in W-L and W-Z, which indicated that DO was an important role to removal of o-DCB. The residual quantity of o-DCB in wetland substrate decreased along the flow direction and increased with the depth of substrate layers, the mean residual in the root, stem and leaf of reeds were 30.28, 14.85 and 6.18 microg x g(-1).

  3. Modeling and Understanding BOD Removal Processes in Free-Water Surface Constructed Wetlands

    NASA Astrophysics Data System (ADS)

    Deng, Z.

    2016-12-01

    Free-water surface constructed wetlands have proven to be effective systems for removal of various pollutants in wastewater and agricultural drainage water. Modeling tools are needed for understanding the processes and mechanisms responsible for the removal of pollutants and for the design of new constructed wetlands. This paper presents a new model for mimicking the processes and mechanisms controlling the removal of BOD (biochemical oxygen demand) in free-water surface constructed wetlands. The processes and mechanisms, simulated in the model, include advection, dispersion, diffusion, monod kinetics of bacterial growth, water gains (via precipitation) and losses (evaporation and seepage) and mass exchange between water column and root layers of a wetland. A novel feature of the new model is the incorporation of a dynamic diffusive root-zone. Sensitivity analysis of the model input vaiables indicates that the BOD removal in free water surface constructed wetlands is most sensitive to the biological removal process of BOD in the root zone, controlled by acetic acid and anaerobic bacteria in root zone, and the flow velocity (controlling mean hydraulic residence time) and organic carbon in the water column. The application of the new model is demonstrated through two case studies involving two distinct constructed wetlands with one (Gustine Wetland) for treatment of secondary wastewater located in the USA and another (Lake Manzala Engineered Wetland) for treatment of agricultural drainage water in Egypt. The model is relatively simple yet effective, as evidenced by the high coefficient of determination of 0.73 - 0.99 for the Gustine Wetland and 0.98 for Manzala Wetland. The model is a reliable and efficient tool for designing constructed wetlands and for understanding effects of various processes and mechanisms on the treatment efficiency of wastewater in constructed wetlands.

  4. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013).

    PubMed

    Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2015-04-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems.

  5. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland.

    PubMed

    Wiessner, A; Kuschk, P; Jechorek, M; Seidel, H; Kästner, M

    2008-09-01

    Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S(2-) and S(0) in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands.

  6. [Treatment of marine-aquaculture effluent by the multi-soil-layer (MSL) system and subsurface flow constructed wetland].

    PubMed

    Song, Ying; Huang, Yu-ting; Ge, Chuan; Zhang, Hao; Chen, Xin; Zhang, Zhi-jianz; Luo, An-cheng

    2014-09-01

    To evaluate the feasibility of using multi-soil-layer (MSL) system and subsurface flow constructed wetland to treat the wastewater of marine cultured Penaeus vannamei and to determine the suitable process for the local aquaculture wastewater pollution characteristics. In this study, MSL system and four constructed wetland systems with Spartina anglica, Phragmites australis, Typha latifolia and unplanted system were evaluated for their potentials of pollutants removal capacity. The results showed the average removal rates of chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH(4)+ -N) and nitrate (NO-(3) -N) by MSL system were 80. 38% ± 2. 14% , 68. 14% ± 3.51% , 40.79% ± 3. 10% , 42. 68% ± 2.90% and 54. 19% ± 5. 15% , respectively. Additionally, the ability of pollutants removal of other four wetland systems decreased in the order: Spartina anglica, Phragmites australis, Typha latifolia and unplanted system.

  7. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland.

    PubMed

    Moore, M T; Cooper, C M; Smith, S; Cullum, R F; Knight, S S; Locke, M A; Bennett, E R

    2009-01-01

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides.

  8. [Segregation effect of purification for nitrogen and phosphate pollution in the subsurface flow constructed wetlands].

    PubMed

    Liu, Shu-Yuan; Yan, Bai-Xing; Wang, Li-Xia

    2011-03-01

    Three minitype subsurface-horizontal flow constructed wetlands planted with Calamagrostis angustifolia and Phragmites australis and filled with soil and slag were used to investigate the N, P and pH for upper layer and underlayer wetland system by intermission operation. Results demonstrated that TN removal rates in the superstratum of Calamagrostis angustifolia and Phragmites australis wetlands were 0.771 g x (m2 x d)(-1), 1.481 g x(m2 x d)(-1) with 10 days of the hydraulic retention, which were 1.15 and 1.31 times higher than that of underlayer wetland systems, respectively. Simultaneity, TP removal rates in the superstratum of Calamagrostis angustifolia and Phragmites australis wetlands were 1.655 g x (m2 x d)(-1), 6.838 g x (m2 x d)(-1), respectively, which were 1.13 and 1.28 times higher than that of underlayer wetland systems, respectively. The purification ability of upper layer in the wetland system was higher than that of underlayer. A regular trend of pH changes and upstanding buffer ability of wetland system were found. The pH values in the upper layer of soil-slag wetlands were smaller than that of underlayer which was contrary to the soil wetland. The break-point of pH curve indicates the termination of NH4(+) -N reaction in constructed wetland.

  9. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands.

    PubMed

    Dan A; Yang, Yang; Dai, Yu-nv; Chen, Chun-xing; Wang, Su-yu; Tao, Ran

    2013-10-01

    Twelve pilot-scale constructed wetlands with different configurations were set up in the field to evaluate the removal and factors that influence removal of sulfonamides (sulfadiazine, sulfapyridine, sulfacetamide, sulfamethazine and sulfamethoxazole) and trimethoprim from domestic sewage. The treatments included four flow types, three substrates, two plants and three hydraulic loading rates across two seasons (summer and winter). Most target antibiotics were efficiently removed by specific constructed wetlands; in particular, all types of constructed wetlands performed well for the degradation of sulfapyridine. Flow types were the most important influencing factor in this study, and the best removal of sulfonamides was achieved in vertical subsurface-flow constructed wetlands; however, the opposite phenomenon was found with trimethoprim. Significant relationships were observed between antibiotic degradation and higher temperature and redox potential, which indicated that microbiological pathways were the most probable degradation route for sulfonamides and trimethoprim in constructed wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Constructed Wetlands for Treatment of Organic and Engineered Nanomaterial Contaminants of Emerging Concerns (WaterRF Report 4334)

    EPA Science Inventory

    The goal of this project was to determine hydraulic and carbon loading rates for constructed wetlands required for achieving different levels of organic and nanomaterial contaminants of emerging concern (CECs) removal in constructed wetlands. Specific research objectives included...

  11. Constructed Wetlands for Treatment of Organic and Engineered Nanomaterial Contaminants of Emerging Concerns (WaterRF Report 4334)

    EPA Science Inventory

    The goal of this project was to determine hydraulic and carbon loading rates for constructed wetlands required for achieving different levels of organic and nanomaterial contaminants of emerging concern (CECs) removal in constructed wetlands. Specific research objectives included...

  12. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  13. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    SciTech Connect

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert; Meg Iannacone

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity of outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed

  14. Application of a constructed wetland for industrial wastewater treatment: a pilot-scale study.

    PubMed

    Chen, T Y; Kao, C M; Yeh, T Y; Chien, H Y; Chao, A C

    2006-06-01

    The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.

  15. [Water treatment efficiency of constructed wetland plant-bed/ditch systems].

    PubMed

    Wang, Zhong-Qiong; Zhang, Rong-Bin; Chen, Qing-Hua; Wei, Hong-Bin; Wang, Wei-Dong

    2012-11-01

    proposed to maintain the tradeoff balance between the potential release and maximization of wetland treatment efficiency and the treated water amount, such as constructing or modifying the hydraulic structures to regulate flow amount through large ditch, redistributing water flow and increasing the water head difference between the two sides of alternate small ditches.

  16. Atrazine degradation by bioaugmented sediment from constructed wetlands.

    PubMed

    Runes, H B; Jenkins, J J; Bottomley, P J

    2001-10-01

    The potential to establish pesticide biodegradation in constructed wetland sediment was investigated. Under microcosm conditions, bioaugmentation of sediment with small quantities of an atrazine spill-site soil (1:100 w/w) resulted in the mineralization of 25-30% of 14C ethyl atrazine (1-10 microg g(-1) sediment) as 14CO2 under both unsaturated and water-saturated conditions; atrazine and its common metabolites were almost undetectable after 30 days incubation. By comparison, unbioaugmented sediment supplemented with organic amendments (cellulose or cattail leaves) mineralized only 2-3% of 14C ethyl atrazine, and extractable atrazine and its common metabolites comprised approximately 70% of the original application. The population density of atrazine-degrading microorganisms in unbioaugmented sediment was increased from approximately 10(2)/g to 10(4)/g by bioaugmentation (1:100 w/w), and increased by another 60-fold (6.0x10(5) g(-1)) after incubation with 10 microg g(-1) of atrazine. A high population of atrazine degraders (approximately 10(6) g(-1)) and enhanced rates of atrazine mineralization also developed in bioaugmented sediment after incubation in flooded mesocosms planted with cattails (Typha latifolia) and supplemented with atrazine (3.2 mg l(-1), 1 microg g(-1) sediment). In the absence of atrazine, neither the population of atrazine degraders, nor the atrazine mineralizing potential of bioaugmented sediment increased, regardless of the presence or absence of cattails. Bioaugmentation might be a simple method to promote pesticide degradation in nursery run-off channeled through constructed wetlands, if persistence of degraders in the absence of pesticide is not a serious constraint.

  17. Use of vetiver grass constructed wetland for treatment of leachate.

    PubMed

    Bwire, K M; Njau, K N; Minja, R J A

    2011-01-01

    Performance of Constructed Wetland planted with vetiver grasses for the treatment of leachate was investigated in controlled experiments involving horizontal subsurface flow constructed wetland (HSSFCW). The HSSFCW experimental unit had two cells, one planted with vetiver grasses and another bare. Both units were packed with limestone gravel as substrate and were operated with equal hydraulic loading and hydraulic retention time. Collected samples of influents and effluents were analysed for COD, Cr, Pb, Fe and pH. The results showed that vetiver grasses tolerated leachate with high loading of COD up to 14,000 mg L(-1). The planted cell outperformed the unplanted cell in terms of COD, Cr, Pb and Fe removal. The systems showed optimum points for COD and Pb removal as a function of feed concentrations. The optimum COD removal values of 210 mgm(-2) day(-1) at feed COD concentration of 11,200 mg COD L(-1) and 89 mgm(-2) day(-1) at feed concentration of 7,200 mg COD L(-1) were obtained for planted and unplanted cells respectively. Similarly Pb removal values of 0.0132 mgm(-2) day(-1) at 1.0 mg Pb L(-1) and 0.0052 mgm(-2) day(-1) at 1.04 mgPb L(-1) were obtained for planted and unplanted units respectively. Removal of Fe as a function of feed Fe concentration showed a parabolic behaviour but Cr removal showed linear behaviour with feed Cr concentrations in both units. The system showed very good removal efficiencies with Cr and Fe but poor efficiencies were recorded for Pb.

  18. The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates.

    PubMed

    Carty, Aila; Scholz, Miklas; Heal, Kate; Gouriveau, Fabrice; Mustafa, Atif

    2008-10-01

    This paper comprises the scientific justification for the Farm Constructed Wetland (FCW) Design Manual for Northern Ireland and Scotland. Moreover, this document addresses an international audience interested in applying wetland systems in the wider agricultural context. Farm constructed wetlands combine farm wastewater (predominantly farmyard runoff) treatment with landscape and biodiversity enhancements, and are a specific application and class of integrated constructed wetlands (ICW), which have wider applications in the treatment of other wastewater types such as domestic sewage. The aim of this review paper is to propose guidelines highlighting the rationale for FCW, including key water quality management and regulatory issues, important physical and biochemical wetland treatment processes, assessment techniques for characterizing potential FCW sites and discharge options to water bodies. The paper discusses universal design, construction, planting, maintenance and operation issues relevant specifically for FCW in a temperate climate, but highlights also catchment-specific requirements to protect the environment.

  19. Phytoremediation of explosives contaminated groundwater in constructed wetlands: 2. Flow through study. Draft report

    SciTech Connect

    DBehrends, L.L.; Sikora, F.J.; Phillips, W.D.; Baily, E.; McDonald, C.

    1996-02-01

    This study evaluates the utility of constructed wetlands for remediating explosives contaminated groundwaters using bench scale flow-through type reactors. Specifially the study examines: the degradation of TNT, TNB, RDX, and HMX in contaminated waters in plant lagoons and gravel-based wetlands. The study also provides design recommendations for the wetland demonstration project to be located at the Milan Army Ammunition Plant (MAAP), in Tennessee.

  20. Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2003-06-01

    Subsurface horizontal flow experimental wetlands (reed beds), were designed and built based on a combination of two design methodologies, that of the WRc and Severn Trent Water plc (1996) and that of the USA, EPA (1988). Four different growing media were used with a combination of top soil, gravel, river sand, and mature sewage sludge compost, to determine the best substrate for total suspended solids (TSS) removal. Eight units were constructed, two for each growing media. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary treated domestic wastewater, was continuously fed to the beds for more than six months. All eight beds performed very well. The best performance was achieved by the gravel reed beds with an almost constant removal rate above 95% and an average effluent concentration of less than 10 mg/L. Soil based beds containing top soil and sand, managed to reach values of removal around 90%. The wetlands containing compost in their substrate, produced an effluent with average concentration of less than 30 mg/L and a percentage removal between 80% and 90%. As expected, there was no significant difference in the performance of planted and unplanted wetlands.

  1. Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland.

    PubMed

    Tee, Heng-Chong; Lim, Poh-Eng; Seng, Chye-Eng; Mohd Nawi, Mohd Asri; Adnan, Rohana

    2015-01-01

    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow.

    PubMed

    Meutia, A A

    2001-01-01

    Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.

  3. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment.

    PubMed

    He, Hailing; Duan, Zhiwei; Wang, Zhenqing; Yue, Bo

    2017-07-01

    The removal efficiencies of two horizontal subsurface flow constructed wetlands (HSSF CWs, down-flow (F1) and up-flow (F2)) filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment were investigated. The adsorption experiment was conducted to evaluate the potential of zeolite and slag as the wetland substrate. The effects of distance variations along the longitudinal profile of wetland bed on pollutant removal were assessed by sampling at four locations (inlet, outlet, 0.55 m, and 1.10 m from the inlet). During the operation time, the influent and effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN), heavy metals, and polycyclic aromatic hydrocarbon (PAH) were measured. The results showed that the constructed wetlands were capable of removing COD, 20.5-48.2% (F1) and 18.6-61.2% (F2); NH3-N, 84.0-99.9% (F1) and 93.5-99.2% (F2); TN, 80.3-92.1% (F1) and 80.3-91.2% (F2); and heavy metals, about 90% (F1 and F2). The zeolite-slag hybrid substrate performed excellent removal efficiency for the nitrogen and heavy metals. The inlet area was the most active region of leachate removal. The up-flow constructed wetland (F2) has a higher removal efficiency for the PAH compounds. The significant removal efficiency illustrated that the rural landfill leachate can be treated using the horizontal subsurface flow constructed wetland filled with the zeolite-slag hybrid substrate.

  4. Phosphorus removal in laboratory-scale unvegetated vertical subsurface flow constructed wetland systems using alum sludge as main substrate.

    PubMed

    Babatunde, A O; Zhao, Y Q

    2009-01-01

    This research has two eventual goals: (1) To optimize performance of subsurface constructed wetlands for removal of phosphorus (P) (2) To demonstrate that dewatered alum sludge (a by-product), can be reused as a constructed wetland substrate. To achieve these, alum sludge from a water treatment plant was characterized and used as main substrate in four experimental vertical sub-surface flow constructed wetland systems treating dairy farm wastewater. Results show that the alum sludge has suitable hydraulic characteristics (uniformity coefficient = 3.6) for use as a substrate, and in the batch studies, up to 48.6 mg-P was removed by 1 g of the alum sludge at a P concentration of 360 mg-P/l and a dosage of 5 g/l. Results from the experimental systems highlight the significant P removal ability of the alum sludge. However, the inclusion of pea gravel at the infiltrative surface of some of the systems had a negative effect on the P removal performance. Sequential P-fractionation results show that there was no significant increase in the easily extractable P, but for total P, there was significant increase, although this was found to decrease with depth. This study shows that the novel use of dewatered alum sludge can bring about high P removal in vertical subsurface flow constructed wetland systems.

  5. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    USGS Publications Warehouse

    Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1998-01-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic

  6. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    SciTech Connect

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  7. Wineries wastewater treatment by constructed wetlands: a review.

    PubMed

    Masi, F; Rochereau, J; Troesch, S; Ruiz, I; Soto, M

    2015-01-01

    The application of wetland systems for the treatment of wineries wastewater started in the early 1990s in the USA followed a few years later by France, Italy, Germany and Spain. Various studies demonstrated the efficiency of constructed wetlands (CWs) as a low cost, low maintenance and energy-saving technology for the treatment of wineries wastewater. Several of these experiences have also shown lessons to be learnt, such as some limits in the tolerance of the horizontal subsurface flow and vertical subsurface flow classic CWs to the strength of the wineries wastewater, especially in the first stage for the multistage systems. This paper is presenting an overview of all the reported experiences at worldwide level during the last 15 years, giving particular attention and provision of details to those systems that have proven to get reliable and constant performances in the long-term period and that have been designed and realized as optimized solutions for the application of CW technology to this particular kind of wastewater. The organic loading rates (OLRs) applied to the examined 13 CW systems ranged from about 30 up to about 5,000 gCOD/m² d (COD: chemical oxygen demand), with the 80th percentile of the reported values being below 297 gCOD/m² d and the median at 164 gCOD/m² d; the highest OLR values have in all cases been measured during the peak season (vintage) and often have been linked to lower surface removal rates (SRRs) in comparison to the other periods of the year. With such OLRs the SRRs have ranged from a minimum of 15 up to 4,700 gCOD/m² d, with the 80th percentile of the reported values being below 308 gCOD/m² d and the median at 112 gCOD/m² d.

  8. Evaluation of hydraulic characteristics in a pilot-scale constructed wetland using a multi-tracer experiment

    NASA Astrophysics Data System (ADS)

    Birkigt, Jan; Stumpp, Christine; Małoszewski, Piotr; Richnow, Hans H.; Nijenhuis, Ivonne

    2013-04-01

    In recent years, constructed wetland systems have become into focus as means for organic contaminant removal. The use of constructed wetlands as part of water treatment offers great opportunities to realize significant savings in future wastewater treatment costs for small communities and the adaptation of large wastewater treatment plants. Wetland systems provide a highly reactive environment in which several elimination pathways of organic chemicals may be present at the same time; however, these elimination processes and hydraulic conditions are usually poorly understood. Previously, in our study site monochlorobenzene removal was observed in a pilot-scale wetland system which treats contaminated groundwater from the regional aquifer in Bitterfeld. The degradation was linked to either aerobic or anaerobic, iron- or sulfate- reduction or multiple processes, in parallel. However, it was unclear how the groundwater flows through this system, precluding a more founded understanding of the flow and transport processes. Therefore, we investigated the flow system in this three dimensional pilot-scale constructed wetland applying a multi tracer test combined with a mathematical model to evaluate the hydraulic characteristics. The pilot system consisted of a 6 m length x 1 m wide x 0.5 m depth gravel filter with a triple inflow distributed evenly approx. 5 cm from the bottom at the inflow. Three conservative tracers (uranine, bromide and deuterium) were injected as a pulse at the inflow and analyzed at 4 meters distance from the inflow at three different depths to obtain residence time distributions of groundwater flow in the gravel bed of the wetland. A mathematical multi-flow dispersion model was used to model the tracer breakthrough curves of the different sampling levels, which assumes parallel combinations of the one-dimensional advection-dispersion equation. The model was successfully applied to fit the experimental tracer breakthrough curves by assuming three flow

  9. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.

    PubMed

    Hadad, H R; Mufarrege, M M; Pinciroli, M; Di Luca, G A; Maine, M A

    2010-04-01

    Typha domingensis had become the dominant species after 2 years of operation of a wetland constructed for metallurgical effluent treatment. Therefore, the main purpose of this study was to investigate its ability to tolerate the effluent and to maintain the contaminant removal efficiency of the constructed wetland. Plant, sediment, and water at the inlet and outlet of the constructed wetland and in two natural wetlands were sampled. Metal concentration (Cr, Ni, and Zn) and total phosphorus were significantly higher in tissues of plants growing at the inlet in comparison with those from the outlet and natural wetlands. Even though the chlorophyll concentration was sensitive to effluent toxicity, biomass and plant height at the inlet and outlet were significantly higher than those in the natural wetlands. The highest root and stele cross-sectional areas, number of vessels, and biomass registered in inlet plants promoted the uptake, transport, and accumulation of contaminants in tissues. The modifications recorded accounted for the adaptability of T. domingensis to the conditions prevailing in the constructed wetland, which allowed this plant to become the dominant species and enabled the wetland to maintain a high contaminant retention capacity.

  10. Designing a constructed wetland for the detention of agricultural runoff for water quality improvement.

    PubMed

    Millhollon, Eddie P; Rodrigue, Paul B; Rabb, James L; Martin, Danny F; Anderson, Russell A; Dans, Darinda R

    2009-01-01

    The goal of this study was to construct a wetland that would detain runoff from a 162-ha watershed for the purposes of improving water quality. The volume of runoff that needed to be detained was determined to be that amount coming off the 162-ha watershed consisting of 146 ha of cultivated crop land and 16 ha of pasture that exceeded the amount that would have come off of the watershed in its natural, forested state. The Soil Conservation Service (now the Natural Resource Conservation Service [NRCS]) runoff curve number method was used to estimate runoff from the watershed in its natural, forested state and in its current state of cultivated crop land and pasture. The design of the constructed wetland was accomplished using the natural topography of the wetland site and the design criteria for a sediment containment system developed by NRCS. The SPAW (Soil-Plant-Atmosphere-Water Field & Pond Hydrology) computer model was used to model depth and volume in the wetland to determine if the constructed wetland design would accommodate typical runoff events. Construction of the wetland occurred over a 4-mo period. The capabilities of the system were verified when Hurricane Rita deposited above-normal rainfall to the wetland site area. The wetland was able to accommodate this event, allowing flow through the system for 9 d, followed by continued detention of remaining runoff for water quality improvement.

  11. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  12. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    EPA Science Inventory

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  13. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    EPA Science Inventory

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  14. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.

    PubMed

    Hadad, H R; Maine, M A; Bonetto, C A

    2006-06-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes.

  15. The hydrological functioning of a constructed fen wetland watershed.

    PubMed

    Ketcheson, Scott J; Price, Jonathan S; Sutton, Owen; Sutherland, George; Kessel, Eric; Petrone, Richard M

    2017-12-15

    Mine reclamation requires the reconstruction of entire landforms and drainage systems. The hydrological regime of reclaimed landscapes will be a manifestation of the processes operating within the individual landforms that comprise it. Hydrology is the most important process regulating wetland function and development, via strong controls on chemical and biotic processes. Accordingly, this research addresses the growing and immediate need to understand the hydrological processes that operate within reconstructed landscapes following resource extraction. In this study, the function of a constructed fen watershed (the Nikanotee Fen watershed) is evaluated for the first two years following construction (2013-2014) and is assessed and discussed within the context of the construction-level design. The system design was capable of sustaining wet conditions within the Nikanotee Fen during the snow-free period in 2013 and 2014, with persistent ponded water in some areas. Evapotranspiration dominated the water fluxes from the system. These losses were partially offset by groundwater discharge from the upland aquifer, which demonstrated strong hydrologic connectivity with the fen in spite of most construction materials having lower than targeted saturated hydraulic conductivities. However, the variable surface infiltration rates and thick placement of a soil-capping layer constrained recharge to the upland aquifer, which remained below designed water contents in much of the upland. These findings indicate that it is possible to engineer the landscape to accommodate the hydrological functions of a fen peatland following surface oil sands extraction. Future research priorities should include understanding the storage and release of water within coarse-grained reclaimed landforms as well as evaluating the relative importance of external water sources and internal water conservation mechanisms for the viability of fen ecosystems over the longer-term. Copyright © 2017 Elsevier B

  16. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    SciTech Connect

    Hunt, R.J.; Krabbenhoft, D.P.; Bullen, T.D.; Kendall, C.

    1998-05-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that the authors attribute to the presence or absence of peat. In the peat-rich natural wetland, {delta}{sup 87}Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peak thickness was thin and Fe concentrations in water were negligible, {delta}{sup 87}Sr did not increase along the flowline. The source of the pea (on-site or off-site derived) applied in the constructed wetland controlled the {delta}{sup 87}Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic endmember sources.

  17. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  18. Decreases in ammonia volatilization in response to greater plant diversity in microcosms of constructed wetlands

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Ge, Ying; Han, Wenjuan; Fan, Xing; Ren, Yuan; Du, Yuanyuan; Shi, Mengmeng; Chang, Jie

    2016-10-01

    Ammonia volatilization from wastewaters with a high concentration of ammonium is a serious environmental and health problem. Constructed wetlands (CWs) are widely used for treating wastewater, and plant diversity clearly improves some functions of ecosystem such as nitrogen removal. However, whether plant diversity can affect ammonia volatilization from wastewater is still unknown. In this study, we conducted a microcosm experiment with different plant diversity treatments using four plant species. Results showed that, (1) ammonia volatilization decreased with increasing plant species richness; (2) ammonia volatilization from systems containing Rumex japonicus was lower than other systems; and (3) ammonia volatilization was affected more by species composition than species richness. This paper is the first to report that ammonia volatilization is reduced by plant diversity, and that some plant species combinations are important to reduce ammonia volatilization from CWs when treating wastewater.

  19. Integrating pretreatment and denitrification in constructed wetland systems.

    PubMed

    Gonzalo, O G; Ruiz, I; Soto, M

    2017-02-08

    The aim of this work was to study the operational characteristics and the efficiency of a compact constructed wetland system for municipal wastewater treatment that integrates denitrification in the pre-treatment unit. The proposed system was simulated by two units in series with effluent recirculation, the first one being an anoxic digester, conceived as a hydrolytic up flow sludge bed for solids hydrolysis and denitrification, and the second one a sand column that simulated the operation of a vertical flow constructed wetland. The hybrid system consisted of two small columns of 4 and 10.2cm in diameter (anoxic digester and vertical flow unit, respectively). The unplanted system was operated successively with synthetic and real municipal wastewater over a period of 136days. Hydraulic loading rate ranged from 212 to 318mm/day and surface loading rate from 122 to 145g/m(2)·day of chemical oxygen demand and 10-15g/m(2)·day of total nitrogen for the overall system. The overall system reached removals of 91% to 99% for total suspended solids, chemical oxygen demand and biochemical oxygen demand whilst total nitrogen removal ranged from 43% to 61%. In addition to suspended solids removal (up to 78%), the anoxic digester provided high denitrification rates (3-12gN/m(2)·day) whilst the vertical flow unit provided high nitrification rates (8-15gN/m(2)·day). Organic matter was mainly removed in the anoxic digester (63-82% chemical oxygen demand) and used for denitrification. Final effluent concentration was lower for ammonia (7.4±2.4mgN/L on average) than for nitrate (19.8±4.4mgN/L), denitrification appearing as the limiting step in nitrogen removal in the system. CH4 or N2O emissions were not detected in any of the units of the system indicating very low greenhouse gas emissions.

  20. Propagation of Human Enteropathogens in Constructed Horizontal Wetlands Used for Tertiary Wastewater Treatment ▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.

    2009-01-01

    Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this

  1. Application of a constructed wetland for non-point source pollution control.

    PubMed

    Kao, C M; Wang, J Y; Lee, H Y; Wen, C K

    2001-01-01

    In Taiwan, non-point source (NPS) pollution is one of the major causes of impairment of surface waters. The main objective of this study was to evaluate the efficacy of using constructed wetlands on NPS pollutant removal and water quality improvements. A field-scale constructed wetland system was built inside the campus of National Sun Yat-Sen University (located in southern Taiwan) to remove (1) NPS pollutants due to the stormwater runoff, and (2) part of the untreated wastewater from school drains. The constructed wetland was 40 m (L) x 30 m (W) x 1 m (D), which received approximately 85 m3 per day of untreated wastewater from school drainage pipes. The plants grown on the wetland included floating (Pistia stratiotes L.) and emergent (Phragmites communis L.) species. One major storm event and baseline water quality samples were analyzed during the monitoring period. Analytical results indicate that the constructed wetland removed a significant amount of NPS pollutants and wastewater constituents. More than 88% of nitrogen, 81% of chemical oxygen demand (COD), 85% of heavy metals, and 60% of the total suspended solids (TSS) caused by the storm runoff were removed by the wetland system before discharging. Results from this study may be applied to the design of constructed wetlands for NPS pollution control and water quality improvement.

  2. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage.

    PubMed

    Riefler, R Guy; Krohn, Jeremy; Stuart, Ben; Socotch, Cheryl

    2008-05-15

    This report describes a twenty month case study of a successive alkalinity producing system (SAPS) treating a strong acid mine drainage (AMD) source in Coshocton County, Ohio. Prior to the commencement of the project, a large volume of black amorphous sludge had accumulated in several of the constructed wetlands. The sludge was found to be 43% organic, with very high concentrations of sulfur, iron, aluminum, and acidity. Based on several biological, physical, and chemical analyses, the sludge was determined to be an anaerobic biofilm with a large population of sulfur-reducing bacteria and a high mineral content due to the formation of iron sulfide and aluminum precipitates. On average the system performed well, generating 26 kg CaCO3/d of alkalinity and capturing 5.0 kg/d of iron and 1.7 kg/d of aluminum. Several simple performance analysis tools were presented in this work. By comparing the pollutant influent and effluent loading, it was determined that the SAPS was performing at capacity and over the past year increased effluent concentrations were due to increased influent loadings and not system deterioration. Further, by performing a detailed cell-by-cell loading analysis of multiple chemical components, the alkalinity generated by limestone dissolution and by sulfate reduction was determined. Interestingly, 61% of the alkalinity generation in the vertical flow wetlands was due to sulfur-reducing bacteria activity, indicating that sulfur-reducing bacteria may play a more significant role in SAPS than expected.

  3. STORMWATER TREATMENT: WET/DRY PONDS VS. CONSTRUCTED WETLANDS

    EPA Science Inventory

    Extant data were used to assess the relative effectiveness of ponds vs. wetland-type BMPs. Compared to wet ponds, wetlands tended toward higher constituent concentrations in effluent, were inefficient at nitrogen removal, and appeared to preferentially retain phosphorous. These d...

  4. Treatment performance of a constructed wetland during storm and non-storm events in Korea.

    PubMed

    Maniquiz, M C; Lee, S Y; Choi, J Y; Jeong, S M; Kim, L H

    2012-01-01

    The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality.

  5. Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell.

    PubMed

    Yang, Qiao; Wu, Zhenxing; Liu, Lifen; Zhang, Fengxiang; Liang, Shengna

    2016-11-01

    Conventional oil sewage treatment methods can achieve satisfactory removal efficiency, but energy consumption problems during the process of oil sewage treatment are worth attention. The integration of a constructed wetland reactor and a microbial fuel cell reactor (CW-MFC) to treat oil-contaminated wastewater, compared with a microbial fuel cell reactor (MFC) alone and a constructed wetland reactor (CW) alone, was explored in this research. Performances of the three reactors including chemical oxygen demand (COD), oil removal, and output voltage generation were continuously monitored. The COD removals of three reactors were between 73% and 75%, and oil removals were over 95.7%. Compared with MFC, the CW-MFC with a MnO₂ modified cathode produced higher power density and output voltage. Maximum power densities of CW-MFC and MFC were 3868 mW/m³ (102 mW/m²) and 3044 mW/m³ (80 mW/m²), respectively. The plants in CW-MFC play a positive role for reactor cathode potential. Both plants and cathode modification can improve reactor performance of electricity generation.

  6. Alternative organic substrates in constructed wetlands: Preliminary results of batch examination

    SciTech Connect

    Mercer, M.N.; Nairn, R.W.

    1999-07-01

    Bacterial sulfate reduction (BSR) can be a major contributor to the generation of alkalinity in some acid mine drainage (AMD) passive treatment systems. BSR requires anaerobic conditions, adequate sulfate concentrations, pH >4, and sufficient labile organic carbon. Hundreds of compost wetlands containing organic substrates have been constructed to treat AMD over the past two decades. Spent mushroom substrate (SMS) has been the most common substrate utilized, in part because of its ready availability in the Northern Appalachian coalfields. In areas where SMS is not readily accessible, such as the southeastern Oklahoma coal mining regions, alternative organic substrates are needed for the construction of effective passive treatment systems. This study examines the possibility of using several alternative organic substrates in AMD treatment wetlands for the generation of alkalinity. Alternative substrates were chosen due to their local availability and abundance. Water quality changes were monitored in microcosms containing six organic substrates (SMS, 100% horse manure, 100% cow manure, a horse manure/sawdust/straw mixture, an 80% cow manure/20% sawdust mixture by mass, and broiler house chicken litter) in bench-scale, batch experiments over a period of two months.

  7. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment.

    PubMed

    Yalcuk, Arda; Ugurlu, Aysenur

    2009-05-01

    The main purpose of this study was to treat organic pollution, ammonia and heavy metals present in landfill leachate by the use of constructed wetland systems and to quantify the effect of feeding mode. The effect of different bedding material (gravel and zeolite surface) was also investigated. A pilot-scale study was conducted on subsurface flow constructed wetland systems operated in vertical and horizontal mode. Two vertical systems differed from each other with their bedding material. The systems were planted with cattail (Typha latifolia) and operated identically at a flow rate of 10 l/day and hydraulic retention times of 11.8 and 12.5 day in vertical 1, vertical 2 and horizontal systems, respectively. Concentration based average removal efficiencies for VF1, VF2 and HF were NH(4)-N, 62.3%, 48.9% and 38.3%; COD, 27.3%, 30.6% and 35.7%; PO(4)-P, 52.6%, 51.9% and 46.7%; Fe(III), 21%, 40% and 17%, respectively. Better NH(4)-N removal performance was observed in the vertical system with zeolite layer than that of the vertical 2 and horizontal system. In contrast, horizontal system was more effective in COD removal.

  8. CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands.

    PubMed

    Langergraber, Guenter; Rousseau, Diederik P L; García, Joan; Mena, Javier

    2009-01-01

    This paper presents the Constructed Wetland Model No1 (CWM1), a general model to describe biochemical transformation and degradation processes for organic matter, nitrogen and sulphur in subsurface flow constructed wetlands. The main objective of CWM1 is to predict effluent concentrations from constructed wetlands without predicting gaseous emissions. CWM1 describes aerobic, anoxic and anaerobic processes and is therefore applicable to both horizontal and vertical flow systems. 17 processes and 16 components (8 soluble and 8 particulate) are considered. CWM1 is based on the mathematical formulation as introduced by the IWA Activated Sludge Models (ASMs). It is important to note that besides the biokinetic model a number of other processes including porous media hydrodynamics, the influence of plants, the transport of particles/suspended matter to describe clogging processes, adsorption and desorption processes and physical re-aeration must be considered for the formulation of a full model for constructed wetlands.

  9. Sequential nitrification/identification in subsurface flow constructed wetlands. A literature review. Master's thesis

    SciTech Connect

    Titus, F.W.

    1992-12-01

    Even though there is currently no consensus on the design of subsurface flow constructed wetlands, the ability of constructed wetlands to meet municipal wastewater requirements is well documented. Nitrogen removal appears from the existing performance data to be one of the primary problems with these systems. The negative effects of excessive levels of nitrogen on the aquatic environment include eutrophication of receiving waters and the increased risk of methemoglobinemia in human infants where elevated levels of nitrate (NO3-) or nitrite (NO2-) nitrogen are present in drinking water supplies. The performance of constructed wetlands for nitrogen removal, at best, can be rated poor to fair. As a result of the negative effects of excessive nitrogen on the environment and the problems with constructed wetlands in consistently removing nitrogen to within acceptable levels, this report will be directed towards the sequential nitrification/denitrification process.

  10. EVALUATION OF CONSTRUCTED WETLAND AND RETENTION POND BMPS FOR ATTENUATING MICROBIAL CONTAMINANTS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    This project investigated the use of constructed wetlands and retention ponds for decreasing microbial concentrations from urban stormwater runoff. Increased urbanization has resulted in a larger percentage of impervious areas which cause large quantities of stormwater runoff an...

  11. EVALUATION OF CONSTRUCTED WETLAND AND RETENTION POND BMPS FOR ATTENUATING MICROBIAL CONTAMINANTS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    This project investigated the use of constructed wetlands and retention ponds for decreasing microbial concentrations from urban stormwater runoff. Increased urbanization has resulted in a larger percentage of impervious areas which cause large quantities of stormwater runoff an...

  12. Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands.

    PubMed

    Zhang, Cuiping; Wang, Bei; Dai, Xiaoyan; Li, Shuying; Lu, Guangqiu; Zhou, Yuanqing

    2017-04-01

    Vertical flow constructed wetlands (VF CWs) are considered to be effective for treating organic pollutants. The rhizosphere of macrophytes such as Phragmites sp., Typha sp. serves as an active and dynamic zone for the microbial degradation of organic pollutants. However, it is still not clear how soil bacterial communities respond to macrophytes and pollutants during the process. For this purpose, the seedlings of Phragmites australis and Typha angustifolia were planted respectively in the VF CWs added with HCB at a dose of 2 mg/kg. During 96 days of cultivation, we monitored hexachlorobenzene (HCB) removal efficiency by GC/MS and the structure of the rhizosphere bacterial communities in the different VF CWs by denaturing gradient gel electrophoresis (DGGE), and constructed bacterial clone library based on PCR-amplified 16S rRNA gene. As expected, the rhizosphere bacterial communities also remained insensitive to HCB exposure in the wetland soil. The diversity of these microbes presented two stages, from the varied up and down to equilibrium in the entire experimental period. Molecular analysis revealed that the phylum Firmicutes dominated over the bacterial communities. The genera that increased under HCB stress included the well-known HCB-degrading bacteria (Pseudomonas sp. and Alcaligenes sp.) and other common bacteria found in contaminated soil but with lesser known practical functions (Burkholderia sp., Lysinibacillus fusiformis, and Bacillus cereus). Furthermore, there was a certain variance in the relative abundances of the bacterial phyla and HCB removal efficiency among different VF CW treatments. The degradation of HCB in T. angustifolia microcosms was faster than that in P. australis and unvegetated wetlands, and the highest bacterial diversity and richness was found in the VF CWs comprising T. angustifolia.

  13. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Treatment of swine wastewater in marsh-pond-marsh constructed wetlands.

    PubMed

    Reddy, G B; Hunt, P G; Phillips, R; Stone, K; Grubbs, A

    2001-01-01

    Swine waste is commonly treated in the USA by flushing into an anaerobic lagoon and subsequently applying to land. This natural system type of application has been part of agricultural practice for many years. However, it is currently under scrutiny by regulators. An alternate natural system technology to treat swine wastewater may be constructed wetland. For this study we used four wetland cells (11 m width x 40 m length) with a marsh-pond-marsh design. The marsh sections were planted to cattail (Typha latifolia, L.) and bulrushes (Scirpus americanus). Two cells were loaded with 16 kg N ha(-1) day(-1) with a detention of 21 days. They removed 51% of the added N. Two additional cells were loaded with 32 kg ha(-1) day(-1) with 10.5 days detention. These cells removed only 37% of the added N. However, treatment operations included cold months in which treatment was much less efficient. Removal of N was moderately correlated with the temperature. During the warmer periods removal efficiencies were more consistent with the high removal rates reported for continuous marsh systems--often > than 70%. Phosphorus removal ranged from 30 to 45%. Aquatic macrophytes (plants and floating) assimilated about 320 and 35 kg ha(-1), respectively of N and P.

  15. Emission of N2O and CH4 from a constructed wetland in southeastern Norway.

    PubMed

    Søvik, A K; Kløve, B

    2007-07-15

    The Skjønhaug constructed wetland (CW) is a free surface water (FSW) wetland polishing chemically treated municipal wastewater in southeastern Norway and consists of three ponds as well as trickling, unsaturated filters with light weight aggregates (LWA). Fluxes of nitrous oxide (N(2)O) and methane (CH(4)) have been measured during the autumn, winter and summer from all three ponds as well as from the unsaturated filters. Physicochemical parameters of the water have been measured at the same localities. The large temporal and spatial variation of N(2)O fluxes was found to cover a range of -0.49 to 110 mg N(2)O-N m(-2) day(-1), while the fluxes of CH(4) was found to cover a range of -1.2 to 1900 mg m(-2) day(-1). Thus, both emission and consumption occurred. Regarding fluxes of N(2)O there was a significant difference between the summer, winter and autumn, with the highest emissions occurring during the autumn. The fluxes of CH(4) were, on the other hand, not significantly different with regard to seasons. Both the emissions of N(2)O and CH(4) were positively influenced by the amount of total organic carbon (TOC). The measured fluxes of N(2)O and CH(4) are in the same range as those reported from other CWs treating wastewater. There was an approximately equal contribution to the global warming potential from N(2)O and CH(4).

  16. Constructed Wetlands Revisited: Microbial Diversity in the -omics Era.

    PubMed

    Sánchez, Olga

    2017-04-01

    Constructed wetlands (CWs) constitute an interesting alternative option to conventional systems for wastewater treatment. This technology is based on the utilization of the concerted activity of microorganisms for the removal of contaminants. Consequently, knowledge on the microbial assemblages dwelling CWs and the different environmental factors which can alter their activities is crucial for understanding their performance. In the last decades, the use of molecular techniques to characterize these communities and more recently, application of -omics tools, have broaden our view of microbial diversity and function in wastewater microbiology. In this manuscript, a review of the current knowledge on microbial diversity in CWs is offered, placing particular emphasis on the different molecular studies carried out in this field. The effect of environmental conditions, such as plant species, hydraulic design, water depth, organic carbon, temperature and substrate type on prokaryotic communities has been carefully revised, and the different studies highlight the importance of these factors in carbon, nitrogen and sulfur cycles. Overall, the novel -omics open a new horizon to study the diversity and ecophysiology of microbial assemblages and their interactions in CWs, particularly for those microorganisms belonging to the rare biosphere not detectable with conventional molecular techniques.

  17. Design and optimisation of novel configurations of stormwater constructed wetlands

    NASA Astrophysics Data System (ADS)

    Kiiza, Christopher

    2017-04-01

    Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.

  18. Comparison of interannual removal variation of various constructed wetland types.

    PubMed

    Hijosa-Valsero, María; Sidrach-Cardona, Ricardo; Bécares, Eloy

    2012-07-15

    Seven mesocosm-scale (1m(2)) constructed wetlands (CWs) of different configurations were operated outdoors for thirty-nine months under the same conditions to assess their ability to remove organic matter and nutrients from urban wastewaters. CWs differed in some design parameters, namely the presence of plants, the species chosen (i.e., Typha angustifolia or Phragmites australis), the flow configuration (i.e., surface flow or subsurface flow) and the presence/absence of a gravel bed. It was observed that, in general, removal efficiencies decreased with the aging of the system and that seasonality had a great influence on CWs. A comparison was made in order to figure out which kind of CW was more efficient for the removal of every pollutant in the long term. Planted systems were clearly better than unplanted systems even in winter. Efficiency differences among CWs were not extremely great, especially after a few years. However, some types of CWs were more adequate for the removal of certain pollutants. The effect of the aging on the main parameters involved in pollutant removal in CWs (temperature, pH, conductivity, dissolved oxygen concentration and redox potential) was assessed. The efficiency of CWs should not be evaluated based on short monitoring periods (1-2 years) after the start-up of the systems, but on longer periods. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Multi-stage constructed wetland systems for municipal wastewater treatment.

    PubMed

    Masi, F; Caffaz, S; Ghrabi, A

    2013-01-01

    In the present paper the detailed design and performances of two municipal wastewater treatment plants, a four-stage constructed wetlands (CW) system located in the city of Dicomano (about 3,500 inhabitants) in Italy, and a three-stage CW system for the village of Chorfech (about 500 inhabitants) in Tunisia, are presented. The obtained results demonstrate that multi-stage CWs provide an excellent secondary treatment for wastewaters with variable operative conditions, reaching also an appropriate effluent quality for reuse. Dicomano CWs have shown good performances, on average 86% of removal for the Organic Load, 60% for Total Nitrogen (TN), 43% for Total Phosphorus (TP), 89% for Total Suspended Solids (TSS) and 76% for Ammonium (NH4(+)). Even the disinfection process has performed in a very satisfactory way, reaching up to 4-5 logs of reduction of the inlet pathogens concentration, with an Escherichia coli average concentration in the outlet often below 200 UFC/100 mL. The mean overall removal rates of the Chorfech CWs during the monitored period have been, respectively, equal to 97% for TSS and Biochemical Oxygen Demand (BOD5), 95% for Chemical Oxygen Demand (COD), 71% for TN and 82% for TP. The observed removal of E. coli by the CW system was in this case 2.5 log units.

  20. Mathematical model for analysis of recirculating vertical flow constructed wetlands.

    PubMed

    Sklarz, Menachem Y; Gross, Amit; Soares, M Ines M; Yakirevich, Alexander

    2010-03-01

    The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed. In this study, a compartmental model was developed to simulate the RVFCW. The model, which addresses transport and removal kinetics of total suspended solids, 5-day biological oxygen demand and nitrogen, was fitted to kinetical results obtained from pilot field setups and a local sensitivity analysis was performed on the model parameters and operational conditions. This analysis showed that after 5h of treatment water quality is affected more by stochastic events than by the model parameter values, emphasizing the stability of the RVFCW system to large variations in operational conditions. Effluent quality after 1h of treatment, when the sensitivity analysis showed the parameter impacts to be largest, was compared to model predictions. The removal rate was found to be dependent on the recirculation rate. The predictions correlated well with experimental observations, leading to the conclusion that the proposed model is a satisfactory tool for studying RVFCWs. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Evaluation of recharge to the Skunk Creek Aquifer from a constructed wetland near Lyons, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2002-01-01

    A wetland was constructed in the Skunk Creek flood plain near Lyons in southeast South Dakota to mitigate for wetland areas that were filled during construction of a municipal golf course for the city of Sioux Falls. A water-rights permit was obtained to allow the city to pump water from Skunk Creek into the wetland during times when the wetland would be dry. The amount of water seeping through the wetland and recharging the underlying Skunk Creek aquifer was not known. The U.S. Geological Survey, in cooperation with the city of Sioux Falls, conducted a study during 1997-2000 to evaluate recharge to the Skunk Creek aquifer from the constructed wetland. Three methods were used to estimate recharge from the wetland to the aquifer: (1) analysis of the rate of water-level decline during periods of no inflow; (2) flow-net analysis; and (3) analysis of the hydrologic budget. The hydrologic budget also was used to evaluate the efficiency of recharge from the wetland to the aquifer. Recharge rates estimated by analysis of shut-off events ranged from 0.21 to 0.82 foot per day, but these estimates may be influenced by possible errors in volume calculations. Recharge rates determined by flow-net analysis were calculated using selected values of hydraulic conductivity and ranged from 566,000 gallons per day using a hydraulic conductivity of 0.5 foot per day to 1,684,000 gallons per day using a hydraulic conductivity of 1.0 foot per day. Recharge rates from the hydrologic budget varied from 0.74 to 0.85 foot per day, and averaged 0.79 foot per day. The amount of water lost to evapotranspiration at the study wetland is very small compared to the amount of water seeping from the wetland into the aquifer. Based on the hydrologic budget, the average recharge efficiency was estimated as 97.9 percent, which indicates that recharging the Skunk Creek aquifer by pumping water into the study wetland is highly efficient. Because the Skunk Creek aquifer is composed of sand and gravel, the

  2. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    PubMed

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification.

  3. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes.

    PubMed

    Shi, Xia; Fan, Jinlin; Zhang, Jian; Shen, Youhao

    2017-08-13

    Phosphorus (P) loss by various pathways in constructed wetlands (CWs) is often variable. The effects of intermittent aeration and different construction waste substrates (gravel, red brick, fly-ash brick) on P processing using six batch-operated vertical flow constructed wetlands (VFCWs) were studied for decentralized domestic wastewater treatment. Average removal of total phosphorus (TP) in three aerated CWs was markedly higher (21.06, 24.83, and 27.02 mg m(-2) day(-1), respectively) than non-aerated CWs (10.64, 18.16, and 25.09 mg m(-2) day(-1), respectively). Fly-ash brick offered superior TP removal efficiency in both aerated and non-aerated batch-operated VFCWs, suggesting its promising application for P removal in CWs. Aeration greatly promoted plant growth and thusly increased plant uptake of P by 0.57-1.45 times. Substance storage was still the main P sink accounting for 23.92-59.47% of TP removal. Other process including microbial uptake was revealed to be a very important P removal pathway (accounting for 14.86-34.84%). The contribution of microbial uptake was also indicated by microbial analysis. Long-term results suggested that the contribution of microbial P uptake could be always ignored and underestimated in most CWs. A combination of intermittent aeration and suitable substrates is effective to intensify P transformation in CWs.

  4. Indicator pathogens, organic matter and LAS detergent removal from wastewater by constructed subsurface wetlands

    PubMed Central

    2014-01-01

    Background Constructed wetland is one of the natural methods of municipal and industrial wastewater treatments with low initial costs for construction and operation as well as easy maintenance. The main objective of this study is to determine the values of indicator bacteria removal, organic matter, TSS, ammonia and nitrate affecting the wetland removal efficiency. Results The average concentration of E. coli and total coliform in the input is 1.127 × 1014 and 4.41 × 1014 MPN/100 mL that reached 5.03 × 1012 and 1.13 × 1014 MPN/100 mL by reducing 95.5% and 74.4% in wetland 2. Fecal streptococcus reached from the average 5.88 × 1014 in raw wastewater to 9.69 × 1012 in the output of wetland 2. Wetland 2 could reduce 1.5 logarithmic units of E. coli. The removal efficiency of TSS for the wetlands is 68.87%, 71.4%, 57.3%, and 66% respectively. Conclusions The overall results show that wetlands in which herbs were planted had a high removal efficiency about the indicator pathogens, organic matter, LAS detergent in comparison to a control wetland (without canes) and could improve physicochemical parameters (DO, ammonia, nitrate, electrical conductivity, and pH) of wastewater. PMID:24581277

  5. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    PubMed

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife.

  6. Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds.

    PubMed

    Schaller, Jörg; Headley, Tom; Prigent, Stephane; Breuer, Roman

    2014-09-15

    Shortages of resources (chemical elements) used by growing industrial activities require new techniques for their acquisition. A suitable technique could be the use of wetlands for the enrichment of elements from produced water of the oil industry. Oil industries produce very high amounts of water in the course of oil mining. These waters may contain high amounts of rare elements. To our best knowledge nothing is known about the economic potential regarding rare element mining from produced water. Therefore, we estimated the amount of harvestable rare elements remaining in the effluent of a constructed wetland-pond system which is being used to treat and evaporate vast quantities of produced waters. The examined wetland system is located in the desert of the south-eastern Arabian Peninsula. This system manages 95,000 m(3) per day within 350 ha of surface flow wetlands and 350 ha of evaporation ponds and is designed to be used for at least 20 years. We found a strong enrichment of some chemical elements in the water pathway of the system (e.g. lithium up to 896 μg L(-1) and beryllium up to 139 μg L(-1)). For this wetland, lithium and beryllium are the elements with the highest economic potential resulting from a high price and load. It is calculated that after 20 years retention period 131 t of lithium and 57 t of beryllium could be harvested. This technique may also be useful for acquisition of rare earth elements. Other elements (e.g. strontium) with a high calculated load of 4500 tons in 20 years are not efficiently harvestable due to a relatively low market value. In conclusion, wetland treated waters from the oil industry offer a promising new acquisition technique for elements like lithium and beryllium.

  7. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    PubMed

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics.

  8. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02

  9. Effluent blending in constructed wetlands: Pollution prevention applications at a coal yard treatment facility

    SciTech Connect

    Carder, J.P.; Hoylman, A.M.; Sparks, B.J.

    1995-12-31

    Effluent blending, in combination with constructed wetland biotechnology, is a promising method for reducing the loading rates of pollution to receiving streams. At Oak Ridge National Laboratory, a project is underway to demonstrate this principle. An 8:2 ratio of sewage treatment plant to coal yard runoff treatment facility (CYRTF) effluent will be polished by 2 constructed wetland cells containing emergent wetland plants in saturated pea gravel at a rate of 3600 gallons per day. The relatively high concentration of nutrients in the STP effluent should stimulate biological processes leading to the reduction of chemical oxygen demand and the conversion of excess sulfate (in the CYRTF effluent) to alkalinity. Chlorine, which is added to the STP effluent to control bacteria, should also be eliminated. Measurements of wastewater toxicity, before and after the effluent blend has passed through the constructed wetlands, will be used to assess the technology`s effectiveness at reducing pollution.

  10. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands.

    PubMed

    Corbella, Clara; Guivernau, Miriam; Viñas, Marc; Puigagut, Jaume

    2015-11-01

    This work aimed at determining the amount of energy that can be harvested by implementing microbial fuel cells (MFC) in horizontal subsurface constructed wetlands (HSSF CWs) during the treatment of real domestic wastewater. To this aim, MFC were implemented in a pilot plant based on two HSSF CW, one fed with primary settled wastewater (Settler line) and the other fed with the effluent of a hydrolytic up-flow sludge blanket reactor (HUSB line). The eubacterial and archaeal community was profiled on wetland gravel, MFC electrodes and primary treated wastewater by means of 16S rRNA gene-based 454-pyrosequencing and qPCR of 16S rRNA and mcrA genes. Maximum current (219 mA/m(2)) and power (36 mW/m(2)) densities were obtained for the HUSB line. Power production pattern correlated well with water level fluctuations within the wetlands, whereas the type of primary treatment implemented had a significant impact on the diversity and relative abundance of eubacteria communities colonizing MFC. It is worth noticing the high predominance (13-16% of relative abundance) of one OTU belonging to Geobacter on active MFC of the HUSB line that was absent for the settler line MFC. Hence, MFC show promise for power production in constructed wetlands receiving the effluent of a HUSB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of clogging in planted and unplanted horizontal subsurface flow constructed wetlands: solids accumulation and hydraulic conductivity reduction.

    PubMed

    De Paoli, André Cordeiro; von Sperling, Marcos

    2013-01-01

    This study aimed to evaluate the behaviour of two horizontal subsurface flow constructed wetland units regarding solids build up and clogging of the filter medium. In order to analyse the causes of this process, which is considered the major operational problem of constructed wetlands, studies were carried out to characterize accumulated solids and hydraulic conductivity at specific points of the beds of two wetlands (planted with Typha latifolia and unplanted units) receiving effluent from an upflow anaerobic sludge blanket reactor treating sanitary sewage (population equivalent of 50 inhabitants each unit). The experiments were performed after the units were operating for 2 years and 4 months. This study presents comparative results related to the quantification and characterization of accumulated solids and hydraulic conductivity along the length and width of the filter beds. Approximately 80% of the solids found were inorganic (fixed). Near the inlet end, the rate interstitial solids/attached solids was 5.0, while in the outlet end it was reduced to 1.5. Hydraulic conductivity was lower near the inlet of the units (as expected) and, by comparing the planted wetland with the unplanted, the hydraulic conductivity was lower in the former, resulting in larger undesired surface flow.

  12. The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland.

    PubMed

    Erler, Dirk V; Eyre, Bradley D; Davison, Leigh

    2008-12-15

    This study used anaerobic slurry assays and intact core incubations to quantify potential rates of anammox (anaerobic ammonia oxidation) in sediments along the flow path of a surface flow constructed wetland receiving secondary treated sewage effluent. Anammox occurred at two of the four sites assayed with a maximum rate of 199.4 +/- 18.7 micromol N x m(-2) x hr(-1) (24% of total N2 production) at the discharge end of the wetland. Denitrification was the major producer of N2, with a maximum rate of 965.3 +/- 122.8 micromol N x m(-2) x hr(-1) at site 2. Oxygen was probably the key regulator of anammox activity within the studied CW. In addition to anammox, we found evidence that nitrifier-denitrification was potentially responsible for the production of N2O. Total production of N2O was 15.1% of the total gaseous N produced. Limitations to the methodology for quantifying anammox in CW's are outlined. This study demonstrated that denitrification is not the only pathway for gaseous production in constructed wetlands and that wetlands may be significant sources of greenhouse gases such as N2O.

  13. A smart market for nutrient credit trading to incentivize wetland construction

    NASA Astrophysics Data System (ADS)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  14. Landowners' incentives for constructing wetlands in an agricultural area in south Sweden.

    PubMed

    Hansson, Anna; Pedersen, Eja; Weisner, Stefan E B

    2012-12-30

    Eutrophication of the Baltic Sea has in Sweden led to the initiation of government schemes aiming to increase wetland areas in agricultural regions and thereby reduce nutrient transport to the sea. Landowners play a significant role as providers of this ecosystem service and are currently offered subsidies to cover their costs for constructing and maintaining wetlands. We undertook a grounded theory study, in which landowners were interviewed, aiming at identifying landowners' incentives for constructing wetlands on their land. The study showed that adequate subsidies, additional services that the wetland could provide to the landowner, local environmental benefits, sufficient knowledge, and peers' good experiences could encourage landowners to construct wetlands. Perceived hindrances were burdensome management, deficient knowledge, time-consuming application procedures and unclear effectiveness of nutrient reduction. The main reason for not creating a wetland, however, was that the land was classified as productive by the landowner, i.e., suitable for food production. Current schemes are directed toward landowners as individuals and based on subsidies to cover costs. We propose that landowners instead are approached as ecosystem service entrepreneurs and contracted after a tendering process based on nutrient reduction effects. This would lead to new definitions of production and may stimulate improved design and placement of wetlands.

  15. Remediation of abandoned mine sites using constructed wetlands: A Colorado perspective

    SciTech Connect

    Ganse, M.A.; Herron, J.T.

    1995-09-01

    In recent years, constructed wetlands have been used to remediate acid mine drainage which has resulted from both coal and metal mining activities. These wetlands are use din conjunction with other engineered components to create a passive mine drainage treatment system (PMDT). Passive systems are designed to remediate mine drainage using minimum capital expenditures and little to no operational and maintenance costs. The Colorado Division of Minerals and Geology (DMG) is responsible for the design, construction, and operation of constructed wetlands in Colorado. Only 5 systems are in existence at this time, located in terrain varying from gentle foothills to remote, sub-alpine mountains. The design of a wetland system is based on a multitude of factors such as site terrain and access, mine drainage composition, and in the Rocky Mountain region, altitude. The impact of altitude, climate, terrain, and other physical site constraints on each wetland design will be discussed. In addition, chemical issues critical to the design of each wetland such as pH and alkalinity will be presented. Finally, the performance of each wetland system will be examined.

  16. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context

    NASA Astrophysics Data System (ADS)

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54 % of the whole Regional Park's flora; alien species amount to 12 %; taxa of conservation concern are 6 %. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.

  17. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context.

    PubMed

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54% of the whole Regional Park's flora; alien species amount to 12%; taxa of conservation concern are 6%. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.

  18. Performance of Free Water Surface Constructed Wetland Using Typhalatifolia and Canna Lilies for the Treatment of Domestic Wastewater.

    PubMed

    Shrikhande, Avinash N; Nema, P; Mhaisalkar, Vasant A

    2014-01-01

    Discharge of untreated wastewater or partially treated wastewater into surface water bodies or on to land is a major cause of surface and ground water pollution thereby posing health hazards. Conventional wastewater treatment is generally not preferred for small communities due to higher capital and maintenance costs and lack of skilled supervision required for operation and maintenance. A constructed wetland treatment appears to be an appropriate alternative that can be employed both in developed and developing countries. A constructed wetland system is simple to construct and operate with low cost, and hence worth considering for the treatment of municipal wastewaters, especially from small communities. In this context, the site for carrying out the studies related to wastewater treatment was chosen at Kavikulguru Institute of Technology and Science (KITS), Ramtek, Dist. Nagpur. A Free Water Surface Constructed Wetland (FWSCW) of size 22.00m x 6.50 m x 0.60m was constructed at KITS, Ramtek. The performance of FWS CW system was studied for domestic wastewater treatment with theoretical hydraulic retention times of 10 days, 7 days and 5 days. Important parameters, such as BOD5, COD, TSS, NH4-N, PO4-P, DO, pH and faecal coliforms in both raw and treated wastewaters were monitored during a macrophytes life cycle. Based on the studies, it is concluded that minimum 5 days HRT is necessary for the treatment of wastewater in FWSCW using Typhalatifolia or Canna Lilies. Typhalatifolia is better in removal of pollutants from the wastewater in comparison to Canna Lilies and hence, is recommended for use in constructed wetland. The nutrient uptake capacity of Typhalatifolia is also quite encouraging and hence has great potential for application in treating wastewater from fertilizer industry. During the application of kinetic model, the observed and predicted values in respect of BOD, TSS and NH4-N in case of Typhalatifolia and BOD, COD and TSS in case of Canna Lilies were

  19. French vertical flow constructed wetlands: a need of a better understanding of the role of the deposit layer.

    PubMed

    Molle, Pascal

    2014-01-01

    French vertical flow constructed wetlands, treating directly raw wastewater, have become the main systems implemented for communities under 2,000 population equivalent in France. Like in sludge drying reed beds, an organic deposit layer is formed over time at the top surface of the filter. This deposit layer is a key factor in the performance of the system as it impacts hydraulic, gas transfers, filtration efficiency and water retention time. The paper discusses the role of this deposit layer on the hydraulic and biological behaviour of the system. It presents results from different studies to highlight the positive role of the layer but, as well, the difficulties in modelling this organic layer. As hydraulic, oxygen transfers, and biological activity are interlinked and impacted by the deposit layer, it seems essential to focus on its role (and its quantification) to find new developments of vertical flow constructed wetlands fed with raw wastewater.

  20. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.

    PubMed

    Arivoli, A; Mohanraj, R; Seenivasan, R

    2015-09-01

    The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis.

  1. Subsurface Treatment of Domestic Wastewater Using Single Domicile Constructed Wetlands

    NASA Astrophysics Data System (ADS)

    Aseltyne, T.; Steer, D.; Fraser, L.

    2001-05-01

    Analysis of one year of input versus output water quality monitoring data from nine household wastewater treatment wetlands in western Ohio indicates that these systems substantially reduce effluent loads delivered to the local watershed. Overall performance as measured by output water quality improvement varies widely between the nine systems despite their close proximity and identical design. These three-cell systems (septic tank with 2 subsurface wetland cells) are found to reduce biological oxygen demand (BOD) 70-98%, fecal coliform 60-99.9%, NH3 29-97%, Phosphorus 21-99.9% and total suspended solids (TSS) up to 97%. NO3/NO2 readings were only taken at the second wetland cell, but show that NO3/NO2 levels are at 0.005-5.01 mg/l and well below the USEPA standards for discharge from a wetland. On average, the pH of the wastewater increases from 6.6 at the septic tank to 8.7 at the wetland output. Nearly all the monitoring data indicate clear decreases in nutrient loads and bacteria though individual systems are found to non-systematically fail to meet EPA discharge guidelines for one or more of the monitored loads. Preliminary analysis of the data indicates a decrease in overall efficiency of the wetlands in April that may be related to seasonal factors. These systems will be monitored for the next three years in order to relate changing performance trends to seasonal variability.

  2. Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China.

    PubMed

    Wang, Hui; Wang, Renqing; Yu, Yue; Mitchell, Myron J; Zhang, Lianjun

    2011-10-01

    Supplying freshwater is one of the important methods to help restore degraded wetlands. Changes in soil properties and plant community biomass were evaluated by comparing sites with freshwater treatment versus reference sites following freshwater addition to wetlands of the Yellow River Delta for 7 years. The results indicated that soil organic carbon (SOC) was significantly increased in all wetland sites that were treated with freshwater compared to the reference sites. The treatment wetlands had greater total nitrogen (TN), lower pH and electrical conductivity and higher water content in the soil compared to the reference wetlands. In general, the upper soil layer (0-20 cm) had greater SOC than the lower soil layer (20-40 cm). The increase of SOC in the freshwater reintroduction wetlands was higher in the Suaeda salsa plant community (mean ± standard error) (6.89 ± 0.63 g/kg) and Phragmites communis plant community (4.11 ± 0.12 g/kg) than in the Tamarix chinensis plant community (1.40 ± 0.31 g/kg) in the upper soil layer. The differences were especially marked between the treated and reference wetlands for SOC and TN in the P. communis plant communities. The C:N ratio of the soil was significantly greater in the treated compared to the reference wetlands for the S. salsa plant community. Although the C: N ratios increased after treatment, they were all <25 suggesting that N availability was not limiting soil organic matter decomposition. Our results indicate that freshwater addition and the concomitant increase in soil moisture content enhances the accumulation of SOC in the Yellow River Delta. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Effect of the subsurface constructed wetland evolution into free surface flow constructed wetland on the removal of organic matter, nitrogen, and phosphor in wastewater].

    PubMed

    Wei, Ze-Jun; Xie, Jian-Ping; Huang, Yu-Ming

    2012-11-01

    Many previous studies demonstrated that the performance of the subsurface constructed wetlands (SSCW) for wastewater treatment was superior to that of the free flow surface constructed wetlands (FFSCW). However, our results indicated that the performance of FFSCW derived from the evolution of SSCW due to clogging for COD, TOC, total nitrogen (TN), and total phosphor (TP) removal was higher than those of SSCW with the same substrate and plant. The laboratory culture experiments were adopted to evaluate the effect of the constructed wetland evolution on the organic matter mineralization, nitrification/denitrification as well as removal of nitrogen and phosphor. It was shown that, after evolution of SSCW into FFSCW, the mineralization rate for organic matter (as TOC) was 1.82 mg x h(-1), and it was 1.49 mg x h(-1) for SSCW. The removal efficiency for NO3(-) was 96.8%, and it was 58.1% for SSCW. The abiotic denitrification removal efficiency was 40%, and it was 28.2% for SSCW. In addition, the maximum equilibrium adsorption capacity of the substrate after evolution for phosphor (as P) was 160 mg x kg(-1), and it was 140 mg x kg(-1) for SSCW substrate. The organic coverage of the substrate was found to be beneficial to phosphor removal. The nitrification ability decreased after evolution. These results suggest the important effect of constructed wetland evolution on its performance.

  4. Evaluation of unclogging aspects in horizontal subsurface flow constructed wetlands.

    PubMed

    Miranda, Suymara Toledo; de Matos, Antonio Teixeira; Baptestini, Gheila Corrêa Ferres; Borges, Alisson Carraro

    2016-10-01

    In horizontal subsurface flow constructed wetlands (HSSF-CWs), the main operational problem is clogging of the porous medium. In this study, the unclogging of HSSF-CWs was evaluated, at rest, by adding a nitrogen-based nutrient solution to the influent. For this, six HSSF-CWs were used, consisting of two uncultivated (CW-C), two cultivated with Tifton 85-grass (Cynodon spp.) (CW-T) and two cultivated with alligator weed (Alternanthera philoxeroides) (CW-A), which were fully clogged after being used for the treatment of swine wastewater. The results indicated that passage of the nutrient solution for 55 days through the bed of the HSSF-CWs resulted in reductions of 11 and 33%, respectively, in the total volatile solids (TVS) concentration of fine clogging material in the CW-T and CW-A. With regard to the TVS content of the coarse clogging material, the reduction was even greater, being 33% for CW-T and 62% for CW-A. Measurements of K0 made along the beds (thirds 1, 2 and 3) before and after passage of the nutrient solution in the CWs indicated respective increases of 7, 13 and 0.1% in CW-C; 21, 11 and 7% in CW-T; and 52%, 6% and -6% (decrease) in CW-A. Runoff of the nutrient solution decreased gradually over time, presenting at the beginning of the experiment 26, 35 and 150 cm, and at the end (after 55 days of application) 0, 0 and 50 cm in the flow direction of the CW-C and CW-T and CW-A, respectively.

  5. Polar organic solvent removal in microcosm constructed wetlands.

    PubMed

    Grove, Janet Kowles; Stein, Otto R

    2005-10-01

    Three polar organic solvents, acetone, tetrahydrofuran (THF) and 1-butanol, were added at 100 mg/l each to post-primary municipal wastewater in order to simulate a mixed waste stream. This mixture was applied to an experimental microcosm subsurface constructed wetland system consisting of replicates of Juncus effusus, Carex lurida, Iris pseudacorus, Pondeteria cordata and unplanted controls in a series of 14-day batch incubations over a yearlong period simulating a summer and winter season. 90% removal of 1-butanol typically took less than 3 days. 90% removal of acetone required from 5 to 10 days in summer and 10 to 14 days in winter. 90% removal of THF required at least 10 days and was frequently not achieved during the 14-day incubations. Initial experiments confirmed that the majority of solvent removal was via microbial bioremediation. Solvent removal was typically better in planted replicates, especially Juncus, regardless of season. The removal rate of all solvents was slower in winter, but the seasonal effect was most pronounced in the unplanted control replicates and least in the Carex and Juncus replicates. Plant and seasonal effects are believed to be due, in part, to variation in metabolic pathways induced by plant and seasonal variation in available root-zone oxygen. Variation in transpiration also influenced species and seasonal effects on THF removal, but not the other more biodegradable solvents. A model based on a prediction of plant uptake of nonionic dissolved chemicals suggests that as much as 39% of the THF in solution could have been removed through plant transpiration.

  6. Sediment from Agricultural Constructed Wetland Immobilizes Soil Phosphorus.

    PubMed

    Laakso, Johanna; Uusitalo, Risto; Leppänen, Janette; Yli-Halla, Markku

    2017-03-01

    Phosphorus (P) losses from agricultural soils impair the quality of receiving surface waters by enhancing eutrophication. This study tested the potential of using sediment from agricultural constructed wetlands (CWs) to immobilize soil P using two soils differing in texture and soil test P (STP). A silty clay soil (SIC) with high STP (24 mg ammonium acetate-extractable P [P] L) and a sandy loam soil (SL) with excessive STP (210 mg P L) were incubated with increasing amounts of clayey CW sediment. The soil-sediment mixtures were studied with the quantity/intensity (Q/I) technique, using chemical extractions, and by exposing the mixtures to simulated rainfall. In both Q/I and simulated rainfall tests, P solubility steadily decreased with increasing sediment proportion in the mixtures. However, in chemical extractions this effect was observed only at high sediment addition rates (10 or 50% [v/v] sediment). At a practically feasible sediment addition rate of 5%, dissolved reactive P (DRP) in percolating water from simulated rainfall decreased by 55% in SIC and by 54% in SL ( < 0.001 in both cases). Particulate P (PP) also showed a decreasing trend with increasing sediment addition rate. Upon prolonged simulated rainfall, the decreasing effect of sediment on DRP and PP declined somewhat. The effects of sediment addition can be attributed partly to increased salt concentrations in the sediment, which have a short-term effect on P mobilization, but mostly to increased concentrations of Al and Fe (hydr)oxides, increasing long-term P sorption capacity. Adding CW sediment at a rate of up to 5% of surface soil volume to soils could provide an alternative to chemical treatment (e.g., with metal salts) for immobilizing P in small, high-risk P leaching areas, such as around drinking troughs in pastures.

  7. Can constructed wetlands reduce the diffuse phosphorus loads to eutrophic water in cold temperate regions?

    PubMed

    Braskerud, B C; Tonderski, K S; Wedding, B; Bakke, R; Blankenberg, A-G B; Ulén, B; Koskiaho, J

    2005-01-01

    Construction of wetlands is a possible supplement to best management practices (BMP) at the field level to mitigate phosphorus (P) pollution from agricultural areas. In this paper, annual results from 17 intensively studied wetlands in the cold temperate or boreal climatic zone are reported and analyzed. Surface areas varied from 0.007 to 8.7% of the catchment area. The average total phosphorus (TP) retention varied from 1 to 88%, and the dissolved reactive phosphorus (DRP) retention from -19 to 89%. Retention varied substantially from site to site, indicating the existence of site-specific factors in the catchment and wetlands that influenced the P removal. Factors important for P retention in wetlands were evaluated through multiple statistical analyses by dividing P into two fractions: particulate phosphorus (PP) and DRP. Both relative (%) PP and DRP retention increased with wetland surface area. However, PP retention was not as sensitive as DRP in terms of wetland size and retention: specific PP retention (gram P retention per m(2) and year) decreased as wetland area (A(w)) increased, suggesting the existence of a site-specific optimal wetland to catchment area (A(c)) ratio. Particulate P retention decreased with increasing DRP to TP ratio, while the opposite was found for DRP. Dissolved reactive P retention was higher in new than in old wetlands, while increasing age did not influence PP retention negatively. Effective BMP in the catchment is important to keep the P loss low, because the outlet concentration of P from wetlands is often positively correlated to the input concentration. However, wetlands act as the last buffer in a catchment, since the retention often increases as the P concentration in streams increases.

  8. Temperature Impact of Nitrogen Transformation in Technological System: Vertical Flow Constructed Wetland and Polishing Pond

    NASA Astrophysics Data System (ADS)

    Myszograj, Sylwia; Bydałek, Franciszek

    2016-12-01

    The article describes the results of the research, purpose of which was to evaluate influence of the temperature on the effectiveness of nitrification and denitrification in the sewage treatment system consisting of vertical flow constructed wetland and polishing pond. During the analysed period, the efficiency of removing total nitrogen was low and amounted to 12.7%. In the polishing pond in the summer period, content of total nitrogen in treated sewages was further decreased by nearly 50%. In the winter period, the polishing pond fulfilled mainly retention role and thus did not improve effectiveness of the whole system. Temperature coefficients, calculated on the basis of single first-order kinetics, for nitrification process in the filter bed (N-NH4+) and denitrification process in the polishing pond (N-NO3-) amounted to 1.039 and 1.089, respectively.

  9. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river.

    PubMed

    Rai, U N; Tripathi, R D; Singh, N K; Upadhyay, A K; Dwivedi, S; Shukla, M K; Mallick, S; Singh, S N; Nautiyal, C S

    2013-11-01

    With aim to develop an efficient and ecofriendly approach for on-site treatment of sewage, a sub-surface flow constructed wetland (CW) has been developed by raising potential aquatic macrophytes; Typha latifolia, Phragmites australis, Colocasia esculenta, Polygonum hydropiper, Alternanthera sessilis and Pistia stratoites in gravel as medium. Sewage treatment potential of CW was evaluated by varying retention time at three different stages of plant growth and stabilization. After 6 months, monitoring of fully established CW indicated reduction of 90%, 65%, 78%, 84%, 76% and 86% of BOD, TSS, TDS, NO3-N, PO4-P and NH4-N, respectively in comparison to inlet after 36 h of retention time. Sewage treatment through CW also resulted in reduction of heavy metal contents. Thus, CW proved an effective method for treatment of wastewater and may be developed along river Ganga stretch as an alternative technology. Treated water may be drained into river to check further deterioration of Ganga water quality.

  10. Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions.

    PubMed

    Molle, P; Liénard, A; Grasmick, A; Iwema, A

    2003-01-01

    Phosphorus removal from wastewater has been of growing interest for some decades to avoid eutrophication in surface water. In subsurface constructed wetlands precipitation and adsorption are the main mechanisms responsible for P uptake. Two media (calcite and recycled crushed concrete (RCC)) were examined in batch and continuous systems. Batch experiments show attractive sorption capacities, however experiments carried out in open reactors pointed out some limitation in retention capacities and effluent quality. RCC is sensitive to a strong dissolution leading to a quick phosphorus precipitation but induces high conductivity and pH values in the treated water. Calcite efficiency depends on the carbonate equilibrium of the solution. Microscopic observations of the calcite surface show crystal growth of phosphorus precipitate. Crystallisation seems to be the main P uptake once a material's surface is covered.

  11. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map.

    PubMed

    Zhang, Liang; Scholz, Miklas; Mustafa, Atif; Harrington, Rory

    2008-07-01

    The self-organizing map (SOM) model was applied to predict outflow nutrient concentrations for integrated constructed wetlands (ICWs) treating farmyard runoff. The SOM showed that the outflow ammonia-nitrogen concentrations were strongly correlated with water temperature and salt concentrations, indicating that ammonia-nitrogen removal is effective at low salt concentrations and comparatively high temperatures in ICWs. Soluble reactive phosphorus removal was predominantly affected by salt and dissolved oxygen concentrations. In addition, pH and temperature were weakly correlated with soluble reactive phosphorus removal, suggesting that soluble reactive phosphorus was easily removed within ICWs, if salt concentrations were low, and dissolved oxygen, temperature and pH values were high. The SOM model performed very well in predicting the nutrient concentrations with water quality variables such as temperature, conductivity and dissolved oxygen, which can be measured cost-effectively. The results indicate that the SOM model was an appropriate approach to monitor wastewater treatment processes in ICWs.

  12. Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater.

    PubMed

    Carvalho, Pedro N; Araújo, José Luís; Mucha, Ana P; Basto, M Clara P; Almeida, C Marisa R

    2013-04-01

    The aim of the present work was to evaluate, at microcosm level, the capacity of constructed wetlands (CWs) to remove veterinary pharmaceutical compounds, from wastewater. Results indicated that CWs have potential to mitigate the release of veterinary drugs, namely enrofloxacin (ENR, a fluoroquinolone) and tetracycline (TET, tetracyclines family). Removal efficiencies of 94% and 98% where achieved for TET and ENR, respectively, when treating pigfarm wastewater effluent doped at 100 μg L(-1) drug level, along twelve weeks. Occurrence of adsorption of the drugs to CWs substrate may be the predominant mechanism for ENR, although for TET there are signs that degradation is also occurring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Environmental Feasibility of Using Wetlands to Treat Runoff Pollution

    DTIC Science & Technology

    1989-10-01

    appropriate. Wetlands will not be a universally applicable method for runoff remediation, but they should be the technique of choico for some situ- ations...marsh, causes an increase in the protein content of the detritus and enhances its food value to consumers. 6. Salt marshes have been shown, at times... methods dependent solely on pollutant settling will be ineffective. Nutrients are used in primary production and bound into the biomass result- ing

  14. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads.

    PubMed

    Lee, Chi-Yuan; Lee, Chun-Chih; Lee, Fang-Yin; Tseng, Szu-Kung; Liao, Chiu-Jung

    2004-04-01

    Subsurface flow constructed wetlands (SSFCW) subjected to changing of loading rates are poorly understood, especially when used to treat swine waste under heavy loads. This study employed a SSFCW system to take pretreated swine effluent at three hydraulic retention times (HRT): 8.5-day HRT (Phase I), 4.3-day HRT (Phase II), and 14.7-day HRT (Phase III). Results showed that the system responded well to the changing hydraulic loads in removing suspended solids (SS) and carbonaceous oxygen demands. The averaged reduction efficiencies for four major constituents in the three phases were: SS 96-99%, chemical oxygen demand (COD) 77-84%, total phosphorus 47-59%, and total nitrogen (TN) 10-24%. While physical mechanisms were dominant in removing pollutants, the contributions of microbial mechanisms increased with the duration of wetland use, achieving 48% of COD removed and 16% of TN removed in the last phase. Water hyacinth made only a minimal contribution to the removal of nutrients. This study suggested that the effluent from SSFCW was appropriate for further treatment in land applications for nutrient assimilation.

  15. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.

  16. Transport and transformation of de-icing urea from airport runways in a constructed wetland system.

    PubMed

    Thorén, A K; Legrand, C; Herrmann, J

    2003-01-01

    Urea, NH2-CO-NH2, is used as a de-icing agent at Kalmar Airport, southeast Sweden. During 1998-2001, urea contributed on average 30% of the yearly nitrogen (N) transport of 41,000 kg via Törnebybäcken stream to the coastal zone of the Baltic Sea. In order to reduce stream transport of N from airport, agricultural and other diffuse sources, a wetland was constructed in 1996. Annual wetland retention of total-N varied in the range of 2,500-8,100 kg (6-36% of influent) during 1998-2001, according to mass balances calculated from monthly sampling. During airport de-icing, January-March 2001,660 kg urea-N out of 2,600 kg applied urea-N reached the wetland according to daily sampling. This indicated that 75% of the urea was transformed before entering the wetland. Urea was found to be only a minor part (8%) of total-N in the wetland influent. Calculations of cumulative urea-N loads at the wetland inlet and outlet respectively, showed a significant urea transformation during February 2001 with approximately 40% of the incoming urea-N being transformed in the wetland system. These results show that significant amounts of urea can be transformed in a wetland system at air temperatures around 0 degree C.

  17. Efficiency of Constructed Wetland Vegetated with Cyperus alternifolius Applied for Municipal Wastewater Treatment

    PubMed Central

    Ebrahimi, Asghar; Taheri, Ensiyeh; Ehrampoush, Mohammad Hassan; Nasiri, Sara; Jalali, Fatemeh; Soltani, Rahele; Fatehizadeh, Ali

    2013-01-01

    The treatment of municipal wastewater from Yazd city (center of Iran) by constructed wetland vegetated with Cyperus alternifolius was assessed. Two identical wetlands with a total working volume of 60 L and 10 cm sandy layer at the bottom were used. First wetland (W1) was control and had no Cyperus alternifolius plant. Second wetland (W2) had 100 Cyperus alternifolius shrubs with 40 cm height. Influent wastewater was provided from Yazd's septic tanks effluents and after a 4-day retention time in wetlands, reactors effluent was sampled for parameters analysis. Results show that chemical oxygen demand (COD), NO3 −–N, NH4 +–N, and PO4 −3–P in W1 were reduced to 72%, 88%, 32%, and 0.8%, and in W2, these parameters were removed in values of 83%, 81%, 47%, and 10%, respectively. In both wetlands, the highest and lowest removal efficiencies were related to COD and phosphorus, respectively. Also, the removed phosphorus can be released to stream when the soil saturated or influent phosphorus decreased and when the plant died. After a 4-day-retention time, the W2 wetland showed a statistically significantly lower COD and NH4 +–N in comparison with W2 wetland. PMID:24027589

  18. Efficiency of constructed wetland vegetated with Cyperus alternifolius applied for municipal wastewater treatment.

    PubMed

    Ebrahimi, Asghar; Taheri, Ensiyeh; Ehrampoush, Mohammad Hassan; Nasiri, Sara; Jalali, Fatemeh; Soltani, Rahele; Fatehizadeh, Ali

    2013-01-01

    The treatment of municipal wastewater from Yazd city (center of Iran) by constructed wetland vegetated with Cyperus alternifolius was assessed. Two identical wetlands with a total working volume of 60 L and 10 cm sandy layer at the bottom were used. First wetland (W1) was control and had no Cyperus alternifolius plant. Second wetland (W2) had 100 Cyperus alternifolius shrubs with 40 cm height. Influent wastewater was provided from Yazd's septic tanks effluents and after a 4-day retention time in wetlands, reactors effluent was sampled for parameters analysis. Results show that chemical oxygen demand (COD), NO3 (-)-N, NH4 (+)-N, and PO4 (-3)-P in W1 were reduced to 72%, 88%, 32%, and 0.8%, and in W2, these parameters were removed in values of 83%, 81%, 47%, and 10%, respectively. In both wetlands, the highest and lowest removal efficiencies were related to COD and phosphorus, respectively. Also, the removed phosphorus can be released to stream when the soil saturated or influent phosphorus decreased and when the plant died. After a 4-day-retention time, the W2 wetland showed a statistically significantly lower COD and NH4 (+)-N in comparison with W2 wetland.

  19. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor.

    PubMed

    Elsayed, O F; Maillard, E; Vuilleumier, S; Imfeld, G

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold(®) contaminated water (960 g L(-1) of the herbicide S-metolachlor, >80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was >40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93-97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p=0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems.

  20. Growth and contaminant removal effect of several plants in constructed wetlands.

    PubMed

    Cheng, Xiu-Yun; Liang, Ming-Qiu; Chen, Wen-Yin; Liu, Xu-Cheng; Chen, Zhang-He

    2009-03-01

    The aim of the present study is to probe the relation between plant growth and its decontamination effect in constructed wetlands. Four species were studied in the small-scale mono-cultured constructed wetlands, which were fed with domestic wastewater. Plant growth indexes were correlated with contaminant removal performance of the constructed wetlands. Wetlands planted with Cyperus flabelliformis Rottb. showed the highest growth indexes such as shoot growth, biomass, root activity, root biomass increment, and the highest contaminant removal rates, whereas wetlands planted with Vetiveria zizanioides L. Nash had the lowest growth indexes and the lowest removal rates. Above-ground biomass and total biomass were significantly correlated with ammonia nitrogen removal, and below-ground biomass with soluble reactive phosphorus removal. Photosynthetic rate had higher correlation with nitrogen removal in these species. Root activity and root biomass increment was more correlated with 5 d biochemical oxygen demand removal. Chemical oxygen demand removal had lower correlations with plant growth indexes. All four species had higher removal rates in summer and autumn. The results suggest that the effect of plant growth on contaminant removal in constructed wetlands were different specifically in plants and contaminants.

  1. Comparison of Constructed Wetland Mesocosms Designed for Treatment of Copper-Contaminated Wastewater

    SciTech Connect

    Gladden, J.B.

    2001-02-15

    This study compared the performance of two constructed wetland mesocosms used to model a full-scale wetland system designed for treatment of copper-contaminated wastewater. One mesocosm (designated site-specific) was built near the construction site of the full-scale wetland using on-site soil, commercially available vegetation [Scirpus californicus (C.A. Meyer) Steud.], and water from the targeted wastestream. A second mesocosm (designated generic) was constructed at Clemson University using local soil, cultured S. californicus, and local municipal water amended with CuSO{sub 4}. Performance objectives were to achieve 22 m g/L total copper and no toxicity (Ceriodaphnia dubia Richard, 7-d/static/ renewal) in wetland outflows. Total inflow copper to the site-specific and generic mesocosms ranged from non-detect to 87 {micro} g/L and from 27 to 68 {micro} g/L, respectively. Overall total copper removal was 40% ({+-}33) for the site-specific mesocosm and 73% ({+-}14) for the generic mesocosm. In seven of nine monthly toxicity tests, C. dubia reproduction was significantly decreased ({alpha} = 0.05) in outflow of the site-specific mesocosm. No outflow toxicity was observed for the generic mesocosm. Although performance of the two mesocosms differed, both studies contributed to full-scale design by highlighting critical aspects of wetland function and augmenting operation and maintenance plans, enhancing overall constructed wetland design.

  2. Impact of flood damage on pollutant removal efficiencies of a subtropical urban constructed wetland.

    PubMed

    Ko, Chun-Han; Chang, Fang-Chih; Lee, Tsai-Ming; Chen, Pen-Yuan; Chen, Hsin-Hsiung; Hsieh, Hwey-Lien; Guan, Chung-Yu

    2010-09-15

    Typhoons and hurricanes in subtropical/tropical regions can induce significant environmental changes (e.g., mass flooding and inundations). However, the damage to the pollutant removal efficiencies of constructed wetlands brought about by these natural disturbances has been neglected in major studies conducted in temperate climates. Therefore, this study compares the pollutant removal performance of a constructed wetland in the Danshui River Basin, before and after the system was inundated with flooding from Typhoon Krosa in 2007. The pollutant removal performance of the free water surface (FWS) constructed wetland was investigated monthly from September 2006 to April 2008. Results of the study demonstrated that this FWS wetland effectively removed 64.3% BOD, 98.9% NH(4)-N, and 39.5% Total-P before Typhoon Krosa. However, the extensive flooding caused by Typhoon Krosa swept over most of the aboveground plant community and deposited the sediment onto the bottom of each compartment. Subsequently, reduced pollutant removal efficiencies were observed. Only 37.7% BOD, 35.1% NH(4)-N, and 31.8% Total-P were removed after this event, although the flow regime was immediately restored. Comparing the water quality data for the FWS wetland before and after Typhoon Krosa revealed the immediate, quantitative damage to the pollutant removal performance caused by the typhoon's inundation. Consequently, a high-flow bypass and additional preventive measures would protect any constructed wetland in areas subject to typhoons. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water.

    PubMed

    Groh, Tyler A; Gentry, Lowell E; David, Mark B

    2015-05-01

    Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment.

    PubMed

    Papaevangelou, Vassiliki A; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2017-02-01

    The current experimental work aimed at the investigation of the overall chromium removal capacity of constructed wetlands (CWs) and the chromium fate-distribution within a wetland environment. For this purpose, the experimental setup included the parallel operation and monitoring of two horizontal subsurface flow (HSF) pilot-scale CWs and two vertical flow (VF) pilot-scale CWs treating Cr-bearing wastewater. Samples were collected from the influent, the effluent, the substrate and the plants. Apart from the continuous experiment, batch experiments (kinetics and isotherm) were conducted in order to investigate the chromium adsorption capacity of the substrate material. According to the findings, HSF-CWs demonstrated higher removal capacities in comparison to VF-CWs, while in both types the planted units indicated better performance compared to the unplanted ones. Analysis in various wetland compartments and annual mass balance calculation highlighted the exceptional contribution of substrate to chromium retention, while Cr accumulation in plant was not so high. Finally, experimental data fitted better to the pseudo-second-order and Langmuir models regarding kinetics and isotherm simulation.

  5. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    PubMed

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  6. Spatial pattern analysis for water quality in free-surface constructed wetland.

    PubMed

    Mohammadpour, Reza; Shaharuddin, Syafiq; Chang, Chun Kiat; Zakaria, Nor Azazi; Ab Ghani, Aminuddin

    2014-01-01

    Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a wide range of pollutants in wastewater and stormwater before discharge into natural water. In this study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling stations twice a month for 13 months. All sampling stations were classified by HACA into three clusters, with high, moderate, and low pollution areas. To improve the water quality, the performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of this study include potential savings of time and cost for long-term data monitoring purposes in the free-constructed wetland.

  7. A bench-scale constructed wetland as a model to characterize benzene biodegradation processes in freshwater wetlands.

    PubMed

    Rakoczy, Jana; Remy, Benjamin; Vogt, Carsten; Richnow, Hans H

    2011-12-01

    In wetlands, a variety of biotic and abiotic processes can contribute to the removal of organic substances. Here, we used compound-specific isotope analysis (CSIA), hydrogeochemical parameters and detection of functional genes to characterize in situ biodegradation of benzene in a model constructed wetland over a period of 370 days. Despite low dissolved oxygen concentrations (<30 μM), the oxidation of ammonium to nitrate and the complete oxidation of ferrous iron pointed to a dominance of aerobic processes, suggesting efficient oxygen transfer into the sediment zone by plants. As benzene removal became highly efficient after day 231 (>98% removal), we applied CSIA to study in situ benzene degradation by indigenous microbes. Combining carbon and hydrogen isotope signatures by two-dimensional stable isotope analysis revealed that benzene was degraded aerobically, mainly via the monohydroxylation pathway. This was additionally supported by the detection of the BTEX monooxygenase gene tmoA in sediment and root samples. Calculating the extent of biodegradation from the isotope signatures demonstrated that at least 85% of benzene was degraded by this pathway and thus, only a small fraction was removed abiotically. This study shows that model wetlands can contribute to an understanding of biodegradation processes in floodplains or natural wetland systems.

  8. [Removal efficiency of C and N in micro-polluted river through a subsurface-horizontal flow constructed wetlands].

    PubMed

    Yang, Xin-ping; Zhou, Li-xiang; Dai, Yuan-yuan; Cui, Chun-hong

    2008-08-01

    A subsurface-horizontal flow constructed wetlands (CWs) planted with reed was used to treat micro-polluted river water in this study with an aim to investigate the long-term treatment efficiency of CWs especially for organic C and N. Average data obtained from two-year plant growth season showed that performance of the wetlands appeared to be affected by both establishment/maturation factors and year-to-year climatic variations. The results displayed that the removal of C and N in the influent depended, to a certain extend, on plant growth and seasonal variations, especially for total N removal. It was observed that C removal occurred mainly in the front of CWs in the first-year's operation period and then was translocated to the rear end of wetlands in the second-year's operation period. C/N ratio in the influent was 5 or more, indicating enough C source supply for denitrification. Organic C removal efficiencies varied from 6.10% to 37.83% throughout the trial. Average total N removal efficiency of 15.51% in the first-year operation period and then declined to 8.61% in the second year. The highest removal efficiency of total N was below 40% throughout the two-year trial. It was found that nitrification and denitrification reached dynamic equilibrium at the middle of the wetlands where the highest total N removal efficiency occurred. The greatest oxygen consumption was observed in the front and middle of CWs. It was noted that nitrification occurred even in deep layer located in the rear end of the wetlands in the second-year operation period. Nitrification and denitrification occurred concurrently with C and total N removal along the stream way. Low-molecular-weight organic acids released from reed rhizosphere seemed to have a significant inhibitory effect on chemoautrophic nitrifying bacteria, which involved in nitrogen removal efficiency of the wetlands, particularly during spring and autumn.

  9. Establishment of vegetation in constructed wetlands using biosolids and quarry fines

    SciTech Connect

    Danehy, T.P.; Zick, R.; Brenner, F.; Chmielewski, J.; Dunn, M.H.; Cooper, D.C.

    1999-07-01

    A common problem with constructing wetlands on abandoned mine sties is the lack of adequate soil needed to establish vegetation. One component of a full-scale passive treatment system built at Jennings Environmental Education Center in Brady Township, Butler County, PA addressed this issue through the development of a field trial to find an inexpensive alternative substrate for wetland plants. A simple soil recipe was followed which called for the mixing of an inorganic material with a nutrient-rich organic material. The inorganic constituent used was silt-size pond cleanings from a sand and gravel operation. The organic material used was a composted product made from exceptional-quality biosolids. Both soil components were obtained from local sources (less than 16 kilometers (12 miles) from the site) and mixed on site with a Caterpillar 963 track loader. The soil was used to construct a channel wetland 3 meters (10 feet) wide by 61 meters (200 feet) long. A seed mixture which contained 24 different wetland plant species native to western Pennsylvania was added to the substrate prior to releasing the water from the vertical flow system into the wetland. After one year, the vegetation was studied to determine the percent cover and species composition in order to document the effectiveness of this method of wetland construction. The preliminary results of this study indicate that this is an effective means to establish and sustain wetland vegetation. The addition of a fabricated substrate consisting of composted biosolids and silt can be a very effective method to establish dense and diverse vegetation in a constructed wetland.

  10. Emergy-based evaluation of system sustainability and ecosystem value of a large-scale constructed wetland in North China.

    PubMed

    Zhang, Yiran; Liu, Jian; Zhang, Jian; Wang, Renqing

    2013-07-01

    Constructed wetland has been widely adopted to deal with degraded natural wetlands and water bodies; thus, more attention should be focused on ecological-economic sustainability and ecological efficiency of these projects for long-term success. Emergy accounting was conducted to investigate the energy and resource flows in constructed wetlands during the restoration process. Emergy-based indexes were adopted to evaluate the sustainability of a pilot large-scale constructed wetland in a large wetland restoration project in North China, carried out to enhance the river water quality and offset the degradation of natural wetland. Emergy and emdollar values for ecosystem services and natural capital were also calculated. The results showed that when outflow was considered as the product, the studied large-scale constructed wetland was more self-supporting and could be operated with lesser financial investment, although the waste treatment efficiency and the sustainability index were lower than conventional small-scale treatment constructed wetlands. Compared with natural wetlands, more visits from tourists and lesser financial investment coming in as feedback into the wetland would reduce system environment loading and promote system self-support ability, ultimately generating sustainability. In addition, the studied large-scale constructed wetland can effectively simulate energy and resource flows of natural wetland ecosystem and contribute a roughly equal value of ecosystem services in term of gross primary production. The studied large-scale constructed wetland can successfully achieve ecosystem functions as replacement for natural wetland and hasten the restoration process, although the restoration effectiveness of ecosystem structures in terms of living biomass and water using emergy-value accounting is still inconclusive.

  11. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    PubMed

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  12. Removal of pathogenic and indicator microorganisms by a constructed wetland receiving untreated domestic wastewater.

    PubMed

    Quiñónez-Díaz, M J; Karpiscak, M M; Ellman, E D; Gerba, C P

    2001-01-01

    Wetlands containing floating, emergent and submergent aquatic plants, and other water-tolerant species have been found to economically provide a mechanism of enhancing the quality of domestic wastewater. The use of constructed wetlands for the removal of indicator bacteria (total and fecal coliforms), coliphages, protozoan parasites (Giardia and Cryptosporidium) and enteric viruses was investigated. A pilot scale constructed wetland consisting of two cells, one planted with bulrush and the other unplanted bare sand, were used to compare their efficiency in removing pathogens from raw sewage. Overall more than 90 percent of all microorganisms studied were removed by either of the two systems with a 1 to 2 day retention time. Removal of all mentioned microorganisms was greater from the surface flow in the unplanted cell than in the planted cell, except for Giardia and Cryptosporidium, although the differences were not statistically significant. Enteric viruses, coliphages and indicator bacteria were found to penetrate 2 m below the surface, although concentrations were reduced by greater than 99 percent in both cells. Less virus penetration into the sand occurred in the planted wetland versus the unplanted wetland. Water temperature was found to be the most important factor in the removal of enteric bacteria and viruses, while turbidity reduction was related to Giardia removal. These results demonstrate that significant reductions of pathogenic microorganisms can occur in constructed wetlands receiving untreated domestic wastewater with only a 1-2 day retention time.

  13. Performance of a vertical subsurface flow (VSF) wetland treatment system using woodchips to treat livestock stormwater.

    PubMed

    Niu, Siping; Guerra, Heidi B; Chen, Yaoping; Park, Kisoo; Kim, Youngchul

    2013-08-01

    This study was conducted to develop a vertical subsurface flow (VSF) wetland remediation system packed with woodchips to control stormwater pollution arising from livestock agriculture. Three lab-scale VSF wetlands were operated with recirculation during the interval (Δ) between storms as 2, 4 and 8 days, respectively. The fed water was 100% recirculated one time per 24 h; the recirculation frequency was 1, 3 and 7 times at Δ of 2, 4 and 8 days, respectively. The constructed wetland systems proved to be effective in reducing total suspended solid (TSS), but also had potential for increasing TSS in the effluent due to the properties of the woodchips. The release of organic matter, especially in the dissolved form, occurred during the initial 60 days. The removal efficiencies of total nitrogen (TN) were 26.2%, 34.1% and 50.0% at Δ of 2, 4 and 8 days, respectively. Nitrification was promoted by the abundant oxygen supplied when the water in wetland was recirculated and fed into the wetland. Denitrification was stable and effective due to the availability of carbon sources. The influent total phosphorus (TP) was reduced from an average of 2.05 mg L(-1) to 1.79 mg L(-1), 1.36 mg L(-1) and 0.86 mg L(-1) at Δ as 2, 4 and 8 days, respectively. The result shows that woodchips can be used as substrate material for VSF wetland treatment systems to control nutrient influx from livestock stormwater.

  14. [Correlation of substrate structure and hydraulic characteristics in subsurface flow constructed wetlands].

    PubMed

    Bai, Shao-Yuan; Song, Zhi-Xin; Ding, Yan-Li; You, Shao-Hong; He, Shan

    2014-02-01

    The correlation of substrate structure and hydraulic characteristics was studied by numerical simulation combined with experimental method. The numerical simulation results showed that the permeability coefficient of matrix had a great influence on hydraulic efficiency in subsurface flow constructed wetlands. The filler with a high permeability coefficient had a worse flow field distribution in the constructed wetland with single layer structure. The layered substrate structure with the filler permeability coefficient increased from surface to bottom could avoid the short-circuited flow and dead-zones, and thus, increased the hydraulic efficiency. Two parallel pilot-scale constructed wetlands were built according to the numerical simulation results, and tracer experiments were conducted to validate the simulation results. The tracer experiment result showed that hydraulic characteristics in the layered constructed wetland were obviously better than that in the single layer system, and the substrate effective utilization rates were 0.87 and 0.49, respectively. It was appeared that numerical simulation would be favorable for substrate structure optimization in subsurface flow constructed wetlands.

  15. Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland.

    PubMed

    Mulling, Bram T M; van den Boomen, Rob M; van der Geest, Harm G; Kappelhof, Joost W N M; Admiraal, Wim

    2013-03-01

    Constructed wetlands (CWs) have been shown to improve the water quality of treated wastewater. The capacity of CWs to reduce nutrients, pathogens and organic matter and restore oxygen regime under normal operating conditions cannot be extrapolated to periods of incidental peak discharges. The buffering capacity of CWs during peak discharges is potentially a key factor for water quality in the receiving waters. Therefore, the aim of the present study was to investigate the behaviour of peak discharges of suspended particles, (associated) physiochemical parameters and pathogenic organisms from a wastewater treatment plant (WWTP) in a full scale constructed wetland (CW). By mixing clarified water and sludge rich water from the settlement tank of the WWTP, the suspended particle concentration was increased for 8 h from ± 3.5 to ± 230 mg L(-1), and discharged into a full scale horizontal surface flow constructed wetland. An increase of suspended particle concentration following the peak discharge concurred with increases in turbidity and oxygen demand, total nutrient load (nitrogen, phosphorus and carbon) and pathogens (Escherichia coli and Enterococci). Temperature, pH, conductivity and dissolved nutrient concentrations (nitrogen, phosphorus and carbon) were however unaffected by the initial peak discharge. After retention in the unvegetated ponds (the first CW compartment) the applied suspended particle peak with a total load of 86.2 kg was reduced by >99%. Similar peak buffering was observed for the turbidity, oxygen demand and settable volume. Simultaneously dissolved nutrient concentrations increased, indicating partial mineralization of the suspended particles during retention in the unvegetated ponds. The peak buffering of pathogens was lower (40-84%), indicating differences in removal processes between other suspended particles and pathogens. The results indicated that the suspended particles were probably mostly removed by sedimentation and mineralization

  16. Removal of antibiotics from urban wastewater by constructed wetland optimization.

    PubMed

    Hijosa-Valsero, María; Fink, Guido; Schlüsener, Michael P; Sidrach-Cardona, Ricardo; Martín-Villacorta, Javier; Ternes, Thomas; Bécares, Eloy

    2011-04-01

    Seven mesocosm-scale constructed wetlands (CWs), differing in their design characteristics, were set up in the open air to assess their efficiency to remove antibiotics from urban raw wastewater. A conventional wastewater treatment plant (WWTP) was simultaneously monitored. The experiment took place in autumn. An analytical methodology including HPLC-MS/MS was developed to measure antibiotic concentrations in the soluble water fraction, in the suspended solids fraction and in the WWTP sludge. Considering the soluble water fraction, the only easily eliminated antibiotics in the WWTP were doxycycline (61±38%) and sulfamethoxazole (60±26%). All the studied types of CWs were efficient for the removal of sulfamethoxazole (59±30-87±41%), as found in the WWTP, and, in addition, they removed trimethoprim (65±21-96±29%). The elimination of other antibiotics in CWs was limited by the specific system-configuration: amoxicillin (45±15%) was only eliminated by a free-water (FW) subsurface flow (SSF) CW planted with Typha angustifolia; doxycycline was removed in FW systems planted with T. angustifolia (65±34-75±40%), in a Phragmites australis-floating macrophytes system (62±31%) and in conventional horizontal SSF-systems (71±39%); clarithromycin was partially eliminated by an unplanted FW-SSF system (50±18%); erythromycin could only be removed by a P. australis-horizontal SSF system (64±30%); and ampicillin was eliminated by a T. angustifolia-floating macrophytes system (29±4%). Lincomycin was not removed by any of the systems (WWTP or CWs). The presence or absence of plants, the vegetal species (T. angustifolia or P. australis), the flow type and the CW design characteristics regulated the specific removal mechanisms. Therefore, CWs are not an overall solution to remove antibiotics from urban wastewater during cold seasons. However, more studies are needed to assess their ability in warmer periods and to determine the behaviour of full-scale systems. Copyright

  17. Environmental factors influencing survival of threespine stickleback (Gasterosteus aculeatus) in a multipurpose constructed treatment wetland in southern California.

    PubMed

    Walton, William E; Wirth, Margaret C; Workman, Parker D

    2007-06-01

    Survival of the threespine stickleback, Gasterosteus aculeatus, differed among marshes in a demonstration 9.9-ha multipurpose constructed treatment wetland designed to improve the quality of secondary-treated municipal wastewater in southern California. At a mean loading rate of 3.3 kg NH4-N ha(-1) d(-1) (6 kg total N ha(-1) d(-1)), the suitability of the wetland to support a population of sticklebacks was estimated to be low. The development of potentially toxic levels of un-ionized ammonia, particularly during periods when pH increased concomitantly with oxygen generation by phytoplankton biomass > 300 mg chlorophyll a liter(-1), and disinfection by-products were associated with lowered survivorship of sentinel fish. Moreover, the high oxygen demand from nitrification of NH4-N created daily periods of low dissolved oxygen concentration (6-16 h at < 2 mg liter(-1)) in the open water areas of the shallow marshes. Low dissolved oxygen concentration in open water zones of the seven marshes during a part of each day and persistent anaerobic conditions in the emergent vegetation rendered the majority of the wetland's substrate surface unavailable for successful reproduction by sticklebacks. The potential sites for Gasterosteus to replace mosquitofish, Gambusia affinis and G. holbrooki, as a biological control agent against mosquitoes are probably limited to comparatively cool-water habitats with high water quality, such as riverine wetlands.

  18. COD, nutrient removal and disinfection efficiency of a combined subsurface and surface flow constructed wetland: A case study.

    PubMed

    Sartori, Laura; Canobbio, Sergio; Fornaroli, Riccardo; Cabrini, Riccardo; Marazzi, Francesca; Mezzanotte, Valeria

    2016-01-01

    A constructed wetland system composed of a subsurface flow wetland, a surface flow wetland and a facultative pond was studied from July 2008 until May 2012. It was created to treat the domestic sewage produced by a hamlet of 150 inhabitants. Monthly physicochemical and microbiological analyses were carried out in order to evaluate the removal efficiency of each stage of the process and of the total treatment system. Pair-wise Student's t-tests showed that the mean removal of each considered parameter was significantly different (α = 0.05) between the various treatment phases. Two-way ANOVA and Tukey's HSD tests were used to find significant differences between wetland types and seasons in the removal efficiency of the considered water quality parameters. Significant differences in percent removal efficiency between the treatment phases were observed for total phosphorus, total nitrogen, ammonia nitrogen and organic load (expressed as Chemical Oxygen Demand). In general, the wastewater treatment was carried by the sub-superficial flow phase mainly, both in growing season and in quiescence season. Escherichia coli removal ranged from 98% in quiescence season to >99% in growing season (approximately 2-3 orders of magnitude). The inactivation of fecal bacteria was not influenced by the season, but only by the treatment phase.

  19. Effects of a constructed wetland and pond system upon shallow groundwater quality

    Treesearch

    Ying Ouyang

    2013-01-01

    Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from...

  20. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    PubMed

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.

  1. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    SciTech Connect

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  2. Ceriodaphnia and Chironomus in situ toxicity tests assessing the wastewater treatment efficacy of constructed wetlands

    SciTech Connect

    Barjaktarovic, L.; Nix, P.; Gulley, J.

    1995-12-31

    In situ toxicity tests were designed for Ceriodaphnia dubia and Chironomus tentans as part of a larger study designed to assess the effectiveness of constructed wetlands for the treatment of wastewater produced by oil production at Suncor OSG. The artificial wetlands were 50m long by 3m wide, with three replicates of the control and the treatment. Each wetland had four sample sites equidistant along its length, creating a gradient of treatment from site A being the most toxic to site D being the least toxic. Each test was conducted twice during the summer of 1994. Both the Ceriodaphnia and Chironomus test cages were a flow through design to allow for maximal exposure to the water within the wetlands. Mortality and reproduction were used as endpoints for Ceriodaphnia, whereas mortality and growth were used as endpoints for the Chironomus test. Test durations were fifteen and ten days respectively. Chironomus had very high mortality along the entire wetlands whereas Ceriodaphnia survival and fecundity increased along the length of the treatment wetlands. Both organisms had low mortality and high growth/fecundity in the control wetlands.

  3. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    SciTech Connect

    Albers, P.H.; Camardese, M.B. . Patuxent Wildlife Research Center)

    1993-06-01

    Compared were concentrations of Al,Cd,Ca,Cu,Fe,Hg,Pb,Mg,Mn,Ni,P, and Zn in water, plants and aquatic insects of three acidified (pH [approximately] 5.0) and three nonacidified (pH [approximately] 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicated that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threatened egg production and development of young.

  4. Wetlands.

    ERIC Educational Resources Information Center

    Nelson, Patricia L.

    1986-01-01

    Suggests studying New York's wetlands, both in the classroom and in the field, to illustrate ecological concepts of diversity, succession, and adaptation and to learn about their importance in controlling flooding, erosion, and pollution. (NEC)

  5. Wetlands.

    ERIC Educational Resources Information Center

    Nelson, Patricia L.

    1986-01-01

    Suggests studying New York's wetlands, both in the classroom and in the field, to illustrate ecological concepts of diversity, succession, and adaptation and to learn about their importance in controlling flooding, erosion, and pollution. (NEC)

  6. BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands.

    PubMed

    Toro-Vélez, A F; Madera-Parra, C A; Peña-Varón, M R; Lee, W Y; Bezares-Cruz, J C; Walker, W S; Cárdenas-Henao, H; Quesada-Calderón, S; García-Hernández, H; Lens, P N L

    2016-01-15

    It has been recognized that numerous synthetic compounds like Bisphenol A (BPA) and nonylphenols (NP) are present in effluents from wastewater treatment plants (WWTP) at levels of parts per billion (μg L(-1)) or even parts per trillion (ng L(-1)) with a high potential to cause endocrine disruption in the aquatic environment. Constructed wetlands (CW) are a cost-effective wastewater treatment alternative with promising performance to treat these afore mentioned compounds. This research was aimed to evaluate the efficacy of CW treatment of WWTP effluent for mitigating the effects endocrine disrupting compounds (EDCs). This research goal was accomplished by (1) quantifying the removal of BPA and NP in CWs; (2) isolating CW fungal strains and testing for laccase production; and (3) performing endocrine disruption (reproduction) bioassays using the fruit fly Drosophila melanogaster. Three pilot scale horizontal subsurface flow constructed wetlands (HSSF-CW) were operated for eight weeks: one planted with Phragmites australis; one planted with Heliconia psitacorum; and one unplanted. The Heliconia CW showed a removal efficiency of 73.3(± 19%) and 62.8(± 20.1%) for BPA and NP, respectively; while the Phragmites CW demonstrated a similar removal for BPA (70.2 ± 27%) and lower removal efficiency for NP 52.1(± 37.1%).The unplanted CW achieved 62.2 (± 33%) removal for BPA and 25.3(± 37%) removal for NP. Four of the eleven fungal strains isolated from the Heliconia-CW showed the capacity to produce laccase. Even though complete removal of EDCs was not achieved by the CWs, the bioassay confirmed a significant improvement (p < 0.05) in fly viability for all CWs, with Heliconia sp. being the most effective at mitigating adverse effects on first and second generational reproduction. This study showed that a CW planted with a native Heliconia sp. CW demonstrated a higher removal of endocrine disrupting compounds and better mitigation of reproductive disruption in the

  7. Management and treatment of landfill leachate by a system of constructed wetlands and ponds in Singapore.

    PubMed

    Sim, C H; Quek, B S; Shutes, R B E; Goh, K H

    2013-01-01

    Lorong Halus, Singapore's first landfill leachate treatment system, consists of a pre-treatment system (8,000 m(2)), five constructed reed beds (38,000 m(2)), five polishing ponds (13,000 m(2)), an education centre and a learning trail for visitors. Eight species of wetland plants (total 160,000 plants) were selected for their ability to uptake nutrients, tolerance to low phosphorus concentrations and resistance to pest infestations. The wetland was launched in March 2011 and water quality monitoring started in April 2011. The removal efficiencies of the pre-treatment system from April 2011 to August 2012 are biochemical oxygen demand (BOD5) 57.4%; chemical oxygen demand (COD) 23.6%; total suspended solids (TSS) 55.1%; ammoniacal nitrogen (NH4-N) 76.8%; total phosphorus (TP) 33.3% and total nitrogen (TN) 60.2%. Removal efficiencies of the reed beds are BOD5 47.0%; COD 42.2%; TSS 57.0%; NH4-N 82.5%; TP 29.3% and TN 83.9%. Plant growth is generally satisfactory, but the lower than designed volume of leachate has adversely affected some sections of plants and resulted in uneven flow distribution in reed beds. The plant management programme includes improving plant regrowth by harvesting of alternate strips of plants and replanting. The treated effluent meets water quality limits for discharge to the public sewer and is subsequently treated by the NEWater treatment system, which recycles water for industrial and indirect potable use.

  8. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.

    PubMed

    Chen, Jun; Wei, Xiao-Dong; Liu, You-Sheng; Ying, Guang-Guo; Liu, Shuang-Shuang; He, Liang-Ying; Su, Hao-Chang; Hu, Li-Xin; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-09-15

    This study aimed to assess removal potential of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale horizontal subsurface-flow constructed wetlands (CWs) planted Cyperus alternifolius L. with different design parameters. Twelve CWs with three hydraulic loading rates (HLR 10, 20 and 30cm/day) and four substrates (oyster shell, zeolite, medical stone and ceramic) were set up in order to select the best optimized wetland. The result showed that 7 target antibiotics compounds including erythromycin-H2O, lincomycin, monensin, ofloxacin, sulfamerazine, sulfamethazine and novobiocin were detected, and all selected 18 genes (three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), three quinolone resistance genes (qnrB, qnrD and qnrS) and four chloramphenicol resistance genes (cmlA, fexA, fexB and floR)) and two integrase genes (int1 and int2) were positively detected in the domestic wastewaters. The aqueous removal rates of the total antibiotics ranged from17.9 to 98.5%, while those for the total ARGs varied between 50.0 and 85.8% by the mesocosm-scale CWs. After considering their aqueous removal rates in combination with their mass removals, the CW with zeolite as the substrate and HLR of 20cm/day was selected as the best choice. Combined chemical and biological analyses indicate that both microbial degradation and physical sorption processes were responsible for the fate of antibiotics and ARGs in the wetlands. The findings from this study suggest constructed wetlands could be a promising technology for the removal of emerging contaminants such as antibiotics and ARGs in domestic wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of a constructed wetland treatment system specifically designed to decrease bioavailable copper in a wastestream.

    PubMed

    Murray-Gulde, Cynthia L; Bearr, Jonathan; Rodgers, John H

    2005-05-01

    A specifically designed constructed wetland decreased copper concentrations in a wastestream to 22 microg Cu/L and eliminated associated toxicity. Metal toxicity is a function of both concentration and form. This research measured copper partitioning to ligands within the wetland and observed changes in copper form with regard to bioavailability. Average monthly copper concentrations in the constructed wetland treatment system ranged from 10 to 47 microg/L in the upstream (i.e., inflow to the constructed wetland prior to the retention basin) and from non-detection to 11 microg/L in the downstream (i.e., outflow to the receiving stream). On average, 78% total-recoverable, 85% acid-soluble, and 83% soluble copper were removed from inflow to outflow of this constructed wetland; however, total recoverable and acid-soluble copper measurements were not useful indicators of bioavailable copper. Survival of Ceriodaphnia dubia increased from an average of 2% survival in the inflow to 96% in the outflow and reproduction increased from an average of 8 to 24 neonates/female, respectively. Soluble copper is a more accurate predictor of the concentration at which effects were observed. Average ratio of acid volatile sulfides to simultaneously extractable metals was 1.4: 0.06 micromol/g indicating sufficient sulfides to sequester available metals in the system.

  10. Treatment of atrazine in nursery irrigation runoff by a constructed wetland.

    PubMed

    Runes, Heather B; Jenkins, Jeffrey J; Moore, James A; Bottomley, Peter J; Wilson, Bruce D

    2003-02-01

    To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain.

  11. Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland.

    PubMed

    Bai, Yaohui; Liang, Jinsong; Liu, Ruiping; Hu, Chengzhi; Qu, Jiuhui

    2014-01-01

    Microbial communities play a critical role in the degradation of effluent contaminants in constructed wetlands. Many questions remain, however, regarding the role ofmicrobial communities in rhizospheric soil. In this study, we used metagenomic analysis to assess microbial community composition and function in a constructed wetland receiving surface water. The diversity of the microbial community of rhizosphere soil was found to be significantly greater than that of the wetland influent water. This enhancement is likely due to the availability of diverse habitats and nutrients provided by the wetland plants. From function annotation of metagenomic data, a number of biodegradation pathways associated with 14 xenobiotic compounds were identified in soil. Nitrogen fixation, nitrification and denitrification genes were semi-quantitatively analysed. By screening of manganese transformation genes, we found that the biological oxidation of Mn2+ (mainly catalysed by multicopper oxidase) in the influent water yielded insoluble Mn4+, which subsequently precipitated and were incorporated into the wetland soil. These data show that the use of metagenomic analysis can provide important new insights for the study of wetland ecosystems and, in particular, how biologically mediated transformation or degradation can be used to reduce contamination of point and non-point source wastewater.

  12. Characterization of Microbial Communities and Composition in Constructed Dairy Wetland Wastewater Effluent

    PubMed Central

    Ibekwe, A. Mark; Grieve, Catherine M.; Lyon, Stephen R.

    2003-01-01

    Constructed wetlands have been recognized as a removal treatment option for high concentrations of contaminants in agricultural waste before land application. The goal of this study was to characterize microbial composition in two constructed wetlands designed to remove contaminants from dairy washwater. Water samples were collected weekly for 11 months from two wetlands to determine the efficiency of the treatment system in removal of chemical contaminants and total and fecal coliforms. The reduction by the treatment was greatest for biological oxygen demand, suspended solids, chemical oxygen demand, nitrate, and coliforms. There was only moderate removal of total nitrogen and phosphorus. Changes in the total bacterial community and ammonia-oxidizing bacterial composition were examined by using denaturing gradient gel electrophoresis (DGGE) and sequencing of PCR-amplified fragments of the gene carrying the α subunit of the ammonia monooxygenase gene (amoA) recovered from soil samples and DGGE bands. DGGE analysis of wetlands and manure samples revealed that the total bacterial community composition was dominated by bacteria from phylogenetic clusters related to Bacillus, Clostridium, Mycoplasma, Eubacterium, and Proteobacteria originally retrieved from the gastrointestinal tracts of mammals. The population of ammonia-oxidizing bacteria showed a higher percentage of Nitrosospira-like sequences from the wetland samples, while a higher percentage of Nitrosomonas-like sequences from manure, feces, raw washwater, and facultative pond was found. These results show that the wetland system is a natural process dependent upon the development of healthy microbial communities for optimal wastewater treatment. PMID:12957887

  13. Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands.

    PubMed

    Wang, Yanhua; Yang, Hao; Ye, Chun; Chen, Xia; Xie, Biao; Huang, Changchun; Zhang, Jixiang; Xu, Meina

    2013-03-01

    Methane (CH(4)) emission from constructed wetland has raised environmental concern. This study evaluated the influence of mono and polyculture constructed wetland and seasonal variation on CH(4) fluxes. Methane emission data showed large temporal variation ranging from 0 to 249.29 mg CH(4) m(-2) h(-1). Results indicated that the highest CH(4) flux was obtained in the polyculture system, planted with Phragmites australis, Zizania latifolia and Typha latifolia, reflecting polyculture system could stimulate CH(4) emission. FISH analysis showed the higher amount of methanotrophs in the profile of Z. latifolia in both mono and polyculture systems. The highest methanogens amount and relatively lower methanotrophs amount in the profile of polyculture system were obtained. The results support the characteristics of CH(4) fluxes. The polyculture constructed wetland has the higher potential of global warming.

  14. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration.

    PubMed

    Yang, Zhongchen; Yang, Luhua; Wei, Caijie; Wu, Weizhong; Zhao, Xufei; Lu, Ting

    2017-08-04

    In this study, the performances of nitrogen removal in constructed wetlands using solid carbon source with limited aeration were investigated. The blends of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polyacetic acid (PLA) were used as the carbon source and biofilm support. The performances of nitrogen removal, microbial abundance and microbial community structure in the biofilm attached on PHBV/PLA were investigated. Higher ammonia removal efficiency (91.00%) and total nitrogen removal efficiency (97.03%) than non-aerated constructed wetland (System NA) were achieved in constructed wetland with limited aeration (System A). The limited aeration decreased the average concentrations of COD in effluent. And, System A had higher microbial abundance than System NA. Pyrosequencing analysis showed that denitrifying bacteria Brevinema (41.85%) and Thiothrix (12.33%) were the predominant genus in the biofilm attached on the carbon source in System NA and System A, respectively. Copyright © 2017. Published by Elsevier Ltd.

  15. Effects of constructed wetland system on the removal of dibutyl phthalate (DBP).

    PubMed

    Liang, Wei; Deng, Jia-qi; Zhan, Fa-cui; Wu, Zhen-bin

    2009-01-01

    Phthalic acid esters (PAEs) have become widely diffused in the environment via the manufacturing process. Numerous experiments have shown that the bioaccumulation of PAEs occurred in the aquatic and terrestrial food chain; meanwhile, it was found that some of PAEs were considered as potential carcinogens, teratogens and mutagens. In this research, two vertical/reverse-vertical flow constructed wetland systems were set up to study its removal efficiency of dibutyl phthalate (DBP) pollution. The results showed that the constructed wetland system could remove DBP effectively, and the removal rates reached nearly 100%. Substrate microorganism and enzymatic activities probably played key roles during DBP removal, and the removal of DBP probably mainly took place in the upper layer of chamber A in the constructed wetland systems.

  16. Aquatic macroinvertebrates associated with Schoenoplectus litter in a constructed wetland in California (USA)

    USGS Publications Warehouse

    Nelson, S.M.; Thullen, J.S.

    2008-01-01

    Culm processing characteristics were associated with differences in invertebrate density in a study of invertebrates and senesced culm packs in a constructed treatment wetland. Invertebrate abundance differed by location within the wetland and there were differences between the two study years that appeared to be related to water quality and condition of culm material. Open areas in the wetland appeared to be critical in providing dissolved oxygen (DO) and food (plankton) to the important invertebrate culm processor, Glyptotendipes. As culm packs aged, invertebrate assemblages became less diverse and eventually supported mostly tubificid worms and leeches. It appears from this study that wetland design is vital to processing of plant material and that designs that encourage production and maintenance of high DO's will encourage microbial and invertebrate processing of material.

  17. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    PubMed Central

    Zeb, Bibi Saima; Mahmood, Qaisar; Jadoon, Saima; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater. PMID:24396832

  18. Combined industrial wastewater treatment in anaerobic bioreactor posttreated in constructed wetland.

    PubMed

    Zeb, Bibi Saima; Mahmood, Qaisar; Jadoon, Saima; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78-82%, 91.7%, 88-92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater.

  19. Constructed wetlands to reduce diffuse pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Deasy, C.; Quinton, J. N.

    2009-04-01

    Across Europe, many rivers and lakes are polluted. Sediment can disturb aquatic ecosystems, and is associated with the transport of pesticides, pathogens, toxic metals and nutrients, including phosphorus (P). P is growth-limiting in freshwaters, and rivers and lakes may become eutrophic where concentrations are high, leading to algal blooms and loss of biodiversity. For example, in the UK, the Biodiversity Action Plan estimates that over 70% of lakes are eutrophic. Concern about water quality has resulted in EU policy drivers to protect rivers and lakes. Under the requirements of the Water Framework Directive (WFD), surface waters must achieve ‘good ecological and chemical condition' by 2015. Studies in the UK indicate that P concentrations need to be an order of magnitude lower in fresh waters to comply with the requirements of the WFD, and methods of controlling sediment and P inputs into surface waters are urgently required. Pollution sources such as sewage treatment works can be regulated, but non point (diffuse) sources are difficult to control. As agricultural activities have been estimated to account for 30% of P inputs to surface waters, controlling the transfer of diffuse pollutants in runoff from agricultural land is a priority for catchment managers. The use of in-field mitigation options such as reduced tillage has been found to be effective in the UK, but pollutants can still be lost from hillslopes unchecked via subsurface runoff pathways, some of which (e.g. field drains) may contribute very high loads of sediment and P to streams. Mitigation approaches, such as wetlands, which operate at the edge-of-field, where hillslope pathways have already discharged their pollutant loads into the receiving stream, are therefore essential. Over the next two years we will establish ten wetland sites in the UK and use these to: 1) reduce levels of sediment and nutrients leaving agricultural fields; 2) determine the effectiveness of different wetland designs for

  20. Polycyclic aromatic hydrocarbon migration from creosote-treated railway ties into ballast and adjacent wetlands

    Treesearch

    Kenneth M. Brooks

    2004-01-01

    Occasionally, creosote-treated railroad ties need to be replaced, sometimes in sensitive environments such as wetlands. To help determine if this is detrimental to the surrounding environment, more information is needed on the extent and pattern of creosote, or more specifically polycyclic aromatic hydrocarbon (PAH), migration from railroad ties and what effects this...

  1. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.

  2. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  3. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    SciTech Connect

    Zellmer, S.D. ); Rastorfer, J.R. . Dept. of Biological Sciences ANL Van Dyke, G.D. . Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  4. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland.

    PubMed

    Pan, Xu; Ping, Yunmei; Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types.

  5. Microbial diversity of bacteria, archaea, and fungi communities in a continuous flow constructed wetland for the treatment of swine waste

    USDA-ARS?s Scientific Manuscript database

    Contaminant removal in constructed wetlands may largely be a function of many microbial processes. However, information about bacterial, archaea, and fungi communities in constructed wetlands for the removal of swine waste is limited. In this study, we used 454/GS-FLX pyrosequencing to assess bacter...

  6. Assessing the impact of pipeline construction on coniferous wetlands in central Michigan with aerial photography

    NASA Technical Reports Server (NTRS)

    Kittleson, K. M.; Mcdavitt, M. E.

    1980-01-01

    The Remote Sensing Project at Michigan State University is using repetitive aerial photography to assess the impact of pipeline construction on coniferous wetlands in central Michigan. Preliminary results indicate that ponding, dieback, windthrow, and vegetation changes are readily detectable on medium-scale aerial photography. It is found that the major effect of the pipeline construction is the alteration of the water level, either by flooding or dessication. The most serious damage generally occurs when pipelines cross seepage and spiring wetland types; specific damage is related to the impoundment of the natural water flow, producing flooding on the upflow side of the pipeline and dessication of these wetlands below the pipeline rights-of-way.

  7. Relationships between Spatial Metrics and Plant Diversity in Constructed Freshwater Wetlands.

    PubMed

    Brandt, Erika C; Petersen, John E; Grossman, Jake J; Allen, George A; Benzing, David H

    2015-01-01

    The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland "cells" were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity.

  8. [Reduction of hyperspectral dimensions and construction of discriminating models for identifying wetland plant species].

    PubMed

    Liu, Xue-hua; Sun, Yan; Wu, Yan

    2012-02-01

    The present paper researched and analyzed the hyperspectral data of wetland plant species often occurred in Beijing. The methods of Mahalanobis Distance (MD) and principal component analysis (PCA) were mainly applied to reduce the dimensions of hyperspectral data and to analyze and extract the features of spectra. The authors use the extracted spectra to build identification models for identifying the wetland species. The authors then compared and evaluated the precisions of models and finally obtained the best discriminating model. The results showed that (1) the dimensions of hyperspectral data can be efficiently reduced by both MD and PCA methods. (2) The discriminating models established using the parameters extracted from the resulting spectra of MD and PCA could identify the wetland plants with high precisions of more than 90%. As a result, the conversion and usage of the hyperspectral data can help better understand and well extract the spectra of different wetland plants. Furthermore, the constructed discriminating models for wetland species could also be used in the future to guide us in mapping and monitoring of wetland ecosystem by applying the remote sensing data.

  9. Relationships between Spatial Metrics and Plant Diversity in Constructed Freshwater Wetlands

    PubMed Central

    Grossman, Jake J.; Allen, George A.; Benzing, David H.

    2015-01-01

    The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland “cells” were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity. PMID:26296205

  10. Reduction of Contaminants (Physical, Chemical, and Microbial) in Domestic Wastewater through Hybrid Constructed Wetland

    PubMed Central

    Sehar, Shama; Aamir, Rabia; Naz, Iffat; Ali, Naeem; Ahmed, Safia

    2013-01-01

    The current research was focused mainly on the designing and construction of efficient laboratory scale hybrid constructed wetland (HCW) for the treatment of domestic wastewater. Parameters like COD, BOD5, PO4, SO4, NO3, NO2, and pathogenic indicator microbes were monitored after hydraulic retention time (HRT) of 4, 8, 12, 16, and 20 days. Treatment efficiency of HCW kept on increasing with the increase in hydraulic retention time. Maximum efficiency of HCW was observed with a 20-day HRT, that is, 97.55, 97.5, 89.35, 80.75, 96.04, 91.52, and 98.6% reduction from the zero time value for COD, BOD5, PO4, SO4, NO3, NO2, and fecal coliforms, respectively. After 20 days' time, the treated water was free of almost all nutrients and microbial pollutants. Hence, increasing hydraulic retention time was found to ameliorate the operational competence of HCW. Thus HCW can serve as a promising technology for wastewater treatment and can be scaled up for small communities in the developing countries. PMID:23724336

  11. Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms.

    PubMed

    Milam, C D; Bouldin, J L; Farris, J L; Schulz, R; Moore, M T; Bennett, E R; Cooper, C M; Smith, S

    2004-10-01

    Wetland ecosystems have reduced ambient levels of various organic and metallic compounds, although their effectiveness on agricultural pesticides is not well documented. Five stations within each of two 10 x 50 m constructed wetlands (two vegetated, two nonvegetated) were selected to measure the fate and effects of methyl parathion (MeP). Following a simulated storm event (0.64 cm of rainfall), aqueous, sediment, and plant samples were collected and analyzed spatially (5, 10, 20, and 40 m from the inlet) and temporally (after 3-10 days) for MeP concentrations and for the impact of those concentrations on the aquatic fauna. Aqueous toxicity to fish decreased spatially and temporally in the vegetated mesocosm. Pimephales promelas survival was significantly reduced, to 68%, at the 10-m station of the nonvegetated wetlands (3 h postapplication), with pesticide concentrations averaging 9.6 microg MeP/L. Ceriodaphnia in both the vegetated and nonvegetated wetlands was sensitive (i.e., a significant acute response to MeP occurred) to pesticide concentrations through 10 days postapplication. Mean MeP concentrations in water ranged from 0.5 to 15.4 microg/L and from 0.1 to 27.0 microg/L in the vegetated and nonvegetated wetlands, respectively. Hyalella azteca aqueous tests resulted in significant mortality in the 5-m vegetated segment 10 days after exposure to MeP (2.2 microg/L). Solid-phase (10-day) sediment toxicity tests showed no significant reduction in Chironomus tentans survival or growth, except for the sediments sampled 3 h postapplication in the nonvegetated wetland (65% survival). Thereafter, midge survival averaged >87% in sediments sampled from both wetlands. These data suggest that wetlands play a significant role in mitigating the effect of MeP exposure in sensitive aquatic biota. Copyright 2004 Wiley Periodicals, Inc.

  12. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    PubMed

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  13. Biokinetic model for nitrogen removal in free water surface constructed wetlands.

    PubMed

    Gargallo, S; Martín, M; Oliver, N; Hernández-Crespo, C

    2017-06-01

    In this article, a mechanistic biokinetic model for nitrogen removal in free water surface constructed wetlands treating eutrophic water was developed, including organic matter performance due to its importance in nitrogen removal by denitrification. Ten components and fourteen processes were introduced in order to simulate the forms of nitrogen and organic matter, the mechanisms of autotrophic and heterotrophic microorganisms in both aerobic and anoxic conditions, as well as macrophytes nitrogen uptake and release. Dissolved oxygen was introduced as an input variable with a time step of 0.5days for mimicking eutrophic environments: aerobic conditions were assigned during daylight hours and anoxic conditions during the night. The sensitivity analysis showed that the most influential parameters were those related to the growth of heterotrophic and autotrophic microorganisms. The model was properly calibrated and validated in two full scale systems working in real conditions for treating eutrophic water from Lake L'Albufera (València). In the studied systems, ammonium was mainly removed by the growth of autotrophic microorganisms (nitrification) whereas nitrate was removed by the anoxic growth of heterotrophic microorganisms (denitrification). Macrophyte uptake removed between 9 and 19% of the ammonium entering to the systems, although degradation of dead standing macrophytes returned a significant part to water column.

  14. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.

    2017-02-01

    The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove

  15. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    PubMed

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.

  16. Use of Constructed Wetlands for Urban Stream Restoration: A CriticalAnalysis

    PubMed

    Helfield; Diamond

    1997-05-01

    / Investigation of a delta marsh restoration project proposed forthe Don River in Toronto, Ontario, underlines several concerns aboutconstructed wetland projects designed for water quality improvement andaquatic habitat enhancement. The Don is a highly urbanized river that hasundergone significant physiographic modifications and continually receives acomplex mixture of conventional, metallic, and organic contaminants frommultiple point and nonpoint sources. Rather than providing permanent removalof urban contaminants, wetland processes offer a limited capacity fortemporary storage of contaminant inputs, and potential reactions may actuallyproduce more toxic and/or bioavailable forms of some chemicals. Theseprocesses tend to result in the concentration of watershed contaminants inwetland vegetation and sediments. As the restored marsh would be availablefor spawning and feeding by aquatic fauna, the potential exists for chemicalbioconcentration and biomagnification through the aquatic community.Accordingly, wetland systems are not suited to the dual purposes of waterquality improvement and aquatic habitat enhancement. Upstream controls,including source reduction of contaminant inputs, are recommended asessential components of all constructed wetland projects.KEY WORDS: Constructed wetlands; Water quality; Ecological restoration;Don River

  17. The design of vegetative constructed wetlands for the treatment of highway runoff.

    PubMed

    Shutes, R B; Revitt, D M; Lagerberg, I M; Barraud, V C

    1999-09-01

    The Environment Agency for England and Wales are responsible for assessing the effects of highway runoff and for monitoring the treatment systems/procedures which have been introduced for the reduction of deleterious effects. The Agency is looking into the improvement of surface water management in terms of best management practices and plans to work in partnership with the Highways Agency to achieve this aim. Among the treatment options being considered are constructed wetlands. Draft Guidelines have been developed to provide information on their design. This paper describes procedures for carrying out an Environmental Sensitivity Analysis to determine whether treatment by a constructed wetland is appropriate. Information on water quality and quantity is required as well as the sensitivity of the receiving environment. The legislative position, particularly in relation to the discharge quality of the water and the conservation status of the receiving environment, needs also to be considered. The factors that will determine the most appropriate wetland design criteria include traffic loadings, road drainage area, land availability, cost and the size/extent and type of the receiving water body. The following structures are recommended for incorporation in the overall design; oil separator and silt trap, spillage containment, settlement pond, vegetative wetland and final settlement tank. The operation and maintenance procedures and the monitoring requirements for a functioning wetland are described.

  18. Comparative evaluation of three attached growth systems and a constructed wetland for in situ treatment of raw municipal wastewater.

    PubMed

    Loupasaki, E; Diamadopoulos, E

    2013-01-01

    The necessity to treat municipal wastewaters in situ, with a low cost, yet effective system, led to the research of alternative methods for wastewater treatment. Attached growth systems can be an alternative option. Three attached growth systems with different media substrate, a rockwool cubes unit, a Kaldnes rings unit and a plastic bottle caps unit were studied in comparison with a constructed wetland in order to evaluate their ability to treat raw municipal wastewater. The selection of the three different media was based on their high porosity and surface area, as well as their availability and price. Three different operating periods were carried out with variations in the organic loading rate and the feeding frequency. The units were fed intermittently with short resting periods, less than 32 h, and relative high mean organic loading rates of 70, 50 and 30 g chemical oxygen demand (COD)/(m2d), respectively for each operating period. The constructed wetland and the rockwool cubes unit were the most effective, with mean COD reduction as mass rate (mg/d) 88% and 88%, biological oxygen demand 78% and 76%, dissolved organic carbon 73% and 67%, and total suspended solids 91% and 92%, respectively. Total nitrogen reduction was significantly higher at the constructed wetland with mean reduction as mass rate 51%, 60% and 83% for each period, compared to 41%, 43% and 60%, respectively, of the rockwool cubes unit. This study showed that it is possible to design, build and operate in situ small and decentralized treatment systems by using readily available packing materials and with minimum wastewater pretreatment.

  19. Trace Metal Accumulation in Sediments and Benthic Macroinvertebrates before and after Maintenance of a Constructed Wetland

    EPA Science Inventory

    Periodic maintenance of stormwater best management practices (BMP) includes the removal of accumulated sediment. The resulting impact on trace metal concentrations of copper (Cu), lead (Pb), and zinc (Zn) in a constructed stormwater wetland BMP on Staten Island, NY was investiga...

  20. FREE-WATER DEPTH AS A MANAGEMENT TOOL FOR CONSTRUCTED WETLANDS

    EPA Science Inventory

    Marsh plants in constructed wetlands have shown the capacity to remove unwanted pollutants from storm water runoff. The plants can be established at the site from bare roots. However, plant growth from bare roots can be restricted by the elevated water depths. Using several wa...

  1. SEASONAL MONITORING OF ELEMENTS AT THREE CONSTRUCTED TREATMENT WETLANDS: 1999-2001

    EPA Science Inventory

    A suite of major, minor, and trace elements in sediment, pore water, and overlying water were monitored during winter and summer over a three year period at three different types of constructed treatment wetlands to evaluate their efficacy with season. Acid-volatile sulfide (AVS)...

  2. Enhanced Nitrification in Constructed Wetlands Using Ion-Exchange and Biological Regeneration

    DTIC Science & Technology

    2000-10-30

    Constructed wetlands built in northern climates do not adequately remove nitrogen, especially ammoniacal nitrogen, in the winter. Clinoptilolite , an...environmental constraints. The ammonium-sorbed clinoptilolite can be biologically regenerated during the summer months, when conditions are more conducive for...nitrification. Laboratory scale and pilot scale studies were conducted to prove this hypothesis and develop design criteria for a clinoptilolite

  3. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands

    Treesearch

    Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu

    2015-01-01

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...

  4. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C. alternifolius species

    USDA-ARS?s Scientific Manuscript database

    Vertical flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) model for estimati...

  5. Trace Metal Accumulation in Sediments and Benthic Macroinvertebrates before and after Maintenance of a Constructed Wetland

    EPA Science Inventory

    Periodic maintenance of stormwater best management practices (BMP) includes the removal of accumulated sediment. The resulting impact on trace metal concentrations of copper (Cu), lead (Pb), and zinc (Zn) in a constructed stormwater wetland BMP on Staten Island, NY was investiga...

  6. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to hi...

  7. FREE-WATER DEPTH AS A MANAGEMENT TOOL FOR CONSTRUCTED WETLANDS

    EPA Science Inventory

    Marsh plants in constructed wetlands have shown the capacity to remove unwanted pollutants from storm water runoff. The plants can be established at the site from bare roots. However, plant growth from bare roots can be restricted by the elevated water depths. Using several wa...

  8. Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland.

    PubMed

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya

    2013-01-01

    This study evaluates the treatment efficiency of horizontal subsurface flow (HSSF) constructed wetland for the removal of AOX (adsorbable organic halides) and chlorophenolics from pulp and paper mill wastewater. The dimensions of HSSF constructed wetland were 3.5 m in length, 1.5 m in width, and 0.28 m in depth, with surface area of 5.25 m2. The HSSF constructed wetland unit was planted with an ornamental plant species, Canna indica. Under hydraulic retention time (HRT) of 5.9 days, the average AOX removal was 89.1%, and 67% to 100% removal of chlorophenolics from pulp and paper mill wastewater was achieved. The complete removal of 2,3-dichlorophenol, 3,4-dichlorophenol, 2,3,5-trichlorophenol, 2,4,6-trichlorophenol, 3,5-dichlorocatechol, 3,6-dichlorocatechol, and 4,5,6-trichloroguaiacol was observed. Some of the chlorophenolics were found to accumulate in the plant biomass and soil. The evapotranspiration rate varied from 6.7 to 12.7 mm day(-1) during the experimental period. The mass balance of chlorophenolics was also studied in constructed wetland system.

  9. Removal of Nutrients from Septic Effluent with Re-circulated Hybrid Tidal Flow Constructed Wetland

    Treesearch

    Lihua Cui; Jigkun Feng; Ying Ouyang; Peiwen. Deng

    2012-01-01

    Hybrid tidal flow constructed wetland (CW) with recirculation is an improved biological and engineering technique for removal of excess nutrients and certain pollutants from wastewater. This study investigated the removal efficiency of total phosphorus (TP), ammonia-nitrogen (NH3-N), and total nitrogen (TN) from septic tank effluent with the hybrid tidal flow CW system...

  10. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C alternifolius species

    Treesearch

    Ying Ouyang; Lihua Cui; Gary Feng; John Read

    2015-01-01

    Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...

  11. Role of vegetation in a constructed wetland on nutrient-pesticide mixture toxicity of Hyalella azteca

    USDA-ARS?s Scientific Manuscript database

    The toxicity of a nutrient-pesticide mixture in non-vegetated and vegetated sections of a constructed wetland (60 X 30 X 0.3 m) was assessed using Hyalella azteca 48 h aqueous whole effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple super phosphate, dia...

  12. Responses of phytoplankton and Hyalella azteca to agrichemical mixtures in a constructed wetland mesocosms

    USDA-ARS?s Scientific Manuscript database

    We assessed the capability of a constructed wetland to mitigate toxicity of a variety of possible mixtures such as nutrients only (N, P), pesticides only (atrazine, S-metolachlor, permethrin), and nutrients+pesticides on phytoplankton chlorophyll a, 48 h aqueous Hyalella azteca survival, and 10 d se...

  13. [Effect of design and operation parameters on volatile alkylsulfides removal in subsurface constructed wetlands].

    PubMed

    Feng, Lin; Gan, Li; Wang, Hua-jie; Mo, Ping; Huang, Yu-ming

    2010-02-01

    A pilot-scale subsurface constructed wetland wastewater treatment system was sampled for one year to study the effects of bed aspect ratio, substrate medium size, water depth, HLR (hydraulic loading rate) and temperature (season) on removal of volatile alkylsulfides such as DMS (dimethylsulfide) and DMDS (dimethyldisulfide). The yearly experimental results demonstrated that the system showed good performance for DMS and DMDS removal in wastewater under different HLR ranging from 12 cm x d(-1) to 86 cm x d(-1). The system could remove 86% of DMS, and 95% of DMDS, respectively. ANOVA statistical analysis shows that HLR and temperature (season) are major factors controlling the system performance for the target analytes. According to ANOVA test, the HLR caused significant differences (p < 0.01) on the average DMS effluent concentrations, and temperature (season) caused significant differences (p < 0.01) on the average DMS and DMDS effluent concentrations. However, bed aspect ratio, substrate medium size and water depth did not cause significant differences (p > 0.05) on the average DMS and DMDS effluent concentrations. A survey of dissolved oxygen and ORP indicates that the constructed wetlands system showed strong reduced condition. On the basis of investigations of electron acceptors (such as SO4(2-), NO3- and NO2-) and dissolved organic pollutants (such as TOC and acetic acid) concentrations along with the length of constructed wetlands, it can be concluded that sulfate reduction and methanogenisis were estimated to be significant for DMS and DMDS removal in constructed wetland beds.

  14. Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism.

    PubMed

    Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Heipieper, Hermann J; Müller, Jochen A; Jehmlich, Nico

    2016-07-15

    Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable

  15. Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism

    PubMed Central

    Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Müller, Jochen A.; Jehmlich, Nico

    2016-01-01

    ABSTRACT Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results