7. WEST DAM STRUCTURE, LOOKING NORTHWEST. QUARRIES AT BOTTOM; OUTLET ...
7. WEST DAM STRUCTURE, LOOKING NORTHWEST. QUARRIES AT BOTTOM; OUTLET STRUCTURE UNDER CONSTRUCTION CUTTING INTO HILL AT TOP OF PICTURE. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA
Study on Reventment-Protected and Non-Bottom-Protected Plunge Pool of High Arch Dam
NASA Astrophysics Data System (ADS)
Yingkui, Wang; Quxiu, Cao; Fanhui, Kong
2018-05-01
Lots of high arch dam have the characteristics of “High head, Large discharge and Narrow river valley”, therefore, the security researches of energy dissipation were always the focus in these hydro-projects. Statistically, the trajectory type energy dissipation is the most widely used in the built high arch dams, and the water plunge poor were always set downstream the dam body. However, the widely used protected plunge poor need large investment with the disadvantage of complicated operation and maintenance. Along with the construction of concrete high arch dam in the Southwest China, the river overburden and water cushion were deep in dam site, which is becoming a new characteristic of these hydro-projects. Accordingly, the deep water cushion can be used for the energy dissipation design, such as the “Reventment-Protected and Non-Bottom-Protected Plunge Pool”, which has the advantage of more simplified project design and more economy investment.
Riparian forest communities of the lower Kaskaskia River bottoms
Susan P. Romano; James J. Zaczek; Karl W. J. Williard; Sara Baer; Andrew D. Carver; Jean C. Mangun
2003-01-01
Hydrologic alterations due to dam construction may have altered the floodplain ecology of the Lower Kaskaskia River. Seven forest communities within the study site were identified. Floodplain communities include Acer negundo-Celtis occidentalis-Acer saccharinum, Acer saccharinum-Acer negundo, and Celtis occidentalis-Ulmus americana...
1989-08-01
remove by gravity -washed out 585.8 i -- 89. 2 gneiss from inner - ibarrel Bottom of hole 89.2’ Tape depth 89.0’ 90 -0 I-Note: 6-7-84 water level after...barrel and5 _-_89.3 washed all meterial Bottom of hole 89.3’ left in outer barrel- 90 out of barrel befor- drilling for pull I Tape depth 89.0’ Note
Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam
NASA Astrophysics Data System (ADS)
Kalkan, Y.; Bilgi, S.
2014-12-01
Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must enable the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the dam and the methods of monitoring techniques applied by various disciplines. Some results have been obtained from this method for nearly eight years are presented in this work. In addition, the results of bathymetric surveys between 2005 and 2010 will be compared using the cross sections where the maximum changes occurred on the dam bottom of the reservoir area.
4. Aerial view southwest, Adams Dam Road bottom left, State ...
4. Aerial view southwest, Adams Dam Road bottom left, State Route 100 center, back gates to Winterthur and Wilmington Country Club upper center, duck pond and reservoir bottom right and center, and State Route 92 center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE
5. Aerial view west, Adams Dam Road bottom center, State ...
5. Aerial view west, Adams Dam Road bottom center, State Route 100 center, duck pond and reservoir center, State Route 100 center right, State Route 92 below center right, Brandywine Creek State Park center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE
Arrow Lakes Reservoir Fertilization Experiment, Technical Report 1999-2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindler, E.
2007-02-01
The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973)more » contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community responded with a shift in species and zooplankton biomass was more favorable for kokanee. With more productive lower trophic levels, the kokanee population increased in abundance and biomass, resulting in improved conditions for bull trout, one of ALR's piscivorous species.« less
NASA Astrophysics Data System (ADS)
Ameen, Sheeraz; Taher, Taha; Ahmed, Thamir M.
2018-06-01
Hydrostatics and hydrodynamics forces are generated and applied on the vertical lift tunnel gates due to the influence of a wide range of dam operating conditions. One of the most important forces is the uplift force resulting from the jet flow issuing below the gate. This force is based mainly upon many hydraulic and geometrical parameters. In this work, the uplift force is studied in terms of bottom pressure coefficient. The investigation is made paying particular attention on the effects of various three discharges and three gate lip angles on values of bottom pressure coefficients in addition to four different tunnel longitudinal slopes whose impact has not been studied in many previous works. Hydraulic model is constructed in this work for the sake of measuring all parameters required for estimating the bottom pressure coefficients, which are all examined against gate openings. The results show that the bottom pressure coefficient is related to the said variables, however, its behaviour and values are not necessary regular with variance of studied variables. The values are seen more significantly related to the flow rates and for some extent to the slopes of tunnel. An attempt by using the nonlinear regression of Statistical package of social sciences (SPSS) is made to set equations relating bottom pressure coefficient with gate openings for several angles of gate lips. The obtained equations are shown in good agreement with the selected cases of experimental results. The results are applicable for design purposes for similar geometrical and flow parameters considered in this study.
1991-09-01
truck Service truck Steel casing, 8-foot diameter with 3/4-inch wall thickness, was installed as the shaft was advanced. A shaft cover, constructed of... steel mats. was hoisted over the shaft at night for security. To obtain in-situ density tests at selected intervals in the bottom of the shaft...subcontractor installed the three wells using an air-rotary rig, and driving steel casing as the wells were advanced. He then perforated the casings
4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP ...
4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP LOOKING SOUTHWEST. DAM AND SPILLWAY VISIBLE IN BOTTOM OF PHOTO. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA
1980-09-01
Spillway. Type Trapezoidal, broad - crested , concrete weir Width 6 ft at bottom, 18 ft at top Crest elevation 994.0 ft Gates None Upstream Channel None... crested concrete weir Length of weir 18 f t (top), 6 f t (bottom) Crest elevation 994 ft Gates None Upstream channel None Downstream channel Earth...instability of the embankment was observed at the time of our inspectici. The slopes and crest of the dam have a thick grass cover with scattered brush and
Sedimentation survey of Lago La Plata, Toa Alta, Puerto Rico, March–April 2015
Gómez-Fragoso, Julieta
2016-10-31
IntroductionLago La Plata is operated by the Puerto Rico Aqueduct and Sewer Authority (PRASA) and is part of the San Juan Metropolitan Water District. The reservoir serves a population of about 425,000 people. During 2013 the reservoir provided 0.307 million cubic meters (Mm3 ) of water per day (about 81 million gallons per day), which is equivalent to 31 percent of the total water demand for the metropolitan area (Wanda L. Molina, U.S. Geological Survey, written commun., 2015). The dam was constructed in 1974 and is located about 5 kilometers (km) south of the town of Toa Alta and 5 km north of the town of Naranjito (fig. 1). The drainage area upstream from the Lago La Plata dam is about 469 square kilometers (km2 ). The storage capacity at construction in 1974 was 26.84 Mm3 with a spillway elevation of 47.12 meters (m) above mean sea level (msl). Storage capacity was increased to 40.21 Mm3 in 1989 after the installation of bascule gates to provide a normal dam pool elevation at 52 m above msl (Puerto Rico Electric and Power Authority, 1979). The maximum height of the dam is about 40 m above the river bottom near the dam, and the intake structure consists of six 1.82-m-diameter ports facing upstream, with 6-m vertical spacing that begins at an elevation of 19 m above msl. The U.S. Geological Survey (USGS), in cooperation with the PRASA, conducted a bathymetric survey of the Lago La Plata reservoir during March and April 2015. The hydrographic survey was designed to provide an update of the reservoir storage capacity and sedimentation rate. Areas with substantial sediment accumulation are also discussed in this report. The results of the survey were used to prepare a bathymetric map showing the reservoir bottom (fig. 2) referenced with respect to the spillway elevation. This report also includes a summary of a previous bathymetric survey conducted in 2006 (Soler-López, 2008).
1980-01-01
reported in Burgess et al. (1973:19). Low bottom species in the study area include American elm (Ulmus americanus), green ash (Fraxinus pennsylvanica...deposits with "Calgon" before water screening. Because of slow permeability clay is very slippery when it becomes wet and can be hazardous to workers. The
Reconnaissance of water quality of Pueblo Reservoir, Colorado: May through December 1985
Edelmann, Patrick
1989-01-01
Pueblo Reservoir is the farthest upstream, main-stream reservoir constructed on the Arkansas River and is located in Pueblo County approximately 6 miles upstream from the city of Pueblo, Colorado. During the 1985 sampling period, the reservoir was stratified, and underflow from the Arkansas River occurred that resulted in stratification with respect to specific conductance. Concentrations of dissolved solids decreased markedly below the thermocline during June. Later in the summer, dissolved-solids concentrations increased substantially below the thermocline. Substantial depletion of dissolved oxygen occurred near the bottom of the reservoir. The dissolved oxygen minimum of 0.1 mg/L occurred during August near the reservoir bottom at transect 7 (near the dam). The average total-inorganic-nitrogen concentration near the reservoir surface was about 0.2 mg/L; near the reservoir bottom, the average concentration was about 0.3 mg/L. Concentrations of total phosphorus ranged from less than 0.01 to 0.05 mg/L near the reservoir surface, and from less than 0.01 to 0.22 mg/L near the reservoir bottom. At transect 2 (about 7 miles upstream from the dam) near the bottom of the reservoir, concentrations of total iron exceeded aquatic-life standards, and dissolved-manganese concentrations exceeded standards for public water supply. Diatoms, green algae, blue-green algae, and cryptomonads comprised the majority of phytoplankton in Pueblo Reservoir in 1985. The maximum average of 41,000 cells/ml occurred in July. Blue-green algae dominated from June to September; diatoms were the dominant group of algae in October. The average concentrations of phytoplankton decreased from July to October. (USGS)
NASA Astrophysics Data System (ADS)
Salazar, Fernando; San-Mauro, Javier; Celigueta, Miguel Ángel; Oñate, Eugenio
2017-07-01
Dam bottom outlets play a vital role in dam operation and safety, as they allow controlling the water surface elevation below the spillway level. For partial openings, water flows under the gate lip at high velocity and drags the air downstream of the gate, which may cause damages due to cavitation and vibration. The convenience of installing air vents in dam bottom outlets is well known by practitioners. The design of this element depends basically on the maximum air flow through the air vent, which in turn is a function of the specific geometry and the boundary conditions. The intrinsic features of this phenomenon makes it hard to analyse either on site or in full scaled experimental facilities. As a consequence, empirical formulas are frequently employed, which offer a conservative estimate of the maximum air flow. In this work, the particle finite element method was used to model the air-water interaction in Susqueda Dam bottom outlet, with different gate openings. Specific enhancements of the formulation were developed to consider air-water interaction. The results were analysed as compared to the conventional design criteria and to information gathered on site during the gate operation tests. This analysis suggests that numerical modelling with the PFEM can be helpful for the design of this kind of hydraulic works.
Plugs or flood-makers? The unstable landslide dams of eastern Oregon
E.B. Safran; J.E. O' Connor; L.L. Ely; P.K. House; Gordon Grant; K. Harrity; K. Croall; E. Jones
2015-01-01
Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects...
Risk Perception Analysis Related To Existing Dams In Italy
NASA Astrophysics Data System (ADS)
Solimene, Pellegrino
2013-04-01
In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned earthfill dam is illustrated by defining the risk analysis during its construction and operation. A qualitative "Event Tree Analysis" makes clear with an example the probability of occurrence of the events triggered by an earthquake, and leads to a classification of the damage level. Finally, a System Dynamics (SD) approach is presented to investigate possibilities of a preventive planning in relationship to the risk, so that it's possible to establish shared procedures to achieve the correct management in any crisis phase. As a qualitative result of a SD application, figure 1 presents a flow-chart about a case study on the same dam so to illustrate the emergency planning in a step by step procedure according to the Regulations.
Photocopy of photograph (original print in collection of Gerald A. ...
Photocopy of photograph (original print in collection of Gerald A. Doyle, Phoenix) Photographer: Emil Eger, Yuma, 1983 AERIAL VIEW OF THE YUMA CROSSING LOOKING WEST. FROM BOTTOM TO TOP OF THE IMAGE ARE: 1924 SPRR BRIDGE, OCEAN-TO-OCEAN HIGHWAY BRIDGE, INTERSTATE HIGHWAY BRIDGE (THE LAST IS NOT REFERENCED IN THIS DOCUMENT). THE RIVER IS SEEN IN FLOOD STAGE, APPROXIMATING THE HISTORIC CONDITION BEFORE THE CONSTRUCTION OF THE UP-STREAM DAMS. - Yuma Crossing, Riverfront Area, between Prison Hill & Fourth Avenue, Yuma, Yuma County, AZ
NASA Astrophysics Data System (ADS)
Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.
2009-12-01
The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual water level data observed in Chiang Sean and Luang Prabang. To calculate sediment flux volume, we employed a Load-Quantity equation using total suspended solids data from monthly water sampling and flow discharge volumes over 13 months. To evaluate the impact of dam construction and watershed development, we inputted the same year of precipitation data using two watershed conditions with different parameters. Our results from the 1-D model displayed a seasonal delay of water flooding time after summer rainy season and an increase in sediment transport volume from September to October. In the flood simulation by the 2-D model, most of the annual sediment transport was concentrated from July to October. The spatial pattern of sediment dynamics was dependent largely on river structure including river meander shape, river bottom elevation, and geometry of the riparian zone. Our study approaches and simulation results show promise for beginning a quantitative assessment approach to cross-boundary environmental issues in the Mekong River watershed.
Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds
NASA Astrophysics Data System (ADS)
Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.
2012-12-01
Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.
3. Aerial view southeast, State Route 92 bottom left, Adams ...
3. Aerial view southeast, State Route 92 bottom left, Adams Dam Road center, Brandywine Creek State Park and J. Chandler Farm in center left, duck pond bottom right and reservoir bottom left. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE
Torak, Lynn J.; Crilley, Dianna M.; Painter, Jaime A.
2006-01-01
Hydrogeologic data and water-chemistry analyses indicate that Lake Seminole leaks into the Upper Floridan aquifer near Jim Woodruff Lock and Dam, southwestern Georgia and northwestern Florida, and that ground water enters Lake Seminole along upstream reaches of the lake's four impoundment arms (Chattahoochee and Flint Rivers, Spring Creek, and Fishpond Drain). Written accounts by U.S. Army Corps of Engineers geologists during dam construction in the late 1940s and early 1950s, and construction-era photographs, document karst-solution features in the limestone that comprise the lake bottom and foundation rock to the dam, and confirm the hydraulic connection of the lake and aquifer. More than 250 karst features having the potential to connect the lake and aquifer were identified from preimpoundment aerial photographs taken during construction. An interactive map containing a photomosaic of 53 photographic negatives was orthorectfied to digital images of 1:24,000-scale topographic maps to aid in identifying karst features that function or have the potential to function as locations of water exchange between Lake Seminole and the Upper Floridan aquifer. Some identified karst features coincide with locations of mapped springs, spring runs, and depressions that are consistent with sinkholes and sinkhole ponds. Hydrographic surveys using a multibeam echosounder (sonar) with sidescan sonar identified sinkholes in the lake bottom along the western lakeshore and in front of the dam. Dye-tracing experiments indicate that lake water enters these sinkholes and is transported through the Upper Floridan aquifer around the west side of the dam at velocities of about 500 feet per hour to locations where water 'boils up' on land (at Polk Lake Spring) and in the channel bottom of the Apalachicola River (at the 'River Boil'). Water discharging from Polk Lake Spring joins flow from a spring-fed ground-water discharge zone located downstream of the dam; the combined flow disappears into a sinkhole located on the western floodplain of the river and is transmitted through the Upper Floridan aquifer, eventually discharging to the Apalachicola River at the River Boil. Acoustic Doppler current profiling yielded flow estimates from the River Boil in the range from about 140 to 220 cubic feet per second, which represents from about 1 to 3 percent of the average daily flow in the river. Binary mixing-model analysis using naturally occurring isotopes of oxygen and hydrogen (oxygen-18 and deuterium) indicates that discharge from the River Boil consists of a 13-to-1 ratio of lake water to ground water and that other sources of lake leakage and discharge to the boil probably exist. Analyses of major ions, nutrients, radon-222, and stable isotopes of hydrogen and oxygen contained in water samples collected from 29 wells, 7 lake locations, and 5 springs in the Lake Seminole area during 2000 indicate distinct chemical signatures for ground water and surface water. Ground-water samples contained higher concentrations of calcium and magnesium, and higher alkalinity and specific conductance than surface-water samples, which contained relatively high concentrations of total organic carbon and sulfate. Solute and isotopic tracers indicate that, from May to October 2000, springflow exhibited more ground-water qualities (high specific conductance, low dissolved oxygen, and low temperature) than surface water; however, the ratio of ground water to surface water of the springs was difficult to quantify from November to April because of reduced springflow and rapid mixing of springflow and lake water during sampling. The saturation index of calcite in surface-water samples indicates that while surface water is predominately undersaturated with regard to calcite year-round, a higher potential for dissolution of the limestone matrix exists from late fall through early spring than during summer. The relatively short residence time (5-7 hours) and rapid flow velocity
Early vegetation development on an exposed reservoir: implications for dam removal.
Auble, Gregor T; Shafroth, Patrick B; Scott, Michael L; Roelle, James E
2007-06-01
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.
Early vegetation development on an exposed reservoir: Implications for dam removal
Auble, G.T.; Shafroth, P.B.; Scott, M.L.; Roelle, J.E.
2007-01-01
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition. ?? 2007 Springer Science+Business Media, LLC.
Cella-Ribeiro, A; Assakawa, L F; Torrente-Vilara, G; Zuanon, J; Leite, R G; Doria, C; Duponchelle, F
2015-04-01
Monthly (April 2009 to May 2010) bottom-trawl sampling for Brachyplatystoma species along the rapids stretch of the Madeira River in Brazil revealed that Brachyplatystoma rousseauxii larvae and juveniles were present in low abundances in all areas and during all hydrological periods. The presence of larvae and juveniles throughout the hydrological cycle suggests asynchronous spawning in the headwaters of the Madeira River. © 2015 The Fisheries Society of the British Isles.
Flooding Caused by the Collapse of the Zeyzoun Dam, Syria
NASA Technical Reports Server (NTRS)
2002-01-01
On Tuesday the Zeyzoun dam in northern Syria ruptured and collapsed, killing 20 people and leaving thousands more homeless. This false-color image taken on June 5, 2002, (bottom) by the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite shows the extent of the flooding. Normally, there would be no water present in the center of the image (top, acquired on June 3, 2002). After the dam burst, 71 million cubic meters flowed onto the surrounding landscape and washed over an area of 20,000 acres. Hundreds of homes were destroyed in and around the villages of Zeyzoun, Qastoun, and Ziara, roughly 220 miles (350 kilometers) north of Damascus. Most of the residents fled to higher ground with the help of two helicopters. The Syrians originally constructed the dam to contain the Orontes River and provide a steady flow of water to the surrounding farms, many of which were lost. Rescue workers worry that more bodies may be found as the waters of the dam recede. The Japanese government issued more than $40,000 in aid for the victims, and the Syrian government is petitioning international aid agencies for further assistance. In this false-color image, the ground is sage green and rusty orange, and water is black. Clouds appear pink. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
24. DETAIL EXTERIOR VIEW LOOKING EAST, SHOWING FISH LADDER AT ...
24. DETAIL EXTERIOR VIEW LOOKING EAST, SHOWING FISH LADDER AT NORTH END OF DAM/SPILLWAY; WATER FLOWING THROUGH FISH LADDER IS VISIBLE AT BOTTOM. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR
1980-04-01
Supply. g. Design and Construction History. Laurel Run Dam was constructed in 1594 by Martin Cawley, a contractor from Archbald. The construction was...1T6Ace joly PHASE I INSPECTION REPORT -4 NATIONAL DAM INSPECTION PROGRAM Lime LAUREL RUN DAM PENNSYLVANIA GAS AND WATER COMPANY RESERVOIR AREA
Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images
NASA Astrophysics Data System (ADS)
Zhang, S.
2015-12-01
Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... existing or new dams without the approval of the regulatory authority. The permittee shall design, locate... design precipitation event within 10 days. (viii) During construction of dams subject to this section... adjacent to each dam within 30 days of certification of design pursuant to this section. (4) All dams...
15. Photographic copy of ink on linen drawing (at the ...
15. Photographic copy of ink on linen drawing (at the archives of Niagara Mohawk Power Corporation, 300 Erie Boulevard West, Syracuse, New York 13202), strand, draftsman, October 3, 1923. Sheet 1-473, International Paper Company. Completing crest of dam. Section through the log chute (top); typical section through the dam (bottom). - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY
Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam
NASA Astrophysics Data System (ADS)
Lu, Xi Xi; Oeurng, Chantha; Le, Thi Phuong Quynh; Thuy, Duong Thi
2015-11-01
Dam construction is one of the main factors resulting in riverine sediment changes, which in turn cause river degradation or aggradation downstream. The main objective of this work is to examine the sediment budget affected by a sequence of dams constructed upstream in the lower reach of the Red River. The study is based on the longer-term annual data (1960-2010) with a complementary daily water and sediment data set (2008-2010). The results showed that the stretch of the river changed from sediment surplus (suggesting possible deposition processes) into sediment deficit (possible erosion processes) after the first dam (Thac Ba Dam) was constructed in 1972 and changed back to deposition after the second dam (Hoa Binh Dam) was constructed in 1985. The annual sediment deposition varied between 1.9 Mt/y and 46.7 Mt/y with an annual mean value of 22.9 Mt/y (1985-2010). The sediment deposition at the lower reach of the Red River would accelerate river aggradation which would change river channel capacity in the downstream of the Red River. The depositional processes could be sustained or changed back to erosional processes after more dams (the amount of sediment deposit was much less after the latest two dams Tuyen Quang Dam in 2009 and Sonla Dam in 2010) are constructed, depending on the water and sediment dynamics. This study revealed that the erosional and depositional processes could be shifted for the same stretch of river as affected by a sequence of dams and provides useful insights in river management in order to reduce flood frequency along the lower reach of the Red River.
Fan, Cheng-Wei; Kao, Shuh-Ji
2008-04-15
The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.
A brief history of 20th century dam construction and a look into the future
NASA Astrophysics Data System (ADS)
van de Giesen, Nick
2010-05-01
In this presentation, an overview is given of global dam building activities in the 20th century. Political, economical and hydrological factors shaped the building of large dams. The development of the relations between these three factors and dam building over time is examined. One can argue whether or not history is simply "one damn thing after another" but the second half of the 20th century suggests that history is at least reflected by the construction of one dam after another. The financial crisis of the 1930's started the first construction wave of large hydropower dams in the United States. This wave continued into the Second World War. During the Cold War, the weapon race between the USA and USSR was accompanied by a parallel neck-and-neck race in dam construction. By the 1970's, dam construction in the USA tapered off, while that in the USSR continued until its political disintegration. In China, we see two spurts in dam development, the first one coinciding with the disastrous Great Leap Forward and the second with the liberalization of the Chinese economy after the fall of the Berlin Wall. Economic and political events thus shaped to an important extent decisions surrounding the construction of large dams. Clearly, there are some hydrological prerequisites for the construction of dams. The six largest dam building nations are USSR, Canada, USA, China, Brazil, and India, all large countries with ample water resources and mountain ranges. Australia has relatively little reservoir storage for the simple fact that most of this country is flat and dry. A few countries have relatively large amounts of reservoir storage. Especially Uganda (Owens Falls), Ghana (Akosombo), and Zimbabwe (Kariba) are examples of small countries where gorges in major rivers were "natural" places for large dams and reservoirs to be built early on. It seems that, deserts aside, the average potential storage capacity lies for most continents around 10 cm or about 50% of the total yearly continental runoff. Some of the least developed countries, such as Papua New Guinea, Congo DR, and Myanmar, still have large hydropower development potential. In most countries, however, dam construction seems to have reached its peak. For the presentation, use is made of GapMinder software (www.gapminder.org), which provides direct insight in the dynamic and multi-dimensonial aspects of 20th century dam construction.
Construction of a Dry Ash Dam with Soilbags and Slope Stability Analysis
NASA Astrophysics Data System (ADS)
Li, Hui; Song, Yingjun; Gao, Jiaorong; Li, Longhua; Zhou, Yuqi; Qi, Hui
2017-12-01
In thermal power plants, it is necessary to build ash dams to store fly ash, which is the by-product after the combustion of coals. To solve the problem of lacking rockfill materials in Africa, A new technology of constructing ash dams using solibags filled with local sands is proposed and the method of analyzing its slope stability is suggested. The design of the ash dam using soilbags in Lamb Thermal Power Plant of Kenya is introduced in detail. The slope stability of the soilbags-constructed ash dam was analyzed by adopting the suggested method. The results show that the soilbags filled with ash or sands have high compressive strength, and the primary dam constructed with soilbags can effectively retain the backfill ash and the stacking dam reinforced with soilbags can stand stable even with the slope of 1:1.5.
1987-06-01
Debris diversion boom and debris, Appalachian Power Company Station at Winfield Lock and Dam, Kanavha River, West Virginia. Than, T 9 (sin a) - 1.94...control dam. Central gate Is blocked partly open causing .ime downstream scour. Water flows right to left. BOTTOM-Debris diversion boom and debris... Appalachian Power Company Station at Winfield Lock and Dam, Kanawha River, West Virginia. - 0 .’ Unclass ified SECURITY CLASSIFICATION OF THIS PAGE for- 40
60. McMILLAN DAM Photographic copy of construction drawing dated ...
60. McMILLAN DAM - Photographic copy of construction drawing dated April 4, 1917 (from aperture card located at Bureau of Reclamation, Salt Lake City). DETAIL CONSTRUCTION SPILLWAY NO. 2 - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
1984-01-01
PROJECT S TYPE OF REPORT & PERIOD COVEREDOSAGE RIVER BASIN ConStruction Foundation OSAGE RIVER MISSOURI Report from September 1966 HARRY S. TRUMAN DAM...OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT VOLUME II TABLE OF...09r IWNI’(ANSAS CITY M?5OU ....... 11 1 O IA R, MISSOURI HARRY S TRUMA DAM & 1K5(V01 = CONSTRUCT"ON FOUNDATION REPORT IGEOLOGIC UNIT DESCRIPTIONS
NASA Astrophysics Data System (ADS)
Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.
2014-12-01
Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.
1981-09-14
34 rga Highland Park Reservoir Dam Vi’.sual I. .. ’. •Genesee River Basin, ’!ydrolozy. ". ". . . Scabi tyMo r e C u t.,.- Js eps’ •; ::or.ation -3 :..i :n...dam impounds a municipal water storage reservoir. g. Design and Construction History The dam was designed and built around 1875. h. Normal Operating... History : Date Constructed Around 1875 Date(s) Reconstructed N/A Designer Unknown Constructed by Unknown Owner Water Department, City of Rochester, New
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... shall design, locate, construct, operate, maintain, modify, and abandon or remove all dams (used either... design. (ix) A permanent identification marker, at least 6 feet high that shows the dam number assigned... located on or immediately adjacent to each dam within 30 days of certification of design pursuant to this...
63. McMILLAN DAM Photographic copy of construction drawing dated ...
63. McMILLAN DAM - Photographic copy of construction drawing dated July 19, 1937 (from aperture card located at Bureau of Reclamation, Salt Lake City). McMILLAN DAM - GENERAL PLAN AND SECTIONS WITH PROPOSED IMPROVEMENTS - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
1980-09-30
GEOTECHNICAL DATA 4 2.2 DESIGN RECORDS 4 2.3 CONSTRUCTION RECORDS 4 2.4 OPERATION RECORD 4 2.5 EVALUATION OF DATA 4 3 VISUAL INSPECTION 5 3.1 FINDINGS 5...g. Design and Construction History This dam was constructed in two stages as parts of Contracts E and G for Section I of the Cayuga and Seneca Canal...determine the final elevation of the footings at the time of construction to assure a proper foundation. 2.2 DESIGN RECORDS This dam was designed in
44. Reinforcement construction to Pleasant Dam. Photographer unknown, 1935. Source: ...
44. Reinforcement construction to Pleasant Dam. Photographer unknown, 1935. Source: Huber Collection, University of California, Berkeley, Water Resources Library. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Innovative resettlement schemes planned for the Numata Dam project
NASA Astrophysics Data System (ADS)
Nakayama, Mikiyasu
2003-10-01
The Numata Dam, planned for the Tone River basin of Gunma Prefecture, was the largest dam construction project ever considered in Japan. This dam construction project, however, did not materialize. The proposal for the Numata Dam was first launched in 1959, at a time when the Tokyo Metropolitan area was mushrooming, both in population and industrial activity. The Numata Dam was supposed to be a prioritized dam construction project to alleviate the then anticipated water shortage in the Tokyo Metropolitan area. The Numata Dam plan experienced fierce opposition from those who would have been obliged to resettle, whereas those in Tokyo and the surrounding metropolitan area welcomed the plan. The major concern of the planned Numata Dam was the number of resettlers, which was then estimated to be around 3000 families. The resettlement plan developed for the Numata Dam included some innovative concepts, which may be applicable even today, for dam construction projects in the developing world. The plan included such ideas as (a) having resettlers share existing farmland with the present owners provided improvements were made to increase productivity, (b) paying rent to resettlers, and (c) establishing the Tone River Development Agency. After more than a decade of debate, both at national and local levels, the Numata Dam project was finally discarded through a decision of the Prime Minister in 1972. The resettlement schemes elaborated for the Numata Dam still appear to be innovative. Such schemes may be applied to projects in the developing world, in particular, in nations that are about to take off with economic development. Copyright
6. GENERAL CONSTRUCTION VIEW ALONG AXIS OF DAM FROM THE ...
6. GENERAL CONSTRUCTION VIEW ALONG AXIS OF DAM FROM THE EAST ABUTMENT.... Volume XVII, No. 18, December 18, 1939. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Li, Xiao-Yan; Dong, Shi-Kui; Liu, Shi-Liang; Peng, Ming-Chun; Li, Jin-Peng; Zhao, Qing-He; Zhang, Zhao-Ling
2012-08-01
Taking the surrounding areas of Xiaowan Reservoir in the middle reach of Lancangjiang River as study area, and based on the vegetation investigation at three sites including electricity transmission area (site 1), electricity-transfer substation and roadsides to the substation (site 2), and emigration area (site 3) in 1997 (before dam construction), another investigation was conducted on the vegetation composition, plant coverage, and dominant species at the same sites in 2010 (after dam construction), aimed to evaluate the ecological risk of the dam construction for the terrestrial plant species in middle reach of Lancangjiang River. There was an obvious difference in the summed dominance ratio of dominant species at the three sites before and after the dam construction. According the types of species (dominant and non-dominant species) and the changes of plant dominance, the ecological risk (ER) for the plant species was categorized into 0 to IV, i.e., no or extremely low ecological risk (0), low ecological risk (I), medium ecological risk (II), high ecological risk (III), and extremely high ecological risk (IV). As affected by the dam construction, the majority of the species were at ER III, and a few species were at ER IV. The percentage of the plant species at ER III and ER IV at site 3 was higher than that at sites 1 and 2. The decrease or loss of native plants and the increase of alien or invasive plants were the major ecological risks caused by the dam construction. Effective protection strategies should be adopted to mitigate the ecological risk of the dam construction for the terrestrial plants at species level.
177. Photographic copy of original construction drawing dated June 15, ...
177. Photographic copy of original construction drawing dated June 15, 1931 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM; CONCRETE COOLING TESTS FOR HOOVER DAM. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
20. GENERAL VIEW OF CONSTRUCTION LOOKING NORTHEAST SHOWING THE CONSTRUCTION ...
20. GENERAL VIEW OF CONSTRUCTION LOOKING NORTHEAST SHOWING THE CONSTRUCTION BRIDGE, GANTRY CRANE AND STRUCTURAL PIERS. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... construction by SWCD of the proposed Narrows Dam and reservoir, a non-Federal project to be located on... conditions in the affected areas without further development and assumes that irrigation operations would... construction of the 17,000 acre-foot Narrows Dam and reservoir on Gooseberry Creek, pipelines to deliver the...
1980-09-30
Classification 2I e. Ownership 2f. Purpose of Dam 2 g. Design and Construction History 2h. Normal Operating Procedure 2 1.3 PERTINENT DATA 2 a. Drainage...4 2.2 SUBSURFACE INVESTIGATION 4 2.3 DAM AND APPURTENANT STRUCTURES 4 2.4 CONSTRUCTION RECORDS 4 2.5 OPERATION RECORDS 2.6 EVALUATION OF DATA 5 4...12 a. Visual Observations 12 b. Design and Construction Data 12 c. Stability Analysis 12 d. Operating Records 13 e. Post- Construction Changes 13 f
Damming the rivers of the Amazon basin
NASA Astrophysics Data System (ADS)
Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.
2017-06-01
More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.
Damming the rivers of the Amazon basin.
Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C
2017-06-14
More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.
Characteristics of depositional environments in the Nakdong River Estuary, South Korea
NASA Astrophysics Data System (ADS)
Woo, Han Jun; Lee, Jun-Ho; Kang, Jeongwon; Choi, Jae Ung
2017-04-01
Most of the major Korean estuaries, under high pressure from development, have dams with environmental problems, including restricted water circulation, low water quality, decreased biodiversity and wetland destruction. The Nakdong estuary on the southeastern coast of Korean Peninsula is an enclosed type with two large estuarine dams that were constructed in 1934 and between 1983 and 1987. The construction of dams has led to geomorphologic evolution of the barrier islands within Nakdong estuary. The estuary has been characterized as barrier-lagoon system with various subenvironments and microtidal with a 1.5 m tidal range. The sedimentary analyses and monitoring short-term sedimentation rates were investigated to understand characteristics of depositional environments in barrier-lagoon system of the Nakdong River Estuary. The surface sediments in the system were classified into three sedimentary facies in summer 2015. Generally, sand sediment was dominated in the seaward side of barrier islands and muddy sand sediment was dominated on the lagoon. Sandy mud and mud sediments were distributed in the tidal flat near Noksan industrial district and channels near dams. Fourteen a priori subenvironments were distinguished based on differences in landscape characterization (sediment texture, salinity, total organic carbon, pH and C/N ratios). The dendrogram resulting from cluster analysis of environmental variables from 14 a priori subenvironments could be clustered into 4 groups that were characterized by different sediment texture and hydrodynamic energy. The short-term sedimentation rates were obtained seasonally from three lines by burying a plate at sub-bottom depth from May 2015 to May 2016. The deposition was dominated on the tidal flat between mainland and Jinudo (JW- Line) and Sinjado (SJ-Line) with the net deposition rate of 10.09 mm/year and 12.38 mm/year, respectively. The erosion was dominated on the tidal flats at Eulsukdo (ES-Line) on the east side of the system with an annual erosion rate of -13.15 mm/year. Two 12.5-hours anchoring surveys at inlets were revealed that net suspended sediments were transported to the open sea during a tidal cycle in summer 2015 and 2016. The sedimentary processes of the anthropogenically altered barrier-lagoon system in Nakdong estuary showed that sediments transported into the lagoon through inlets during flood condition and moved to westward and deposited sediments on the tidal flat and channels near dams in low energy environments. In the east side of the system, sediments flowed out the sea with discharge from Nakdong Dam during ebb condition. These data will provide an important baseline for future assessments of environmental quality on dam open.
27. Evening view of downstream face of Pleasant Dam under ...
27. Evening view of downstream face of Pleasant Dam under construction. Part of construction camp housing is visible in foreground. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
10. Downstream face of Mormon Flat Dam under construction. Cement ...
10. Downstream face of Mormon Flat Dam under construction. Cement storage shed is at center right. Photographer unknown, September 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
145. Photographic copy of original construction drawing dated April 10, ...
145. Photographic copy of original construction drawing dated April 10, 1928 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM; PLAN, ELEVATION AND SECTIONS, ARCH-GRAVITY DAM. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Lu, Hui; Ruby Leung, L.
Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, withmore » more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.« less
NASA Astrophysics Data System (ADS)
Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus
2016-04-01
The semi-arid rangelands of the Great Karoo region in South Africa, which are nowadays characterized by badlands on the foot slopes of upland areas and complex gully systems in valley bottoms, have experienced a number of environmental changes. With the settlement of European farmers in the late 18th century agricultural activities increased, leading to overgrazing which probably acted as a trigger to land degradation. As a consequence of higher water demands and shifting rainfall patterns, many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods. Most of these dams are now filled with sediment and many have become breached, revealing sediment archives that can be used to analyse land use changes as well as carbon erosion and deposition during the last ca. 100 years. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping, erosion modelling and sediment analysis have been employed to trace back the sediment origin and redistribution within the catchment, setting a special focus on the carbon history. Sediment deposits from a silted-up reservoir were analysed for varying physicochemical parameters, in order to analyse erosional and depositional patterns. A sharp decrease in total carbon content with decreasing depth suggests that land degradation during and after the post-European settlement most likely triggered erosion of the relatively fertile surface soils which presumably in-filled the reservoirs. It is assumed that the carbon-rich bottom layers of the dam deposits originate from these eroded surface soils. A combination of erosion modelling and sediment analysis will be used to determine the source areas of the depositional material and might clarify the question if land degradation in the Karoo has resulted in its return from being a net sink of carbon into a net source of carbon.
A Digital 3D-Reconstruction of the Younger Dryas Baltic Ice Lake
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Alm, G.; Bjorck, S.; Lindeberg, G.; Svensson, N.
2005-12-01
A digital 3D-reconstruction of the final stage of the ice dammed Baltic Ice Lake (BIL), dated to the very end of the Younger Dryas cold period (ca. 11 600 cal. yr BP) has been compiled using a combined bathymetric-topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The combined bathymetric-topographic Digital Terrain Model (DTM) model used to reconstruct the ice dammed lake was compiled specifically for this study from publicly available data sets. The final DTM is in the form of a digital grid on Lamberts Equal Area projection with a resolution of 500 x 500 m, which permits a much more detailed reconstruction of the BIL than previously made. The lake was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake's surface through the shoreline database. The accumulated Holocene bottom sediments in the Baltic Sea were subsequently subtracted from the present bathymetry in our reconstruction. This allows us to estimate the Baltic Ice Lake's paleobathymetry, area, volume, and hypsometry, which will comprise key input data to lake/climate modeling exercises following this study. The Scandinavian ice sheet margin eventually retreated north of Mount Billingen, which was the high point in terrain of Southern central Sweden bordering to lower terrain further to the North. As a consequence, the BIL was catastrophically drained through this area, resulting in a 25 m drop of the lake level. With our digital BIL model we estimate that approximately 7, 800 km3 of water drained during this event and that the ice dammed lake area was reduced with ca 18 percent. The digital BIL reconstruction is analyzed using 3D-visualization techniques that provide new detailed information on the paleogeography in the area, both before and after the lake drainage, with implications for interpretations of geological records concerning the post-glacial environmental development of southern Scandinavia.
56. McMILLAN DAM Photographic copy of construction drawing c1908 ...
56. McMILLAN DAM - Photographic copy of construction drawing c1908 (from aperture card located at Bureau of Reclamation, Salt Lake City) McMILLAN RESERVOIR HEADGATES - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
Gypsum-karst problems in constructing dams in the USA
Johnson, K.S.
2008-01-01
Gypsum is a highly soluble rock and is dissolved readily to form caves, sinkholes, disappearing streams, and other karst features that typically are also present in limestones and dolomites. Gypsum karst is widespread in the USA and has caused problems at several sites where dams were built, or where dam construction was considered. Gypsum karst is present (at least locally) in most areas where gypsum crops out, or is less than 30-60 m below the land surface. These karst features can compromise on the ability of a dam to hold water in a reservoir, and can even cause collapse of a dam. Gypsum karst in the abutments or foundation of a dam can allow water to pass through, around, or under a dam, and solution channels can enlarge quickly, once water starts flowing through such a karst system. The common procedure for controlling gypsum karst beneath the dam is a deep cut-off trench, backfilled with impermeable material, or a close-spaced grout curtain that hopefully will fill all cavities. In Oklahoma, the proposed Upper Mangum Dam was abandoned before construction, because of extensive gypsum karst in the abutments and impoundment area. Catastrophic failure of the Quail Creek Dike in southwest Utah in 1989 was due to flow of water through an undetected karstified gypsum unit beneath the earth-fill embankment. The dike was rebuilt, at a cost of US $12 million, with construction of a cut-off trench 600 m long and 25 m deep. Other dams in the USA with severe gypsum-karst leakage problems in recent years are Horsetooth and Carter Lake Dams, in Colorado, and Anchor Dam, in Wyoming. ?? 2007 Springer-Verlag.
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... overtopping by wind and wave action. (iii) Dams shall have minimum safety factors as follows: Case Loading... abutments shall be controlled to prevent excessive uplift pressures, internal erosion, sloughing, removal of... before construction begins. (8) All dams shall be removed and the disturbed areas regraded, revegetated...
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... overtopping by wind and wave action. (iii) Dams shall have minimum safety factors as follows: Case Loading... abutments shall be controlled to prevent excessive uplift pressures, internal erosion, sloughing, removal of... before construction begins. (8) All dams shall be removed and the disturbed areas regraded, revegetated...
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... overtopping by wind and wave action. (iii) Dams shall have minimum safety factors as follows: Case Loading... abutments shall be controlled to prevent excessive uplift pressures, internal erosion, sloughing, removal of... before construction begins. (8) All dams shall be removed and the disturbed areas regraded, revegetated...
52. Photographic copy of construction drawing, U.S. Reclamation Service, December ...
52. Photographic copy of construction drawing, U.S. Reclamation Service, December 1911 (original drawing located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "Keechelus Dam - general plan of dam site." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA
81. AVALON DAM Photographic copy of construction drawing c1908 ...
81. AVALON DAM - Photographic copy of construction drawing c1908 (from aperture card located at Bureau of Reclamation, Salt Lake City) UNTITLED DRAWING OF AUTOMATIC FLOOD GATES. GATE DETAILS - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
57. McMILLAN DAM Photographic copy of construction drawing dated ...
57. McMILLAN DAM - Photographic copy of construction drawing dated January 15, 1913 (from aperture card located at Bureau of Reclamation, Salt Lake City) POWER LIFTING MECHANISM FOR HEADGATES - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
80. AVALON DAM Photographic copy of construction drawing c1908 ...
80. AVALON DAM - Photographic copy of construction drawing c1908 (from aperture card located at Bureau of Reclamation, Salt Lake City). UNTITLED DRAWING OF AUTOMATIC FLOOD GATES. PARTIAL PLAN AND ELEVATION - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
62. McMILLAN DAM Photographic copy of construction drawing dated ...
62. McMILLAN DAM - Photographic copy of construction drawing dated April 2, 1917 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver). RECORD DRAWING OF RAILROAD DIKE - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
184. Photographic copy of original construction drawing dated March 28, ...
184. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM RESEARCH FOR HOOVER DAM; LAYOUT OF CONTRACTION JOINT MEASURING DEVICES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
186. Photographic copy of original construction drawing dated March 28, ...
186. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; MISCELLANEOUS VERTICAL SECTIONS; THROUGH PANELS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
179. Photographic copy of original construction drawing dated July, 1932 ...
179. Photographic copy of original construction drawing dated July, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; TERMINAL BOARD FOR PANEL DEVICES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
181. Photographic copy of original construction drawing dated March 28, ...
181. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; LOCATION OF TERMINAL BOARDS AND CONDUCTS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
180. Photographic copy of original construction drawing dated March 28, ...
180. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONRETE RESEARCH FOR HOOVER DAM; INVAR METER DETAILS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
185. Photographic copy of original construction drawing dated March 28, ...
185. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; CONTRACTION JOINT METER INSTALLATION. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
182. Photographic copy of original construction drawing dated March 28, ...
182. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; LAYOUT OF INTERNAL STRAIN MEASURING DEVICES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
NASA Astrophysics Data System (ADS)
Scodanibbio, Lucia; Mañez, Gustavo
The Cahora Bassa dam in the Lower Zambezi has undoubtedly brought varied economic benefits (such as hydroelectricity) to Mozambique. There is also, however, evidence of certain negative impacts that have increased the vulnerability of downstream populations. Specifically, current water management practices in the Zambezi have affected people’s livelihoods by the frequent unpredictable releases of water that wash away riverbank crops, impoverish fish stocks and fish habitat, and threaten the valuable shrimp exports. These releases have also worsened the effects of large floods, for example the floods of 2001. The ecosystem of the Zambezi delta, which is a Ramsar site, has also suffered since Cahora Bassa’s regulation. The Mozambican government is proposing to construct a new dam downstream of Cahora Bassa at Mphanda Nkuwa. In the feasibility study, there was no due consideration of rural downstream communities and their livelihoods. This has left many potentially affected people uninformed and vulnerable to the risks associated with the new development. The new dam is likely to worsen the already severe impacts of Cahora Bassa. The World Commission on Dams (WCD) developed seven strategic priorities, designed to inform all decisions related to future dam developments. These priorities follow principles of public participation, social equity, environmental sustainability, economic efficiency and accountability. The WCD proposed best-practice guidelines for both addressing existing dams and for any future ones which are planned. According to the WCD, affected communities have a right to participate in the decision to build a dam, they should be the first to benefit from the project, and the rivers on which their livelihoods are based should be protected. Stakeholder participation is one of the fundamental components of integrated water resources management (IWRM). For effective participation in dam projects, affected people need to be empowered, have access to information and adequate capacity. In this context JA!, a Mozambican environmental NGO, is undertaking a project to share WCD recommendations with affected people along the Zambezi River. JA! has adopted a “bottom-up” approach to ensure that the people’s interests are included in government projects. This approach could give Mozambique the power to safeguard the environment while sustaining peoples’ livelihoods.
78 FR 53494 - Dam Safety Modifications at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... fundamental part of this mission was the construction and operation of an integrated system of dams and... by the Federal Emergency Management Agency, TVA prepares for the worst case flooding event in order... appropriate best management practices during all phases of construction and maintenance associated with the...
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... at least 3 feet to avoid overtopping by wind and wave action. (iii) Dams shall have minimum safety... pressures, internal erosion, sloughing, removal of material by solution, or erosion of material by loss into... regulatory authority before construction begins. (8) All dams shall be removed and the disturbed areas...
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at least 3 feet to avoid overtopping by wind and wave action. (iii) Dams shall have minimum safety... pressures, internal erosion, sloughing, removal of material by solution, or erosion of material by loss into... regulatory authority before construction begins. (8) All dams shall be removed and the disturbed areas...
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... at least 3 feet to avoid overtopping by wind and wave action. (iii) Dams shall have minimum safety... pressures, internal erosion, sloughing, removal of material by solution, or erosion of material by loss into... regulatory authority before construction begins. (8) All dams shall be removed and the disturbed areas...
61. McMILLAN DAM Photographic copy of construction drawing dated ...
61. McMILLAN DAM - Photographic copy of construction drawing dated April 2, 1917 (from Record Group 115, Box 16, Denver Branch of the National Archives, Denver). RECORD DRAWING OF SPILLWAY NO. 2 - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
Lake Mohave Geophysical Survey 2002: GIS Data Release
Cross, VeeAnn A.; Foster, David S.; Twichell, David C.
2005-01-01
This CD-ROM contains sidescan-sonar imagery, sub-bottom reflection profiles, and an interpretive map derived from these data. These data were collected in Lake Mohave, a reservoir behind the Davis Dam and below the Hoover Dam on the Colorado River. These data are veiwable within an Environmental system Research Institute, Inc. (ESRI) Geographic Information system (GIS) ArcView 3.2 project file stored on this CD-ROM
Tainter Gate Tests, Norfork Dam, North Fork River, Arkansas: Model and Prototype Investigations
1954-06-01
the sides and top of the conduit while the bottom of the gate was sealed in a recess provided in the lead bottom seal. Later a rubber seal was also...the lifting strut were about the same whether or not flow was passing the gate. During the gate closure procedure, however, the data indiGate 24 that
NASA Astrophysics Data System (ADS)
Kotti, Fatma; Dezileau, Laurent; Mahé, Gil; Habaieb, Hamadi; Bentkaya, Malik; Dieulin, Claudine; Amrouni, Oula
2018-04-01
The sedimentary contributions of the Medjerda to the coastal zone are poorly measured, and there is no chronicle of observations. In this context, the sediment monitoring appears indispensable for the quantification of sediment transport at the outlet. This study focuses on the largest watershed in Tunisia, the Wadi Medjerda (23 600 km2). The main objective of this work is to assess the reduction of sediment transport following anthropogenic intensification on the basin, especially since the construction of many large dams. In order to collect information on actual deposits over several years, the paleo-hydrological approach was applied through the study of sediment cores sampled in the low valley meanders on alluvial terraces, after the last dam (Sidi Salem, the largest water storage capacity over the basin), but before the estuary to avoid marine influence and near a hydrological station (Jdaida). The sedimentary deposits of the river provide key information on the past sedimentary inputs. A visible succession of sedimentary layers corresponding to the deposits of successive floods on the study site has been determined and the history of the sedimentary contributions of the Medjerda is reconstructed by this approach. The thickest layers of sedimentary deposits are related to exceptional events. They are mainly concentrated on the lower part of the core and are mainly composed of sands. The first 1.2 m of the core from the bottom upward relates to 10 years of river discharges, as can be determined from the 137Cs datation. The next upward 1.05 m of core relates to the following 20 years of discharges, up to 1981, date of the construction of the Sidi Salem dam, and is composed of a mix of sand, silts and clays. The last 75 cm of core near the surface is only composed of clays with thin silt bands, and relates to a period of 32 years. We thus observe that there is no more sand deposits in the river bed since the construction of the Sidi Salem dam. The deficit of sediment supply to the sea is viewed as a major factor to be taken into account for better understanding of the dynamics of coastal areas in the context of global climate change.
1980-08-01
0025 UNCLASSIFIED NL m -hmmII hhh~ENDhE~E EEEEL~ ___ OHIO RIVER BASIN TROUT RUN, CAMBRIA COUNTY PENNSYLVANIA NOI No. PA 00444 ~LEVEL tPennDER No. 11-17...COUNTY, COMMONWEALTH OF PENNSYLVANIA NDI No. PA 00444 PennDER No. 11-17 --PHASE--I -INSPECT-I ON--REPRT m - i-’ JNATIONAL.DAM. AFETY PROGRAM I,.ti/t UK...Construction History - The dam was designed by Andrew B. Crichton , Civil and Mining Engineer, Johnstown, Pennsylvania. The dam was constructed in 1909 and 1910
Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius
2015-01-01
European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.
Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.
2008-01-01
Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.
88. AVALON DAM Photographic copy of construction drawing dated ...
88. AVALON DAM - Photographic copy of construction drawing dated February 9, 1912 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) METHOD OF CLOSING UP OLD GATE OPENINGS IN SPILLWAY AND ARRANGEMENT OF TURBINES, OPERATING CYLINDER GATES - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
Rock Mass Behavior Under Hydropower Embankment Dams: A Two-Dimensional Numerical Study
NASA Astrophysics Data System (ADS)
Bondarchuk, A.; Ask, M. V. S.; Dahlström, L.-O.; Nordlund, E.
2012-09-01
Sweden has more than 190 large hydropower dams, of which about 50 are pure embankment dams and over 100 are concrete/embankment dams. This paper presents results from conceptual analyses of the response of typical Swedish rock mass to the construction of a hydropower embankment dam and its first stages of operation. The aim is to identify locations and magnitudes of displacements that are occurring in the rock foundation and grout curtain after construction of the dam, the first filling of its water reservoir, and after one seasonal variation of the water table. Coupled hydro-mechanical analysis was conducted using the two-dimensional distinct element program UDEC. Series of the simulations have been performed and the results show that the first filling of the reservoir and variation of water table induce largest magnitudes of displacement, with the greatest values obtained from the two models with high differential horizontal stresses and smallest spacing of sub-vertical fractures. These results may help identifying the condition of the dam foundation and contribute to the development of proper maintenance measures, which guarantee the safety and functionality of the dam. Additionally, newly developed dams may use these results for the estimation of the possible response of the rock foundation to the construction.
Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig
2008-01-01
Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the lab with Sedflume, an apparatus for measuring sediment erosion-parameters. In this report, we present results of the characterization of fine-grained sediment erodibility within Capitol Lake. The erodibility data were incorporated into the previously developed hydrodynamic and sediment transport model. Model simulations using the measured erodibility parameters were conducted to provide more robust estimates of the overall magnitudes and spatial patterns of sediment transport resulting from restoration of the Deschutes Estuary.
NASA Astrophysics Data System (ADS)
Loperte, A.; Bavusi, M.; Cerverizzo, G.; Lapenna, V.; Soldovieri, F.
2012-04-01
This work is concerned with the first results of a survey based on the integration of geophysical techniques for the inspection of the Monte Cotugno dam, the largest rock fill dam in Europe. The Monte Cotugno dam, managed by National Irrigation Development and Agrarian Transformation in Puglia, Basilicata and Irpinia is located on the Sinni river (Basilicata District, South Italy) and represents the nodal point in the whole hydraulic system on the Ionic side of Italy; in fact, the dam allows harnessing of the Sinni river water for agricultural, industrial, drinking and domestic purposes. The dam is of the zoned type and consists of a central core in sandy silt and of gravelly-sandy shoulders; its water tightness is ensured by a bituminous conglomerate facing on the upstream side, welded at the bottom to the foundation sealing system. The latter is about 1,900m long and consist of a massive concrete cut-off wall based on the marly-clay formation, 300m long on the right and 600 m long on the left side. On the valley bottom it is made up of a reinforced concrete cut-off wall that is inserted in the marly-clay formation and is surmounted by an inspection and percolation water collection tunnel. The watertight face consists of a bottom levelling layer 7-8 cm thick in semi open-graded bituminous concrete, a 5 cm separation layer in dense-graded bituminous concrete, a drainage layer in very open-graded concrete varying in thickness from 10 to 16 cm from the top of the dam down, two 4-cm top layers in dense-graded bituminous concrete with stepped joints, a finishing sealing coat containing 1.5 kg/cm2 of asphalt. The shallowest part of this layering is started to show incipient small detachments due to thermal solicitations; these detachments represent a possible way for water infiltration in the dam. In this framework, it was decided to perform the identification, characterization and evaluation of the potential loss of water through small cracks in the bituminous concrete dam and then monitor these areas of infiltration. For such a task, the use of conventional geotechnical investigation methods was discarded since these techniques often requires invasive actions in the inner of the structure to be investigated (destructiveness) and only provide punctual information for small volumes. On the contrary, in this case, it was decided to use non-invasive sensing techniques, which make it possible to investigate and gain "global" information about all the structure without affecting its operability. In particular, Ground Penetrating Radar and Electrical Resistivity Tomography techniques have been exploited so to have possibility of quickly investigating large portions of dam with different spatial and resolution scales and without the need of destructive actions. The results of this survey well agree with direct surveys and the details of the survey and of the diagnostic results will be shown at the conference.
Characteristics of the first stage of constructing the Hoabinh Dam in Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogachenko, P.T.; Godunov, B.I.; Phunc Ne, T.
1985-06-01
As a result of an analysis of the data, investigations, and on-site observations at the Hoa-Binh Dam, Vietnam, the authors conclude: infilling of the rock mass with sand, successful for the Aswan dam, cannot be mechanically transferred to other dams; the possibility of using the energy of the river flow for removing low-quality soils in large amounts from the foundation of rock-fill dams by regulating the sequence of dumping the elements of the dam was confirmed in model investigations and successfully accomplished in the construction of the HoaBinh dam; at the site of the Hoa-Binh dam, observations of the dumpingmore » of the sand-gravel soil into water into a high shoulder did not reveal segregation of this soil, however, the data from investigations in a single borehole contradict the observations -- further on-site observation must therefore be made.« less
4. DETAIL VIEW OF TRIPLE TONGUE AND GROOVE CRIBBING USED ...
4. DETAIL VIEW OF TRIPLE TONGUE AND GROOVE CRIBBING USED IN DAM CONSTRUCTION, NORTH EAST OF EAST DAM, LOOKING NORTH - Three Bears Lake & Dams, East Dam, North of Marias Pass, East Glacier Park, Glacier County, MT
Dams and Intergovernmental Transfers
NASA Astrophysics Data System (ADS)
Bao, X.
2012-12-01
Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.
View of Central Texas as seen from Apollo 9
NASA Technical Reports Server (NTRS)
1969-01-01
Central Texas area as photographed from the Apollo 9 spacecraft during its earth-orbital mission. Interstate 35 runs from Austin (right center edge of pictures) to Waco (near bottom left corner). Also, visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.
The Dams and Monitoring Systems and Case Study: Ataturk and Karakaya Dams
NASA Astrophysics Data System (ADS)
Kalkan, Y.; Bilgi, S.; Gülnerman, A. G.
2017-12-01
Dams are among the most important engineering structures used for flood controls, agricultural purposes as well as drinking and hydroelectric power. Especially after the Second World War, developments on the construction technology, increase the construction of larger capacity dams. There are more than 150.000 dams in the world and almost 1000 dams in Turkey, according to international criteria. Although dams provide benefits to humans, they possess structural risks too. To determine the performance of dams on structural safety, assessing the spatial data is very important. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some general information on dams and their different monitoring systems by taking into account two different dams and their structural specifications with the required information. The case study in this paper depends on a comparison of the monitoring surveys on Atatürk Dam and Karakaya Dam, which are constructed on Firat River with two different structural type in Turkey. In addition, brief information is given about these dams and the methods of geodetic and non-geodetic monitoring measurements applied by various disciplines. The last part of the study focuses on the inference of the geodetic monitoring methods, which depend on a seven years of geodetic monitoring.
Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T.
2004-01-01
Populations of paddlefish Polyodon spathula have been adversely affected by dams that can block their movements. Unlike high-head dams that preclude fish passage (unless they are equipped with fishways), the dams on the upper Mississippi River are typically low-head dams with bottom release gates that may allow fish passage under certain conditions. We evaluated the relation of dam head and river discharge to the passage of radio-tagged paddlefish through dams in the upper Mississippi River. Radio transmitters were surgically implanted into 71 paddlefish from Navigation Pools 5A and 8 of the upper Mississippi River and from two tributary rivers during fall 1994 through fall 1996. We tracked paddlefish through September 1997 and documented 53 passages through dams, 20 upstream and 33 downstream. Passages occurred mostly during spring (71%) but also occurred sporadically during summer and fall (29%). Spring passages varied among years in response to hydrologic conditions. We evaluated patterns in upstream and downstream passages with Cox proportional hazard regression models. Model results indicated that dam head height strongly affected the upstream passage of paddlefish but not the downstream passage. Several paddlefish, however, passed upstream through a dam during periods when the minimum head at the dam was substantial ( greater than or equal to 1m). In these cases, we hypothesize that paddlefish moved upstream through the lock chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, B.J.
1994-06-01
Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less
1980-08-01
dam. . 2.2 Construction Data. No record of original construction is avail- ’.. able for this dam. A general location plan prepared by Reino E. low Hyypa...and S"’: overuse. The slopes of the shoreline are flat and generally well covered with grass and vegetation to preclude sloughing Pp. and shoreline...roadways. It is estimated that the water depths would average 9.8 feet and that velocities of flow could cause erosion, stripping of vegetation and
1980-02-01
Safety Inspection of Dams" are not available. These studies should be performed by a professional engineer experienced in the design and construction...engineer experienced in the design and construction of tailings dams. An inspection and maintenance program should be initiated. Periodic inspections...Page No. SECTION 1 - PROJECT INFORMATION 1.1 General 1 1.2 Description of Project 1 1.3 Pertinent Data 2 SECTION 2 - ENGINEERING DATA 2.1 Design 5 2.2
12. CONSTRUCTION OF FOREBAY; SLUICEGATE IN CENTER AND ORIGINAL STONE ...
12. CONSTRUCTION OF FOREBAY; SLUICEGATE IN CENTER AND ORIGINAL STONE DAM ABUTMENT ENCASED IN CONCRETE ON RIGHT, March 14, 1918. - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV
Inflow forecasting model construction with stochastic time series for coordinated dam operation
NASA Astrophysics Data System (ADS)
Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.
2014-12-01
Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
NASA Astrophysics Data System (ADS)
Merritts, D. J.; Walter, R. C.; Rahnis, M. A.; Oberholtzer, W.
2008-12-01
Stream channels generally are the focus of conceptual models of valley bottom geomorphology. The channel-centered model prevalent in the tectonically inactive eastern U. S. invokes meandering stream channels migrating laterally across valley floors, eroding one bank while depositing relatively coarse sediment in point bars on the other. According to this model, overbank deposition during flooding deposits a veneer of fine sediment over the gravel substrate. Erosion is considered normal, and the net volume of sediment is relatively constant with time. A dramatic change in conditions-land-clearing during European settlement--led to widespread aggradation on valley bottoms. This historic sedimentation was incorporated in the channel-centered view by assuming that meandering streams were overwhelmed by the increased sediment load and rapidly aggraded vertically. Later, elevated stream channels cut through these deposits because of decreased sediment supply and increased stormwater runoff accompanying urbanization. This view can be traced to early ideas of stream equilibrium in which incoming sediment supply and runoff determine stream-channel form. We propose a different conceptual model. Our trenching and field work along hundreds of km of stream length in the mid-Atlantic Piedmont reveal no point bars prior to European settlement. Instead, a polygenetic valley-bottom landscape underlies the drape of historic sediment. The planar surface of this veneer gives the appearance of a broad floodplain generated by long-term meandering and overbank deposition, but the "floodplain" is a recent aggradational surface from regional base-level rise due to thousands of early American dams that spanned valley bottoms. As modern streams incise into the historic fine-grained slackwater sediment, they expose organic-rich hydric soils along original valley bottom centers; talus, colluvium, bedrock, and saprolite with forest soils along valley margins; and weathered Pleistocene (and older) alluvial fans and fan pediments at tributary confluences. Two-dimensional views along incised stream banks give the appearance of overbank sediment atop stream bed gravel, but the fine- grained bank (1-5 m) is mostly the result of slackwater sedimentation from damming, whereas the underlying gravel polygenetic in origin. The gravel is Pleistocene or older in age, and not the result of active stream channel migration and point-bar formation during the Holocene. The Holocene warm period was dominated by valley-bottom stability and widespread wetland formation, fostered by beaver activity. Modern stream channel forms are largely the result of incision and bank erosion in response to dam breaching and base- level fall, not hydraulic adjustment to prevailing (or changed) supplies of sediment and water. Rather, channel dimensions are controlled by thickness of historic sediment (i.e., dam height and distance upstream of dam) and depth of incision. Changes in slope (i.e., rapid base-level fall), rather than changes in sediment supply and runoff, are powerful determinants of modern channel forms, and there are no pre-settlement forms for comparison. At present, there is an "impedance mismatch" between those with channel-centered views and those who view the deeply weathered mid-Atlantic landscape as the result of hundreds of thousands to millions of years of slow landscape evolution.
8. VIEW NORTH DURING CONSTRUCTION, DECEMBER 1995, FACE OF ORIGINAL ...
8. VIEW NORTH DURING CONSTRUCTION, DECEMBER 1995, FACE OF ORIGINAL 1882 MASONRY DAM WITH CAPSTONES - Norwich Water Power Company, Dam, West bank of Shetucket River opposite Fourteenth Street, Greenville section, Norwich, New London County, CT
NASA Astrophysics Data System (ADS)
Susperregui, A.
2010-12-01
The Rance basin (France) offers potential to make a full-scale assessment of the environmental impact of a tidal power station after 50 years of operation. Consequences on biology, hydrodynamics and sedimentology were observed and nowadays, some of these changes are still acting on the natural system. The tidal dynamic was completely artificialised by the dam construction. The two main consequences are the reduction of exundation area and the extension of slack duration. Sedimentary dynamic depending on hydrodynamics conditions, changes in sediment distribution were also observed. Before the tidal power station construction, sands lined the gravel bed channel, recovered the bottom and formed beaches and banks. Coves and the upstream part of the estuary were dominated by a fine sedimentation, forming mudflats in a classical configuration slikke/schorre. Nowadays, mudflats extended to the center of the basin and all coves are occupied. The important inertia induced by the slack extension caused a slowing down on currents velocities, making easier the fine suspension deposit. The siltation is most important upstream, were the turbidity maximum was shifted, generating problems for navigation and banks access. A solution of sediment management was envisaged from 2001, by the digging of a sediments trap of 91 000 m3, near the Châtelier Lock. Sedimentation monitoring in this trap shows an intense filling over the first two years of functioning, then a slowing down leading to a complete filling from 2005. This trap also showed a beneficial interest on the sedimentation rates of the mudflats closed to it, which decreased. To understand how fine sediment is eroded and transported into this maritime area, an optical backscatter sensor was installed 1.5 km upstream of the tidal power station. During spring tides, the tidal power station functions in a “double-acting” cycle. This particular working leads to an important increase of turbidity during the artificial tidal cycle. Currents seem very strong close to the turbines and are responsible for intense bottom erosion in their area, as it is observed in the most downstream mudflat. The importance of flood currents versus ebb ones, combined to slack extension, explain the upstream sediments fluxes. But we cannot assume for the moment that is the only fine sediment source. A second turbidimeter is installed on the oceanic front of the dam to determine if there is a coastal contribution and results will be dealt soon. Figure 2: Example of turbidity raise during a “double-acting” cycle.
Orozco-Durán, A; Daesslé, L W; Gutiérrez-Galindo, E A; Muñoz-Barbosa, A
2012-01-01
The distribution of selenium, molybdenum and uranium was studied in ~1.5 m sediment cores from the Colorado River delta, at the Colorado (CR) and Hardy (HR) riverbeds. Core HR2 showed highest Se, Mo and U concentrations at its bottom (2.3, 0.95 and 1.8 μg g(-1)) within a sandy-silt layer deposited prior to dam construction. In CR5 the highest concentrations of these elements (0.9, 1.4 and 1.7 μg g(-1) respectively) were located at the top of the core within a surface layer enriched in organic carbon. A few samples from HR2 had Se above the probable toxic effect level guidelines.
Laboratory experiments on dam-break flow of water-sediment mixtures
USDA-ARS?s Scientific Manuscript database
Dams induce sedimentation and store significant amounts of sediment as they age; therefore, dam failures often involve the release of sediment-laden water to the downstream floodplain. In particular, tailings dams, which are constructed to impound mining wastes, can cause devastating damage when the...
176. Photographic copy of original construction drawing dated February 10, ...
176. Photographic copy of original construction drawing dated February 10, 1933 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM; LOCATION OF THERMOMETER GROUPS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
174. Photographic copy of original construction drawing dated March 27, ...
174. Photographic copy of original construction drawing dated March 27, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM; UPLIFT PRESSURE PIPES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Yetta; Forsythe, Patrick S.; McLaughlin, Robert L.
The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migrationmore » is only half the battle. Broader recovery for linked sturgeon populations requires safe round-trip passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.« less
Reconnecting fragmented sturgeon populations in North American rivers
Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.
2016-01-01
The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.
1979-07-01
General 5-1 b. Design Data 5-1 c. Experience Data 5-1 d. Visual Observation 5-1 e. Overtopping Potential 5-1 f. Dam Failure Analysis 5-2 6. STRUCTURAL...the Soil Conservation Service, Durham, New Hampshire. The construction * contractor was Robie Construction Company , Inc. i. Normal Operating...INVENTORY OF DAMS P 0O - ... - SECTION 5 HYDROLOGY AND HYDRAULIC ANALYSIS • 5.1 Evaluation of Features a. General. Baker Dam Site 11 is an earthen
A Study of the Impact of Dams on Streamflow and Sediment Retention in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Munroe, T.; Anderson, E.; Markert, K. N.; Griffin, R.
2017-12-01
Dam construction in the Mekong Basin has many cascading effects on the ecology, economy, and hydrology of the surrounding region. Current studies that assess the hydrological impact of dams in the region focus on only one or a small subset (<10) of dams. The focus of this study is to utilize the Soil Water Assessment Tool (SWAT), a rainfall-runoff hydrologic model to determine change in streamflow and sedimentation in the Mekong Basin before and after the construction of dams. This study uses land cover land use and reservoir datasets created by the NASA SERVIR-Mekong Regional Land Cover Monitoring System and Dam Inundation Mapping Tool as inputs into the model. The study also builds on the capabilities of the SWAT model by using the sediment trapping efficiency (STE) equation from Brune (1953), rewritten by Kummu (2007), to calculate STE of dams and estimate change in sediment concentration downstream. The outputs from this study can be used to inform dam operation policies, study the correlation between dams and delta subsidence, and study the impact of dams on river fisheries, which are all pressing issues in the Mekong region.
Earthern embankment overtopping analysis using the WinDAM B software
USDA-ARS?s Scientific Manuscript database
Over 11,000 small watershed dams have been constructed with USDA involvement over an eighty year period. WinDAM B software has been developed to help engineers address dam safety concerns relative to potential overtopping of these earthen embankments. The primary function of the software is threef...
NASA Astrophysics Data System (ADS)
Li, Zhenwei; Xu, Xianli; Xu, Chaohao; Liu, Meixian; Wang, Kelin
2018-03-01
Southwest China, as one of the largest continuous karst areas in the world, is a severely eroded region due to its special geological condition. Thus, soil and water conservation measures such as dam construction have been extensively implemented in this region to control sediment delivery. However, it remains unclear how dam construction affects multiscale variability of sediment discharge (SD) and its potentially influential factors in southwest China. To assess this, annual SD, water discharge (WD), precipitation (PT), potential evapotranspiration (PET), and normalized differential vegetation index (NDVI) data from 1955 to 2015 were obtained from two karst watersheds of Liujiang (no large dams) and Hongshui (dam-controlled). These sites shared the similar climatic conditions. The Mann-Kendal test, Wilcoxon rank-sum test, and continuous wavelet transform analysis was used to detect the trends and periodicity in SD, and wavelet coherence analysis were employed to detect the temporal covariance between SD and WD, PT, PET, and NDVI. Results indicated that the multiscale variability of SD was strongly influenced by dam construction. The annual SD showed significant 4-year periodic oscillation in the Liujiang watershed, while no significant cycles were found in the Hongshui watershed. Dam construction exerted substantial influence on the multiscale correlations between SD and its associated factors. The time scales that the NDVI resonated with SD were concentrated on the periodicity of 2- and 3-year in the Liujiang watershed. In contrast, no significant periodicities were observed in the Hongshu watershed. This study yields a greater understanding of SD dynamics, and is helpful for better watershed management in karst areas of southwest China.
View of Central Texas as seen from Apollo 9
1969-03-09
AS09-22-3341 (3-13 March 1969) --- Central Texas area as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. Interstate 35 runs from Austin (right center edge of picture) to Waco (near bottom left corner). Also visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Jody K.
Remedial investigation and cleanup at the Rocky Flats, Colorado, Site was completed in 2005. Uplands, riparian, and wetland habitat were disturbed during cleanup and closure activities and required extensive revegetation. Unavoidable disturbances to habitat of the Preble's meadow jumping mouse (a federally listed species) and wetlands required consultation with regulatory agencies and mitigation. Mitigation wetlands were constructed in two drainages, and a third developed naturally where a soil borrow area intercepted the groundwater table. During the 50-plus years of site operations, 12 ponds were constructed in three drainages to manage and retain runoff and sewage treatment plant discharges prior tomore » release off site. A batch-release protocol has been used for the past several decades at the terminal ponds, which has affected the riparian communities downstream. To return the hydrologic regime to a more natural flow-through system similar to the pre-industrial-use conditions, seven interior dams (of 12) have been breached, and the remaining five dams are scheduled for breaching between 2011 and 2020. At the breached dams, the former open water areas have transformed to emergent wetlands, and the stream reaches have returned to a flow-through system. Riparian and wetland vegetation has established very well. The valves of the terminal ponds were opened in fall 2011 to begin flow-through operations and provide water to the downstream plant communities while allowing reestablishment of vegetation in the former pond bottoms prior to breaching. A number of challenges and issues were addressed during the revegetation effort. These included reaching an agreement on revegetation goals, addressing poor substrate quality and soil compaction problems, using soil amendments and topsoil, selecting seeds, determining the timing and location of revegetation projects relative to continuing closure activities, weed control, erosion control, revegetation project field oversight, and contractual limitations. A variety of ecological restoration techniques were conducted at the site to meet these challenges. These efforts have resulted in vegetation becoming well established in most locations. (author)« less
NASA Astrophysics Data System (ADS)
Grill, Günther; Lehner, Bernhard; Lumsdon, Alexander E.; MacDonald, Graham K.; Zarfl, Christiane; Reidy Liermann, Catherine
2015-01-01
The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930-2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium sized dams and for the need to include waterfalls to establish a baseline of natural fragmentation. Our versatile framework can serve as a component of river fragmentation and connectivity assessments; as a standardized, easily replicable monitoring framework at global and basin scales; and as part of regional dam planning and management strategies.
Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico
Wilson, Jennifer T.; Van Metre, Peter C.
2000-01-01
Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.
NASA Astrophysics Data System (ADS)
Wang, Wei; Lu, Hui; Ruby Leung, L.; Li, Hong-Yi; Zhao, Jianshi; Tian, Fuqiang; Yang, Kun; Sothea, Khem
2017-10-01
Water resources management, in particular flood control, in the Lancang-Mekong River Basin (LMRB) faces two key challenges in the 21st century: climate change and dam construction. A large-scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-LMK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the LMRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, stream regulation by dam reduces flood risk consistently throughout this century, with more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.
Campos, Zilca; Mourão, Guilherme; Magnusson, William E
2017-01-01
Run-of-the-river hydroelectric dams cause changes in seasonal inundation of the floodplains, and this may cause displacement of semi-aquatic vertebrates present before dam construction. This study evaluated the movement of crocodilians before and after the filling of the Santo Antônio hydroelectric reservoir on the Madeira River in the Brazilian Amazon, which occurred in November 2011. We radio-tracked four adult male Paleosuchus palpebrosus and four adult male Paleosuchus trigonatus before and after the formation of the reservoir between 2011 and 2013. The home ranges of the P. palpebrosus varied from < 1 km2 to 91 km2 and the home ranges of the P. trigonatus varied from < 1km2 to 5 km2. The species responded differently to time since filling and water level in weekly movement and home range. However, overall the dam appears to have had little effect on the use of space by the individuals that were present before dam construction.
NASA Astrophysics Data System (ADS)
Chen, H. Y.; Chen, S. C.; Chao, W. A.
2015-12-01
Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.
Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).
Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz
2016-02-15
Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. Copyright © 2015 Elsevier B.V. All rights reserved.
Westjohn, David B.
1997-01-01
The proposed removal of the remnants of a hydroelectric dam in the Muskegon River at Big Rapids, Michigan, will potentially affect flow of the river at the city's water intake system. Fifteen boreholes were augered in bottom sediments in the river just upstream from the dam relic, and streambottom profiles were made using ground-penetrating radar. Data from boreholes show that sediments captured by the dam foundation were deposited in two distinctly different sedimentary environments. Sediments that overlie the pre-dam channel surface consist of lacustrine clay, wood chips, silt, and sand. These lacustrine sediments are interbedded in a cyclical fashion, and they were deposited under low flow to stagnant water conditions during 1916-66, when a 17-foot-tall hydroelectric dam was in place. Demolition of the upper 13 feet of this dam in 1966 resulted in erosion of most of the lacustrine sediments, and subsequent deposition of coarser alluvium in the impoundment behind the remaining dam foundation. Lacustrine sediments are present in the active part of the stream channel and extend from the dam foundation to about 1,300 feet upstream. The composite thickness of lacustrine sediments and overlying coarser alluvium was determined from sediment cores collected from the boreholes. The volume of these sediments is estimated to be about 19,000 cubic yards.
GC51D-0831: A Study of the Impact of Dams on Sediment Retention in the Mekong River Basin
NASA Technical Reports Server (NTRS)
Munroe, Thailynn; Griffin, Robert; Anderson, Eric; Markert, Kel
2017-01-01
Dam construction in the Mekong Basin has many cascading effects on the ecology, economy, and hydrology of the surrounding region. The focus of this study is to utilize the Soil Water Assessment Tool (SWAT), developed at Texas A & M, a rainfall-runoff hydrologic model to determine change in sedimentation in the Mekong Basin after the construction of dams. This study uses land cover land use and reservoir datasets created by the NASA SERVIR-Mekong Regional Land Cover Monitoring System and Dam Inundation Mapping Tool as inputs into the model. The study also builds on the capabilities of the SWAT model by using the sediment trapping efficiency (STE) equation from Brune (1953), rewritten by Kummu & Varis (2007), to calculate STE of dams and estimate change in sediment concentration downstream. The outputs from this study can be used to inform dam operation policies, study the correlation between dams and delta subsidence, and study the impact of dams on river fisheries, which are all pressing issues in the Mekong region.
6. BRIDGE LOOKING SOUTH FROM CROWN POINT STATE PARK SHOWING ...
6. BRIDGE LOOKING SOUTH FROM CROWN POINT STATE PARK SHOWING SURROUNDING DEVELOPMENT FROM CONSTRUCTION OF DAM - Columbia River Bridge at Grand Coulee Dam, Spanning Columbia River at State Route 155, Coulee Dam, Okanogan County, WA
NASA Astrophysics Data System (ADS)
Grace, M.; Butler, K. E.; Peter, S.; Yamazaki, G.; Haralampides, K.
2016-12-01
The Mactaquac Hydroelectric Generating Station, located on the Saint John River in New Brunswick, Canada, is approaching the end of its life due to deterioration of the concrete structures. As part of an aquatic ecosystem study, designed to support a decision on the future of the dam, sediment in the headpond, extending 80 km upriver, is being examined. The focus of this sub-study lies in (i) mapping the thickness of sediments that have accumulated since inundation in 1968, and (ii) imaging the deeper glacial and post-glacial stratigraphy. Acoustic sub-bottom profiling surveys were completed during 2014 and 2015. An initial 3.5 kHz chirp sonar survey proved ineffective, lacking in both resolution and depth of the penetration. A follow-up survey employing a boomer-based "Seistec" sediment profiler provided better results, resolving sediment layers as thin as 12 cm, and yielding coherent reflections from the deeper Quaternary sediments. Post-inundation sediments in the lowermost 25 km of the headpond, between the dam and Bear Island, are interpreted to average 26 cm in thickness with the thickest deposits (up to 65 cm) in deep water areas overlying the pre-inundation riverbed west of Snowshoe Island, and south and east of Bear Island. A recent coring program confirmed the presence of silty sediment and showed good correlation with the Seistec thickness estimates. In the 15 km stretch upriver of Bear Island to Nackawic, the presence of gas in the uppermost sediments severely limits sub-bottom penetration and our ability to interpret sediment thicknesses. Profiles acquired in the uppermost 40 km reach of the headpond, extending to Woodstock, show a strong, positive water bottom reflection and little to no sub-bottom penetration, indicating the absence of soft post-inundation sediment. Deeper reflections observed within 5 km of the dam reveal a buried channel cut into glacial till, extending up to 20 m below the water bottom. Channel fill includes a finely laminated unit interpreted to be glaciolacustrine clay-silt and a possible esker - similar to stratigraphy found 20 - 30 km downriver at Fredericton. Future plans include a small scale survey in late summer, 2016 to evaluate the suitability of waterborne ground penetrating radar (GPR) profiling as an alternative to acoustic profiling in areas of gas-charged sediment.
1984-01-01
RIVER MISSOURI Report from September 1966 HARRY S. TROMAN DAM & RESERVOIR November 1979 OPERATION AND MAINTENANCE MANUAL 6 PERFORMING DRG. REPORT N4040E...Two of this report ) VII- I- xxiv ............................. .... ... .... ... . .2. . . OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND...RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT CHAPTER 1 INTRODUCTION 1-01. Location and Description of Project: Harry S
154. Photographic copy of original construction drawing dated April 10, ...
154. Photographic copy of original construction drawing dated April 10, 1928 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM; 60 X 12 SPILLWAY RING GATE CONTROL LAYOUT AND ASSEMBLY. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
155. Photographic copy of original construction drawing dated October 24, ...
155. Photographic copy of original construction drawing dated October 24, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYEE DAM SPILLWAY; 60 X 12 RING GATE-CONTROL; INSTALLATION ASSEMBLIES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
167. Photographic copy of original construction drawing dated October 10, ...
167. Photographic copy of original construction drawing dated October 10, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM-IRRIGATION OUTLET; 48 NEEDLE VALVES; PRESSURE PIPING AND MATERIAL LIST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Dam Dynamics in the Colonial Northeast and Chesapeake: Hydrologic Implications
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N. L.; Brandt, S. L.
2008-12-01
Recent work has highlighted the widespread presence of low-head dams for power generation during the 19th century. However, this work largely depends on census numbers tabulated in the mid-1800s, over 200 years after European activity began in North America. In order to compare the hydrologic implications of colonial era low-head dam construction with the impacts of other simultaneous processes (e.g., expatriation of the beaver or forest clearance), we have compiled historical data on mills to reconstruct the temporal and spatial dynamics of low-head dam construction in the colonial northeastern United States (i.e., Virginia to Maine). This reconstruction, combined with the results of related work on beaver pond dynamics and deforestation, provides several insights into the distribution and impacts of human impoundments during this period. While the resulting hydrologic changes are large, the addition of human dams to the system seems to be minimally offset and less important than changes arising from the expatriation of the beaver or the removal of trees during this early period. In addition, the spatial patterns of dam construction are complex, making prediction of hydrologic and associated responses more difficult to predict.
7. Detail view of reinforced concrete archrings comprising dam's upstream ...
7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
19. WESTERLY VIEW ALONG SPILLWAY BUCKET, SHOWING CONSTRUCTION OPERATIONS IN ...
19. WESTERLY VIEW ALONG SPILLWAY BUCKET, SHOWING CONSTRUCTION OPERATIONS IN PROGRESS. THE DAM EMBANKMENT IS SHOWN IN THE LEFT DISTANCE.... Volume XX, No. 6, September 5, 1940. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
156. Photographic copy of original construction drawing dated October 24, ...
156. Photographic copy of original construction drawing dated October 24, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM SPILLWAY; 60 X 12 RING GATE-CONTROL; SCALE FRAME AND SCALES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
15. DETAIL VIEW OF SAWMILL POWER HOUSE FOUNDATION (CONSTRUCTED IN ...
15. DETAIL VIEW OF SAWMILL POWER HOUSE FOUNDATION (CONSTRUCTED IN 1909) SHOWING THE WIRE-ROPE AND RAILROAD RAILS USED AS REINFORCEMENT IN THE CONCRETE. THIS SAME MODE OF REINFORCEMENT WAS USED IN THE DAM. - Hume Lake Dam, Sequioa National Forest, Hume, Fresno County, CA
166. Photographic copy of original construction drawing dated September 5, ...
166. Photographic copy of original construction drawing dated September 5, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM-IRRIGATION OUTLET; DRAIN VENT AND PRESSURE PIPING INSTALLATION; 48 NEEDLE VALVES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
1980-02-01
for Permit for Construction and Repair of Dam" filed on March 16, 1959. f. Design and Construction History Design data on file with NJDEP include: 1...LAr- Us a-2. hr’s. LA9~ WATF=R? SiQ_~~- SL- !E q VOL ( YFv - mcA>-) (Acmr-- =T.) 2o4~ 2-Ito STORCH ENGINEERS shootL... of 11. Project FmnnK Wmr=X---A-1
NASA Astrophysics Data System (ADS)
Kameyama, S.; Shimazaki, H.; Nohara, S.; Fukushima, M.; Kudo, K.; Sato, T.
2008-12-01
In the Mekong River watershed, traditional social and industrial systems have long existed in harmony with water and biological resources. Since the 1950s, many dam-construction projects have been started to develop power and water resources to meet increasing demand for energy and food production. Since the 1970s, there have been temporary interruptions to these projects because of civil war or regional volatility of international relations. Many of these projects have been restarted in the last 15 years. This raises international interest, as there are transboundary issues cross-border issues related to both development assistance and environmental conservation. By 2008, two Chinese dams had already been completed (the Manwan dam in 1996 and the Dachaoshan dam in 2003) on the Mekong River in Yunnan province. Dam construction has some positive impacts, such as electricity production, management of water resources, and flood control. However, upstream control of water discharge can have negative impacts on traditional agricultural systems and fisheries downstream from the dams, such as drastic changes in flow volume and sediment load. We used hydrological simulation of the watershed to quantify the impact of the construction of the Dachaoshan dam by comparing annual water discharge and sediment transport before and after the dam was completed. Our main objectives were to use watershed hydrologic modeling to simulate changes to annual hydrological parameters and sediment transport, and to map spatio-temporal changes of these data before and after dam construction. Our study area covered the part of the Mekong River main channel that extends about 100 km downstream from the junction of the borders of Myanmar, Thailand, and the Lao People's Democratic Republic. We used five data validation points at 25-km intervals along this section of the river and calculated model parameters every 1 km. The years we modeled were 1990 (began dam construction) and 2006 (after dam completed). We used the MIKE-SHE and MIKE11-Enterprise (developed by DHI) to calculate seasonal changes of water level, water velocity, and sediment transport. These models provided both water discharge and sediment transport dynamics at each modeled point along the river. The sediment budget was calculated as the difference of sediment load by volume between adjacent modeled points. All parameters used in the model were calibrated with field survey data; the river structure and water flows were measured in November 2007. To validate our simulated results we used historical water-level records from the towns of Chensean and Chencone. To determine the relationship between water discharge and sediment load, we analyzed the turbidity of monthly river water samples collected in the study region between November 2007 and November 2008. Our watershed runoff models simulated water discharge and sediment load at 1-km intervals and 1-h time steps for 1990 and 2006. The model results were compiled in GIS format and maps were produced to provide simple spatial displays of modeled parameters. Our simulations show that after construction of the dam, there was a moderate decrease in peak discharge volume and water velocity during the rainy season from August to September.
Harnessing Alaska. [Hydroelectric power in Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Four hydropower projects will provide electricity for isolated Alaskan cities by late 1984. A 15Mw project is already producing power. The three remaining hydro projects are described. Tyee Lake is a lake tap project. Water is supplied to the powerhouse by tapping the lake via a tunnel blasted through the lake bottom. Water then flows through a vertical pressure shaft to a power tunnel and into an aboveground powerhouse. Swan Lake consists of a double-curved arch dam and a power tunnel. Terror Lake consists of a concrete-faced compacted rockfill dam and a power tunnel.
51. Photographic copy of construction drawing, U.S. Reclamation Service, August ...
51. Photographic copy of construction drawing, U.S. Reclamation Service, August 1906 (original drawing located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "Crib dam at Lake Keechelus." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA
The invisibility of fisheries in the process of hydropower development across the Amazon.
Doria, Carolina Rodrigues da Costa; Athayde, Simone; Marques, Elineide E; Lima, Maria Alice Leite; Dutka-Gianelli, Jynessa; Ruffino, Mauro Luis; Kaplan, David; Freitas, Carlos E C; Isaac, Victoria N
2018-05-01
We analyze the invisibility of fisheries and inadequacy of fishers' participation in the process of hydropower development in the Amazon, focusing on gaps between legally mandated and actual outcomes. Using Ostrom's institutional design principles for assessing common-pool resource management, we selected five case studies from Brazilian Amazonian watersheds to conduct an exploratory comparative case-study analysis. We identify similar problems across basins, including deficiencies in the dam licensing process; critical data gaps; inadequate stakeholder participation; violation of human rights; neglect of fishers' knowledge; lack of organization and representation by fishers' groups; and lack of governmental structure and capacity to manage dam construction activities or support fishers after dam construction. Fishers have generally been marginalized or excluded from decision-making regarding planning, construction, mitigation, compensation, and monitoring of the social-ecological impacts of hydroelectric dams. Addressing these deficiencies will require concerted investments and efforts by dam developers, government agencies and civil society, and the promotion of inter-sectorial dialogue and cross-scale participatory planning and decision-making that includes fishers and their associations.
54. Downstream face of Agua Fria project's diversion dam showing ...
54. Downstream face of Agua Fria project's diversion dam showing initial masonry construction and poured concrete capping. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Simulation analysis of temperature control on RCC arch dam of hydropower station
NASA Astrophysics Data System (ADS)
XIA, Shi-fa
2017-12-01
The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.
Reconnecting fragmented sturgeon populations in North American rivers
Jager, Yetta; Forsythe, Patrick S.; McLaughlin, Robert L.; ...
2016-02-24
The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migrationmore » is only half the battle. Broader recovery for linked sturgeon populations requires safe round-trip passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.« less
NASA Astrophysics Data System (ADS)
Rosero-Lopez, D.; Flecker, A.; Walter, M. T.
2016-12-01
Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.
Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River
NASA Astrophysics Data System (ADS)
Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao
2018-03-01
The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.
2017-01-01
Background The developmental projects, particularly construction of dams, result in permanent changes of terrestrial ecosystems through inundation. Objective The present study was undertaken aiming at documenting useful plant species in Ntabelanga dam catchment area that will be impacted by the construction of the proposed dam. Methods A total of 55 randomly selected quadrats were used to assess plant species diversity and composition. Participatory rural appraisal (PRA) methods were used to identify useful plant species growing in the catchment area through interviews with 108 randomly selected participants. Results A total of 197 plant species were recorded with 95 species (48.2%) utilized for various purposes. Use categories included ethnoveterinary and herbal medicines (46 species), food plants (37 species), construction timber and thatching (14 species), firewood (five species), browse, live fence, and ornamental (four species each), and brooms and crafts (two species). Conclusion This study showed that plant species play an important role in the daily life and culture of local people. The construction of Ntabelanga dam is, therefore, associated with several positive and negative impacts on plant resources which are not fully integrated into current decision-making, largely because of lack of multistakeholder dialogue on the socioeconomic issues of such an important project. PMID:28828397
Temporal effects of post-fire check dam construction on soil functionality in SE Spain.
González-Romero, J; Lucas-Borja, M E; Plaza-Álvarez, P A; Sagra, J; Moya, D; De Las Heras, J
2018-06-09
Wildfire has historically been an alteration factor in Mediterranean basins. Despite Mediterranean ecosystems' high resilience, wildfire accelerates erosion and degradation processes, and also affects soil functionality by affecting nutrient cycles and soil structure. In semi-arid Mediterranean basins, check dams are usually built in gullies and channels after fire as a measure against soil erosion. Although check dams have proven efficient action to reduce erosion rates, studies about how they affect soil functionality are lacking. Our approach focuses on how soil functionality, defined as a combination of physico-chemical and biological indicators, is locally affected by check dam construction and the evolution of this effect over time. Soils were sampled in eight check dams in two semi-arid areas at SE Spain, which were affected by wildfire in 2012 and 2016. The study findings reveal that by altering sediments cycle and transport, check dams influence soil's main physico-chemical and biochemical characteristics. Significant differences were found between check dam-affected zones and the control ones for many indicators such as organic matter content, electrical conductivity or enzymatic activity. According to the ANOVA results, interaction between check dams influence and time after fire, was a crucial factor. PCA results clearly showed check-dams influence on soil functionality. Copyright © 2018. Published by Elsevier B.V.
4. William Beardsley standing atop diversion dam. East cableway tower ...
4. William Beardsley standing atop diversion dam. East cableway tower and construction camp, Camp Dyer are visible in the foreground. Photographer James Dix Schuyler, 1903 Source: Schuyler report. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Effect of water on the triaxial response under monotonic loading of asphalt concrete used in dams
NASA Astrophysics Data System (ADS)
Gaxiola Hernández, Alberto; Ossa López, Alexandra
2018-01-01
Embankment dams with asphalt concrete cores have been constructed on practically all continents with satisfactory results. Nowadays many advantages, such as the mechanical strength, are known that makes asphalt concrete a competitive alternative for the construction of the impervious elements of dams. However, the current available information does not describe the effect of prolonged contact between asphalt concrete and water on the structure of an embankment dam. In this research cylindrical asphalt concrete specimens with a void content similar to that used in impervious barriers of dams were fabricated and submerged in water for a prolonged period to simulate the conditions experienced by asphalt concrete placed inside an embankment dam as its core material. Subsequently, triaxial compression tests were conducted on the specimens. The results indicated that the asphalt concrete exhibited a reduction in strength because of the saturation process to which the material was subjected. However, no changes were observed in the mechanical response to prolonged contact with water for periods of up to 12 months.
Site assessment using echo sounding, side scan sonar and sub-bottom profiling.
DOT National Transportation Integrated Search
2014-02-01
The primary objective of this research is to use multifaceted geophysical data techniques in order to better map karst terrain beneath : standing bodies of water. This study may help providing stronger mapping techniques for future bridge and dam con...
Walder, Joseph S.; O'Connor, Jim E.
1997-01-01
Floods from failures of natural and constructed dams constitute a widespread hazard to people and property. Expeditious means of assessing flood hazards are necessary, particularly in the case of natural dams, which may form suddenly and unexpectedly. We revise statistical relations (derived from data for past constructed and natural dam failures) between peak discharge (Qp) and water volume released (V0) or drop in lake level (d) but assert that such relations, even when cast into a dimensionless form, are of limited utility because they fail to portray the effect of breach-formation rate. We then analyze a simple, physically based model of dam-breach formation to show that the hydrograph at the breach depends primarily on a dimensionless parameter η=kV0/gl/2d7/2, where k is the mean erosion rate of the breach and g is acceleration due to gravity. The functional relationship between Qp and η takes asymptotically distinct forms depending on whether η ≪ 1 (relatively slow breach formation or small lake volume) or η ≫ 1 (relatively fast breach formation or large lake volume). Theoretical predictions agree well with data from dam failures for which k, and thus η, can be estimated. The theory thus provides a rapid means of predicting the plausible range of values of peak discharge at the breach in an earthen dam as long as the impounded water volume and the water depth at the dam face can be estimated.
Merritts, Dorothy; Walter, Robert; Rahnis, Michael; Hartranft, Jeff; Cox, Scott; Gellis, Allen; Potter, Noel; Hilgartner, William; Langland, Michael; Manion, Lauren; Lippincott, Caitlin; Siddiqui, Sauleh; Rehman, Zain; Scheid, Chris; Kratz, Laura; Shilling, Andrea; Jenschke, Matthew; Datin, Katherine; Cranmer, Elizabeth; Reed, Austin; Matuszewski, Derek; Voli, Mark; Ohlson, Erik; Neugebauer, Ali; Ahamed, Aakash; Neal, Conor; Winter, Allison; Becker, Steven
2011-01-01
Recently, widespread valley-bottom damming for water power was identified as a primary control on valley sedimentation in the mid-Atlantic US during the late seventeenth to early twentieth century. The timing of damming coincided with that of accelerated upland erosion during post-European settlement land-use change. In this paper, we examine the impact of local drops in base level on incision into historic reservoir sediment as thousands of ageing dams breach. Analysis of lidar and field data indicates that historic milldam building led to local base-level rises of 2-5 m (typical milldam height) and reduced valley slopes by half. Subsequent base-level fall with dam breaching led to an approximate doubling in slope, a significant base-level forcing. Case studies in forested, rural as well as agricultural and urban areas demonstrate that a breached dam can lead to stream incision, bank erosion and increased loads of suspended sediment, even with no change in land use. After dam breaching, key predictors of stream bank erosion include number of years since dam breach, proximity to a dam and dam height. One implication of this work is that conceptual models linking channel condition and sediment yield exclusively with modern upland land use are incomplete for valleys impacted by milldams. With no equivalent in the Holocene or late Pleistocene sedimentary record, modern incised stream-channel forms in the mid-Atlantic region represent a transient response to both base-level forcing and major changes in land use beginning centuries ago. Similar channel forms might also exist in other locales where historic milling was prevalent.
114. Photocopy of original construction drawing, 14 August 1935. (Original ...
114. Photocopy of original construction drawing, 14 August 1935. (Original print in the possession of U.S. Army Corps of Engineers, Portland District, Portland, OR.) (M-5-8, Sheet No. 14) SPILLWAY DAM FISHWAY ENTRANCE BAY DIFFUSION CHAMBER BEAN DETAILS. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR
157. Photographic copy of original construction drawing dated July 29, ...
157. Photographic copy of original construction drawing dated July 29, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). OWYHEE DAM; 60 X 12 SPILLWAY RING GATE; CONTROL AND PIPING INSTALLATION AND ANCHOR BOLT LOCATION (SHEET 2 OF 8). - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
1980-04-01
CARNEY M. TERZIAN, HENBER I Design Branch Engineering Division RICHARD DIB * Water Control Branch Engineering Division [ hPIPWVAL 220ininu: Chief...2 f. Operator 2 I g. Purpose of Dam 2 h. Design and Construction History 2 i. Normal Operational Procedure 2 1.3 Pertinent Data 2 a. Drainage...i. Spillway 5 J. Regulating Outlets 5 [I h] Section Page 2. ENGINEERING DATA 6 2.1 Design Data 6 2.2 Construction Data 6 2.3 Operation Data 6 2.4
1979-11-01
reservoirs, Upper Reservoir and Reservoir No. 3. The reservoir supplies to the water destribution system by gravity. h. Design and Construction History. o...continual supply to the water , destribution system as the main service area is fed by gravity. The waste pipe is usually closed. The flashboards on...however, no design calculations or b construction data were revealed.. The visual inspection revealed that the dam is in poor condition. The visual
Pandit, Maharaj K; Grumbine, R Edward
2012-12-01
Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. ©2012 Society for Conservation Biology.
Dam impacts on and restoration of an alluvial river-Rio Grande, New Mexico
Gigi Richard; Pierre Julien
2003-01-01
The impact of construction of dams and reservoirs on alluvial rivers extends both upstream and downstream of the dam. Downstream of dams, both the water and sediment supplies can be altered leading to adjustments in the river channel geometry and ensuing changes in riparian and aquatic habitats. The wealth of pre and post-regulation data on the Middle Rio Grande, New...
12. Credit PED. View of tail race and dam showing ...
12. Credit PED. View of tail race and dam showing dumping of construction rubble into river bed by rail car; and preparations for pouring a concrete cap onto tail race wall. Photo c. 1909. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
1979-03-01
Tests were conducted on a 1:24-scale model of the outlet works for the Cerrillos and Portugues Dams located in Puerto Rico. The purpose of the model... Portugues outlet works were designed to provide for river diversion during construction of the dams. When the dams are completed, the flow will be regulated... Portugues . However, the stilling basins were designed for 2500 cfs (Cerrillos) and 1100 cfs ( Portugues ), the bank-full capacities downstream. Therefore
Solomon Gulch hydroelectric project takes shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The planning and current construction activities for the Solomon Gulch hydroelectric plant near Valdez, Alaska which is scheduled for dam completion in 1980 and power plant operation in 1981 are discussed. The main dam will be 115 ft high and 360 ft wide. The two paralled 48-in. dia penstocks will be constructed from surplus pipe left over from the Alaska pipeline project. Construction on the 12 MW plant began in October 1978. (LCL)
Bales, J.D.; Giorgino, M.J.
1998-01-01
From January 1993 through March 1994, circulation patterns and water- quality characteristics in Lake Hickory varied seasonally and were strongly influenced by inflows from Rhodhiss Dam. The upper, riverine portion of Lake Hickory was unstratified during much of the study period. Downstream from the headwaters to Oxford Dam, Lake Hickory thermally stratified during the summer of 1993. During stratification, releases from Rhodhiss Dam plunged beneath the warmer surface waters of Lake Hickory and moved through the reservoir as interflow. During fall and winter, Lake Hickory was characterized by alternating periods of mixing and weak stratification. Water-quality conditions in the headwaters of Lake Hickory were largely driven by conditions in water being released from Rhodhiss Dam. In general, water clarity increased, and concentrations of suspended solids, phosphorus, and summertime chlorophyll a decreased in a downstream direction from the headwaters of Lake Hickory to Oxford Dam. Two chlorophyll a samples from the upper portion of Lake Hickory exceeded the North Carolina water-quality standard of 40 micrograms per liter during the investigation. Downstream from the headwaters, dissolved oxygen was rapidly depleted from Lake Hickory bottom waters beginning in May 1993, and anoxic conditions persisted in the hypolimnion throughout the summer. During summer stratification, concentrations of nitrite plus nitrate, ammonia, and orthophosphate were low in the epilimnion, but concentrations of ammonia near the bottom of the reservoir increased as the hypolimnion became anoxic. Concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in only one of 60 samples collected from Lake Hickory. In contrast, concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in 40 percent of samples collected from the Upper Little River, and in 60 percent of samples collected from the Middle Little River, two tributaries to Lake Hickory. Load estimates for the period April 1993 through March 1994 indicated that releases from Rhodhiss Dam accounted for most of the suspended solids, nitrogen, and phosphorus entering the headwaters of Lake Hickory. Loads of nitrogen and phosphorus from point-source discharges were potentially important, but loads of suspended solids from these discharges were insignificant relative to other sources. The CE-QUAL-W2 model was applied to Lake Hickory from the U.S. Highway 321 bridge to Oxford Dam?a distance of 22 kilometers?and was calibrated by using data collected from April 1993 through March 1994. During the simulation period, measured water levels varied a total of 1.14 meters, and water temperatures ranged from 4 to 31 degrees Celsius. The calibrated model provided good agreement between measured and simulated water levels at Oxford Dam. Likewise, simulated water temperatures were generally within 1 degree Celsius of measured values; however, water temperatures were oversimulated for the fall of 1993. Simulated dissolved oxygen concentrations generally agreed with measurements; however, the model tended to oversimulate dissolved oxygen concentrations during the late summer and early fall. There was good agreement between simulated and measured frequency of occurrence of dissolved oxygen concentrations less than 4 milligrams per liter. Simulations of tracer dye releases demonstrated the effects of stratification on dilution and rate of transport in Lake Hickory. Simulations were made of the effects of changes in nutrient loads from inflows and from bottom sediments. A simulated 30-percent reduction in inflow concentrations of orthophosphate, ammonia, and nitrate at the U.S. Highway 321 bridge delayed the initial springtime pulse of algal growth by about 2 weeks, but had little effect on dissolved oxygen concentrations. Likewise, a reduction in the release rate of orthophosphate and ammonia from bottom sediments had very little effect on simulated algae
71. AVALON DAM Photographic copy of historic photo, 1911 ...
71. AVALON DAM - Photographic copy of historic photo, 1911 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'VIEW SHOWING CONSTRUCTION OF THE CYLINDER GATES' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
8. VIEW OF STEEL, STOCKDRAWN EARTH SCRAPER USED TO SCAPE ...
8. VIEW OF STEEL, STOCK-DRAWN EARTH SCRAPER USED TO SCAPE EARTH BORROW MATERIAL AND TRANSPORT IT TO DAM DURING CONSTRUCTION, LOOKING SOUTH - High Mountain Dams in Upalco Unit, Five Point Lake Dam, Ashley National Forest, 12 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT
Interaction of Dams and Landslides--Case Studies and Mitigation
Schuster, Robert L.
2006-01-01
In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.
1978-08-01
dam is a concrete gravity dam with earth abutments. It is 730 ft. long and the maximum height of it is 54 ft. The dam is assessed to be in poor...concrete gravity dam with earth abutments constructed in 1920. Overall length is 730 feet and maximum height is 54 feet. The Spicket River flows 5...the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region ( greatest reasonably possible storm runoff), or fractions
10. Photographic copy of copy of original construction drawing, dated ...
10. Photographic copy of copy of original construction drawing, dated 1899?. Original in possession of Twin Lakes Reservoir and Canal Company, Ordway, Colorado. PLAN OF DAM AND HEAD GATES FOR THE TWIN LAKES RESERVOIR. - Twin Lakes Dam & Outlet Works, Beneath Twin Lakes Reservoir, T11S, R80W, S22, Twin Lakes, Lake County, CO
6. Photographic copy of original construction drawing, no date, from ...
6. Photographic copy of original construction drawing, no date, from files in the Office of the Chief Engineer, U.S. Fish and Wildlife Service Regional Office, Denver. GATE CONTROL STRUCTURE (generic drawing used for all five dams in refuge) - J. Clark Salyer National Wildlife Refuge Dams, Along Lower Souris River, Kramer, Bottineau County, ND
Plugs or flood-makers? The unstable landslide dams of eastern Oregon
NASA Astrophysics Data System (ADS)
Safran, E. B.; O'Connor, J. E.; Ely, L. L.; House, P. K.; Grant, G.; Harrity, K.; Croall, K.; Jones, E.
2015-11-01
Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4-33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40-70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide data sets successfully separate dam sites in eastern Oregon that failed catastrophically from those that did not. Accumulated sediments upstream of about 50% of the dam sites indicate at least short-term persistence of landslide dams prior to eventual failure. Nevertheless, only three landslide dam remnants and one extant dam significantly elevate the modern river profile. We conclude that eastern Oregon's landslide dams are indeed floodmakers, but we lack clear evidence that they form lasting plugs.
Plugs or flood-makers? the unstable landslide dams of eastern Oregon
Safran, Elizabeth B.; O'Connor, Jim E.; Ely, Lisa L.; House, P. Kyle; Grant, Gordon E.; Harrity, Kelsey; Croall, Kelsey; Jones, Emily
2015-01-01
Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4–33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40–70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide data sets successfully separate dam sites in eastern Oregon that failed catastrophically from those that did not. Accumulated sediments upstream of about 50% of the dam sites indicate at least short-term persistence of landslide dams prior to eventual failure. Nevertheless, only three landslide dam remnants and one extant dam significantly elevate the modern river profile. We conclude that eastern Oregon's landslide dams are indeed floodmakers, but we lack clear evidence that they form lasting plugs.
8. Historic photo taken during construction of the Lost River ...
8. Historic photo taken during construction of the Lost River Diversion Dam and House. Labeled as follows, 'View showing walk construction North side. Group in foreground, left to right: - J.M. McLean, I.S. Voorhees, Asst Eng'r, A.B. Clevland, engineer... W.W. Patch, Project Engineer.' Negative # 95. Facing east. - Klamath Basin Project, Lost River Diversion Dam House, Lost River near intersection of State Highway 140 & Hill Road, Klamath Falls, Klamath County, OR
Army Corps of Engineers: Actions Needed to Improve Cost Sharing for Dam Safety Repairs
2015-12-01
at 15 percent when modifications result from new hydrologic or seismic data, or changes in state-of-the-art design or construction criteria deemed...due to changes in state-of-the-art design or construction criteria (state-of-the-art provision)—since the enactment of the enabling legislation in...safety repair projects funded for design or construction from fiscal year 20076 to fiscal year 2016, we analyzed Corps dam safety documents and
Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake
Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.
2005-01-01
Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.
33 CFR 222.6 - National Program for Inspection of Non-Federal Dams.
Code of Federal Regulations, 2011 CFR
2011-07-01
... based upon the location of the dams relative to developed areas): (i) Dams which are in the high hazard... Appreciable (Notable agriculture, industry or structures). High Urban development with more than a small... constructed by the Soil Conservation Service of the U.S. Department of Agriculture; high hazard mine tailings...
33 CFR 222.6 - National Program for Inspection of Non-Federal Dams.
Code of Federal Regulations, 2014 CFR
2014-07-01
... based upon the location of the dams relative to developed areas): (i) Dams which are in the high hazard... Appreciable (Notable agriculture, industry or structures). High Urban development with more than a small... constructed by the Soil Conservation Service of the U.S. Department of Agriculture; high hazard mine tailings...
33 CFR 222.6 - National Program for Inspection of Non-Federal Dams.
Code of Federal Regulations, 2010 CFR
2010-07-01
... based upon the location of the dams relative to developed areas): (i) Dams which are in the high hazard... Appreciable (Notable agriculture, industry or structures). High Urban development with more than a small... constructed by the Soil Conservation Service of the U.S. Department of Agriculture; high hazard mine tailings...
33 CFR 222.6 - National Program for Inspection of Non-Federal Dams.
Code of Federal Regulations, 2013 CFR
2013-07-01
... based upon the location of the dams relative to developed areas): (i) Dams which are in the high hazard... Appreciable (Notable agriculture, industry or structures). High Urban development with more than a small... constructed by the Soil Conservation Service of the U.S. Department of Agriculture; high hazard mine tailings...
33 CFR 222.6 - National Program for Inspection of Non-Federal Dams.
Code of Federal Regulations, 2012 CFR
2012-07-01
... based upon the location of the dams relative to developed areas): (i) Dams which are in the high hazard... Appreciable (Notable agriculture, industry or structures). High Urban development with more than a small... constructed by the Soil Conservation Service of the U.S. Department of Agriculture; high hazard mine tailings...
49. McMILLAN DAM Photographic copy of historic photo, c1917 ...
49. McMILLAN DAM - Photographic copy of historic photo, c1917 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown. VIEW SHOWING CONSTRUCTION OF SPILLWAY NO. 2 - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
21. Photocopy of original photo from Corps of Engineers, Los ...
21. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown; report located at City of San Luis Obispo.) SALINAS DAM UNDER CONSTRUCTION IN 1941. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA
The impact on floats or hulls during landing as affected by bottom width
NASA Technical Reports Server (NTRS)
Mewes, E
1936-01-01
For floats and hulls having V bottoms the impact force does not necessarily increase with increasing width. Therefore, the weight of the float landing gear, side walls, and other parts, and of the fuselage construction need not be increased with increasing bottom width, but the weight of the bottom construction itself, on the other hand, does not increase with increase in bottom width and is largely determined by the type of construction.
Earthshots: Satellite images of environmental change – Lake Turkana, Kenya and Ethiopia
,
2013-01-01
Ethiopia is constructing a series of dams on the Omo River. The Gibe I and Gibe II dams are completed, and the Gibe III dam began filling its reservoir in 2015. Studies are ongoing to understand the interactions between regulated flows as a result of the dams and rainfall on the water levels of Lake Turkana. Scientists use many years’ worth of data to get a better understanding of the lake’s natural variability and how that variability might be affected by dams, irrigation, and rainfall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerer, L.B.; Scudder, T.
1999-03-01
Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.
NASA Astrophysics Data System (ADS)
Michal, T.; Parrot, E.; Piegay, H.
2014-12-01
Over the past 150 years the Rhône River has been heavily altered by human infrastructures. The first wave (1860 - 1930) of modifications consisted of dikes and groynes designed to narrow the channel and promote incision in order to facilitate navigation. A second period (1948 - 1986) involved the construction of a series of canals and dams for hydroelectricity production. These works bypass multiple reaches of the original channel and drastically reduce the discharge and sediment load reaching them. A comprehensive study underway is aimed at describing the present-day morphology of the Rhone along its 512 km length from its source at Lake Geneva to its sink at the Mediterranean Sea and quantifying the role of management works in the evolution to its current state. Grainsize distributions and armour ratios were determined using a combination of Wolman counts on bars and in shallow channels and dredge samples collected from a boat in navigable reaches. Long profiles were constructed from historical bathymetric maps and bathymetric data collected between 1950 - 2010. Differential long profiles highlighting changes in bed elevation due to sediment storage and erosion were analyzed for three different periods: post-channelization, post-dam construction, and a recent period of major floods. Results show a complex discontinuous pattern in grainsize associated with hydraulic discontinuities imposed by dams. The D50 for bypass reaches is 45 mm compared to a D50 of 34 mm in the non-bypass reaches. The lower D50 as well as a finer tailed distribution in non-bypass reaches reflects fining associated with storage upstream of dams. Armour ratios are on average around 2 but are notably higher for reaches in the middle section of the Rhone. The average incision rate was 1.8 cm/yr for the period of post-channelization and 1.2 cm/yr following dam construction, suggesting the post-dam Rhone was already partially armoured due to incision associated with channelization preceding dam construction. A period marked by large floods between 2001 - 2003 had an average incision rate of approximately 3 cm/yr. Changes in bed elevation for this period highlight destocking and restocking of fine sediments in reservoirs upstream of dams. Only a few downstream reaches where floods were most intense and grainsize is finer were truly active.
Small watershed response to porous rock check dams in a semiarid watershed
NASA Astrophysics Data System (ADS)
Nichols, Mary; Polyakov, Viktor; Nearing, Mark
2016-04-01
Rock check dams are used throughout the world as technique for mitigating erosion problems on degraded lands. Increasingly, they are being used in restoration efforts on rangelands in the southwestern US, however, their impact on watershed response and channel morphology is not well quantified. In 2008, 37 porous rock structures were built on two small (4.0 and 3.1 ha) instrumented watersheds on an alluvial fan at the base of the Santa Rita Mountains in southern Arizona, USA. 35 years of historical rainfall and runoff, and sediment data are available to compare with 7 years of data collected after check dam construction. In addition, post construction measurements of channel geometry and longitudinal channel profiles were compared with pre-construction measurements to characterize the impact of check dams on sediment retention and channel morphology. The primary impact of the check dams is was retention of channel sediment and reduction in channel gradient; however response varied between the proximal watersheds with 80% of the check dams on one of the watersheds filled to 100% of their capacity after 7 runoff seasons. In addition, initial impact on precipitation runoff ratios is was not persistent. The contrasting watershed experiences lower sediment yields and only 20% of the check dams on this watershed are were filled to capacity and continue to influence runoff during small events. Within the watersheds the mean gradient of the channel reach immediately upstream of the structures has been reduced by 35% (from 0.061 to 0.039) and 34% on (from 0.071 to 0.047).
Bobrowiec, Paulo Estefano D; Tavares, Valéria da Cunha
2017-01-01
The modification of Amazonian rivers by the construction of megaprojects of hydroelectric dams has widely increased over the last decade. Robust monitoring programs have been rarely conducted prior to the establishment of dams to measure to what extent the fauna, and its associated habitats may be affected by upcoming impacts. Using bats as models, we performed analyses throughout the area under the influence of the Santo Antônio hydroelectric dam, Southwestern Brazilian Amazonia before its construction to estimate how the fauna and its associated habitats would be affected by the upcoming impacts. We surveyed bats in 49 plots distributed along the areas going to be inundated by the dam and those remaining dry. As predictors for the species distribution, we tested the variables of vegetation structure and topography. Species composition largely differed between the dry plots and the plots located in areas that will be flooded, and this was strongly associated with the variables of forest basal area and elevation. Vegetation-related variables also had strong influence on the guilds distribution. The flooding of lower elevations areas is expected to negatively affect the species number and abundance of frugivorous species. In contrast, it is likely that animalivores will be less vulnerable to dam-induced flooding, since they were abundant in the areas not expect to be inundated. We urge for the implementation of studies to predict impacts caused by large hydroelectric dams, including tests of the influence of the local conditions that shape diversity to avoid massive losses of the biota, and to build preventive monitoring and management actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Will, Alan L.
1979-04-01
The redevelopment of the hydroelectric facility at Brighton Dam near Laurel, Maryland has been found to be both technically and financially feasible, the benefit to cost ratio being 1.53:1 compared with an equivalent coal-based generation source. Environmental impacts have been assessed as relatively slight, but some problems, due to poor water quality at the bottom of the reservoir are anticipated and solutions for these would have to be worked out. The benefit to cost ratio could thus be marginally decreased, but the relative costs of one alternative scheme compared to another would not be affected. There is no apparent impedimentmore » to proceeding with the work. The selected development would have a single hydroelectric generating unit of 500 kW rated capacity. The gross generation from the project would be 2,840,000 kWh in the year with average rainfall. It is estimated that the total project cost would be $734,000 (at third quarter 1978 price levels), with no allowance for funds during construction (AFDC). Based on 6.25% cost of money, the project would provide power at a levelized cost over the plant lifetime of approximately 23.3 mills per kWh with no AFDC or 24.6 mills/kWh with AFDC. At present, WSSC electrical power demands at Brighton Dam amount to 147,000 kWh per year which is met by Baltimore Gas and Electric Company (BG and E). This represents only 5% of the potential generation at the site and BG and E have agreed in principal to purchase the surplus power.« less
Radtke, D.B.; Kepner, W.G.; Effertz, R.J.
1988-01-01
The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)
1979-09-01
2% foot long earth embankment with a concrete core wall. The dam is in fair condition. The dam has been classified in the "small" size and in the...The dam at Shoe Pond is a 17 foot high, 250 foot long earth embankment with a concrete core wall. The dam, which was originally constructed in 190I...elevation (EL) 20.5. Discharge flows down a concrete -lined chute and into a lower pond. The difference in elevation between the ""’"_".-..o upper and
Large-scale degradation of Amazonian freshwater ecosystems.
Castello, Leandro; Macedo, Marcia N
2016-03-01
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. © 2015 John Wiley & Sons Ltd.
Walla Walla River Basin Fish Screens Evaluations, 2006 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamness, Mickie; Abernethy, Scott; Tunnicliffe, Cherylyn
2007-01-01
Pacific Northwest National Laboratory evaluated Gardena Farms, Little Walla Walla, and Garden City/Lowden II Phase II fish screen facilities and provided underwater videography beneath a leaking rubber dam in the Walla Walla River basin in 2006. Evaluations of the fish screen facilities took place in early May 2006, when juvenile salmonids are generally outmigrating. At the Gardena Farms site, extended high river levels caused accumulations of debris and sediment in the forebay. This debris covered parts of the bottom drum seals, which could lead to early deterioration of the seals and drum screen. Approach velocities were excessive at the upstreammore » corners of most of the drums, leading to 14% of the total approach velocities exceeding 0.4 feet per second (ft/s). Consequently, the approach velocities did not meet National Marine Fisheries Service (NMFS) design criteria guidelines for juvenile fish screens. The Little Walla Walla site was found to be in good condition, with all approach, sweep, and bypass velocities within NMFS criteria. Sediment buildup was minor and did not affect the effectiveness of the screens. At Garden City/Lowden II, 94% of approach velocities met NMFS criteria of 0.4 ft/s at any time. Sweep velocities increased toward the fish ladder. The air-burst mechanism appears to keep large debris off the screens, although it does not prevent algae and periphyton from growing on the screen face, especially near the bottom of the screens. In August 2006, the Gardena Farm Irrigation District personnel requested that we look for a leak beneath the inflatable rubber dam at the Garden City/Lowden II site that was preventing water movement through the fish ladder. Using our underwater video equipment, we were able to find a gap in the sheet piling beneath the dam. Erosion of the riverbed was occurring around this gap, allowing water and cobbles to move beneath the dam. The construction engineers and irrigation district staff were able to use the video footage to resolve the problem within a couple weeks. We had hoped to also evaluate the effectiveness of modifications to louvers behind the Nursery Bridge screens when flows were higher than 350 cubic feet per second, (cfs) but were unable to do so. Based on the one measurement made in early 2006 after the modified louvers were set, it appears the modified louvers may help reduce approach velocities. The auxiliary supply water system gates also control water through the screens. Evaluating the effect of different combinations of gate and louver positions on approach velocities through the screens may help identify optimum settings for both at different river discharges.« less
Large CH4 production fueled by autochthonous OC in an anoxic sediment
NASA Astrophysics Data System (ADS)
Grasset, Charlotte; Mendonça, Raquel; Villamor Saucedo, Gabriella; Sobek, Sebastian
2017-04-01
River damming and human-induced eutrophication both affect river and lake functioning, increase organic carbon (OC) sedimentation rates and generate anoxic conditions in bottom waters. Under these conditions, OC in sediments is decomposed into CO2 and CH4, a high potential greenhouse gas. It has been shown that the decomposition of land-derived (allochthonous) OC is inhibited at anoxic conditions, compared to OC internally produced (autochthonous). However, the overall extent and end products (CO2 or CH4) of anoxic decomposition remain poorly known for different types of OC, making it difficult to judge the effect of river damming and eutrophication on greenhouse gas emissions from inland waters. We incubated different types of allochthonous OC (terrestrial plants) and autochthonous OC (phytoplankton and aquatic vascular plants) in an anoxic sediment during 130 days. We aimed to test 1) if this addition of relatively fresh OC resulted in an increase of CH4 production and 2) if autochthonous OC would produce more CH4 than allochthonous OC. We assessed the contribution to CH4 production of the different OC sources (i.e. sediment or added OC) with stable isotope measurements. We found that the addition of relatively fresh OC greatly increased CH4 production. Autochthonous OC generally produced more CH4 than allochthonous OC, but the overall extent of CH4 production was highly variable between the different autochthonous OC types. The d13C-CH4 measurements indicated that CH4 originated exclusively from the added OC. We conclude that the production of CH4 is likely to to be high in eutrophic as well as in artificial lakes, especially when these systems have anoxic bottom waters and high internal primary productivity and thus a high supply of autochthonous OC to the sediment. The current expansion of reservoir construction in concert with almost globally prevalent anthropogenic eutrophication are therefore likely to increase CH4 production in inland waters.
3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope
NASA Astrophysics Data System (ADS)
Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping
2018-05-01
There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14063-000] Amnor Hydro West... feasibility of constructing the Hiram M. Chittenden Lock and Dam Hydroelectric Project (Hiram Dam Project or project) located at the Hiram M. Chittenden Lock and Dam facility owned and operated by the U.S. Army...
76. AVALON DAM Photographic copy of historic photo, 1939 ...
76. AVALON DAM - Photographic copy of historic photo, 1939 (original print in '1939 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF CCC WORKERS COMPLETING CONSTRUCTION OF SUSPENSION BRIDGE - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
Ceschin, Simona; Tombolini, Ilaria; Abati, Silverio; Zuccarello, Vincenzo
2015-05-01
River damming leads to strong hydromorphological alterations of the watercourse, consequently affecting river vegetation pattern. A multitemporal and spatial analysis of the dam effect on composition, structure and dynamic of the upstream vegetation was performed on Tiber River at Nazzano-dam (Rome). The main research questions were as follows: How does plant landscape vary over time and along the river? Where does the dam effect on vegetation end? How does naturalistic importance of the vegetation affected by damming change over time? Data collection was performed mapping the vegetation in aerial photos related to the period before (1944), during (1954) and after dam construction (1984, 2000). The plant landscape has significantly changed over time and along the river, particularly as a result of the dam construction (1953). The major vegetation changes have involved riparian forests and macrophytes. Dam effect on vegetation is evident up to 3 km, and gradually decreases along an attenuation zone for about another 3 km. Despite the fact that the damming has caused strong local hydromorphological modification of the river ecosystem transforming it into a sub-lacustrine habitat, it has also led to the formation of wetlands of considerable naturalistic importance. Indeed, in these man-made wetlands, optimal hydrological conditions have been created by favouring both the expansion of pre-existing riparian communities and the rooting of new aquatic communities, albeit typical of lacustrine ecosystems. Some of these plant communities have become an important food resource, refuge or nesting habitats for aquatic fauna, while others fall into category of Natura 2000 habitats. Therefore, river damming seems to have indirectly had a "favourable" effect for habitat conservation and local biodiversity.
7. Photographic copy of the original construction drawing, dated June ...
7. Photographic copy of the original construction drawing, dated June 1934, from the linens in possession of U.S. Army Engineers, Rock Island District, Clock Tower Building, Arsenal Island, Rock Island, Illinois. MISSISSIPPI RIVER, LOCK AND DAM NO. 15, LOCK OPERATOR'S SHELTER HOUSE, ELEVATIONS AND PLANS - Locks & Dam No. 15, Locks Operator's Shelter House, Arsenal Island, Upper Mississippi River, Rock Island, Rock Island County, IL
8. Photographic copy of the original construction drawing dated June ...
8. Photographic copy of the original construction drawing dated June 1934, from the linens in possession of U.S. Army Engineers, Rock Island District, Clock Tower Building, Arsenal Island, Rock Island, Illinois. MISSISSIPPI RIVER, LOCK AND DAM NO. 15, LOCK OPERATOR'S SHELTER HOUSE, SECTIONS AND DETAILS - Locks & Dam No. 15, Locks Operator's Shelter House, Arsenal Island, Upper Mississippi River, Rock Island, Rock Island County, IL
Brazil's Amazonian dams: Ecological and socioeconomic impacts
NASA Astrophysics Data System (ADS)
Fearnside, P. M.
2016-12-01
Brazil's 2015-2024 Energy Expansion Plan calls for 11 hydroelectric dams with installed capacity ≥ 30 MW in the country's Amazon region. Dozens of other large dams are planned beyond this time horizon, and dams with < 30 MW installed capacity number in the hundreds. Amazonian dams have substantial environmental and socioeconomic impacts. Loss of forest to flooding is one, the Balbina and Tucuruí Dams being examples (each 3000 km2). If the Babaquara/Altamira Dam is built it will flood as much forest as both of these combined. Some planned dams imply loss of forest in protected areas, for example on the Tapajós River. Aquatic and riparian ecosystems are lost, including unique biodiversity. Endemic fish species in rapids on the Xingu and Tapajós Rivers are examples. Fish migrations are blocked, such as the commercially important "giant catfish" of the Madeira River. Dams emit greenhouse gases, including CO2 from the trees killed and CH4 from decay under anoxic conditions at the bottom of reservoirs. Emissions can exceed those from fossil-fuel generation, particularly over the 20-year period during which global emissions must be greatly reduced to meet 1.5-2°C limit agreed in Paris. Carbon credit for dams under the Climate Convention causes further net emission because the dams are not truly "additional." Anoxic environments in stratified reservoirs cause methylation of mercury present in Amazonian soils, which concentrates in fish, posing a health risk to human consumers. Population displacement is a major impact; for example, the Marabá Dam would displace 40,000 people, mostly traditional riverside dwellers (ribeirinhos). Various dams impact indigenous peoples, such as the Xingu River dams (beginning with Belo Monte) and the São Luiz do Tapajós and Chacorão Dams on the Tapajós River. Brazil has many energy options other than dams. Much energy use has little benefit for the country, such as exporting aluminum. Electric showerheads use 5% of the country's power. Losses in transmission lines (20%) are far above global averages and can be expected to increase as Amazonian hydroelectric dams far from consumer centers come on line. Brazil has tremendous wind and solar potential, but these do not have the same priority as dams. At the root of many questionable policies is a decision-making process in need of reform.
NASA Astrophysics Data System (ADS)
Salant, N.; Bain, D.; Brandt, S.
2008-12-01
Hydrologic systems of the northeastern United States were transformed by European settler activities. The colonial economy shifted engineered water structures from beaver dams to human dams built for power generation. While the geomorphic effects of human-constructed dams have recently garnered considerable attention, few studies have investigated how intensive trapping for the fur trade, the near extermination of the Northeast beaver population, and the consequent loss of beaver ponds altered the regional water balance. Although reconstructions of colonial beaver populations have been made, none link the decline in beavers to its hydrologic impact. Beaver population models based on pre-colonial population estimates, historic harvest rates, and current-day population dynamics were used to simulate the corresponding decrease in pond numbers over time. Beaver populations declined dramatically during the seventeenth century, with harvest rates estimated at 2,000-10,000 beavers per year, resulting in expatriation in some sub-regions by the early 1700s. Using contemporary estimates of beaver pond volumes, the calculated loss in pond storage between 1600 and 1840 was approximately 17 million cubic meters of water and sediment, considerably larger than estimated storage gains from dam construction in the same period, suggesting that beaver eradication was a major driver of hydrologic change during the colonial era.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PROCEDURES Bridges on Federal Dams § 630.803 Procedures. A State's application to qualify a project under... part of the agency constructing the dam to provide such bridge or approach roads to satisfy a legal...
Code of Federal Regulations, 2011 CFR
2011-04-01
... PROCEDURES Bridges on Federal Dams § 630.803 Procedures. A State's application to qualify a project under... part of the agency constructing the dam to provide such bridge or approach roads to satisfy a legal...
NASA Astrophysics Data System (ADS)
Taber, J. S.; Pompeii, B. J.; Nicoletti, C.; Lopez-Morales, C. A.
2010-12-01
The Northeast United States contains more dams than any other region in the country but it lacks structures on the scale of the Hoover or Bonneville dams in the American West. This work addresses why the Northeast lacks such large dams and how the pattern of small dams within the region shaped its social development. During the twentieth century, changing social and economic conditions rendered the initial purposes of many dams in the region moot, but these structures continued to influence hydrologic conditions and the provision of ecosystem services to an expanding population. The continued existence of many of these dams resulted from a worldview unable to conceive of dam removal as it did to the economic or environmental services provided by the structure. Documenting the process by which society developed alternatives to dam building in this region can contextualize the origins and contingent character of ideas about dam removal. The overarching theme in this process is the deindustrialization of the Northeast, which pitted the interests of industrial cities undergoing economic reorganization, emerging suburban communities, and growing service industries in the region. This paper considers changing attitudes toward dams as part of a four step process: (1) although the mill dams of the industrial revolution remained after electrification rendered manufacturers independent of direct water power in the early twentieth century, deindustrialization reshaped the political and legal responses to flooding by stregnthening the political and economic position of service industries and suburban residential interests; (2) the most tangible response to this development was proposed federal investment in dam building in the region between the 1930s and the 1950s; (3) political conflicts between local interests and federal proposals for dam construction slowed down the dam building process and enabled people to consider alternative strategies for flood control and power generation; and (4) these alternatives included conservation measures such as the preservation of wetlands, but they also included the construction of coal and nuclear power plants in place of hydroelectric dams. Documenting the complexities underlying dam building and its alternatives in a deindustrializing region saddled with obsolete dams can contextualize contemporary debates regarding the maintenance or removal of old dams.
Sediment trapping efficiency of adjustable check dam in laboratory and field experiment
NASA Astrophysics Data System (ADS)
Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui
2014-05-01
Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.
1981-08-27
kowledge and belkef -4’dleport New York .- ** ~ : ~ ’"’*tckport & Newfane Power & Water Su pp7 Cc A~’l 41924 - na. r w -Mob. -4 90- -, ..’a If -- -N n 9. 4...converting the dam to power generation is pending with the Federal Energy Regulatory Commission by: J. W. Company Jeffery Moon, President 55 Union Place...Manchester, Connecticut 06040 Tele: (207) 775-5401 f. Purpose of Dam Burt Dam was originally constructed for hydroelectric power j generation. It
Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
Together, these different scientific perspectives form a basis for understanding the Elwha River ecosystem, an environment that has and will undergo substantial change. A century of change began with the start of dam construction in 1910; additional major change will result from dam removal scheduled to begin in September 2011. This report provides a scientific snapshot of the lower Elwha River, its estuary, and adjacent nearshore ecosystems prior to dam removal that can be used to evaluate the responses and dynamics of various system components following dam removal.
Tavares, Valéria da Cunha
2017-01-01
The modification of Amazonian rivers by the construction of megaprojects of hydroelectric dams has widely increased over the last decade. Robust monitoring programs have been rarely conducted prior to the establishment of dams to measure to what extent the fauna, and its associated habitats may be affected by upcoming impacts. Using bats as models, we performed analyses throughout the area under the influence of the Santo Antônio hydroelectric dam, Southwestern Brazilian Amazonia before its construction to estimate how the fauna and its associated habitats would be affected by the upcoming impacts. We surveyed bats in 49 plots distributed along the areas going to be inundated by the dam and those remaining dry. As predictors for the species distribution, we tested the variables of vegetation structure and topography. Species composition largely differed between the dry plots and the plots located in areas that will be flooded, and this was strongly associated with the variables of forest basal area and elevation. Vegetation-related variables also had strong influence on the guilds distribution. The flooding of lower elevations areas is expected to negatively affect the species number and abundance of frugivorous species. In contrast, it is likely that animalivores will be less vulnerable to dam-induced flooding, since they were abundant in the areas not expect to be inundated. We urge for the implementation of studies to predict impacts caused by large hydroelectric dams, including tests of the influence of the local conditions that shape diversity to avoid massive losses of the biota, and to build preventive monitoring and management actions. PMID:28886029
Project Operations: Flood Control Operations and Maintenance Policies
1996-10-30
President and an internal review performed by the Corps task group shortly after failure of the Teton Dam , we have undertaken numerous actions to modify our...practice for design, construction and operation of Corps reservoir projects. One important item as a result of the Teton Dam failure and the review...1 Glossary 1-4 1-2 CHAPTER 2 - Dam Operations Management Purpose 2-1 2-1 Policy 2-2 2-1 Emergency Plan 2-3 2-1 Dam Safety Training 2-4 2-2
16. Photocopy of a photograph (original in the Collection of ...
16. Photocopy of a photograph (original in the Collection of the Salt Lake City Engineer's Office)--ca. 1924--GENERAL VIEW OF DOWNSTREAM SIDE OF DAM JUST PRIOR TO CONSTRUCTION OF THE TOP FORTY FEET OF THE DAM - Mountain Dell Dam, Parley's Canyon, Northwest side of I-80, West of State Route 39, Salt Lake City, Salt Lake County, UT
26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND ...
26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND DRAFT CONE UNDER CONSTRUCTION. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
Environmental impacts on the hydrology of ephemeral streams and alluvial aquifers
NASA Astrophysics Data System (ADS)
Kuells, C.; Marx, V.; Bittner, A.; Ellmies, R.; Seely, M.
2009-04-01
In arid and semi-arid regions alluvial groundwater resources of ephemeral streams are highly important for water supplies and ecosystems. Recent projects have studied processes of indirect recharge in situ and in detail (Dahan et al., 2008; Klaus et al., 2008). Still, little is known about the vulnerability of these aquifers to environmental impacts like surface dam constructions, land-use changes and climatic conditions as well as the time and type of response to such external impacts. With a catchment size of about 30.000 km² the Swakop River in Namibia is the largest of the country's twelve major ephemeral streams draining westwards into the Atlantic Ocean. The alluvial groundwater resources have been affected by the construction of two major surface water dams in the upper catchment as well as by abstractions for rural water supply, farming and mining downstream of the constructed dams (referred to as lower catchment). The determination of environmental impacts in the Swakop River catchment is difficult due to scarce hydrometric and water quality data. In order to obtain a better understanding of the hydrological system under changing environmental conditions a spatially distributed environmental tracer approach was applied. A longitudinal profile of groundwater samples was taken within a field study along the alluvial aquifer of the Swakop River. The samples were analysed for stable isotopes (18O, 2H), major ions and trace elements as well as for the residence time indicators CFC and SF6. The combined application of groundwater residence time analysis, stable isotope measurements and hydrochemical characterisation was used in order to associate a time scale with groundwater quality data. This method provides dated information on recharge and water quality before and after dam construction and can be used to detect environmental impacts on the hydrological system. CFC-12 analysis resulted in recharge years ranging from 1950 (0.01 pmol/l) to 1992 (1.4 pmol/l). Seven of 14 groundwater samples represent mainly groundwater recharged before or between the construction of surface water dams (1970 and 1978), the remaining samples represent groundwater recharge after dam construction. The groundwater residence time is generally short (recharge mainly after 1980) in the upper catchment and much higher (recharge mainly before 1980 and before dam construction) in the lower part of the catchment. Combining the age and isotope information shows how the surface water dams modified the pattern of groundwater recharge. The lower catchment has been partly cut off from the upper part in terms of indirect groundwater recharge by floods which means that most large floods originating in the headwaters of the Swakop River do not reach the lower alluvial aquifer anymore. The relationship between groundwater age and groundwater constituents helped to define baselines of hydrological properties (origin of water, recharge altitude) and of hydrochemical composition prior to the construction of dams (and other anthropogenic impacts). The well defined relationship between groundwater age and altitude of the river further helps to assess how fast different segments will be affected by these environmental impacts. References Dahan, O., Tatarsky, B., Enzel, Y., Kuells, C., Seely, M., Benito, G. (2008) Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid Desert. Ground Water, Vol. 46, 3. (6-2008), pp. 450-461. Klaus, J., Kuells, C., Dahan, O. (2008): Evaluating the recharge mechanism of the Lower Kuiseb Dune Area using mixing cell modeling and residence time data. Journal of Hydrology, v. 358, p. 304-316.
Pre-fired, refractory block slag dams for wet bottom furnace floors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vihnicka, R.S.; Meskimen, R.L.
1998-12-31
Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item,more » however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.« less
Dubovskaia, O P; Gladyshev, M I; Makhutova, O N
2004-01-01
The vertical distribution of net zooplankton in head-water of Krasnoyarsk hydroelectric power station and its horizontal distribution in the tail-water were studied during two years in winter and summer seasons. In order to distinguish living and dead individuals the special staining was used. It was revealed that on average 77% of living plankton pass through high-head dam with deep water scoop to the tailwater. While passing through dam aggregates some individuals of the reservoir plankton are traumatized and die, that results in some increase of portion of dead individuals in the tail water near dam (from 3 to 6%). Alive zooplankton passed through the dam aggregates is eliminated under the Upper Yenisei highly turbulent conditions. There is approximately 10% of it in 32 km from the dam if compare with biomass in 20-40 m layer of reservoir, the portion of dead increases to 11%. The biomass of zooplankton suspended in the water column of the tail-water sometimes increases (till > 1 g/m3) due to large Copepoda Heteroscope borealis, which inhabits near-bottom and near-shore river zones and can be found in the central part of the river during reproductive period. Limnetic zooplankton from the reservoir cannot be considered as important food for planktivores in the tail-water.
23. Photocopy of a photograph (original print in the collection ...
23. Photocopy of a photograph (original print in the collection of the New Hampshire Water Resources Board, Concord, New Hampshire) 1927, photographer unknown 2 3/8 X 4 inch negative BUILDING OF DAM No. 3, LOOKING EASTWARDS FROM THE NORTH BANK. CONSTRUCTION OF THE WOODEN FORMWORK USED IN CONSTRUCTING THE DAM IS VISIBLE IN THE FOREGROUND - Claremont Village Industrial District, Between B, Claremont, Sullivan County, NH
French Modular Impoundment: Final Cost and Performance Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drown, Peter; French, Bill
This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)
DAM Safety and Deformation Monitoring in Dams
NASA Astrophysics Data System (ADS)
Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.
2013-12-01
Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the dams. Therefore, this study gives essential information about the dam safety and related analysis. Monitoring of dams is crucial since deformation might have occurred as a result of erosion, water load, hydraulic gradients, and water saturation. The case study is the deformation measurements of Ataturk Dam. This dam was constructed on Firat River and it has importance for providing drinking water, hydroelectric power and especially irrigation. In addition, brief information is given about this dam and the methods of geodetic and non-geodetic monitoring measurements applied by various disciplines. Geodetic monitoring methods are emphasized in this study. Some results have been obtained from this method for nearly seven years are presented in this work. In addition, some deformation predictions have been made especially for the cross sections where the maximum deformations took place.
Li, Xiao-Yan; Peng, Ming-Chun; Dong, Shi-Kui; Liu, Shi-Liang; Li, Jin-Peng; Yang, Zhi-Feng
2013-02-01
An investigation was conducted on the phytoplankton, zooplankton, and fish at 8 sampling sections in the Manwan Reservoir before and after the construction of Xiaowan Hydropower Dam. The modified ESHIPPO model was applied to study the changes of the featured aquatic species, including endangered species, endemic specie, peis resource species, and native fish, aimed to make an ecological risk assessment of the dam construction on the aquatic species. The dam construction had definite ecological risk on the aquatic species, especially the endemic fish, in Langcang River, due to the changes of hydrological conditions. The endemic species including Bangia atropurpurea, Lemanea sinica, Prasiola sp., Attheyella yunnanensis, and Neutrodiaptomus mariadvigae were at high ecological risk, and thus, besides monitoring, protection measures were needed to be taken to lower the possibility of the species extinction. The widely distributed species of phytoplankton and zooplankton were at medium ecological risk, and protection measures besides monitoring should be prepared. Twelve kinds of native fish, including Barbodes huangchuchieni, Sinilabeo laticeps, Racoma lantsangensis, Racoma lissolabiatus, Paracobitis anguillioides, Schistura latifasciata, Botia nigrolineata, Vanmanenia striata, Homaloptera yunnanensis, Platytropius longianlis, Glyptothorax zanaensis, and Pseudecheneis immaculate, were at high ecological risk, and protection measures needed to be developed to prevent the possibility of the species loss and extinction.
Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P
2018-04-01
Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.
Little Goose Lock and Dam Removable Spillway Weir
2007-08-01
Washington , Idaho Little Goose o i Lower w t i e s LIeG Harbor Granite BonnevilleW L••oh Dma•= SDam John Day S’°~Lwer1 Monumental __ •_]McNary Dam le Dam...passage route for 115 kcfs. 18 NG-1 1 Assemble at Little Goose or Lewiston rather than Portland 19 NG-12 Lower the pool elevation during construction to
NASA Astrophysics Data System (ADS)
Bountry, J.; Godaire, J.; Bradley, D. N.
2017-12-01
At the terminus of the Truckee River into Pyramid Lake (Nevada, USA), upstream river management actions have dramatically reshaped the river landscape, posing significant challenges for the management of endangered aquatic species and maintenance of existing infrastructure. Within the last 100 years, upstream water withdrawal for human uses has resulted in a rapid lowering of Pyramid Lake which initiated up to 90 ft of channel incision. In 1976 Marble Bluff Dam was constructed to halt the upstream progression of channel incision and protect upstream agricultural lands, tribal resources, and infrastructure. Since construction an additional 40 ft of lake lowering and subsequent channel lowering now poses a potential risk to the structural integrity of the dam. The dynamic downstream river combined with ongoing reservoir sedimentation pose challenges to fish passage facilities that enable migration of numerous endangered cui-ui and threatened Lahontan Cutthroat Trout (LCT) to upstream spawning areas each year. These facilities include a fish lock at the dam, a fish bypass channel which allows fish to avoid the shallow delta area during low lake levels, and a meandering channel constructed by the Nature Conservancy to connect the bypass channel to the receding Pyramid Lake. The reservoir formed by Marble Bluff Dam has completely filled with sediment which impacts fish passage facilities. The original operating manual for the dam recommends year-round flushing of sediment through radial gates, but this can no longer be accomplished. During critical fish migration periods in the spring operators must ensure fish entrance channels downstream of the dam are not buried with released sediment and fish are not trapped in a portion of the reservoir full of sediment that would risk sending them back over the dam. To help inform future reservoir sediment and infrastructure management strategies, we bracket a range of potential river responses to lake level lowering and floods using historical trends, current field data, and hydraulic and sediment transport models. We present options for adaptive management for dam and reservoir sediment operations that incorporates monitoring of river processes to inform annual implementation strategies along with long-term planning.
Mathematical and field analysis of longitudinal reservoir infill
NASA Astrophysics Data System (ADS)
Ke, W. T.; Capart, H.
2016-12-01
In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.
Structural safety evaluation of Gerber Arch Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrie, R.E.
1995-12-31
Gerber Dam, a variable radius arch structure, has experienced seepage and extensive freeze-thaw damage since its construction. A construction key was found cracked at its crest. A finite element investigation was made to evaluate the safety of the arch structure. Design methods and assumptions are evaluated. Historical performance is used in the evaluation. Stress levels, patterns, and distributions were evaluated for loads the structure has experienced to determine behavior contributing to seepage and cracking.
Design of converging stepped spillways
USDA-ARS?s Scientific Manuscript database
Roller compacted concrete (RCC) stepped spillways are growing in popularity for providing overtopping protection for aging watershed dams with inadequate auxiliary spillway capacity and for the construction of new dams. Unobtainable land rights, topographic features, and land use changes caused by ...
O'Connor, James E.; Duda, Jeff J.; Grant, Gordon E.
2015-01-01
Forty years ago, the demolition of large dams was mostly fiction, notably plotted in Edward Abbey's novel The Monkey Wrench Gang. Its 1975 publication roughly coincided with the end of large-dam construction in the United States. Since then, dams have been taken down in increasing numbers as they have filled with sediment, become unsafe or inefficient, or otherwise outlived their usefulness (1) (see the figure, panel A). Last year's removals of the 64-m-high Glines Canyon Dam and the 32-m-high Elwha Dam in northwestern Washington State were among the largest yet, releasing over 10 million cubic meters of stored sediment. Published studies conducted in conjunction with about 100 U.S. dam removals and at least 26 removals outside the United States are now providing detailed insights into how rivers respond (2, 3).
Hydro-geomorphology of the middle Elwha River, Washington, following dam removal
NASA Astrophysics Data System (ADS)
Morgan, J. A.; Nelson, P. A.; Brogan, D. J.
2017-12-01
Dam removal is an increasingly common river restoration practice, which can produce dramatic increases in sediment supply to downstream reaches. There remains, however, considerable uncertainty in how mesoscale morphological units (e.g., riffles and pools) respond to the flow and sediment supply changes associated with dam removal. The recent removal of Glines Canyon Dam on the Elwha River in Washington State provides a natural setting to explore how increased sediment supply due to dam removal may affect downstream reaches. Here, we present observations and surveys documenting how a 1 km reach, located approximately 5 km downstream of the former dam site, has evolved following dam removal. Annual topographic/bathymetric surveys were conducted in 2014-2016 using RTK-GNSS methods, and these surveys were coupled with airborne lidar to create continuous surface maps of the valley bottom. Differencing the elevation models reveals channel widening and migration due to lateral bank retreat and bar aggradation. Analysis of aerial imagery dating back to 1939 suggests that rates of both widening and meander migration have increased following dam removal. We also used results from depth-averaged hydrodynamic modeling with a fuzzy c-means clustering approach to delineate riffle and pool units; this analysis suggests that both riffles and pools stayed relatively consistent from 2014-2015, while both areas decreased from 2015 to 2016. Without any considerable changes to the hydrologic regime these higher rates of change are implied to be the result of the increased sediment supply. Our results, which indicate an increased dynamism due directly to the amplified sediment supply, have the potential to further inform river managers and restoration specialists who oversee projects related to changing sediment regimes.
NASA Astrophysics Data System (ADS)
Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.
2016-12-01
More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all rivers in the US lower 48 states, except the Mississippi and Colorado Rivers, and would rank in the top 50 of all rivers in the modern world.
The design of the intelligent monitoring system for dam safety
NASA Astrophysics Data System (ADS)
Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui
2008-12-01
Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.
A Holocene history of dune-mediated landscape change along the southeastern shore of Lake Superior
Loope, Walter L.; Fisher, Timothy G.; Jol, Harry M.; Anderton, John B.; Blewett, William L.
2004-01-01
Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at ~3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.
Sustainability of dams-an evaluation approach
NASA Astrophysics Data System (ADS)
Petersson, E.
2003-04-01
Situated in the stream bed of a river, dams and reservoirs interrupt the natural hydrological cycle. They are very sensitive to all kinds of changes in the catchment, among others global impacts on land use, climate, settlement structures or living standards. Vice versa dams strongly affect the spatially distributed, complex system of ecology, economy and society in the catchment both up- and downstream of the reservoir. The occurrence of negative impacts due to large dams led to serious conflicts about future dams. Nevertheless, water shortages due to climatic conditions and their changes, that are faced by enormous water and energy demands due to rising living standards of a growing world population, seem to require further dam construction, even if both supply and demand management are optimised. Although environmental impact assessments are compulsory for dams financed by any of the international funding agencies, it has to be assumed that the projects lack sustainability. Starting from an inventory of today's environmental impact assessments as an integral part of a feasibility study the presentation will identify their inadequacies with regard to the sustainability of dams. To improve the sustainability of future dams and avoid the mistakes of the past, the planning procedures for dams have to be adapted. The highly complex and dynamical system of interrelated physical and non-physical processes, that involves many different groups of stakeholders, constitutes the need for a model-oriented decision support system. In line with the report of the World Commission of Dams an integrated analysis and structure of the complex interrelations between dams, ecology, economy and society will be presented. Thus the system, that a respective tool will be based on, is analysed. Furthermore an outlook will be given on the needs of the potential users of a DSS and how it has to be embedded in the overall planning process. The limits of computer-based decision-support in the very specific context of dam construction will be identified. Special focus will be on the constraints arising from the need to jointly evaluate qualitative and quantitative aspects and the methodological potential of multi-criteria evaluation in this respect.
Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.
Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki
2003-01-01
The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...
Dudgeon, D
2011-12-01
This review compares and contrasts the environmental changes that have influenced, or will influence, fishes and fisheries in the Yangtze and Mekong Rivers. These two rivers have been chosen because they differ markedly in the type and intensity of prevailing threats. The Mekong is relatively pristine, whereas the Three Gorges Dam on the Yangtze is the world's largest dam representing the apotheosis of environmental alteration of Asian rivers thus far. Moreover, it is situated at the foot of a planned cascade of at least 12 new dams on the upper Yangtze. Anthropogenic effects of dams and pollution of Yangtze fishes will be exacerbated by plans to divert water northwards along three transfer routes, in part to supplement the flow of the Yellow River. Adaptation to climate change will undoubtedly stimulate more dam construction and flow regulation, potentially causing perfect storm conditions for fishes in the Yangtze. China has already built dams along the upper course of the Mekong, and there are plans for as many as 11 mainstream dams in People's Democratic Republic (Laos) and Cambodia in the lower Mekong Basin. If built, they could have profound consequences for biodiversity, fisheries and human livelihoods, and such concerns have stalled dam construction. Potential effects of dams proposed for other rivers (such as Nujiang-Salween) are also cause for concern. Conservation or restoration measures to sustain some semblance of the rich fish biodiversity of Asian rivers can be identified, but their implementation may prove problematic in a context of increasing Anthropocene alteration of these ecosystems. © 2011 The Author. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
An assessment of fish assemblage structure in a large river
Kiraly, Ian A.; Coghlan, S.M.; Zydlewski, Joseph D.; Hayes, D.
2015-01-01
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main-stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main-stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free-flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs.
ERIC Educational Resources Information Center
Carney, Thomas R.
1972-01-01
Presents controversy over damming of Wyoming's Upper Green River to supply water to the arid basins of eastern Wyoming. Possibilities of wildlife destruction, flooding of valley lands, and opposition to the construction of the Kendall Dam itself are enumerated together with legislative action to date. (BL)
Converging stepped spillways: Simplified momentum analysis approach
USDA-ARS?s Scientific Manuscript database
Roller compacted concrete (RCC) stepped spillways are growing in popularity for providing overtopping protection for aging watershed dams with inadequate auxiliary spillway capacity and for the construction of new dams. Site conditions, such as limited right-of-way, topography, and geological forma...
Parsley, M.J.; Kofoot, P.
2006-01-01
River discharge and water temperatures that occurred during April through July 2004 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph was relatively low compared to past years, which is reflected in the relatively low monthly and annual indices of suitable spawning habitat. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-theyear (YOY) white sturgeon.
Variable-intercept panel model for deformation zoning of a super-high arch dam.
Shi, Zhongwen; Gu, Chongshi; Qin, Dong
2016-01-01
This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.
Brodersen, Jakob; Howeth, Jennifer G; Post, David M
2015-09-14
Intraspecific phenotypic variation can strongly impact community and ecosystem dynamics. Effects of intraspecific variation in keystone species have been shown to propagate down through the food web by altering the adaptive landscape for other species and creating a cascade of ecological and evolutionary change. However, similar bottom-up eco-evolutionary effects are poorly described. Here we show that life history diversification in a keystone prey species, the alewife (Alosa pseudoharengus), propagates up through the food web to promote phenotypic diversification in its native top predator, the chain pickerel (Esox niger), on contemporary timescales. The landlocking of alewife by human dam construction has repeatedly created a stable open water prey resource, novel to coastal lakes, that has promoted the parallel emergence of a habitat polymorphism in chain pickerel. Understanding how strong interactions propagate through food webs to influence diversification across multiple trophic levels is critical to understand eco-evolutionary interactions in complex natural ecosystems.
Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer
2008-01-01
In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and carbon concentrations were similar at the top and bottom of the water column, though ammonia and particulate carbon showed more variability in summer. Averaged over the season, particulate carbon and particulate nitrogen decreased in the downstream direction, while ammonia and orthophosphate concentrations increased in the downstream direction. At most sites, bacteria, phytoplankton, and zooplankton populations reached their maximums in summer. Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. The cocci were smaller than the filter pore sizes used to separate dissolved from particulate matter in this study. Phytoplankton biovolumes were dominated by the blue-green alga Aphanizomenon flos-aquae most of the sampling season, though a spring diatom bloom occurred. Phytoplankton biovolumes were generally highest at the upstream Link River and Railroad Bridge sites and decreased in the downstream direction. Zooplankton populations were dominated by copepods in early spring, and by cladocerans and rotifers in summer, with rotifers more common farther downstream.
Subtropical freshwater storages: a major source of nitrous oxide and methane?
NASA Astrophysics Data System (ADS)
Sturm, Katrin; Grinham, Alistair; Yuan, Zhiguo
2013-04-01
Studies of greenhouse gas cycling in subtropical water bodies, particularly in the Southern Hemisphere, are very limited. This represents an important gap in our understanding of global emissions as the higher temperatures experienced in the subtropics will likely accelerate greenhouse gas production and consumption. Critical to understanding the net impact of these accelerated rates are detailed studies of representative systems within this region. In this paper we present a model artificial freshwater storage: Gold Creek Dam in South East Queensland, Australia. Freshwater storages are commonplace for drinking water and irrigation purposes in Australia as unpredictable rainfall patterns make river and ground water sources unreliable. Over 85 % of Australian rivers are modified with weirs and dams providing permanent inundation of previously terrestrial environments. The higher temperatures experienced at these latitudes drive thermal stratification of these systems as well as rapidly deoxygenate bottom waters. High organic matter availability in the sediment zone as well as the anoxic overlying water provide ideal conditions for reduced products (including methane and ammonia) from microbial processing to be formed and diffuse into bottom waters. A mid-water metalimnion is generally associated with large gradients in dissolved oxygen availability and reduced metabolites undergo oxidation prior to their emission from water surface. An intensive field study was undertaken to improve understanding of production and transformation rates of methane and nitrous oxide from the sediments, through the water column and to the atmosphere. Sediment nutrient (ammonia, nitrite/nitrate and filterable reactive phosphorus) and greenhouse gas (methane and nitrous oxide) porewater samples were collected at selected sites. To determine the magnitude of the benthic sediment contribution of methane and nitrous oxide to the water column sediment incubations were conducted in the laboratory. To determine the likely atmospheric flux from this water body surface floating chambers were used to collect gas. Results showed maximum methane concentrations in the sediment porewaters and deeper water column, both anoxic environments. However, nitrous oxide had highest concentrations at the oxycline zone of the water column. Sediment incubations showed clear methane efflux demonstrating the sediments to be a consistent source of methane. Sediments were either a source or sink of nitrous oxide depending on overlying dissolved oxygen concentration. Floating chamber incubations clearly demonstrated Gold Creek Dam was a source of both methane and nitrous oxide with methane an order of magnitude higher expressed as CO2 equivalents. Diffusive atmospheric fluxes of methane ranged from 20 to 450 mg m-2 d-1 and were comparable to tropical reservoirs rather than temperate reservoirs (LOUIS et al., 2000). Results are likely to be globally relevant as an increasing number of large dams are being constructed to meet growing water demand and under a warming climate process occurring in subtropical systems can give insights into future changes likely to occur in temperate systems.
Sahin, S; Kurum, E
2002-11-01
Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.
Zema, Demetrio Antonio; Bombino, Giuseppe; Denisi, Pietro; Lucas-Borja, Manuel Esteban; Zimbone, Santo Marcello
2018-06-12
In mountain streams possible negative impacts of check dams on soil, water and riparian vegetation due to check dam installation can be noticed. In spite of the ample literature on the qualitative effects of engineering works on channel hydrology, morphology, sedimentary effects and riparian vegetation characteristics, quantitative evaluations of the changes induced by check dams on headwater characteristics are rare. In order to fill this gap, this study has evaluated the effects of check dams located in headwaters of Calabria (Southern Italy) on hydrological and geomorphological processes and on the response of riparian vegetation to these actions. The analysis has compared physical and vegetation indicators in transects identified around check dams (upstream and downstream) and far from their direct influence (control transects). Check dams were found to influence significantly unit discharge, surface and subsurface sediments (both upstream and downstream), channel shape and transverse distribution of riparian vegetation (upstream) as well as cover and structure of riparian complexes (downstream). The actions of the structures on torrent longitudinal slope and biodiversity of vegetation were less significant. The differences on bed profile slope were significant only between upstream and downstream transects. The results of the Agglomerative Hierarchical Cluster analysis confirmed the substantial similarity between upstream and control transects, thus highlighting that the construction of check dams, needed to mitigate the hydro-geological risks, has not strongly influenced the torrent functioning and ecology before check dam construction. Moreover, simple and quantitative linkages between torrent hydraulics, geomorphology and vegetation characteristics exist in the analysed headwaters; these relationships among physical adjustments of channels and most of the resulting characteristics of the riparian vegetation are specific for the transect locations with respect of check dams. Conversely, the biodiversity of the riparian vegetation basically eludes any quantitative relations with the physical and other vegetal characteristics of the torrent transects. Copyright © 2018 Elsevier B.V. All rights reserved.
130. Photographic copy of historic photo, June 30, 1931 (original ...
130. Photographic copy of historic photo, June 30, 1931 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM UNDER CONSTRUCTION; ALL STEEL FOR RING GATE STRUCTURE IN PLACE. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
13. VIEW SHOWING MOST OF THE PERIMETER FROM SPILLWAY BOX ...
13. VIEW SHOWING MOST OF THE PERIMETER FROM SPILLWAY BOX TO END OF EAST DAM. FOREGROUND VIEW SHOWS TRIPLE WALL CONSTRUCTION OF TONGUE AND GROOVE PLANKING USED IN CRIBBING - Three Bears Lake & Dams, North of Marias Pass, East Glacier Park, Glacier County, MT
2013-09-25
level will not overtop the main embankment dam but will encroach into the 3.6-feet of freeboard allotted for wind and wave run-up. This encroachment...In particular, short-term impacts on noise, air quality, water quality, migratory birds , fisheries, and traffic during construction have not been...term effects of project construction, specifically the short-term, temporary impacts on noise, air quality, water quality, migratory birds , fisheries
New evidence of Yangtze delta recession after closing of the Three Gorges Dam
Luo, X. X.; Yang, S. L.; Wang, R. S.; Zhang, C. Y.; Li, P.
2017-01-01
Many deltas are likely undergoing net erosion because of rapid decreases in riverine sediment supply and rising global sea levels. However, detecting erosion in subaqueous deltas is usually difficult because of the lack of bathymetric data. In this study, by comparing bathymetric data between 1981 and 2012 and surficial sediment grain sizes from the Yangtze subaqueous delta front over the last three decades, we found severe erosion and significant sediment coarsening in recent years since the construction of Three Gorges Dam (TGD), the largest dam in the world. We attributed these morphological and sedimentary variations mainly to the human-induced drastic decline of river sediment discharge. Combined with previous studies based on bathymetric data from different areas of the same delta, we theorize that the Yangtze subaqueous delta is experiencing overall (net) erosion, although local accumulation was also noted. We expect that the Yangtze sediment discharge will further decrease in the near future because of construction of new dams and delta recession will continue to occur. PMID:28145520
Chambers, D.B.; Miller, K.F.; Waldron, M.C.; Falkenburg, C.W.
1994-01-01
This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mi upstream from Willow Island Dam) to river mile 203.6 (0.3 mi upstream from Belleville Dam) during the summer of 1991. Water quality was determined by a combi- nation of synoptic field measurements and laboratory analyses. Synoptic sampling consisted of 8 cross-sectional transects and a longitudinal transect with 28 mid-channel stations. Each cross- sectional transect included five vertical profiles of water temperature, dissolved oxygen concen- tration, pH, and specific conductance. Longi- tudinal transect stations were sampled at three depths (near the surface, middle of the water column, and at or near the bottom) for the same characteristics. Sampling was completed in 3 days or less, and was repeated approximately every 2 weeks from June through October 1991. Beginning in August 1991, water samples were collected at selected locations and analyzed for chlorophyll-a and pheophytin concentrations, as measures of phytoplankton biomass and phytoplankton-degradation products, respectively. The depth of light penetration was estimated at all pigment-sampling locations.
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
Flood hydrology and dam-breach hydraulic analyses of five reservoirs in Colorado
Stevens, Michael R.; Hoogestraat, Galen K.
2013-01-01
The U.S. Department of Agriculture Forest Service has identified hazard concerns for areas downstream from five Colorado dams on Forest Service land. In 2009, the U.S. Geological Survey, in cooperation with the Forest Service, initiated a flood hydrology analysis to estimate the areal extent of potential downstream flood inundation and hazard to downstream life, property, and infrastructure if dam breach occurs. Readily available information was used for dam-breach assessments of five small Colorado reservoirs (Balman Reservoir, Crystal Lake, Manitou Park Lake, McGinnis Lake, and Million Reservoir) that are impounded by an earthen dam, and no new data were collected for hydraulic modeling. For each reservoir, two dam-breach scenarios were modeled: (1) the dam is overtopped but does not fail (break), and (2) the dam is overtopped and dam-break occurs. The dam-breach scenarios were modeled in response to the 100-year recurrence, 500-year recurrence, and the probable maximum precipitation, 24-hour duration rainstorms to predict downstream flooding. For each dam-breach and storm scenario, a flood inundation map was constructed to estimate the extent of flooding in areas of concern downstream from each dam. Simulation results of the dam-break scenarios were used to determine the hazard classification of the dam structure (high, significant, or low), which is primarily based on the potential for loss of life and property damage resulting from the predicted downstream flooding.
1977-01-01
are capable of adapting to turbid conditions will probably be the dominant fish in the oxbows. The stream bottom dwelling population will not be much...the structure of the benthic conmunity. Snails ( gastropods ) and bivalve mollusks (pelecypods) are most abundant in the shallows areas. Stable gravel
NASA Technical Reports Server (NTRS)
2002-01-01
This Moderate-resolution Imaging Spectroradiometer (MODIS) true-color image shows the passage of the Colorado River through several southwestern states. The river begins, in this image, in Utah at the far upper right, where Lake Powell is visible as dark pixels surrounded by the salmon-colored rocks of the Colorado Plateau. The Colorado flows southwest through Glen Canyon, to the Glen Canyon Dam, on the Utah-Arizona border. From there it flows south into Arizona, and then turns sharply west where the Grand Canyon of the Colorado cuts through the mountains. The Colorado flows west to the Arizona-Nevada (upper left) border, where it is dammed again, this time by the Hoover Dam. The dark-colored pixels surrounding the bend in the river are Lake Mead. The river flows south along the border of first Nevada and Arizona and then California and Arizona. The Colorado River, which begins in Rocky Mountain National Park in Colorado, empties into the Gulf of California, seen at the bottom center of this image.
NASA Astrophysics Data System (ADS)
Touahir, S.; Khenter, K.; Remini, B.; Saad, H.
2017-08-01
Isser River is one of North Algeria’s major resources. It is vulnerable to water soil erosion because of favourable conjunctions of different geomorphological, hydro-climatic and lithologic factors. This case study has been carried out on the Beni Amrane dam Catchment, which is located in the bottom of Isser River, in North Algeria. The study involves a mapping of main factors of water erosion: rainfall erosivity, soil erodibility, slope and land use. Essentially a data mapping specification analysis shows, on each factor, how to identify the areas that are prone to water erosion. 04 classes of multifactorial vulnerability to water erosion have been identified: areas with low vulnerability (10 per cent); area with middle vulnerability (49 per cent); areas with high and very high vulnerability (38 per cent and 3 per cent). This could be a first guidance document for a rational use of land in the region and better secure the Beni Amrane dam against reservoir siltation.
Schiffer, D.M.
1994-01-01
Nutrient-rich water enters Lake Beauclair and other lakes downstream from Lake Apopka in the Ocklawaha River chain of lakes in central Florida. Two sources of the nutrient-rich water are Lake Apopka outflow and drainage from farming operations adjacent to the Apopka-Beauclair Canal. Two flow and water- quality monitoring sites were established to measure nutrient and dissolved-solids loads at the outflow from lake Apopka and at a control structure on the Apopka-Beauclair Canal downstream from farming activities. Samples were collected biweekly for analysis of nutrients and monthly for analysis of major ions for 4 years. Most of the nutrient load transported through the lock and dam on the Apopka-Beauclair Canal was transported during periods of high discharge. In April 1987, when discharges were as high as 589 cubic feet per second, loads transported through the lock and dam accounted for 59 percent of the ammonia-plus- organic nitrogen load, 61 percent of the total nitrogen load, and 59 percent of the phosphorus load transported during the 1987 water year. Constituent concentrations in annual bottom sediment samples from the canal indicated that most of the constituent load is not being transported down- stream. An alternative approach was derived for determining the relative constituent load from farm input along the canal: Load computations using this approach indicated that, with the exception of phosphorus, nutrient and dissolved-solids loads due to farm activity along the canal account for 10 percent or less of the total load at the Apopka-Beauclair canal lock and dam. (USGS)
Photographic copy of photograph, photographer unknown, August 1912 (original print ...
Photographic copy of photograph, photographer unknown, August 1912 (original print located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "A VIEW OF METHOD OF DAM CONSTRUCTION" - Kachess Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA
Red River of the North, Reconnaissance Report: Wild Rice River.
1980-12-01
2 lists the waste treatment facilities and needs of fifteen coumnities within the subbasin. Hydropower There are three dams located on the Wild Rice...potential hydroelectric sites. The dams were built primarily for flood control purposes and are classified as small-scale facilities. The main obstacles...drain a combined total area of 2,233 square miles. Several small low-water dams and a few larger impoundments have been constructed on the river and its
Hydropower and sustainability: resilience and vulnerability in China's powersheds.
McNally, Amy; Magee, Darrin; Wolf, Aaron T
2009-07-01
Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water resource control at the local and international scales. Some measures that improved economic development through the market economy and a combination of dam construction and institutional reform may indeed improve hydro-political resilience at a single scale. However, if China does address large-scale hydropower construction's potential to create multi-scale geopolitical tensions, they may be vulnerable to conflict - though not necessarily violent - in domestic and international political arenas. We conclude with a look toward a resilient basin institution for the Nu/Salween River, the site of a proposed large-scale hydropower development effort in China and Myanmar.
Reed, Lloyd A.
1978-01-01
A different method for controlling erosion and sediment transport during highway construction was used in each of four adjacent drainage basins in central Pennsylvania. The basins ranged in size from 240 to 490 acres (97 to 198 hectares), and the area disturbed by highway construction in each basin ranged from 20 to 48 acres (8 to 19 hectares). Sediment discharge was measured from each basin for 3 years before construction began and for 2 years during construction. In one of the basins affected by the construction, three offstream ponds were constructed to intercept runoff from the construction area before it reached the stream. In another basin, a large onstream pond was constructed to trap runoff from the construction area after it reached the stream. In a third area, seeding, mulching, and rock dams were used to limit erosion. In the fourth area, no sediment controls were used. The effectiveness of the various sediment-control measures were determined by comparing the sediment loads transported from the basins with sediment controls to those without controls. For most storms the offstream ponds trapped about 60 percent of the sediment that reached them. The large onstream pond had a trap efficiency of about 80 percent, however, it remained turbid and kept the stream flow turbid for long periods following storm periods. Samples of runoff water from the construction area were collected above and below rock dams to determine the reduction in sediment as the flow passed through the device. Rock dams in streams had a trap efficiency of about 5 percent. Seeding and mulching may reduce sediment discharge by 20 percent during construction, and straw bales placed to trap runoff water may reduce sediment loads downstream by 5 percent.
Photographic copy of photograph, photographer unknown, August 1912 (original print ...
Photographic copy of photograph, photographer unknown, August 1912 (original print located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "METHOD OF CONSTRUCTING DAM AFTER REMOVING OF TRESTLE" - Kachess Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA
Model study of RCC stepped spillways with sloped converging training walls
USDA-ARS?s Scientific Manuscript database
Approximately half of the over 11,000 small watershed dams designed and constructed under the supervision of the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) will reach the end of their planned service life within the next 10 years. Many of these dams...
Sahu, S.S.; Gunasekaran, K.; Jambulingam, P.
2014-01-01
Background & objectives: Integrated vector management (IVM) emphasizes sustainable eco-friendly methods and minimal use of chemicals. In this context, the present study highlights the environmental control of breeding of Anopheles fluviatilis, the primary malaria vector, through water management in a natural stream in Koraput district, Odisha, India. Methods: The District Rural Development Agency (DRDA), Koraput, constructed two bed-dams across streams, one in Barigaon and the other in Pipalapodar village. The bed-dam in the former village was fitted with two sluice gates whereas the bed dam constructed in the latter village was without the sluice gate. The sluice gates were opened once in a week on a fixed day to flush out the water from the dam. Anopheles immatures were sampled systematically in the streams using a dipper for density measurement and species composition. Results: There was a reduction of 84.9 per cent in the proportion of positive dips for Anopheles larvae/pupae and a reduction of 98.4 per cent in immature density (number/dip) of An. fluviatilis in the experimental downstream compared to the control following opening of the sluice gates. Interpretation & conclusions: Our findins showed that opening of sluice gates of the bed-dam regularly once in a week resulted in the control of vector breeding in the downstream due to the flushing effect of the water released with a high flow from the bed-dam that stagnated water in the upstream. The outcome of the study encourages upscaling this measure to other areas, wherever feasible. PMID:25297364
NASA Astrophysics Data System (ADS)
Okano, Kazuyuki; Suwa, Hiroshi; Kanno, Tadahiro
2012-01-01
We analyzed rainstorm control on debris-flow magnitude and flow characteristics using the 14 sets of rainstorm and debris-flow data obtained from 1980 to 2005 at the Kamikamihorizawa Creek of Mount Yakedake. With the principal component analysis on five parameters of debris flows: frontal velocity, peak velocity, peak flow depth, peak discharge and total discharge, and with video-record of boulder-dams in motion, and the preceding rainfall intensities, we conclude that the 14 debris flows could be categorized into three groups. The flows in the first group have large hydraulic magnitude and massive and turbulent boulder-dams filled with slurry matrix. The flows in the second group have small hydraulic magnitude and boulder-dams scarcely filled with slurry matrix, and the dam is observed to alternate between stopping and starting. The flows in the third group have small hydraulic magnitude and boulder dams filled with slurry matrix. Analysis of hillslope hydrology and debris-flow data asserted that the antecedent rainfall conditions control not only the hydraulic magnitude of debris flows but also the boulder-dam features. Large rainstorms of high intensity and durations as short as 10 minutes induces fast and large storm runoff to the headwaters and the source reaches of debris flow, while rainstorms with durations as long as 24 h raises water content in the bottom deposits along the debris-flow growth reaches and generates substantial runoff from the tributaries. Classification of the three groups is done based on water availability to debris flows on the source and growth reaches at the occurrence of debris flow.
Research on evaluation methods for water regulation ability of dams in the Huai River Basin
NASA Astrophysics Data System (ADS)
Shan, G. H.; Lv, S. F.; Ma, K.
2016-08-01
Water environment protection is a global and urgent problem that requires correct and precise evaluation. Evaluation methods have been studied for many years; however, there is a lack of research on the methods of assessing the water regulation ability of dams. Currently, evaluating the ability of dams has become a practical and significant research orientation because of the global water crisis, and the lack of effective ways to manage a dam's regulation ability has only compounded this. This paper firstly constructs seven evaluation factors and then develops two evaluation approaches to implement the factors according to the features of the problem. Dams of the Yin Shang ecological control section in the Huai He River basin are selected as an example to demonstrate the method. The results show that the evaluation approaches can produce better and more practical suggestions for dam managers.
1981-03-01
mi. - 24 hour). The Corps of Engineers has recommended the use of the SCS triangular unit hydrograph with the curvilinear transformation. Hydrologic ...construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam’s general condition...FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING
1979-07-01
Engineering Division p 0 CAR WE H FRZIAN, NENBER Design Branch Engineering Division J SEPE FIN~EGAN, JR.,CIV ater Control Branch * Engineering Division...Operator g. Purpose of Dam h. Design and Construction History i. Normal Operational Procedures 1.3 PERTINENT DATA ........................... 4 a...Tunnel i. Spillways j. Regulating Outlets SECTION 2: ENGINEERING DATA 2.1 DESIGN .............................. 9 a. Available Data b. Design Features c
Nile River, Lake Nasser, Aswan High Dam, Egypt
NASA Technical Reports Server (NTRS)
1992-01-01
The Aswan High Dam, 2.5 miles across and 364 feet high, (24.0N, 33.0E) completed in 1971, was constructed to supply cheap hydroelectric power to both Egypt and Sudan by impounding, controling and regulating the flood waters of the Nile River in Lake Nasser, the world's second largest artifical lake. The lake extends over 500 miles in length, covers an area of some 2,000 square miles and is as much as 350 feet deep at the face of the dam.
Zhang, Hui-Juan; Zhu, Rong; Wu, Cheng-Guo; Guo, Jia-Gang
2007-06-01
To investigate the changes in natural ecology and social environment after the construction of the dam in the Three Gorges Reservoir area, and to understand the social behavior status and education backgrounds of the local residents, and to analyze the potential impact of these factors on schistosomiasis spreading. Data of nature and social economy after the construction of the dam in the Three Gorge area were collected, and a cross-sectional study with questionnaire survey on information including social demographic characteristics, people's production and life style, knowledge about schistosomiasis was conducted among natives, emigrations. After the construction of the dam, as the stream became slower, the water-level fluctuating zone on the bank of the reservoir was formed. The main source of drinking water and daily life activity are mainly depends on the river supplying (accounting about 68.7% and 75.8%, respectively); due to the needs of farming, washing cloths and vegetables, 45.6% of resident had a close contact with river water. People with away-from-home employment among emigrations were increased from 5.7% to 18.7%. The proportion of using hygienic lavatory was 88.6%. The main source of water for drinking and daily life among emigrations was tap water (85.4% and 87.0%). The residents had no awareness about the health hazard for schistosomiasis, with less health information The natural environment of reservoir areas and the life style are risk factors for the spread of schistosomiasis. The improved sanitation condition and the economy construction after the construction of the dam is propitious to keeping away from the introduction of schistosomiasis. However, people with away-from-home employment among emigrations are still at risk of schistosomiasis.
1981-03-01
south- erly end marks the beginning of Bigelow Brook. Masha - paug Pond is located just south of Interstate Route 86 and the Massachusetts...cannot be controlled at this structure since it has no outlet works. 3. Spillway and Appurtenances: The spillway at Masha - pauq Pond is a reinforced...these sites. 4 4 0 h. Design and Construction History: Facilities at Masha - paug Pond were originally constructed in 1740 for the generation of
1981-01-01
12 6.1 Visual Observations ..... ............... . 12 6.2 Design and Construction Techniques .......... . 13 6.3 Past Performance...Techniques. No information is available that details the methods of design and/or construction. 6.3 Past Performance. No records relative to the...Inc., New York, 1959. 8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the
22. Detail view of approach span, showing bottom chord construction, ...
22. Detail view of approach span, showing bottom chord construction, looking east - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI
Gartner, J.W.; Ganju, N.K.
2007-01-01
Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.
Formation and evolution of valley-bottom and channel features, Lower Deschutes River, Oregon
Curran, Janet H.; O'Conner, Jim E.; O'Conner, Jim E.; Grant, Gordon E.
2003-01-01
Primary geologic and geomorphic processes that formed valley-bottom and channel features downstream from the Pelton-Round Butte dam complex are inferred from a canyon-long analysis of feature morphology, composition, location, and spatial distribution. Major controls on valley-bottom morphology are regional tectonics, large landslides, and outsized floods (floods with return periods greater than 1000 yrs), which include the late Holocene Outhouse Flood and several Quaternary landslide dam failures. Floods with a return period on the order of 100 yrs, including historical floods in 1996, 1964, and 1861, contribute to fan building and flood plain formation only within the resistant framework established by the major controls. Key processes in the formation of channel features, in particular the 153 islands and 23 large rapids, include long-term bedrock erosion, outsized floods, and century-scale floods. Historical analysis of channel conditions since 1911 indicates that the largest islands, which are cored by outsized-flood deposits, locally control channel location, although their margins are substantially modified during annual- to century-scale floods. Islands cored by bedrock have changed little. Islands formed by annual- to century-scale floods are more susceptible to dynamic interactions between tributary sediment inputs, mainstem flow hydraulics, and perhaps riparian vegetation. Temporal patterns of island change in response to the sequence of 20th century flooding indicate that many islands accreted sediment during annual- to decadal-scale floods, but eroded during larger century-scale floods. There is, however, no clear trend of long-term changes in patterns of island growth, movement, or erosion either spatially or temporally within the lower Deschutes River.
24 CFR 203.43 - Eligibility of miscellaneous type mortgages.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Department of the Interior located within the town area of Coulee Dam, WA, acquired by the United States for the construction, operation, and maintenance of Grand Coulee Dam and its appurtenant works or of any... be located on the mortgaged property a dwelling unit designed principally for residential use for not...
17. Photocopy of a photograph (original in the Collection of ...
17. Photocopy of a photograph (original in the Collection of the Salt Lake City Engineer's Office)--ca. 1925--GENERAL VIEW OF DOWNSTREAM SIDE OF DAM FOLLOWING COMPLETION OF CONSTRUCTION - Mountain Dell Dam, Parley's Canyon, Northwest side of I-80, West of State Route 39, Salt Lake City, Salt Lake County, UT
Robert H. Schueneman
1979-01-01
The U.S. Army Corps of Engineers is involved in the construction and regulation of many activities relating to water resource development. Such activities include dams and reservoirs, channelization and erosion control on rivers and tributaries, and coastal works. These activities can result in an array of visual effects depending on the specific activity type and...
78 FR 66911 - Notice of Availability of Draft Environmental Assessment; City of New York
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... City of New York's existing Cannonsville Dam, which impounds its Cannonsville Water Supply Reservoir. The dam and reservoir are located on the West Branch of the Delaware River, near the Township of... EA) which analyzes the potential environmental effects of construction and operation of the project...
18 CFR 4.81 - Contents of application.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., or State, as appropriate] and (is/is not) claiming preference under section 7(a) of the Federal Power... and nature of any new roads that would be built for the purpose of conducting the studies; and (2) Work plan for new dam construction. For any development within the project that would entail new dam...
23. Photocopy of original photo from Corps of Engineers, Los ...
23. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown; report located at City of San Luis Obispo.) CONSTRUCTION PHOTO SHOWING CURVED CONCRETE CHUTE SPILLWAY. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul
1992-06-01
The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.
Collaborative Learning the Wiki Way
ERIC Educational Resources Information Center
Engstrom, Mary E.; Jewett, Dusty
2005-01-01
In this article, the authors feature the model, Under Control: The Damming of the Missouri River, which was designed to engage middle school students in a real-world geographic issue: investigating the long term environmental, economic and cultural impacts of the 1944 Pick-Sloan Plan, which resulted in the construction of six dams on the Missouri…
The morphology and chronology of a landslide near Dillon Dam, Dillon, Colorado
Wahlstrom, E.E.; Nichols, T.C.
1969-01-01
Investigations were made of a landslide at the Dillon Dam site, Dillon, Colo., that included detailed laboratory and field analyses of the mineralogy, chemistry, and physical properties of landslide materials and the bedrock formations from which they were derived. These investigations provide an understanding of the relative importance of various factors contributing to the origin and reactivation of a landslide in overburden resting on the Morrison Formation. The landslide material consists dominantly of an aggregate of large to small angular fragments of quartzite and sandstone from the Dakota Formation, embedded in a matrix of very fine grained to colloidal clayey substances derived mainly from the upper, noncalcareous portion of the Morrison Formation. During construction of Dillon Dam and associated structures, excavation of the toe of an old, relatively stable landslide adjacent to the left abutment caused renewed movement that threatened engulfment of the intake structure at the portal of the diversion tunnel for the reservoir. Remedial measures included excavation of a large volume of the landslide material and construction of a gravel-fill coffer- dam on bedrock at the toe of the landslide. ?? 1969.
Hydrologic alteration affects aquatic plant assemblages in an arid-land river
Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.
2014-01-01
We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.
Meta-analysis of environmental effects of beaver in relation to artificial dams
NASA Astrophysics Data System (ADS)
Ecke, Frauke; Levanoni, Oded; Audet, Joachim; Carlson, Peter; Eklöf, Karin; Hartman, Göran; McKie, Brendan; Ledesma, José; Segersten, Joel; Truchy, Amélie; Futter, Martyn
2017-11-01
Globally, artificial river impoundment, nutrient enrichment and biodiversity loss impair freshwater ecosystem integrity. Concurrently, beavers, ecosystem engineers recognized for their ability to construct dams and create ponds, are colonizing sites across the Holarctic after widespread extirpation in the 19th century, including areas outside their historical range. This has the potential to profoundly alter hydrology, hydrochemistry and aquatic ecology in both newly colonized and recolonized areas. To further our knowledge of the effects of beaver dams on aquatic environments, we extracted 1366 effect sizes from 89 studies on the impoundment of streams and lakes. Effects were assessed for 16 factors related to hydrogeomorphology, biogeochemistry, ecosystem functioning and biodiversity. Beaver dams affected concentrations of organic carbon in water, mercury in water and biota, sediment conditions and hydrological properties. There were no overall adverse effects caused by beaver dams or ponds on salmonid fish. Age was an important determinant of effect magnitude. While young ponds were a source of phosphorus, there was a tendency for phosphorus retention in older systems. Young ponds were a source methylmercury in water, but old ponds were not. To provide additional context, we also evaluated similarities and differences between environmental effects of beaver-constructed and artificial dams (767 effect sizes from 75 studies). Both are comparable in terms of effects on, for example, biodiversity, but have contrasting effects on nutrient retention and mercury. These results are important for assessing the role of beavers in enhancing and/or degrading ecological integrity in changing Holarctic freshwater systems.
NASA Astrophysics Data System (ADS)
Dow, S.; Snyder, N. P.; Ouimet, W. B.; Martini, A. M.; Yellen, B.; Woodruff, J. D.; Newton, R. M.
2016-12-01
New England has a long history of anthropogenic activity affecting the landscape, including deforestation, land use changes, and the construction of dams. Dams in particular have the ability to impound vast quantities of sediment eroded off the landscape. The South River in western Massachusetts is an example of a watershed where mill dam construction coincided with deforestation during the 17th-19th centuries, leading to the impoundment of legacy sediment. Along the river, these deposits act as a source of sediment being released back into the river. The Conway Electric Dam (CED), a 17 m tall dam built in 1906, is located downstream of the mill dams (most of which are no longer intact), and provides a 20th century depositional record for the watershed. The purpose of this study is to quantify sedimentation behind the CED and link this to erosion of upstream mill pond and glacial sediment sources using aerial photography, sediment cores, grainsize, and geochemical analyses. We used aerial photographs to map areal changes of the reservoir from 1940-1980, and topographic profiles generated from LiDAR to estimate a volume of 244,000 m3 of sediment stored behind the CED. We dated layers in cores collected at the site with Hg and 137Cs analyses. Overall, the reservoir exhibits a decreasing rate of sediment infilling occurring from 1940-1980, except for a potentially anomalous increase from 1940-1952. Discharge data containing large storm events were compared to sediment infilling rates to identify if a frequency of large storms could account for high rates of erosion and sediment transport; however, sedimentation at the site does not appear to be solely dependent on these large storm events. Preliminary Hg analyses of deposits from the watershed upstream of the CED indicate higher concentrations in mill pond sediment than glacial sediment. Ongoing work with geochemical tracers can potentially provide a robust understanding of sources and 20th century sediment mobilization in the South River watershed, allowing us to quantify the influence of two cycles of dam construction on watershed sediment transport rates.
Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data
NASA Astrophysics Data System (ADS)
Mimi, L.
2014-12-01
Located in central Taiwan, the Sun Moon Lake is an U-shaped basin with the waters capacity for 138.68 × 106m³. The water is input through two underground tunnels from the Wu-Jie dam in the upstream of the Zhuo-shui river. Although the Wu-Jie dam has been trying to keep the tunnels transporting clean water into the lake, the water is still mixed with muds. The silty water brings the deposits accumulating outwards from positions of the tunnel outlets resulting in a deposit fan formed in the lake. To monitor how the fan is accumulated is then very important in terms of environmental issue, tourism and electric power resources. Institute of Oceanography, National Taiwan University therefore conducted projects to use the multi-beam echo sounders to collect bathymetric data, and used the Chirp sub-bottom profiler to explore silted pattern inside the deposit fan. With these data, underwater topographic maps were plotted to observe the shape and internal structure of the fan. Moreover, two sets of data obtained in 2006 and 2012 were used to estimate the siltation magnitude and pattern in the six years period.The multi-beam sounder is Resons Seabat 9001s model; it collects 60 values in each of the swaths positioned by the DGPS method.The sub-bottom profiler is the EdgeTech 3100P Chirp Sonar, its acoustic wave frequency is in 2 ~ 16kHz. The data give the siltation amount in the Sun Moon Lake was around 3× 106 m³, which gives annual siltation rate at 5× 105 m³. The leading edge of the deposit fan has been expanded westwards 2 km from the water outlet since the tunnel was built 70 years ago; however, outside the deposit fan, the siltation shows insignificant amount on the water bottom.In the past few years the siltation mainly occurs outside in the east side of lake, more closer to the water outlets, the terrain had been increased from 744 m to 746 m (748.5 meters is stranded level of the lake).Observing sub-bottom profiler data, we can clearly see the location of the paleo-hard- bottom of the lake before the siltation occurred. These sub-bottom profiles can be used to check or to analyze episodic deposition behavior in producing the deposit fan.
Closed-system freezing of soils in linings and earth embankment dams
NASA Astrophysics Data System (ADS)
Jones, C. W.
1981-03-01
A brief review of studies of closed-system freezing (no source of water except that in voids) of compacted soil canal linings, laboratory and field test results show that under certain soil and temperature conditions, freezing decreases soil density near the surface, but increases density at depth. In two linings, the average density increased slightly during a 20-year period. Frost penetration measurements made during the 1978-79 winter on a 1,5-thick reservoir lining, on three earth dams under construction, and on the Teton Dam remnant are shown along with associated soil conditions, air freezing indexes, and insulating effects of snow and, for one dam, a loose soil cover.
Impact of dam-building on marine life
NASA Astrophysics Data System (ADS)
Pandian, T. J.
1980-03-01
Dam-building across naturally flowing rivers tends to decrease discharge of surplus water into the sea, reduce nutrient concentration in estuaries and coastal waters, and diminish plankton blooms as well as fish landings. Depletion of nutrients and organic matter along with reduced mud and silt deposition affect benthic life on the continental shelf. Reduced mud and silt deposition leads to coastal retreat. Dams, especially those constructed for hydro-electric purposes, hinder migration of fishes and decapods. Discharge from dams can create barriers at high or low flows, cause delays, disrupt normal behavioural routine and change the travel speed of migratory animals. Where all spawners of a given population are frequently kept away from the breeding site, the population faces extinction.
Kynard, B.; Parker, E.; Pugh, D.; Parker, T.
2007-01-01
Understanding the drift dynamics of pallid sturgeon (Scaphirhynchus albus) early life intervals is critical to evaluating damming effects on sturgeons. However, studying dispersal behavior is difficult in rivers. In stream tanks, we studied the effect of velocity on dispersal and holding ability, estimated swimming height, and used the data to estimate drift distance of pallid sturgeon. Dispersal was by days 0-10 embryos until fish developed into larvae on day 11 after 200 CTU (daily cumulative temperature units). Embryos in tanks with a mean channel velocity of 30.1 cm s-1 and a side eddy could not hold position in the eddy, so current controlled dispersal. Late embryos (days 6-10 fish) dispersed more passes per hour than early embryos (days 0-5 fish) and held position in side eddies when channel velocities were 17.3 cm s-1 or 21.1 cm s-1. Day and night swim-up and drift by embryos is an effective adaptation to disperse fish in channel flow and return fish from side eddies to the channel. Early embryos swam <0.50 cm above the bottom and late embryos swam higher (mean, 90 cm). A passive drift model using a near bottom velocity of 32 cm s-1 predicted that embryos dispersing for 11 days in channel flow would travel 304 km. Embryos spawned at Fort Peck Dam, Missouri River, must stop dispersal in <330 km or enter Lake Sakakawea, where survival is likely poor. The model suggests there may be a mismatch between embryo dispersal distance and location of suitable rearing habitat. This situation may be common for pallid sturgeon in dammed rivers. ?? 2007 Blackwell Verlag.
Removing Dams: Project-Level Policy and Scientific Research Needs (Invited)
NASA Astrophysics Data System (ADS)
Graber, B.
2010-12-01
More than 800 dams have been removed around the country, mostly “small” dams, under 25 feet in height. The total number of removals, however, is small relative to the number of deteriorating dams and the ecological impacts those structures continue to have on native riverine species and natural river function. The number of dam removal projects is increasing as aging dams continue to deteriorate and riverine species continue to decline. Practitioners and regulators need to find cost-effective project approaches that minimize short-term environmental impacts and maximize long-term benefits while keeping project costs manageable. Dam removals can be a regulatory challenge because they inherently have short-term impacts in order to achieve larger, self-sustaining, long-term benefits. These short-term impacts include sediment movement, construction access roads, and habitat conversion from lacustrine to riverine. Environmental regulations are designed to prevent degradation and have presented challenges for projects designed to benefit the environment. For example, a short-term release of sediment may exceed water quality standards for some period of time, but lead to a long-term beneficial project. Other regulatory challenges include permitting the loss of wetland area for increased native river function, or allowing the release of some level of contaminated sediment when the downstream sediment is similarly contaminated. Dam removal projects raise a range of engineering and scientific questions on effective implementation techniques such as appropriate sediment management approaches, construction equipment access approaches, invasive species management, channel/floodplain reconstruction, and active versus passive habitat rehabilitation. While practitioners have learned and refined implementation approaches over the last decade, more input is needed from researchers to help assess the effectiveness of those techniques, and to provide more effective techniques. Applied research is needed to provide management tools for practitioners on questions such as: How do we determine the quantity of sediment that is acceptable to release downstream without causing long-term harm to habitat? How can we estimate how much sediment rivers naturally carry in places where there are no sediment gauges? Will the release of coarse-grain sediment help build habitat structure downstream or will it smother habitat? What is the trajectory of habitat quality in an impoundment wetland and is it justifiable to use self-sustainability as an argument to allow a reduction in wetland area for native river habitat? Will having construction equipment working in the flowing river channel do less harm than dewatering a river channel for a longer period of time? American Rivers staff have collectively had an active involvement in more than one hundred dam removal projects. In this presentation, an American Rivers geomorphologist will pose the questions that need to be answered to reduce project-level policy challenges and allow the implementation of cost-effective dam removal projects.
Lake Billy Shaw Operations and Maintenance, Final Annual Report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Guy; Pero, Vincent
Lake Billy Shaw is a newly constructed earthen dam reservoir with a surface area of 430 acres. Construction on the dam and structures was complete in November of 1998. The fish screen structures were complete in December of 1998, with initial filling in May 1999. Upon initial filling, dam structures, monitoring wells, fish screen structures, and lake level were monitored daily, with recordings being taken three times/week. During June 1999 the water to the lake was turned off in order to complete additional construction work on the lake. This work included installation of culverts around the perimeter road, installation ofmore » boat launches, finish work on the spillway structure, pumphouse and well protection and planting 4 trees along the entrance to the boat launch area. The water was turned on again in late September 1999 with all structures having been checked, fish screens greased and maintained and well levels being monitored. In 2000 the Operations and Maintenance portion of the project began with monitoring of piezometers, water levels, biological monitoring, riparian plantings, protection of shorelines, and maintenance of structures and appurtances.« less
Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England
NASA Astrophysics Data System (ADS)
Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.
2017-12-01
Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.
Soil organic carbon erosion and its subsequent fate in the Karoo rangeland
NASA Astrophysics Data System (ADS)
Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus
2016-04-01
The rangelands of the Great Karoo region in South Africa have experienced a number of environmental changes. With the settling of European farmers in the second half of the 18th century, agricultural activities increased, leading to overgrazing and probably representing a trigger to land degradation. Ongoing land-use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and complex gully systems in valley bottoms. Many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods, as a consequence of agricultural intensification. Most of the dams soon in-filled with sediment and many were eventually breached. Such a process offers the potential to use these breached dams as an environmental archive to analyse land use changes as well as carbon (C) erosion and deposition during the last ca. 100 years. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping and sediment analysis have been employed to determine whether land degradation in the Karoo has resulted in the reversion from a net sink of C to a net source of C. Firstly, drone imagery will be used to produce a high-resolution digital elevation model for areas especially prone to erosion and for determining the volume calculation of eroded sediment in the catchment area. Secondly, sediment deposits from the same silted-up reservoir were analysed for varying physicochemical parameters, in order to analyse and reconstruct erosional and depositional patterns. Total Carbon (TC) content was recorded and the sharp decrease in total C content with decreasing depth suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the then relatively fertile surface soils. This presumably resulted in the rapid in-filling of reservoirs with carbon-rich surface material which is found at the base of many dam deposits. Low organic Carbon (OC) content in the top layers of the reservoir in-fill, and in the eroded source areas, supports the assumption that the eroded material was transported from the degraded areas down into the reservoir, where it settled. This raises a crucial question of whether the decline of C sinks in degraded rangelands due to exacerbated soil erosion may have had a greater attenuating effect on GHG emissions than modelled scenarios of present emissions suggest.
1981-04-01
PA 17324 F. Purpose: Irrigation G. Design and Construction History The dam was designed by the owner with assistance from the local Soil ...assistance of the local office of the Soil Conservation Service. Drawings were not prepared for the facilities. It is unknown what the original design...a sandy soil and could be easily eroded if overtopping would occur. A small subsidence area was noticed near the downstream toe over the 12-inch
1981-08-01
Design 6 2.2 Construction 6 2.3 Operation 6 2.4 Geology 6 2.5 Evaluation 6 SECTION 3 - VISUAL INSPECTION 3.1 Findings 7 3.2 Evaluation 9 SECTION 4...Downstream of Dam 9 Erosion Behind East Wingwall 10 Erosion and Debris Behind West Wingwall 11 Diagonal Crack in East Wingwall 12 West Wingwall...2.0 H to approximately 1.0 V on 6.0 H. (6) Zoning - Unknown. (7) Impervious core - Unknown. (8) Cutoff - Unknown. ( 9 ) Grout curtain - Unknown. h
Exploration for Natural Enemies of Hydrilla verticillata in Eastern Africa.
1980-05-01
and Kanazi, water, very slow Mimosa sp., south of Bukoba, current, mud-sand Nymphaea sp., West Lake Prov- bottom, 10 m wide Ottelia sp., Pota- ince...Encountered Lake Kalimawe, Dammed in 1959, Nymphaea sp., Kilimanjaro Prov- quite eutrophic, Ipomea sp., ince, Tanzania photozone near zero Mimosa sp...Ceratophyllum sp., Tanzania Mimosa sp., Commelina sp. Table 9 Conditions and Characteristics of Sites Sampled on Lake Victoria Types of Water Location
Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho
Malde, Harold E.
1981-01-01
The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.
Large-scale degradation of Amazonian freshwater ecosystems
NASA Astrophysics Data System (ADS)
Castello, L.; Macedo, M.
2016-12-01
The integrity of freshwater ecosystems depends on their hydrological connectivity with land, water, and climate systems. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. However, the hydrological connectivity of Amazonian freshwater ecosystems is increasingly disrupted by construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation; evaluates their impacts on hydrological connectivity; and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 155 large hydroelectric dams in operation, 21 dams under construction, and there will be only three free-flowing tributaries if all 277 planned dams for the Basin are built. Land-cover changes driven by mining, dam and road construction, and agriculture and cattle ranching have already affected 20% of the Basin and up to 50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g. droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and do not consider the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basin-wide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... dam; (3) a proposed 350-foot-long, 18-to-24-inch-diameter above-ground steel penstock, routed along a... government dam; or (4) if applicable, has involved or would involve any construction subsequent to 1935 that... significantly modified the project's pre-1935 design or operation. l. Locations of the Application: Copies of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... system; (2) a single lower reservoir dam constructed of earth fill materials with an internal dam drainage system; (3) concrete inlet-outlet structures at both upper reservoirs equipped with trash racks..., using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must include your name...
What Is All This Dam Foolishness? Instructional Activities Series IA/S-2.
ERIC Educational Resources Information Center
Bill, Erwin
This activity is one of a series of 17 teacher-developed instructional activities for geography at the secondary grade level described in SO 009 140. This activity investigates the proposed construction of a dam. It employs a simulation technique in which students debate the conflicts that may evolve between groups with differing goals. To provide…
77 FR 15093 - Public Service Company of Colorado;
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
...-foot-long concrete- faced rockfill Upper Dam across Cabin Creek; (2) a 25.4 acre upper reservoir with 1... earthfill and rockfill Lower Dam across South Clear Creek; (4) a 44.8-acre lower reservoir with 1,221 acre...; (5) a 145-foot-long auxiliary spillway constructed in the embankment of the lower reservoir with a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz’menko, A. P., E-mail: apkuzm@gmail.com; Saburov, S. V., E-mail: saburov58@yandex.ru
2016-07-15
The paper puts forward a method for processing data from detailed seismic assessments of HPP dams (dynamic tests). A detailed assessment (hundreds of observation points in dam galleries) is performed with consideration of operating dam equipment and the microseismic noise. It is shown that dynamic oscillation characteristics (natural oscillation frequencies and modes in the main dam axes, the velocities of propagation of elastic waves with given polarization, and so on.) can be determined with sufficient accuracy by using complex transfer functions and pulse characteristics. Monitoring data is processed using data from a detailed assessment, taking account of identified natural oscillationmore » modes and determined ranges of natural frequencies. The spectra of characteristic frequencies thus obtained are used to choose substitution models and estimate the elastic characteristics of the “dam – rock bed” construction system, viz., the modulus of elasticity (the Young modulus), the Poisson ratio, the dam section stiffness with respect to shear, tension and compression and the elastic characteristics of the rock foundation.« less
Water clarity of the Colorado River—Implications for food webs and fish communities
Voichick, Nicholas; Kennedy, Theodore A.; Topping, David; Griffiths, Ronald; Fry, Kyrie
2016-11-01
The closure of Glen Canyon Dam in 1963 resulted in drastic changes to water clarity, temperature, and flow of the Colorado River in Glen, Marble, and Grand Canyons. The Colorado River is now much clearer, water temperature is less variable throughout the year, and the river is much colder in the summer months. The flow—regulated by the dam—is now less variable annually, but has larger daily fluctuations than during pre-dam times. All of these changes have resulted in a different fish community and different food resources for fish than existed before the dam was built. Recent monitoring of water clarity, by measuring turbidity, has helped scientists and river managers understand modern water-clarity patterns in the dam-regulated Colorado River. These data were then used to estimate pre-dam turbidity in the Colorado River in order to make comparisons of pre-dam and dam-regulated conditions, which are useful for assessing biological changes in the river over time. Prior to dam construction, the large sediment load resulted in low water clarity almost all of the time, a condition which was more favorable for the native fish community.
Ethiopia's Grand Renaissance Dam: Implications for Downstream Riparian Countries
NASA Astrophysics Data System (ADS)
Zhang, Y.; Block, P. J.; Hammond, M.; King, A.
2013-12-01
Ethiopia has begun seriously developing their significant hydropower potential by launching construction of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile River to facilitate local and regional growth. Although this has required substantial planning on Ethiopia's part, no policy dictating the reservoir filling rate strategy has been publicly issued. This filling stage will have clear implications on downstream flows in Sudan and Egypt, complicated by evaporative losses, climate variability, and climate change. In this study, various filling policies and future climate states are simultaneously explored to infer potential streamflow reductions at Lake Nasser, providing regional decision-makers with a set of plausible, justifiable, and comparable outcomes. Schematic of the model framework Box plots of 2017-2032 percent change in annual average streamflow at Lake Nasser for each filling policy constructed from the 100 time-series and weighted precipitation changes. All values are relative to the no dam policy and no changes to future precipitation.
Numerical Analysis on Seepage in the deep overburden CFRD
NASA Astrophysics Data System (ADS)
Zeyu, GUO; Junrui, CHAI; Yuan, QIN
2017-12-01
There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.
Fitzpatrick, Faith A.; Peppler, Marie C.
2003-01-01
The volume, texture, and chemistry of sediment deposited in a mill pond on the West Branch of the Wolf River at Neopit, Wis., Menominee Reservation, were studied in 2001-2002. The study was accomplished by examining General Land Office Survey Notes from 1854, establishing 12 transects through the mill pond, conducting soundings of the soft and hard bottom along each transect, and collecting core samples for preliminary screening of potential contaminants. Combined information from transects, cores, and General Land Office Survey notes were used to reconstruct the pre-dam location of the West Branch of the Wolf River through the mill pond. Neopit Mill Pond contains approximately 253 acre-ft of organic-rich muck, on average about 1.2 ft thick, that was deposited after the dam was built. Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with creosote and pentachlorophenol were found in post-dam sediment samples collected from Neopit Mill Pond. Trace-element concentrations were at or near background concentrations. Further study and sampling are needed to identify the spatial extent and variability of the PAHs, pentachlorophenol, and other byproducts from wood preservatives
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Coulthard, Tom; Keesstra, Saskia; Keiler, Margreth
2015-04-01
Dams are often considered to have the most significant impact on rivers as dam construction generally reduces downstream sediment fluxes which further involves geomorphic changes in the affected river reaches. Since many dams no longer fulfill their intended purpose (e.g. due to siltation), are dangerous (e.g. catastrophic dam failures) and/or are ecologically damaging (e.g. habitat destruction), within the last two decades several dams have been removed and many more are already proposed for removal. Unfortunately, there is still only little empirical knowledge about the geomorphic consequences of dam removals and the related sediment release which represents a big challenge for river management. Modelling is one way to approach this problem. In the presented study we modelled the impacts of dam removal on geomorphic channel processes, channel morphology and sediment delivery further considering the role of channel engineering measures and reservoir excavation within a river reach impacted by a series of dams using the landscape evolution model CAESAR-Lisflood. The model was run with data from a small catchment located in Lower Austria. Modelled geomorphic channel changes and sediment fluxes were spatio-temporally analyzed, related to real-world data and are discussed in the context of river management issues.
Dams, Hydrology and Risk in Future River Management
NASA Astrophysics Data System (ADS)
Wegner, D. L.
2017-12-01
Across America there are over 80,000 large to medium dams and globally the number is in excess of 800,000. Currently there are over 1,400 dams and diversion structures being planned or under construction globally. In addition to these documented dams there are thousands of small dams populating watersheds. Governments, agencies, native tribes, private owners and regulators all have a common interest in safe dams. Often dam safety is characterized as reducing structural risk while providing for maximum operational flexibility. In the 1970's there were a number of large and small dam failures in the United States. These failures prompted the federal government to issue voluntary dam safety guidelines. These guidelines were based on historic information incorporated into a risk assessment process to analyze, evaluate and manage risk with the goal to improve the quality of and support of dam management and safety decisions. We conclude that historic and new risks need to be integrated into dam management to insure adequate safety and operational flexibility. A recent assessment of the future role of dams in the United States premises that future costs such as maintenance or removal beyond the economic design life have not been factored into the long-term operations or relicensing of dams. The converging risks associated with aging water storage infrastructure, multiple dams within watersheds and uncertainty in demands policy revisions and an updated strategic approach to dam safety. Decisions regarding the future of dams in the United States may, in turn, influence regional water planning and management. Leaders in Congress and in the states need to implement a comprehensive national water assessment and a formal analysis of the role dams play in our water future. A research and national policy agenda is proposed to assess future impacts and the design, operation, and management of watersheds and dams.
Fragmentation of Andes-to-Amazon connectivity by hydropower dams
Anderson, Elizabeth P.; Jenkins, Clinton N.; Heilpern, Sebastian; Maldonado-Ocampo, Javier A.; Carvajal-Vallejos, Fernando M.; Encalada, Andrea C.; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M.; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A.
2018-01-01
Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems—the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services. PMID:29399629
Fragmentation of Andes-to-Amazon connectivity by hydropower dams.
Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A
2018-01-01
Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.
Longitudinal distribution of Chironomidae (Diptera) downstream from a dam in a neotropical river.
Pinha, G D; Aviz, D; Lopes Filho, D R; Petsch, D K; Marchese, M R; Takeda, A M
2013-08-01
The damming of a river causes dangerous consequences on structure of the environment downstream of the dam, modifying the sediment composition, which impose major adjustments in longitudinal distribution of benthic community. The construction of Engenheiro Sérgio Motta Dam in the Upper Paraná River has caused impacts on the aquatic communities, which are not yet fully known. This work aimed to provide more information about the effects of this impoundment on the structure of Chironomidae larvae assemblage. The analysis of data of physical and chemical variables in relation to biological data of 8 longitudinal sections in the Upper Paraná River showed that composition of Chironomidae larvae of stations near Engenheiro Sérgio Motta Dam differed of the other stations (farther of the Dam). The predominance of coarse sediments at stations upstream and finer sediments further downstream affected the choice of habitat by different morphotypes of Chironomidae and it caused a change in the structure of this assemblage in the longitudinal stretch.
Facilitating fish passage at ultra low head dams: An alternative to dam removal
Odeh, M.
2004-01-01
Ecosystem sustainability and returning the biological integrity to rivers continue to change the landscape of fish passage technology. Installing a conventional fishways has a limited degree of success in accommodating fish passage needs. Recently, the option of total dam removal has been gaining momentum among resource managers, conservationists, and even engineers. Certain dams, however, cannot be removed, and conventional fishways are either too expensive to build or the real estate is simply not available; yet freedom of passage must be attained. At the Little Falls Dam on the Potomac River a notch in the crest of the dam was installed to accommodate passage of fish. The notch has three labyrinth weirs used for energy dissipation. Water velocities are maintained at less than about 4 m/s anywhere within the passage structure during migratory season of the target species (American shad). Construction of this novel design was recently completed (March 2000) and future biological evaluations are ongoing. Copyright ASCE 2004.
The socio-economics dynamics of Dam on Rural Communities: A case study of Oyan Dam, Nigeria
NASA Astrophysics Data System (ADS)
Ayeni, Amidu; Ojifo, Lawrence
2018-06-01
Dams construction and operations have many benefits, nevertheless, they have also led to lots of negative social, health and human impacts. It is based on this that this study assesses the potential and socio-economics dynamics of Oyan dam between 1980 and 2016. The data used for this study include water level and discharge records of the dam between 2007 and 2016, Landsat imageries of 1984 and 2016 and socio-economic datasets for the period. Analysis of the dam potentials (water supply, agriculture and hydropower) and socio-economic impacts of the dam were carried out using basic statistical tools, land use change anaysis and field survey using questionnaire, structured interview with major stakeholders and personal observation. The results revealed that the water level and storage of the Oyan dam had a relative reduction of about 2 % as well as non-stationarity pattern of water abstraction and production for the period. The landuse classes show all classes decreased in extent except the cultivated landuse that acrued an increased of 19.9 % between 1984 and 2016. Furthermore, commercial water supply varied significantly between 2010 and 2016 while irrigation scheme is grossly under-utilized from the inception in 1983 to 2016. Finally, the result of socio-economic impacts revealed that majority of the selected communities' members are actually not benefiting from the dam and their livelihoods are not from the dam.
NOA at the Calaveras Dam Replacement Project (CDRP) - Challenges and Solutions
NASA Astrophysics Data System (ADS)
Erskine, B.
2012-12-01
The San Francisco Public Utilities Commission is one year into construction of the Calaveras Dam Replacement Project (CDRP), a new earthen dam east of Sunol designed to withstand an M 7.1 earthquake on the nearby active Calaveras fault. The zoned earthen dam will be constructed primarily of on-site materials, many of which contain NOA. The upstream shell will be composed of Franciscan complex blueschist which contains crocidolite. This material will be blasted and processed at an on-site quarry. The impermeable core of the dam will be constructed of clay-rich alluvium that contains asbestos derived from Franciscan rocks. This material will be excavated from the south end of the reservoir and transported several miles to the dam. Currently, approximately 3 million yards of Franciscan complex material is being excavated and disposed of within permitted on-site engineered landfills. NOA-bearing rocks that include serpentinite, greenschist, blueschist, and eclogite contain variable amounts and assemblages of chrysotile, actinolite, crocidolite, tremolite, and winchite-class amphiboles. All of these are detected in air samples collected within a sophisticated air monitoring array and analyzed by TEM. The CDRP represents the largest construction project involving NOA in the country. As such, applying regulations that were designed for building materials and routine construction sites, and controlling airborne emissions on such a massive scale, is a major challenge requiring innovative solutions. Because construction occurs simultaneously at distinct and distant parts of the site, and the rugged topography of the site induces complex meteorological conditions, it is sometimes difficult to ascertain the driving activity and location of a source that caused a trigger level exceedance at a perimeter monitoring station. One helpful tool is forensic correlation of source material and air test data using speciation of amphiboles. At the CDRP, we are developing the ability to correlate rock mineralogy at a location with the species of amphiboles identified on air samples using TEM. Using amphibole species as a fingerprinting tool, we have been successful in determining whether an exceedance of a trigger level was caused from onsite or offsite sources. In one case, multiple exceedances by an unusual mix of chrysotile and amphiboles (crocidolite, actinolite, tremolite, and Libby-class amphiboles in the same sample) narrowed the source to one of two locations: Disposal Site 3 where a mix of materials from the entire site is disposed of, and water recycled in the decontamination zone wheel wash equipment. Using perimeter air monitoring around and between each location it was possible to identify the wheel wash as the source. As a result, the wheel wash system, track out procedures, and road wetting protocol have been re-engineered to eliminate the potential for significant offsite emissions. These and other examples will describe how the SFPUC NOA team is managing the field determination of NOA, on-site control measures, and perimeter air monitoring to assure that construction is conducted in a safe manner and no offsite exposures to the public occur.
A Model of Beaver Meadow Complex Evolution in the Silvies River Basin, Oregon.
NASA Astrophysics Data System (ADS)
Nash, C.; Grant, G.; Campbell, S. D.
2014-12-01
There is increasing evidence to suggest that the pervasive incision seen in the American West is due, in part, to the removal of beaver (Castor canadensis) in the first half of the 19th century. New restoration strategies for these systems focus on the reintroduction of beaver and construction of beaver dam analogs. Such dams locally raise streams beds and water tables, reconnect incised channels to their former floodplains, trap sediment, increase hydraulic diversity, and promote riparian vegetation. However, the geomorphic and hydrologic impacts of both the original beaver dams and their analogs are poorly understood. Observations in the Silvies River basin in Oregon, USA - an upland, semi-arid catchment with extremely high historic beaver populations and a presently recovering population, inform a conceptual model for valley floor evolution with beaver dams. The evolution of the beaver dam complex is characterized by eight stages of morphologic adjustment: water impoundment, sediment deposition, pond filling, multi-thread meadow creation, dam breaching, channel incision, channel widening, and floodplain development. Well-constructed beaver dams, given sufficient time and sediment flux, will evolve from a series of ponds to a multi-threaded channel flowing through a wet meadow complex. If a dam in the system fails, due to overtopping, undercutting, lack of maintenance, or abandonment, the upstream channel will concentrate into a single channel and incise, followed over time by widening once critical bank heights are exceeded. From stratigraphic, dendrochronologic, and geomorphic measurements, we are constraining average timescales associated with each stage's duration and transitional period. Measured sedimentation rates behind modern beaver dam analogs on five stream systems permit calculation of sediment flux over recent time periods, and aid in developing regional rates of sediment deposition over a range of drainage areas and gradients. Stratigraphic and dendrochronologic records provide insight into rates of incision, widening, and floodplain development. These measurements are leading to an understanding of the timescales associated with each morphologic stage and transition period, as well as the long-term implications of reintroducing beaver into a wide range of stream systems.
NASA Astrophysics Data System (ADS)
Wild, T. B.; Reed, P. M.; Loucks, D.
2016-12-01
The Mekong River basin in Southeast Asia is one of several river basins with exceptionally high biodiversity value where intensive hydropower dam development is anticipated. In the Mekong basin, over 100 dams are planned to be constructed in the next 20-30 years. As planned, these dams will alter the river's natural water, sediment and nutrient flows, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most productive freshwater fish habitats, upon which some 60 million people depend for food and income security. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and adult fish/larvae passage. We present a successful case study wherein we explored such alternative SDO opportunities in partnership with the Government of Cambodia for Sambor Dam, planned to be built on the main stem of the Mekong. Sambor would be one of the world's longest dams, spanning 18 km across the river just upstream of (1) Tonle Sap Lake, which supplies 70% of Cambodians' protein, and (2) the Mekong Delta in Vietnam, responsible for 50% of Vietnam's rice production. We will describe key dam siting and design modifications required to mitigate ecological impacts. We will then focus on the most promising alternative dam siting/design concept, exploring the reservoir operations space to demonstrate that a complex set of tradeoffs exist among a diverse set of energy and ecosystem objectives. Results indicate that even for a hydrologically small reservoir, a wide array of potential reservoir operating policies exist that have vastly different food-energy implications. While some policies would significantly mitigate ecological impacts, many policies exist that would pose a severe threat to the sustainability of the fishery. Failure to sample the reservoir operations space at appropriate resolution could result in failure to accurately identify tradeoffs and vulnerabilities. We explore energy-ecosystem tradeoffs while demonstrating to stakeholders the impacts of transitioning from their initial deterministic analysis that largely focused on energy revenue to broader many-objective stochastic problem formulations.
Local response of a glacier to annual filling and drainage of an ice-marginal lake
Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.
2006-01-01
Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.
NASA Astrophysics Data System (ADS)
Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.
2018-06-01
The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.
The potential for catastrophic dam failure at Lake Nyos maar, Cameroon
Lockwood, J.P.; Costa, J.E.; Tuttle, M.L.; Nni, J.; Tebor, S.G.
1988-01-01
The upper 40 m of Lake Nyos is bounded on the north by a narrow dam of poorly consolidated pyroclastic rocks, emplaced during the eruptive formation of the Lake Nyos maar a few hundred years ago. This 50-m-wide natural dam is structurally weak and is being eroded at an uncertain, but geologically alarming, rate. The eventual failure of the dam could cause a major flood (estimated peak discharge, 17000 m3/s) that would have a tragic impact on downstream areas as far as Nigeria, 108 km away. This serious hazard could be eliminated by lowering the lake level, either by controlled removal of the dam or by construction of a 680-m-long drainage tunnel about 65 m below the present lake surface. Either strategy would also lessen the lethal effects of future massive CO2 gas releases, such as the one that occurred in August 1986. ?? 1988 Springer-Verlag.
Chaves-Ulloa, Ramsa; Umaña-Villalobos, Gerardo; Springer, Monika
2014-04-01
Despite the fact that little is known about the consequences of hydropower production in tropical areas, many large dams (> 15 m high) are currently under construction or consideration in the tropics. We researched the effects of large hydroelectric dams on aquatic macroinvertebrate assemblages in two Costa Rican rivers. We measured physicochemical characteristics and sampled aquatic macroinvertebrates from March 2003 to March 2004 in two dammed rivers, Peñas Blancas and San Lorenzo, as well as in the undammed Chachagua River. Sites above and below the dam had differences in their physicochemical variables, with wide variation and extreme values in variables measured below the dam in the San Lorenzo River. Sites below the dams had reduced water discharges, velocities, and depths when compared with sites above the dams, as well as higher temperatures and conductivity. Sites above dams were dominated by collector-gatherer-scrapers and habitat groups dominated by swimmer-clingers, while sites below dams had a more even representation of groups. In contrast, a comparison between two sites at different elevation in the undammed river maintained a similar assemblage composition. Tributaries might facilitate macroinvertebrate recovery above the turbine house, but the assemblage below the turbine house resembled the one below the dam. A massive sediment release event from the dam decreased the abundance per sample and macroinvertebrate taxa below the dam in the Peñas Blancas River. Our study illustrates the effects of hydropower production on neotropical rivers, highlighting the importance of using multiple measures of macroinvertebrate assemblage structure for assessing this type of environmental impact.
18. Photocopy of a photograph (original in the Collection of ...
18. Photocopy of a photograph (original in the Collection of the Salt lake City Engineer's Office)--ca. 1925--GENERAL VIEW OF THE UPSTREAM SIDE OF THE DAM FOLLOWING COMPLETION OF CONSTRUCTION. THERE IS ESSENTIALLY NO WATER IN THE RESERVOIR - Mountain Dell Dam, Parley's Canyon, Northwest side of I-80, West of State Route 39, Salt Lake City, Salt Lake County, UT
22. Photocopy of original photo from Corps of Engineers, Los ...
22. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown; report located at City of San Luis Obispo.) CONSTRUCTION PHOTO SHOWING THE STRUTS, POURED TO ALIGN WITH THE RIGHT (WEST) BUTTRESS. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA
Brooks, William E.; Willett, Jason C.; Kent, Jonathan D.; Vasquez, Victor; Rosales, Teresa
2005-01-01
Debris flows caused by El Niño events, earthquakes, and glacial releases have affected northern Perú for centuries. The Muralla Pircada, a northeast-trending, 2.5 km long stone wall east of the Santa Rita B archaeological site (Moche-Chimú) in the Chao Valley, is field evidence that ancient Andeans recognized and, more importantly, attempted to mitigate the effects of debris flows. The Muralla is upstream from the site and is perpendicular to local drainages. It is 1–2 m high, up to 5 m wide, and is comprised of intentionally-placed, well-sorted, well-rounded, 20–30 cm cobbles and boulders from nearby streams. Long axes of the stones are gently inclined and parallel local drainage. Case-and-fill construction was used with smaller cobbles and pebbles used as fill. Pre-Muralla debris flows are indicated by meter-sized, angular boulders that were incorporated in-place into construction of the dam and are now exposed in breeches in the dam. Post-Muralla debris flows in the Chao Valley are indicated by meter-sized, angular boulders that now abut the retention dam.
Hatten, James R.; Batt, Thomas R.
2010-01-01
We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.
33. Photographic copy of construction drawing, dated 4/1925, in possession ...
33. Photographic copy of construction drawing, dated 4/1925, in possession of SCIP Office, Coolidge, AZ. United States Indian Service, Irrigation. CONSTRUCTION CAMP - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
18. EASTERLY VIEW ALONG THE SPILLWAY BUCKET, SHOWING CONSTRUCTION OPERATIONS.... ...
18. EASTERLY VIEW ALONG THE SPILLWAY BUCKET, SHOWING CONSTRUCTION OPERATIONS.... Volume XX, No. 5, September 5, 1940. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico
Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta
2015-01-01
Results from the simulated dam failure of the Lago de Matrullas Dam using the HEC–RAS model for the 6- and 24-hour PMP events showed peak discharges at the dam of 3,149.33 and 3,604.70 m3/s, respectively. Dam failure during the 100-year-recurrence, 24-hour rainfall event resulted in a peak discharge of 2,103.12 m3/s directly downstream from the dam. Dam failure under sunny day conditions produced a peak discharge of 1,695.91 m3/s at the dam assuming the antecedent lake level was at the morning-glory spillway invert elevation. Flood-inundation maps prepared as part of the study depict the flood extent and provide valuable information for preparing an Emergency Action Plan. Results of the failure analysis indicate that a failure of the Lago de Matrullas Dam could cause flooding to many of the inhabited areas along stream banks from the Lago de Matrullas Dam to the mouth of the Río Grande de Manatí. Among the areas most affected are the low-lying regions in the vicinity of the towns of Ciales, Manatí, and Barceloneta. The delineation of the flood boundaries near the town of Barceloneta considered the effects of a levee constructed during 2000 at Barceloneta in the flood plain of the Río Grande de Manatí to provide protection against flooding to the near-by low-lying populated areas. The results showed overtopping can be expected in the aforementioned levee during 6- and 24-hour probable-maximum-precipitation dam failure scenarios. No overtopping of the levee was simulated, however, during dam failure scenarios under the 100-year recurrence, 24-hour rainfall event or sunny day conditions.
1978-12-01
on available data and on visual inspection, to determine if the dam poses hazards to human life or property. W O A, m" 1473 EDTION OF NOV6G IS OBSOLETE...upstream slope. The embankment was originally constructed of "selected impervious fill" for the upstream two- thirds of the embank- ment, with...34coarser material" placed in the downstream one- third of the embankment. In 1977, the embankment section was rebuilt. A new 12-foot wide by a maximum of 32
Perry, R.W.; Farley, M.J.; Hansen, G.S.; Shurtleff, D.J.; Rondorf, D.W.; LeCaire, R.
2003-01-01
In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse.
1980-07-01
Identify by block number) A HANFORD REACH LAND USE COLUNBIA RIVER ENVIRONNENTAL IMPACT WASHINGTON (STATE) BEN FRANKLIN DAM SIL AWTNAnW (Oinemu iM Mem...he N ndmde IIev e W lj by bcmbm ) IThe construction of Ben Franklin Dam at RN 348 would flood lands along the Hanford Reach of the Columbia River to...400 feet mean sea level an upriver to about the Vernita Bridge. The Hanford Reach, the last free-floving stretch iof the Columbia River , would be
Rachol, Cynthia M.; Fitzpatrick, Faith A.; Rossi, Tiffiny
2005-01-01
In a study to understand the historical effects of the construction and decommissioning of dams on the Kalamazoo River, Plainwell to Otesgo, Michigan, and to simulate channel changes that may result if the dams were removed, early to mid-1800s General Land Office surveys and aerial photographs from 1938, 1981, and 1999 were compared in order to identify historical changes in the river’s planform. This analysis of the 80-mile reach from Morrow Dam to the river mouth at Saugatuck provided insight into how susceptible the river has been to channel migration. The comparison showed that changes in channel width and location were caused mainly by construction of dams and subsequent water-level adjustments in the impounded reaches upstream from the dams. Braiding also occurred downstream from one of the dams. Minor changes in channel form that were not caused by the dams, such as the development and cutoff of meander bends, were observed. A more detailed study in a 5-mile reach passing through the Plainwell and Otsego City Dams included compiling existing valley cross section and longitudinal profile data into a database, assessing bank stability, and using a hydrologic model to simulate the channel as if the dams were removed. Fifty-four valley cross sections compiled from United States Geological Survey and consultant data sets were used as a base for a bank-stability assessment and to design a hypothetical stable channel without the two dams. The channel design involved adjusting the slope, hydraulic geometry, and floodplain width to ensure that water could be transferred through the reach without increasing flooding or erosion problems. The bank-stability assessment focused on conditions that are critical to failure. This was accomplished through the use of a two step process. The first involved evaluating the sediment removed from the bank toe when the stage is high. The second involved calculating the factor of safety for the bank based on the water table being elevated higher than the stage, mimicing a bank storage effect. Using these paired proccesses, two scenarios of critical conditions were evaluated: dams present and dams removed. Results of the bank assessments showed that, under both critical-condition scenarios, the streambanks were more susceptible to toe erosion than to block failure. As toe erosion progresses, the banks will eventually collapse as supporting material underneath is removed. Toe erosion for the damsremoved scenario resulted in higher amounts of erosion than for the dams-present scenario, leading to an overall decrease in bank stability. Effects of vegetation on the bank stability were variable; stability for some banks increase if vegetation was present but remain the same for other banks.
Vegas, I; Ibañez, J A; San José, J T; Urzelai, A
2008-01-01
The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.
The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.
Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene
2017-06-01
The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.
15. SAME ROOMVIEW SOUTH TOWARDS THREE BOATS UNDER CONSTRUCTION. FLATBOTTOM ...
15. SAME ROOM-VIEW SOUTH TOWARDS THREE BOATS UNDER CONSTRUCTION. FLAT-BOTTOM SECTION IN FOREGROUND ON SAW HORSES (NOTE FRAME PATTERNS ON BOTTOM PLANKS), BACKGROUND BOATS BEING FRAMED AND PLANKED. - Lowell's Boat Shop, 459 Main Street, Amesbury, Essex County, MA
How to meet the increasing demands of water, food and energy in the future?
NASA Astrophysics Data System (ADS)
Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn
2017-04-01
Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water scarcity. At the continental scale, most countries of Africa, the south and west Asia, and the central Europe are suffering from water scarcity. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, we address the question of future dam development and predict the locations of future large dams around the world. The results show that there will be 1,433 large dams built in the future, mainly in the Tibet Plateau and the Yunnan-Guizhou Plateau in Asia, the East African Plateau and the western part of Africa, the Andes Mountains and the Brazilian Plateau region in South America, the Rocky Mountains in North America, the Alps in Europe, and the Murray-Darling Basin in Oceania. Taking into account of the current situation of global water scarcity, these large dams are most likely to be constructed in countries that have abundant total available water resources or per capita available water resources, no matter whether they are experiencing "economic water scarcity" or have sufficient financial support.
Quantitative and Qualitative Geospatial Analysis of a Probable Catastrophic Dam Failure
NASA Astrophysics Data System (ADS)
Oduor, P. G.; Stenehjem, J.
2011-12-01
Geospatial techniques were used in assessing inundation extents that would occur in the event of a catastrophic failure of Fort Peck dam. Fort Peck dam, located in Montana, USA has a spillway design which under dam failure the crest is expected to reach Williston a major economic hub in North Dakota in 1.4 days with a peak elevation of 1891 ft (576.377 m) msl (mean sea level). In this study, we address flooding extents and impacts on establishments with respect to a peak elevation of 1891 ft. From this study, we can unequivocally state that the City of Williston will be significantly impacted if Fort Peck dam fails with almost all critical needs, for example, gasoline stations, emergency facilities and grocery stores completely inundated. A secondary catastrophic event may be tied to the primary economic activity in Williston, that is, oil rigs of which most lie on the pathway of an inadvertent flood crest. We also applied a Discrete Fourier Transformation (DFT), and Lomb-Scargle normalized periodogram analyses and fitting of Fort Peck dam reservoir level fluctuations to gauge (a) likelihood of the dam overtopping, and (b) anatomic life span. Whereas we found that inasmuch as the dam could be considered stable by directly analyzing other dams that have failed, there is still a lower likelihood of it to fail at a 99-232 years range from construction. There was lack of concomitancy between overtopping and dam failure rates.
30. CONSTRUCTION LAYOUT DETAILS OF OUTLET WORKS AND SPILLWAY. ...
30. CONSTRUCTION LAYOUT - DETAILS OF OUTLET WORKS AND SPILLWAY. Sheet C-10, September, 1938. File no. SA 343/1. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W
2014-08-19
Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.
NASA Astrophysics Data System (ADS)
Hijazzi, Norshamirra; Thiruchelvam, Sivadass; Sabri Muda, Rahsidi; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Kamal Kadir, Ahmad; Hakimie, Hazlinda; Sahari, Khairul Salleh Mohamed; Hasini, Hasril; Mohd Sidek, Lariyah; Itam, Zarina; Fadhli Mohamad, Mohd; Razad, Azwin Zailti Abdul
2016-03-01
Dams, however significant their contributions are to the society, are not immune to failures and diminishing lifespan not unlike other structural elements in our infrastructure. Despite continuing efforts on design, construction, operation, and maintenance of dams to improve the safety of the dams, the possibility of unforeseen events of dam failures is still possible. Seeing that dams are usually integrated into close approximities with the community, dam failures may consequent in tremendous loss of lives and properties. The aims of formulation of Integrated Community Based Disaster Management (ICBDM) is to simulate evacuation modelling and emergency planning in order to minimize loss of life and property damages in the event of a dam-related disaster. To achieve the aim above, five main pillars have been identified for the formulation of ICBDM. A series of well-defined program inclusive of hydrological 2-D modelling, life safety modelling, community based EWS and CBTAP will be conducted. Finally, multiple parties’ engagement is to be carried out in the form of table top exercise to measure the readiness of emergency plans and response capabilities of key players during the state of a crisis.
NASA Astrophysics Data System (ADS)
Wild, T. B.; Reed, P. M.; Loucks, D. P.
2015-12-01
The Mekong River basin in Southeast Asia is undergoing intensive and pervasive hydropower development to satisfy demand for increased energy and income to support its growing population of 60 million people. Just 20 years ago this river flowed freely. Today some 30 large dams exist in the basin, and over 100 more are being planned for construction. These dams will alter the river's natural water, sediment and nutrient flows, thereby impacting river morphology and ecosystems, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most valuable and productive freshwater fish habitats. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to potentially achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and fish passage. We introduce examples of such alternative SDO opportunities for Sambor Dam in Cambodia, planned to be constructed on the main stem of the Mekong River. To evaluate the performance of such alternatives, we developed a Python-based simulation tool called PySedSim. PySedSim is a daily time step mass balance model that identifies the relative tradeoffs among hydropower production, and flow and sediment regime alteration, associated with reservoir sediment management techniques such as flushing, sluicing, bypassing, density current venting and dredging. To date, there has been a very limited acknowledgement or evaluation of the significant uncertainties that impact the evaluation of SDO alternatives. This research is formalizing a model diagnostic assessment of the key assumptions and parametric uncertainties that strongly influence PySedSim SDO evaluations. Using stochastic hydrology and sediment load data, our diagnostic assessment evaluates and compares several Sambor Dam alternatives using several performance measures related to energy production, sediment trapping and regime alteration, and fish passage. We show that performance of the alternatives can be highly variable, and conduct a simultaneous multi-parameter factor screening sensitivity analysis to identify the subset of PySedSim model parameters that contribute most significantly to performance uncertainties in attempts to identify the more robust options.
NASA Astrophysics Data System (ADS)
Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.
2017-12-01
Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.
Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.
2016-09-14
Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led to the following conclusions:The existing outlets at Lookout Point Dam, because of the range of depths, allow for greater temperature control than the two existing outlets at Hills Creek Dam that are relatively deep.Temperature control at HCR through operational scenarios generally was minimal near Hills Creek Dam, but improved downstream toward the head of LOP when decreased release rates held HCR at a low lake elevation year-round.Inflows from unregulated streams between HCR and LOP helped to dilute the effects of HCR and achieve more natural stream temperatures before the MFWR entered LOP.The relative benefit of any particular scenario depended on the location in the MFWR system used to assess the potential change, with most scenarios involving changes to Hills Creek Dam being less effective with increasing downstream distance, such as downstream of DEX.To achieve as much temperature control as the most successful structural scenarios, which were able to resemble without-dam conditions for part of the year, most operational scenarios had to be free of any power-generation requirements at Lookout Point Dam.Downstream of DEX, scenarios incorporating a hypothetical floating outlet at either HCR or LOP resulted in similar temperatures, with both scenarios causing a delay in the estimated spring Chinook egg emergence by about 9–10 days compared to base-case temperature-management scenarios.
Review of coal bottom ash and coconut shell in the production of concrete
NASA Astrophysics Data System (ADS)
Faisal, S. K.; Mazenan, P. N.; Shahidan, S.; Irwan, J. M.
2018-04-01
Concrete is the main construction material in the worldwide construction industry. High demand of sand in the concrete production have been increased which become the problems in industry. Natural sand is the most common material used in the construction industry as natural fine aggregate and it caused the availability of good quality of natural sand keep decreasing. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of coal bottom ash and coconut shell as partial sand replacement in production of concrete. It is able to save cost and energy other than protecting the environment. In summary, 30% usage of coal bottom ash and 25% replacement of coconut shell as aggregate replacement show the acceptable and satisfactory strength of concrete.
Kiguwa, Peace
2015-11-01
This paper explores the meanings attached to gay sexuality through the self-labelling practices of a group of young gay-identified students in focus group and individual interviews in Johannesburg, South Africa. These meanings include constructs of the dynamics surrounding safe sex negotiation and risk related to "top-bottom" subject positioning as well as the erotics of power and desire that are imbued in these practices and positioning. Using performativity theory as a theoretical tool of analysis, I argue that constructs of "top-bottom" subjectivities can be seen to meet certain erotic needs for LGBTI youth, including reasons related to physical safety for LGBTI people living in dangerous spaces. The performance of "bottom" identities in sexual intimacy and behaviour is further deployed in the expression and performance of power that the participants construct as erotic. The implications for sexual health intervention include understanding the gendered performance influences of sexual behaviour including safe sex, exploring creative ways that practices of sexual health can be engaged with this population group in a way that accommodates the erotic pleasure interfaced with sexual identity identifications and performances of "bottom" identities. Copyright © 2015 Elsevier Inc. All rights reserved.
Andersen, D.C.; Shafroth, P.B.
2010-01-01
Beaver convert lotic stream habitat to lentic through dam construction, and the process is reversed when a flood or other event causes dam failure. We investigated both processes on a regulated Sonoran Desert stream, using the criterion that average current velocity is < 0.2 m s-1 in a lentic reach. We estimated temporal change in the lotic:lentic stream length ratio by relating beaver pond length (determined by the upstream lentic-lotic boundary position) to dam size, and coupling that to the dam-size frequency distribution and repeated censuses of dams along the 58-km river. The ratio fell from 19:1 when no beaver dams were present to < 3:1 after 7 years of flows favourable for beaver. We investigated the dam failure-flood intensity relationship in three independent trials (experimental floods) featuring peak discharge ranging from 37 to 65 m3 s-1. Major damage (breach ??? 3-m wide) occurred at ??? 20% of monitored dams (n = 7-86) and a similar or higher proportion was moderately damaged. We detected neither a relationship between dam size and damage level nor a flood discharge threshold for initiating major damage. Dam constituent materials appeared to control the probability of major damage at low (attenuated) flood magnitude. We conclude that environmental flows prescribed to sustain desert riparian forest will also reduce beaver-created lentic habitat in a non-linear manner determined by both beaver dam and flood attributes. Consideration of both desirable and undesirable consequences of ecological engineering by beaver is important when optimizing environmental flows to meet ecological and socioeconomic goals. ?? 2010 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Shah, R. P.; Solomon, H. D.
1976-01-01
Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.
Highland, Lynn M.
2008-01-01
The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.
Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado
NASA Astrophysics Data System (ADS)
deWolfe, Victor G.; Santi, Paul M.; Ey, J.; Gartner, Joseph E.
2008-04-01
To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6 metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84 kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000 m 3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm-induced debris flows occurred in two adjacent canyons at volumes within the range predicted by the model.
Huckleberry, Gary; Ferguson, T.J.; Rittenour, Tammy M.; Banet, Chris; Mahan, Shannon
2016-01-01
An investigation into indigenous water storage on the Rio San José in western New Mexico was conducted in support of efforts by the Pueblo of Laguna to adjudicate their water rights. Here we focus on stratigraphy and geochronology of two Native American-constructed reservoirs. One reservoir located near the community of Casa Blanca was formed by a ∼600 m (2000 feet) long stone masonry dam that impounded ∼1.6 × 106 m3 (∼1300 acre-feet) of stored water. Four optically stimulated luminescence (OSL) ages obtained on reservoir deposits indicate that the dam was constructed prior to AD 1825. The other reservoir is located adjacent to Old Laguna Pueblo and contains only a small remnant of its former earthen dam. The depth and distribution of reservoir deposits and a photogrammetric analyses of relict shorelines indicate a storage capacity of ∼6.5 × 106 m3 (∼5300 ac-ft). OSL ages from above and below the base of the reservoir indicate that the reservoir was constructed sometime after AD 1370 but before AD 1750. The results of our investigation are consistent with Laguna oral history and Spanish accounts demonstrating indigenous construction of significant water-storage reservoirs on the Rio San José prior to the late nineteenth century.
NASA Astrophysics Data System (ADS)
Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.
2005-07-01
As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.
Bathymetric and geophysical surveys of Englebright Lake, Yuba-Nevada Counties, California
Childs, Jonathan R.; Snyder, Noah P.; Hampton, Margaret A.
2003-01-01
Harry L. Englebright Lake is a 9-mile-long (14-kilometer) reservoir located in the Sierra Nevada foothills of northern California on the Yuba River gorge known as The Narrows. The reservoir is impounded by Englebright Dam (Photo 1), a concrete arch structure spanning 348 meters (1,142 feet) across and 79 meters (260 feet) high. The dam was constructed in 1941 for the primary purpose of trapping sediment derived from anticipated hydraulic mining operations in the Yuba River watershed. Hydraulic mining in the Sierra Nevada was halted in 1884 but resumed on a limited basis until the 1930's under the regulation of the California Debris Commission. Although no hydraulic mining in the upper Yuba River watershed resumed after the construction of the dam, the historical mine sites continued to contribute sediment to the river. Today, Englebright Lake is used primarily for recreation and hydropower. In 2001 and 2002, the U.S. Geological Survey (USGS) conducted bathymetric, geophysical, and geological studies of the reservoir under the auspices of the Upper Yuba River Studies Program (UYRSP), a multi-disciplinary investigation into the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. A primary purpose of these studies was to assess the quantity and nature of the sediment that has accumulated behind the dam over the past 60 years. This report presents the results of those surveys, including a new bathymetric map of the reservoir and estimates of the total accumulated sediment volume.
14. DRAGLINE BEGINNING CONSTRUCTION OF THE BYPASS CHANNEL CONNECTING THE ...
14. DRAGLINE BEGINNING CONSTRUCTION OF THE BY-PASS CHANNEL CONNECTING THE DIVERSION GATE ALONG THE OUTLET CHANNEL WITH THE ORIGINAL CHANNEL OF THE SOURIS RIVER - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND
188. Photographic copy of original construction drawing dated October 20, ...
188. Photographic copy of original construction drawing dated October 20, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO. 1 CONTROLLING WORKS; OPERATING HOUSE. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Code of Federal Regulations, 2011 CFR
2011-07-01
... and harbor purposes. These include the construction, operation, maintenance and improvement of both... United States, all lands, easements and rights-of-way required for initial construction, operation and...-1), authorizes the acquisition of land and interests therein for dam and reservoir projects, channel...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and harbor purposes. These include the construction, operation, maintenance and improvement of both... United States, all lands, easements and rights-of-way required for initial construction, operation and...-1), authorizes the acquisition of land and interests therein for dam and reservoir projects, channel...
1983-01-01
scripta elegans , occuring from Ohio and Iowa to New Mexico, prefers quiet water with muddy bottoms and much vegetation. Today Chrysemys scripta ...Chrysemys ( Trachemys ) scripta Pond slider ABUNDANCE. One individual. A single specimen, the medial portion of the first left pleural bone, ISM 490,014 (Moodie...75,000 years ago. *" Systematic Discussion of Trolinger Spring I Fauna Class REPTILIA Order CHELONIA Family TESTUDINIDAE Chrysemys ( Trachemys
Arsenic Movement From Sediment to Water: Microbes and Mobilization in a Contaminated Lake
NASA Astrophysics Data System (ADS)
Keimowitz, A. R.; Mailloux, B. J.; Chillrud, S. N.; Ross, J.; Wovkulich, K.; McNamara, P.; Alexandrova, E.; Thompson, L.
2008-12-01
Union Lake (Millville, NJ), a reservoir downstream from the Vineland Chemical Company Superfund site, has bottom sediments that are highly contaminated with arsenic (>1 g/kg). Offsite As transport was investigated. Because the lake is a result of damming, it is perched above the water table and therefore As transport may occur via downward movement of porewaters and/or groundwaters. Preliminary evidence for this was found in the form of iron flocculates enriched in As which were found in surface seeps downgradient of the dam. The possibility of As remobilization and/or off-site transport by seasonal anoxia of lake bottom- waters was also explored. Although historically, appreciable As was found in the water column of the lake (up to approximately 200 micrograms/L), As releases over the summers of 2007 and 2008 were negligible to modest with a maximum [As] of 23 micrograms/L. Arsenic mobilization from the contaminated sediments into surface waters of the reservoir are limited in part due to incomplete eutrophication and frequent overturning (approximately 1x/month in summer 2007) of this shallow lake, therefore conditions which promoted greater As release were explored in the laboratory. Field and laboratory samples were examined for changes in the microbial community using a variety of genetic techniques; these changes in microbial community were both a result of, and influenced, seasonal lake cycles.
Hydro-dam - A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake.
Lin, Zihan; Qi, Jiaguo
2017-10-01
Recent proliferation of hydro-dams was one of the nature-based solutions to meet the increasing demand for energy and food in the Lower Mekong River Basin (LMRB). While construction of these hydro-dams generated some hydropower and facilitated expansion of irrigated lands, it also significantly altered the basin-wide hydrology and subsequently impacted wetland ecosystems. Unintended adverse consequences of ecosystem services from lakes and wetlands offset the intended gains in hydroelectricity and irrigated agriculture. The trade-offs between gains in energy and food production and losses in aquatic ecosystem services were perceived to be significant but knowledge of the magnitude, spatial extent, and type of ecosystem services change is lacking and, therefore, the question whether the hydro-dam is an optimized solution or a potential ecological problem remains unanswered. In this study, as the first step to answer this question and using the Tonlé Sap Lake as an example, we quantified one of the impacts of hydro-dams on lake ecosystem's phenology in terms of open water area, a critical ecological characteristic that affects lake systems' fish production, biodiversity, and livelihoods of the local communities. We used the MODIS-NDVI time series, forecast function and the Mann-Kendall trend test method to first quantify the open water area, analyzed its changes over time, and then performed correlation analysis with climate variables to disentangle dam impacts. The results showed reduced hydro-periods, diminishing lake seasonality and a declining trend in Tonlé Sap Lake open water area over the past 15 years. These changes were insignificantly related to climatic influence during the same period. It is concluded that basin-wide hydro-dam construction and associated agricultural irrigation were deemed to be the primary cause of these ecological changes. Further analyses of changes in the lake's ecosystem services, including provision and cultural services, need to be carried out in order to have a holistic understanding of the trade-offs brought by the hydro-dam proliferation as a solution to the emerging energy and food demand in the LMRB. Published by Elsevier Inc.
Sokolow, Susanne H.; Jones, Isabel J.; Jocque, Merlijn M. T.; La, Diana; Cords, Olivia; Knight, Anika; Lund, Andrea; Wood, Chelsea L.; Lafferty, Kevin D.; Hoover, Christopher M.; Collender, Phillip A.; Remais, Justin V.; Lopez-Carr, David; Fisk, Jonathan; Kuris, Armand M.; De Leo, Giulio A.
2017-01-01
Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277–385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.
NASA Astrophysics Data System (ADS)
Sokolow, S. H.; Jones, I. J.; La, D.; Cords, O.; Knight, A.; Lund, A.; Wood, C. L.; Lafferty, K. D.; Kuris, A. M.; Hoover, C.; Collender, P. A.; Remais, J.; Lopez-Carr, D.; De Leo, G.
2016-12-01
Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socioeconomic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277 to 385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (1) upstream catchments within historical habitats of native prawns, (2) comparable undammed watersheds, and (3) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoring native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.
Sokolow, Susanne H; Jones, Isabel J; Jocque, Merlijn; La, Diana; Cords, Olivia; Knight, Anika; Lund, Andrea; Wood, Chelsea L; Lafferty, Kevin D; Hoover, Christopher M; Collender, Phillip A; Remais, Justin V; Lopez-Carr, David; Fisk, Jonathan; Kuris, Armand M; De Leo, Giulio A
2017-06-05
Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277-385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.
Jones, Isabel J.; Jocque, Merlijn; La, Diana; Cords, Olivia; Knight, Anika; Lund, Andrea; Lafferty, Kevin D.; Hoover, Christopher M.; Collender, Phillip A.; Remais, Justin V.; Lopez-Carr, David; Kuris, Armand M.; De Leo, Giulio A.
2017-01-01
Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277–385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438916
241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.
2014-04-04
This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.
Mortality of riparian box elder from sediment mobilization and extended inundation
Friedman, Jonathan M.; Auble, Gregor T.
1999-01-01
To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble-bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing-season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross-section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi-objective water management decisions.
1980-08-01
4 985 G DEPARTMENT OF THE ARMY [ NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM, MASS. 02154 * DI~~~~h~ U~M ~qE M W A " AUGUST 1_App buomr w...AODREO9(if diffemen IC l mMA OfUice) IS. SECURITY CLASS. (of ShJi r.90,) UNCLASSIFIED IS. DC-ASSI FIC ATION/DOWNGRADIN G SCN DULE I6. DISTRIBUTION... g . Purpose of Dam 2 h. Design and Construction History 3 i. Normal Operational Procedure 3 1.3 Pertinent Data 3 2. ENGINEERING DATA 2.1 Design
Forecasting the Cumulative Impacts of Dams on the Mekong Delta: Certainties and Uncertainties
NASA Astrophysics Data System (ADS)
Kondolf, G. M.; Rubin, Z.; Schmitt, R. J. P.
2016-12-01
The Mekong River basin is undergoing rapid hydroelectric development, with 7 large mainstem dams on the upper Mekong (Lancang) River in China and 133 dams planned for the Lower Mekong River basin (Laos, Cambodia, Thailand, Vietnam), 11 of which are on the mainstem. Prior analyses have shown that all these dams built as initially proposed would trap 96% of the natural sediment load to the Mekong Delta. Such a reduction in sediment supply would compromise the sustainability of the delta itself, but there are many uncertainties in the timing and pattern of land loss. The river will first erode in-channel sediment deposits, partly compensating for upstream sediment trapping until these deposits are exhausted. Other complicating factors include basin-wide accelerated land-use change, road construction, instream sand mining, dyking-off floodplains, and changing climate, accelerated subsidence from groundwater extraction, and sea level rise. It is certain that the Mekong Delta will undergo large changes in the coming decades, changes that will threaten its very existence. However, the multiplicity of compounding drivers and lack of good data lead to large uncertainties in forecasting changes in the sediment balance on the scale of a very large network. We quantify uncertainties in available data and consider changes due to additional, poorly quantified drivers (e.g., road construction), putting these drivers in perspective with the overall sediment budget. We developed a set of most-likely scenarios and their implications for the delta's future. Uncertainties are large, but there are certainties about the delta's future. If its sediment supply is nearly completely cut off (as would be the case with `business-as-usual' ongoing dam construction and sediment extraction), the Delta is certainly doomed to disappear in the face of rising seas, subsidence, and coastal erosion. The uncertainty is only when and how precisely the loss will progress.
Downstream migration and multiple dam passage by Atlantic Salmon smolts
Nyqvist, D.; McCormick, Stephen; Greenberg, L.; Ardren, W.R.; Bergman, E.; Calles, O.; Castro-Santos, Theodore R.
2017-01-01
The purpose of this study was to investigate behavior and survival of radio-tagged wild and hatchery-reared landlocked Atlantic Salmon Salmo salar smolts as they migrated past three hydropower dams equipped with fish bypass solutions in the Winooski River, Vermont. Among hatchery-reared smolts, those released early were more likely to initiate migration and did so after less delay than those released late. Once migration was initiated, however, the late-released hatchery smolts migrated at greater speeds. Throughout the river system, hatchery-reared fish performed similarly to wild fish. Dam passage rates varied between the three dams and was highest at the dam where unusually high spill levels occurred throughout the study period. Of the 50 fish that did migrate downstream, only 10% managed to reach the lake. Migration success was low despite the presence of bypass solutions, underscoring the need for evaluations of remedial measures; simply constructing a fishway is not synonymous with providing fish passage.
190. Photographic copy of original construction drawing dated November 7, ...
190. Photographic copy of original construction drawing dated November 7, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO. 1 CONTROLLING WORKS; MODEL OF VENTURE METER-FILMS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Persistence of historical logging impacts on channel form in mainstem North Fork Caspar Creek
Michael B. Napolitano
1998-01-01
The old-growth redwood forest of North Fork Caspar Creek was clear-cut logged between 1860 and 1904. Transportation of logs involved construction of a splash dam in the headwaters of North Fork Caspar Creek. Water stored behind the dam was released during large storms to enable log drives. Before log drives could be conducted, the stream channel had to be prepared by...
96. (Credit BLV) View locking West at Cross Lake dam ...
96. (Credit BLV) View locking West at Cross Lake dam and spillway constructed immediately west of Kansas City Southern railroad bridge. Booster station located at left. Note cribbing at bridge abutment in upper left which straddles gravity flow canduit installed in 1924-1926 and supports extra suction line (installed in 1930) on top. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Lower Charles River Bathymetry: 108 Years of Fresh Water
NASA Astrophysics Data System (ADS)
Yoder, M.; Sacarny, M.
2017-12-01
The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.
Long-term behaviour of timber structures in torrent control
NASA Astrophysics Data System (ADS)
Rickli, Christian; Graf, Frank
2014-05-01
Timber is widely used for protection measures in torrent control. However, life span of woody constructions such as timber check dams is limited due to fungal decay. However, only sparse scientific information is available on the long-term behaviour of timber structures and the colonisation with decay fungi. Related to this, in practice a controversial discussion has been going on if either Norway Spruce (Picea abies) or Silver Fir (Abies alba) is more enduring and if bark removal increases resistance against fungal decay. In order to going into this matter a series of 15 timber check dams built in 1996 has been monitored. The constructions were alternatively realised with Norway Spruce and Silver Fir, half of them each with remaining and removed bark, respectively. The scientific investigations included the documentation of colonisation with rot fungi and the identification of decayed zones with a simple practical approach as well as based on drilling resistance. Colonisation by decay fungi started three years after construction (e.g. Gloeophyllum sepiarium), detecting two years later first parts with reduced wood resistance. Sixteen years after construction decay was found on all check dams but two. Wood quality was markedly better in watered sections compared to the occasionally dry lateral abutment sections. Taking the whole check dams into consideration, slightly more decay was detected in Norway Spruce compared to logs in Silver Fir and both the practical approach and the drilling resistance measurement yielded in more defects on logs without bark. However, due to limited number of replications and fungal data, it was not possible to statistically verify these results. Statistical analysis was restricted to the drilling resistance data and fruit-bodies of decay fungi of the uppermost log of each check dam. Based on this limited analysis significant differences in the effect on the drilling resistance were found for watered sections and lateral abutments, brown and white rot as well as fir with and without bark. Taking further into account that brown rot reduces wood strength faster than white rot, it may be speculated that spruce logs without bark and fir logs with bark are more resistant against fungal decay compared to logs of spruce with and fir without bark, respectively. However, this has to be treated with caution as only the uppermost logs were considered, the observation period was only 15 years and the relative abundance of the most important decay fungi considerably varied between as well as within the check dams. Consequently, for statistically sound and well-funded recommendations further investigations over a longer period are indispensable.
Water quality effects of seepage from earthen dams
Yost, C.; Naney, J.W.
1974-01-01
Analyses of surface and seepage waters from selected floodwater retarding structures in west-central Oklahoma, U.S.A. show the salinity of seepage to be several times greater than that of the impounded waters. The increases in concentration of the several chemical components are not proportional. This phenomenon appears to be caused largely by simple solution, which is closely related to the chemical character of the geologic formation that provides the reservoir site and the earth fill of the dam. Concentration of certain chemical components in the seepage water progressively decreases as the structure ages. This is probably a function of depletion, which is related to the amounts and solubility of the parent materials subjected to solution. In contrast, the concentration of certain other components, such as iron and calcium, increases with time. The chemical activities within the accumulating mud on the bottom of the reservoir apparently cause these increases. ?? 1974.
Parsley, M.J.; Kofoot, P.
2007-01-01
River discharge and water temperatures that occurred during April through July 2005 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph occurred in mid May and discharges dropped quickly and water temperature rose during June, which is reflected in the monthly and annual indices of suitable spawning habitat. Indices of available spawning habitat for the month of June 2005 were less than one-half of the average of the period from 1985-2004. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-the-year (YOY) white sturgeon but the proportion of positive tows was quite low at 0.06.
Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
Lee, H K; Kim, H K; Hwang, E A
2010-02-01
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.
NASA Astrophysics Data System (ADS)
Sung, Wen-Pei; Shih, Ming-Hsiang
2016-04-01
Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.
Yang, Meng; Qian, Xin; Zhang, Yuchao; Sheng, Jinbao; Shen, Dengle; Ge, Yi
2011-01-01
Approximately 30,000 dams in China are aging and are considered to be high-level risks. Developing a framework for analyzing spatial multicriteria flood risk is crucial to ranking management scenarios for these dams, especially in densely populated areas. Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal. The framework is presented in detail by using a case study to rank dam rehabilitation, decommissioning and existing-condition scenarios. The results show that there was a serious inundation, and that a dam rehabilitation scenario could reduce the multicriteria flood risk by 0.25 in the most affected areas; this indicates a mean risk decrease of less than 23%. Although increased risk (<0.20) was found for some residential and commercial buildings, if the dam were to be decommissioned, the mean risk would not be greater than the current existing risk, indicating that the dam rehabilitation scenario had a higher rank for decreasing the flood risk than the decommissioning scenario, but that dam rehabilitation alone might be of little help in abating flood risk. With adjustments and improvement to the specific methods (according to the circumstances and available data) this framework may be applied to other sites. PMID:21655125
Stage-discharge relations for Black Warrior River at Warrior Dam near Eutaw, Alabama; updated 1985
Nelson, G.H.; Ming, C.O.
1986-01-01
The construction of Warrior Dam, completed in 1962, has resulted in changes to the stage-discharge relations in the vicinity. The scarcity of current-meter measurements, coupled with backwater conditions, make definition of a single stage-discharge relation impossible without considerable error. However, as a useful alternative, limit curves were developed in 1983 that defined the limits of possible stage-discharge relations at the dam tailwater section. Since the 1983 report, 37 discharge values computed through the dam for the flood of December 1983 were used to verify or update the lower end of the limit curves. Data obtained from a current-meter measurement of the February 1961 flood (furnished by the U.S. Army Corps of Engineers) were used to update the upper end of the curves. This report presents the updated information. (USGS)
Modeling the capacity of riverscapes to support beaver dams
NASA Astrophysics Data System (ADS)
Macfarlane, William W.; Wheaton, Joseph M.; Bouwes, Nicolaas; Jensen, Martha L.; Gilbert, Jordan T.; Hough-Snee, Nate; Shivik, John A.
2017-01-01
The construction of beaver dams facilitates a suite of hydrologic, hydraulic, geomorphic, and ecological feedbacks that increase stream complexity and channel-floodplain connectivity that benefit aquatic and terrestrial biota. Depending on where beaver build dams within a drainage network, they impact lateral and longitudinal connectivity by introducing roughness elements that fundamentally change the timing, delivery, and storage of water, sediment, nutrients, and organic matter. While the local effects of beaver dams on streams are well understood, broader coverage network models that predict where beaver dams can be built and highlight their impacts on connectivity across diverse drainage networks are lacking. Here we present a capacity model to assess the limits of riverscapes to support dam-building activities by beaver across physiographically diverse landscapes. We estimated dam capacity with freely and nationally-available inputs to evaluate seven lines of evidence: (1) reliable water source, (2) riparian vegetation conducive to foraging and dam building, (3) vegetation within 100 m of edge of stream to support expansion of dam complexes and maintain large colonies, (4) likelihood that channel-spanning dams could be built during low flows, (5) the likelihood that a beaver dam is likely to withstand typical floods, (6) a suitable stream gradient that is neither too low to limit dam density nor too high to preclude the building or persistence of dams, and (7) a suitable river that is not too large to restrict dam building or persistence. Fuzzy inference systems were used to combine these controlling factors in a framework that explicitly also accounts for model uncertainty. The model was run for 40,561 km of streams in Utah, USA, and portions of surrounding states, predicting an overall network capacity of 356,294 dams at an average capacity of 8.8 dams/km. We validated model performance using 2852 observed dams across 1947 km of streams. The model showed excellent agreement with observed dam densities where beaver dams were present. Model performance was spatially coherent and logical, with electivity indices that effectively segregated capacity categories. That is, beaver dams were not found where the model predicted no dams could be supported, beaver avoided segments that were predicted to support rare or occasional densities, and beaver preferentially occupied and built dams in areas predicted to have pervasive dam densities. The resulting spatially explicit reach-scale (250 m long reaches) data identifies where dam-building activity is sustainable, and at what densities dams can occur across a landscape. As such, model outputs can be used to determine where channel-floodplain and wetland connectivity are likely to persist or expand by promoting increases in beaver dam densities.
Measurement of water pressure and deformation with time domain reflectometry cables
NASA Astrophysics Data System (ADS)
Dowding, Charles H.; Pierce, Charles E.
1995-05-01
Time domain reflectometry (TDR) techniques can be deployed to measure water pressures and relative dam abutment displacement with an array of coaxial cables either drilled and grouted or retrofitted through existing passages. Application of TDR to dam monitoring requires determination of appropriate cable types and methods to install these cables in existing dams or during new construction. This paper briefly discusses currently applied and developing TDR techniques and describes initial design considerations for TDR-based dam instrumentation. Water pressure at the base of or within the dam can be determined by measuring the water level within a hollow or air-filled coaxial cable. The ability to retrofit existing porous stone-tipped piezometers is an attractive attribute of the TDR system. Measurement of relative lateral movement can be accomplished by monitoring local shearing of a solid polyethylene-filled coaxial cable at the interface of the dam base and foundation materials or along adversely oriented joints. Uplift can be recorded by measuring cable extension as the dam displaces upward off its foundation. Since each monitoring technique requires measurements with different types of coaxial cables, a variety may be installed within the array. Multiplexing of these cables will allow monitoring from a single pulser, and measurements can be recorded on site or remotely via a modem at any time.
Feasibility of groundwater recharge dam projects in arid environments
NASA Astrophysics Data System (ADS)
Jaafar, H. H.
2014-05-01
A new method for determining feasibility and prioritizing investments for agricultural and domestic recharge dams in arid regions is developed and presented. The method is based on identifying the factors affecting the decision making process and evaluating these factors, followed by determining the indices in a GIS-aided environment. Evaluated parameters include results from field surveys and site visits, land cover and soils data, precipitation data, runoff data and modeling, number of beneficiaries, domestic irrigation demand, reservoir objectives, demography, reservoirs yield and reliability, dam structures, construction costs, and operation and maintenance costs. Results of a case study on more than eighty proposed dams indicate that assessment of reliability, annualized cost/demand satisfied and yield is crucial prior to investment decision making in arid areas. Irrigation demand is the major influencing parameter on yield and reliability of recharge dams, even when only 3 months of the demand were included. Reliability of the proposed reservoirs as related to their standardized size and net inflow was found to increase with increasing yield. High priority dams were less than 4% of the total, and less priority dams amounted to 23%, with the remaining found to be not feasible. The results of this methodology and its application has proved effective in guiding stakeholders for defining most favorable sites for preliminary and detailed design studies and commissioning.
Putting Roman Dams in Context: a Virtual Approach
NASA Astrophysics Data System (ADS)
Decker, M. J.; Du Vernay, J. P.; Mcleod, J. B.
2017-08-01
Water resources and management have become a critical global issue. During the half-millennium of its existence, the Roman Empire developed numerous strategies to cope with water management, from large-scale urban aqueduct systems, to industrial-scale water mills designed to cope with feeding growing city populations. Roman engineers encountered, adopted, and adapted indigenous hydraulic systems, and left lasting imprints on the landscape of the Mediterranean and temperate Western Europe by employing a range of water technologies. A recent academic study has enabled the identification of remains of and references to seventy-two dams from the Roman era, constructed in Spain between the 1st and 4th century AD. Such unique heritage, without comparisons in the Mediterranean makes Spain an emblematic case study for the analysis of Roman hydraulic engineering and water management policies. Fifty dams have been located and detailed. The twenty-two outstanding, although identified on the ground, have not been able to be acceptably characterized, due in some cases to their being ruins in a highly degraded state, others due to their being masked by repairs and reconstructions subsequent to the Roman era. A good example of such neglected dams is the buttress dam of Consuegra , in Toledo province (Castilla-La Mancha). Dating to the 3rd - 4th century AD, the Dam of Consuegra, on the basin of the Guadiana, with its over 600 metres length and 4,80 metres height, is a remarkable case of Roman engineering mastery. It had a retaining wall upstream, numerous buttresses and perhaps an embankment downstream, of which no remains are left. The application of 3D digital imaging technique to create a high quality virtual model of such monuments has proved to be successful especially for the study of the technological aspects related its construction. The case study of the Roman dam of Muel (Zaragoza) has shown, in fact, as best practices in digital archaeology can provide an original and innovative perspective on a long time studied monument. In this paper it will be explored how deploying recent computer technologies to the Roman dam at Consuegra can advance our understanding of the history of local and regional landscape change and the technology of water management. In summer 2016, the dam has been documented with terrestrial laser scanning with two FARO Focus 3D x330 and aerial photogrammetry image capturing with a DJI Phantom 4 drone. Data was processed in various 3D software applications to generate 3D representations of the dam including 3D point clouds, animations, and meshed models.
Global sensitivity analysis of water age and temperature for informing salmonid disease management
NASA Astrophysics Data System (ADS)
Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha
2018-06-01
Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.
Hydraulics of embankment-dam breaching
NASA Astrophysics Data System (ADS)
Walder, J. S.; Iverson, R. M.; Logan, M.; Godt, J. W.; Solovitz, S.
2012-12-01
Constructed or natural earthen dams can pose hazards to downstream communities. Experiments to date on earthen-dam breaching have focused on dam geometries relevant to engineering practice. We have begun experiments with dam geometries more like those of natural dams. Water was impounded behind dams constructed at the downstream end of the USGS debris-flow flume. Dams were made of compacted, well-sorted, moist beach sand (D50=0.21 mm), 3.5 m from toe to toe, but varying in height from 0.5 to 1 m; the lower the dam, the smaller the reservoir volume and the broader the initially flat crest. Breaching was started by cutting a slot 30-40 mm wide and deep in the dam crest after filling the reservoir. Water level and pore pressure within the dam were monitored. Experiments were also recorded by an array of still- and video cameras above the flume and a submerged video camera pointed at the upstream dam face. Photogrammetric software was used to create DEMs from stereo pairs, and particle-image velocimetry was used to compute the surface-velocity field from the motion of tracers scattered on the water surface. As noted by others, breaching involves formation and migration of a knickpoint (or several). Once the knickpoint reaches the upstream dam face, it takes on an arcuate form whose continued migration we determined by measuring the onset of motion of colored markers on the dam face. The arcuate feature, which can be considered the head of the "breach channel", is nearly coincident with the transition from subcritical to supercritical flow; that is, it acts as a weir that hydraulically controls reservoir emptying. Photogenic slope failures farther downstream, although the morphologically dominant process at work, play no role at all in hydraulic control aside from rare instances in which they extend upstream so far as to perturb the weir, where the flow cross section is nearly self-similar through time. The domain downstream of the critical-flow section does influence the hydrograph in another way: the broader the initial dam crest, the longer the time before critical flow control is established. Flood duration is thus increased but peak discharge is decreased. Visual inspection and overhead videography reveal little turbidity in water pouring over the weir, implying that sediment there moves dominantly as bedload. Furthermore, underwater videography gives the overall impression that along the upstream dam face, erosion occurs without redeposition. Thus it would be a mistake to use empiricisms for equilibrium bedload transport to model erosion of the embankment. In mathematical terms, erosion rate cannot be backed out by calculating the divergence of transport rate; rather, transport rate should be regarded as the spatial integral of erosion rate. We use photogrammetry and motion of the colored markers to determine the erosion rate of the weir, and then infer shear stress at the weir by applying the van Rijn sediment-pickup function. Shear stress determined in this fashion is much less than what one calculates from the gradient of the energy head (an approach appropriate to steady flow). Shear stress inferred from the pickup-function calculation can serve as a constraint on computational fluid-dynamics models. Another constraint on such models, revealed by the underwater videography, is the upstream limit of sand movement, where bed shear stress equals the critical value for sand entrainment.
NASA Astrophysics Data System (ADS)
Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard
2014-05-01
The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment mobilised within the river during a given event travels slower than the water. The highly dynamic behaviour of the river is further demonstrated by the rapid changes in river cross-section at Garissa and meander migration rates of several m y-1. In order to estimate a time frame for which changes in sediment inputs will be reflected in the sediment concentration at Garissa a single box model was developed. Results indicate that the effects of sediment blockage by the dams will only be visible after several hundreds to perhaps thousands of years. This clearly shows that autogenic processes are dominant in the lower Tana River and that, therefore, changes in sediment delivery cannot be detected in the sediment discharge record. More generally, understanding and interpreting the dynamics of such river systems requires that autogenic processes are correctly accounted for.
187. Photographic copy of original construction drawing dated October 20, ...
187. Photographic copy of original construction drawing dated October 20, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO. 1 CONTROLLING WORKS; GENERAL PLAN AND SECTIONS-LOCATION MAP. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Section 9 of the Rivers and Harbors Appropriation Act of 1899
It shall not be lawful to construct or commence the construction of any bridge, causeway, dam, or dike over or in any port, roadstead, haven, harbor, canal, navigable river, or other navigable water of the United States until the consent of Congress.
NASA Astrophysics Data System (ADS)
Krenz, Juliane; Greenwood, Philip; Heckrath, Goswin; Kuhn, Brigitte; Kuhn, Nikolaus
2017-04-01
Covering about 41 % of the Earth's Land Surface drylands provide a range of ecosystem services for more than one third of the world population. Threatened by climate change and incorrect land use their natural land cover is changing and land degradation is one of their major problems. The semi-arid rangelands of the Great Karoo region in South Africa are just one example of a region that has experienced a number of environmental changes. After European farmers settled in the late 18th century agricultural activities increased, leading to overgrazing and probably representing a trigger to land degradation. As a consequence of a higher water demand and shifting rainfall patterns many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods. High erosion rates lead to a fast filling-up of reservoirs and thereby reduced their storage capacities. Thus, most of the dams are nowadays dry (filled with sediment) or even breached. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping, erosion modelling and sediment analysis have been employed to determine whether land degradation in the Karoo has resulted in the reversion from a net sink of C to a net source of C. Sediment deposits from three silted-up reservoirs were analysed for varying physicochemical parameters, in order to analyse and reconstruct erosional and depositional patterns. A sharp decrease in total carbon content with decreasing depth for two reservoirs suggests that land degradation during and after the post-European settlement most likely triggered erosion of the relatively fertile surface soils, which presumably in-filled the reservoirs. It is assumed that the carbon-rich bottom layers of the dam deposits originate from these eroded surface soils. Low organic Carbon (OC) content in the top layers of the reservoir in-fill, and in the eroded source areas, supports the assumption that the eroded material was transported from the degraded areas down into the reservoir, where it settled. This raises a crucial question of whether the decline of C sinks in degraded rangelands due to exacerbated soil erosion may have had a greater attenuating effect on GHG emissions than modelled scenarios of present emissions suggest. The slight decrease of TOC with increasing depth for the third reservoir might imply differences in geochemical cycling between dried out dams and reservoirs with continuous throughflow.
1985-03-01
maturation process in the laboratory. Females can then be artificially inseminated . One advantage of this technology is a much reduced cost of obtaining...installed at canal zones. Artificial cascades and dams are also considered effective when installed at canal zones. Therefore, these two types have...centrifuge or a filter press "procedure. These methods release nutrients dynami- cally by artificial forces duri 4 water separation. However, the
Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 5A.
1973-11-01
the 1930’s the river bottoms were primarily wooded islands separated by deep sloughs. Hundreds of lakes and ponds were scattered through the wooded ...and the old condition of deep sloughs and wooded islands is found. In the middle of each pool, water backs up over the islands and old hay meadows...Each impoundment consists of three distinct ecological areas. The tailweter areas just downstream from the dams show the river in relatively unmodified
37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ...
37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ADDITION AND CRUSHED OXIDIZED ORE BIN. VISIBLE ARE DINGS MAGNETIC PULLEY (CENTER), THE 100-TON STEEL CRUSHED UNOXIDIZED ORE BIN, AND UPPER PORTION OF THE STEPHENS-ADAMSON 25 TON/HR BUCKET ELEVATOR. THE UPPER TAILINGS POND LIES BEYOND THE MILL WITH THE UPPER TAILINGS DAM UNDER THE GRAVEL ROAD IN THE UPPER RIGHT CORNER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Emergency Fish Restoration Project; Final Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeCaire, Richard
Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleyemore » (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.« less
Water Power in The Wilderness: The History of Bonneville Lock and Dam
1997-01-01
to present many complex problems of site selection, proper construction techniques, and equipment design . The project first received serious...Bonneville Dam amply lived up to the hopes and dreams of its promoters and designers . In the short term, Bonneville supplied essential power for the...plan for the Columbia River. It designated Grand Coulee as the key upriver project and Bonneville as the lowermost in the chain . Report data on the
Effects of Outlets on Cracking Risk and Integral Stability of Super-High Arch Dams
Hu, Hang
2014-01-01
In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1) under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2) Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification. PMID:25152907
Fearnside, P M
2001-03-01
Brazil's Tucuruí Dam provides valuable lessons for improving decision-making on major public works in Amazonia and elsewhere. Together with social impacts, which were reviewed in a companion paper, the project's environmental costs are substantial. Monetary costs include costs of construction and maintenance and opportunity costs of natural resources (such as timber) and of the money invested by the Brazilian government. Environmental costs include forest loss, leading to both loss of natural ecosystems and to greenhouse gas emissions. Aquatic ecosystems are heavily affected by the blockage of fish migration and by creation of anoxic environments. Decay of vegetation left in the reservoir creates anoxic water that can corrode turbines, as well as producing methane and providing conditions for methylation of mercury. Defoliants were considered for removing forest in the submergence area but plans were aborted amid a public controversy. Another controversy surrounded impacts of defoliants used to prevent regrowth along the transmission line. Mitigation measures included archaeological and faunal salvage and creation of a "gene bank" on an island in the reservoir. Decision-making in the case of Tucuruí was virtually uninfluenced by environmental studies, which were done concurrently with construction. The dam predates Brazil's 1986 requirement of an Environmental Impact Assessment. Despite limitations, research results provide valuable information for future dams. Extensive public-relations use of the research effort and of mitigation measures such as faunal salvage were evident. Decision-making was closely linked to the influence of construction firms, the military, and foreign financial interests in both the construction project and the use of the resulting electrical power (most of which is used for aluminum smelting). Social and environmental costs received virtually no consideration when decisions were made, an outcome facilitated by a curtain of secrecy surrounding many aspects of the project. Despite improvements in Brazil's system of environmental impact assessment since the Tucuruí reservoir was filled in 1984, many essential features of the decision-making system remain unchanged.
189. Photographic copy of original construction drawing dated December 10, ...
189. Photographic copy of original construction drawing dated December 10, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO.1 CONTROLLING WORKS; WATER TIGHT DOOR; CHANNEL VENT INLETS-PIER NOSE ANGLES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
193. Photographic copy of original construction drawing dated October 31, ...
193. Photographic copy of original construction drawing dated October 31, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO. 1 CONTROLLING WORKS; GATE CHAMBER; UNDERHUNG CRANE AND HOIST-HAND OPERATED. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Savvichev, A S; Demidenko, N A; Krasnova, E D; Kalmatskaya, O V; Kharcheva, A N; Ivanov, M V
2017-05-01
Sings of meromixis are found by means of microbiological and biogeochemical investigations in the southernn part of the Kanda Bay, an artificial water body separated front the White Sea with a railway dam. The concentration of oxygen in the bottom layer attained 1.9 mmol/L, intensity of the process of microbial sulfate reduction, 3.0 μmol of sulfur/(L day). The concentration of dissolved methane, 3.7 μmol/L. Isotopic composition of carbon in methane (δ 13 C (CH 4 ) =-79.2‰) indicates to its microbial genesis. At present, Kanda Bay is a sole in Russia man-made marine water body for which there are data on the rate of microbial processes responsible for formation of bottom water layer containing hydrogen sulfide and methane.
Results of Laboratory Tests of the Filtration Characteristics of Clay-Cement Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sol’skii, S. V., E-mail: solskiysv@vniig.ru; Lopatina, M. G., E-mail: LoptainaMG@vniig.ru; Legina, E. E.
Laboratory studies of the filtration characteristics of clay-cement concrete materials for constructing filtering diaphragms of earth dams by the method of secant piles are reported. Areas for further study aimed at improving the quality of construction, increasing operational safety, and developing a standards base for the design, construction, and operation of these systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenberg, Wade; Carty, Daniel; Cavigli, Jon
1996-06-01
The operation of Hungry Horse Dam on the South Fork-of the Flathead River reduced the reproductive success of kokanee (Oncorhynchus nerka) spawning in the Flathead River. Montana Fish, Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribes (CSKT) authored a mitigation plan to offset those losses. The mitigation goal, stated in the Fisheries Mitigation Plan for Losses Attributed to the Construction and Operation of Hungry Horse Dam, is to: {open_quotes}Replace lost annual production of 100,000 kokanee adults, initially through hatchery production and pen rearing in Flathead Lake, partially replacing lost forage for lake trout (Salvelinus namaycush) in Flatheadmore » Lake.{close_quotes}« less
Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA
NASA Astrophysics Data System (ADS)
Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.
2008-12-01
The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel has limited channel changes there.
Delayed effects of flood control on a flood-dependent riparian forest
Katz, Gabrielle L.; Friedman, Jonathan M.; Beatty, Susan W.
2005-01-01
The downstream effects of dams on riparian forests are strongly mediated by the character and magnitude of adjustment of the fluvial–geomorphic system. To examine the effects of flow regulation on sand-bed streams in eastern Colorado, we studied the riparian forest on three river segments, the dam-regulated South Fork Republican River downstream of Bonny Dam, the unregulated South Fork Republican River upstream of Bonny Dam, and the unregulated Arikaree River. Although Bonny Dam significantly reduced peak and mean discharge downstream since 1951, there was little difference in forest structure between the regulated and unregulated segments. On all river segments, the riparian forest was dominated by the native pioneer tree, Populus deltoides, which became established during a period of channel narrowing beginning after the 1935 flood of record and ending by 1965. The nonnative Elaeagnus angustifolia was present on all river segments, with recruitment ongoing. The lack of contrast in forest structure between regulated and unregulated reaches resulted primarily from the fact that no large floods occurred on any of the study segments since dam construction. Most of the riparian forest in the study area was located on the broad narrowing terrace, which was rarely inundated on the unregulated segments, resulting in little contrast with the regulated segment. A minor dam effect occurred on the small modern floodplain, which was actively disturbed on the unregulated segments, but not on the regulated segments. Although Bonny Dam had the potential to significantly influence downstream riparian ecosystems, this influence had not been expressed, and may never be if a large flood does not occur within the lifetime of the dam. Minor dam effects to riparian systems can be expected downstream of large dams in some settings, including the present example in which there was insufficient time for the dam effects to by fully expressed.
NASA Astrophysics Data System (ADS)
Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang
2018-06-01
This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.
Fish migration, dams, and loss of ecosystem services in the Mekong basin.
Dugan, Patrick J; Barlow, Chris; Agostinho, Angelo A; Baran, Eric; Cada, Glenn F; Chen, Daqing; Cowx, Ian G; Ferguson, John W; Jutagate, Tuantong; Mallen-Cooper, Martin; Marmulla, Gerd; Nestler, John; Petrere, Miguel; Welcomme, Robin L; Winemiller, Kirk O
2010-06-01
The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.
Project Planning for Cougar Dam during 2010
Haskell, Craig A.; Tiffan, Kenneth F.
2011-01-01
Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of adult fish that are allowed to spawn above Cougar Dam move downstream into Cougar Reservoir in the spring. Under the BIOP, the USACE is required to provide downstream fish passage or operational alternatives at Cougar Dam by 2014. Currently, there is little information about the seasonal timing of reservoir entry of juvenile Chinook salmon and what habitats they and other fishes use in the reservoir. However, rotary screw traps placed in the outlet channel below the dam indicate peak juvenile passage coinciding with seasonally low pool elevation in mid December and late January. It is unknown whether juveniles upstream of Cougar Dam can be captured in large enough numbers for tagging and subsequent survival studies to proceed. These studies are needed to examine the feasibility of installing downstream fish passage structures at Cougar Dam to meet BIOP requirements. Therefore, the USACE contracted with the U.S. Geological Survey (USGS) to test the efficacy of using a mid-water trawl and lampara seine to capture fish in Cougar Reservoir on three consecutive days in the fall of 2010. These collection methods could potentially provide fish for feasibility and subsequent survival studies and as verification of fish targets in future active hydroacoustic surveys.
Computer-aided design of nano-filter construction using DNA self-assembly
NASA Astrophysics Data System (ADS)
Mohammadzadegan, Reza; Mohabatkar, Hassan
2007-01-01
Computer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules.
Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China.
Zhao, Lei; Guo, Yanna; Meng, Bo; Yao, Heng; Feng, Xinbin
2017-10-01
Newly built reservoirs are regarded as sensitive ecosystem for mercury (Hg) methylation. A comprehensive study was conducted to understand the influence of damming on the distribution and methylation of Hg within a river-reservoir ecosystem in Wujiang River Basin (WRB), Southwest China. Hg species in inflow-outflow rivers of six cascade reservoirs were analyzed each month during 2006. Mean concentrations of total Hg (THg) and methylmercury (MeHg) in river water in WRB were 3.41 ± 1.98 ng L -1 and 0.15 ± 0.06 ng L -1 , respectively. THg and particulate Hg (PHg) concentrations in outflow rivers of reservoirs significantly decreased after dam construction, suggesting that a considerable amount of PHg was intercepted by way of sedimentation. However, the influence of damming on the distributions of dissolved Hg (DHg) and reactive Hg (RHg) in rivers was less pronounced. MeHg concentrations in outflow rivers of the older reservoirs significantly increased compared to inflow rivers with the maximum increasing factor of 92%, indicating the active net Hg methylation in the reservoirs. However, the difference between MeHg in inflow rivers and outflow rivers were less pronounced in the newly constructed reservoirs, indicating that these reservoirs were not active sites of Hg methylation. The construction of the cascade reservoirs resulted in the elevation of MeHg in several sections of the Wujiang River, which attributed to the net Hg methylation in reservoirs and discharge of MeHg from hypolimnion. MeHg-enriched water in outflow rivers from hypolimnetic water could be transported to downstream, posing potential threat to the aquatic food web and human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
12. Close up view of construction on the downstream face. ...
12. Close up view of construction on the downstream face. Track at lower center conveyed aggregate from the stream bed to the mixing plant. Photographer unknown, October 15, 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
THE NEW NORRIS HOUSE: A SUSTAINABLE HOME FOR THE 21ST CENTURY
In 1933 the Tennessee valley Authority constructed a model community, Norris, Tennessee, as part of the Norris Dam construction project. A key feature of this New Deal village was the Norris House, a series of home designs built as models for modern, efficient, and sustainable...
170. Photographic copy of original construction drawing dated October 24, ...
170. Photographic copy of original construction drawing dated October 24, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). 48 INTERNAL DIFFERENTIAL NEEDLE VALVE, SPLIT LONG BODY TYPE-EXTENDED CONTROL, GENERAL ASSEMBLY-LIST OF PARTS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
152. Photographic copy of original construction drawing dated October 24, ...
152. Photographic copy of original construction drawing dated October 24, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). 60 x 12 RING GATE CONTROL; FLOAT WELL ASSEMBLY AND COVER HOIST STEM-CONNECTION ROD-SLEEVE. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
192. Photographic copy of original construction drawing dated August 27, ...
192. Photographic copy of original construction drawing dated August 27, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO. 1 CONTROLLING WORKS; 4-9 X 22-0 EMERGENCY AND REGULATING GATES ASSEMBLY. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
150. Photographic copy of original construction drawing dated July 29, ...
150. Photographic copy of original construction drawing dated July 29, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). 60 x 12 SPILLWAY RING GATE; CONTROL AND PIPING INSTALLATION AND ANCHOR BOLT LOCATION (SHEET 3 OF 8). - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... freeboard distance between the lowest point on the embankment crest and the maximum water elevation shall be... volume of water stored during the design precipitation event within 10 days. (viii) During construction... waters over the past year, existing storage capacity of impounding structures, any fires occurring in the...
Water, Watts, and Wilds Hydropower and Competing Uses in New England.
1981-08-01
the loci of substantial developments of second homes, and of tourism and recreational activities. These uses depend on either stable lake levels or...income from tourism which depends on the use of the lake. There is also concern that the construction of new dams or the recon- struction of breached...15205. 75.9 UNDEVELOPED DAM SITES Massachusetts 70% Plant Factor, 15% Interest Connecticut River Basin D AM C OMMUNITY PROJECT NAME GH kCAPACITY
Paul Sclafani
2011-01-01
The Middle Rio Grande is a 29-mi reach of the Rio Grande River in central New Mexico that extends from downstream of Cochiti Dam to Bernalillo, New Mexico. A series of anthropogenic factors including the construction of flood control levees and Cochiti Dam have altered the historically-braided morphology of the Middle Rio Grande to a more sinuous, degrading reach, with...
Dreamy Draw Dam - Master Plan and Feature Design, New River and Phoenix City Streams, Arizona.
1981-09-01
Carnegiea gigantea Saguaro Cactus Ferocactus wislizenii Fishhook Barrel Cactus The area north of the paved assembly area will be recontoured to...brittlebush, triangle bursage, little leaf palo verde, ocotillo, and various cacti species (pls. 8 and 9). Destructive past land uses have contributed to the...is well established. Plants used include saguaro , ocotillo, and Bermuda grass. The areas used for borrowing of material in construction of the 18 dam
14. Photographic copy of photograph. (Source: U.S. Department of Interior. ...
14. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1925. Vol. I, Narrative and Photographs, Irrigation District #4, California and Southern Arizona, RG 75, Entry 655, Box 28, National Archives, Washington, DC.) Photographer unknown. SACATON DAM AND BRIDGE, CONSTRUCTION BRIDGE PIERS - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
Modeling and Remote Sensing of Surface Water Dynamics in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Pokhrel, Y. N.
2017-12-01
The Mekong river is one of the most complex river systems in the world that is shared by six nations in Southeast Asia. The river still remains relatively undammed (most existing dams are in the tributaries and are small), and its hydrology today is dominated by large natural flow variations that support the highly productive agricultural and riverine ecological systems; however, this is changing due to the alterations in land use and construction of new dams both in the tributaries the mainstream (16 mainstream and 110 tributary dams are planned to be completed by 2030). Understanding the changes in surface water dynamics is therefore crucial to provide realistic future predictions of changes in downstream floodplain and riverine ecology due to the construction of dams in the upstream. In this study, we use an integrated hydrological model and remote sensing data to examine the critical role of surface water systems in modulating the river-floodplain ecology in the lower reach of the basin, with a focus on the Tonle Sap lake. We present results on the changes in the seasonality and long-term trend in river-floodplain inundation extent over the past few decades. These results provide new insights on the changing hydrology of the Mekong and important implications for potential future hydrologic changes under accelerating human activities and climate change.
NASA Astrophysics Data System (ADS)
St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.
2015-12-01
Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.
Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado
deWolfe, V.G.; Santi, P.M.; Ey, J.; Gartner, J.E.
2008-01-01
To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6??metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84??kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000??m3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm-induced debris flows occurred in two adjacent canyons at volumes within the range predicted by the model. ?? 2007 Elsevier B.V. All rights reserved.
An environmental streamflow assessment for the Santiam River basin, Oregon
Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.
2012-01-01
The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual framework for assessing possible geomorphic and ecological changes in response to river-flow modifications. Suggestions for future biomonitoring and investigations are also provided. This study was one in a series of similar tributary streamflow and geomorphic studies conducted for the Willamette Sustainable Rivers Project. The Sustainable Rivers Project is a national effort by the USACE and The Nature Conservancy to develop environmental flow requirements in regulated river systems.
Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA
Fenton, C.R.; Webb, R.H.; Cerling, T.E.
2006-01-01
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 ?? 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 ?? 105 m3 s-1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 ?? 104 m3 s-1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 ?? 104 m3 s-1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s-1) known worldwide and in the top ten largest floods in North America. ?? 2005 University of Washington. All rights reserved.
Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA
NASA Astrophysics Data System (ADS)
Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.
2006-03-01
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.
NASA Astrophysics Data System (ADS)
Lin, Huan-Chun; Chen, Su-Chin; Tsai, Chen-Chen
2014-05-01
The contents of engineering design should indeed contain both science and art fields. However, the art aspect is too less discussed to cause an inharmonic impact with natural surroundings, and so are check dams. This study would like to seek more opportunities of check dams' harmony with nearby circumstances. According to literatures review of philosophy and cognition science fields, we suggest a thinking process of three phases to do check dams design work for reference. The first phase, conceptualization, is to list critical problems, such as the characteristics of erosion or deposition, and translate them into some goal situations. The second phase, transformation, is to use cognition methods such as analogy, association and metaphors to shape an image and prototypes. The third phase, formation, is to decide the details of the construction, such as stable safety analysis of shapes or materials. According to the previous descriptions, Taiwan's technological codes or papers about check dam design mostly emphasize the first and third phases, still quite a few lacks of the second phase. We emphases designers shouldn't ignore any phase of the framework especially the second one, or they may miss some chances to find more suitable solutions. Otherwise, this conceptual framework is simple to apply and we suppose it's a useful tool to design a more harmonic check dam with nearby natural landscape. Key Words: check dams, design thinking process, conceptualization, transformation, formation.
Costa, John E.
1994-01-01
On October 5, 1991, following 35 consecutive days of dry weather, a 105-meter long, 37-meter wide, 5.2-meter deep concrete-lined watersupply reservoir on a hillside in the eastern edge of Centralia, Washington, suddenly failed, sending 13,250 cubic meters of water rushing down a small, steep tributary channel into the city. Two houses were destroyed, several others damaged, mud and debris were deposited in streets, on lawns, and in basements over four city blocks, and 400 people were evacuated. The cause of failure is believed to have been a sliding failure along a weak seam or joint in the siltstone bedrock beneath the reservoir, possibly triggered by increased seepage into the rock foundation through continued deterioration of concrete panel seams, and a slight rise (0.6 meters) in the pool elevation. A second adjacent reservoir containing 18,900 cubic meters of water also drained, but far more slowly, when a 41-cm diameter connecting pipe was broken by the landslide. The maximum discharge resulting from the dam-failure was about 71 cubic meters per second. A reconstructed hydrograph based on the known reservoir volume and calculated peak discharge indicates the flood duration was about 6.2 minutes. Sedimentologic evidence, high-water mark distribution, and landforms preserved in the valley floor indicate that the dam failure flood consisted of two flow phases: an initial debris flow that deposited coarse bouldery sediment along the slope-area reach as it lost volume, followed soon after by a water-flood that achieved a stage about one-half meter higher than the debris flow. The Centralia dam failure is one of three constructed dams destroyed by rapid foundation failure that defines the upper limits of an envelope curve of peak flood discharge as a function of potential energy for failed constructed dams worldwide.
NASA Astrophysics Data System (ADS)
Ritter, J. B.; Evelsizor, A.; Minter, K.; Rigsby, C.; Shaw, K.; Shearer, K.
2010-12-01
Restoration potential of urban streams is inherently constrained by urban infrastructure. Roads and built structures may necessitate a static stream planform while water, sewage, and electrical utilities buried in the stream channel require a stable grade. A privately-led initiative to improve the recreational potential of a 9-km reach of Buck Creek and its tributary Beaver Creek in Springfield, Ohio, includes the modification of four lowhead dams with hydraulic heights up to 3 m. Modifications to the dams include replacing their hydraulic height with a series of drop structures engineered to create hydraulics conducive to kayak play. Two of the lowhead dams have been modified to date. The purpose of this study is to assess the potential benefits of modifications designed for their recreational value for stream restoration. The drop structure is a constructed channel constriction comprised of a hard step in the long stream profile immediately upstream of a scour pool, forming a morphologic sequence of constriction, step, and pool. Up to 4 drop structures are used along a given stream reach, constructed in the area of the former dam, its scour pool and a portion of the impounded area. Though not designed for stream restoration purposes, these structures potentially act as series a riffle-pool sequences. Changes in the stream habitat, water chemistry, and macroinvertebrates in response to dam modification highlight the potential for incorporating stream restoration into the engineering design. Following modification of two of the dams, the in-stream habitat quality, as measured by physical and biological indices, increased at one site and decreased at the other site, depending on whether the uppermost drop structure at the site reduced or expanded the impounded area. In the best case, channel sands and gravels, free of fine sand, silt, and organics, have deposited in a crescentic-shaped bar paralleling and grading to the constriction and step. Greater abundance and diversity of pollution-intolerant macroinvertebrates, supported by higher dissolved oxygen in the substrate, characterizes riffles at these sites.
Initiation of migration and movement rates of Atlantic salmon smolts in fresh water
Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.
2015-01-01
Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.
NASA Astrophysics Data System (ADS)
Vu, Tinh Thi; Kiesel, Jens; Guse, Bjoern; Fohrer, Nicola
2017-04-01
The damming of rivers causes one of the most considerable impacts of our society on the riverine environment. More than 50% of the world's streams and rivers are currently impounded by dams before reaching the oceans. The construction of dams is of high importance in developing and emerging countries, i.e. for power generation and water storage. In the Vietnamese Vu Gia - Thu Bon Catchment (10,350 km2), about 23 dams were built during the last decades and store approximately 2,156 billion m3 of water. The water impoundment in 10 dams in upstream regions amounts to 17 % of the annual discharge volume. It is expected that impacts from these dams have altered the natural flow regime. However, up to now it is unclear how the flow regime was altered. For this, it needs to be investigated at what point in time these changes became significant and detectable. Many approaches exist to detect changes in stationary or consistency of hydrological records using statistical analysis of time series for the pre- and post-dam period. The objective of this study is to reliably detect and assess hydrologic shifts occurring in the discharge regime of an anthropogenically influenced river basin, mainly affected by the construction of dams. To achieve this, we applied nine available change-point tests to detect change in mean, variance and median on the daily and annual discharge records at two main gauges of the basin. The tests yield conflicting results: The majority of tests found abrupt changes that coincide with the damming-period, while others did not. To interpret how significant the changes in discharge regime are, and to which different properties of the time series each test responded, we calculated Indicators of Hydrologic Alteration (IHAs) for the time period before and after the detected change points. From the results, we can deduce, that the change point tests are influenced in different levels by different indicator groups (magnitude, duration, frequency, etc) and that within the indicator groups, some indicators are more sensitive than others. For instance, extreme low-flow, especially 7- and, 30-day minima and mean minimum low flow, as well as the variability of monthly flow are highly-sensitive to most detected change points. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts.
Topping, David J.; Schmidt, John C.; Vierra, L.E.
2003-01-01
A gaging station has been operated by the U.S. Geological Survey at Lees Ferry, Arizona, since May 8, 1921. In March 1963, Glen Canyon Dam was closed 15.5 miles upstream, cutting off the upstream sediment supply and regulating the discharge of the Colorado River at Lees Ferry for the first time in history. To evaluate the pre-dam variability in the hydrology of the Colorado River, and to determine the effect of the operation of Glen Canyon Dam on the downstream hydrology of the river, a continuous record of the instantaneous discharge of the river at Lees Ferry was constructed and analyzed for the entire period of record between May 8, 1921, and September 30, 2000. This effort involved retrieval from the Federal Records Centers and then synthesis of all the raw historical data collected by the U.S. Geological Survey at Lees Ferry. As part of this process, the peak discharges of the two largest historical floods at Lees Ferry, the 1884 and 1921 floods, were reanalyzed and recomputed. This reanalysis indicates that the peak discharge of the 1884 flood was 210,000?30,000 cubic feet per second (ft3/s), and the peak discharge of the 1921 flood was 170,000?20,000 ft3/s. These values are indistinguishable from the peak discharges of these floods originally estimated or published by the U.S. Geological Survey, but are substantially less than the currently accepted peak discharges of these floods. The entire continuous record of instantaneous discharge of the Colorado River at Lees Ferry can now be requested from the U.S. Geological Survey Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, and is also available electronically at http://www.gcmrc.gov. This record is perhaps the longest (almost 80 years) high-resolution (mostly 15- to 30-minute precision) times series of river discharge available. Analyses of these data, therefore, provide an unparalleled characterization of both the natural variability in the discharge of a river and the effects of dam operations on a river. Following the construction and quality-control checks of the continuous record of instantaneous discharge, analyses of flow duration, sub-daily flow variability, and flood frequency were conducted on the pre- and post-dam parts of the record. These analyses indicate that although the discharge of the Colorado River varied substantially prior to the closure of Glen Canyon Dam in 1963, operation of the dam has caused changes in discharge that are more extreme than the pre-dam natural variability. Operation of the dam has eliminated flood flows and base flows, and thereby has effectively 'flattened' the annual hydrograph. Prior to closure of the dam, the discharge of the Colorado River at Lees Ferry was lower than 7,980 ft3/s half of the time. Discharges lower than about 9,000 ft3/s were important for the seasonal accumulation and storage of sand in the pre-dam river downstream from Lees Ferry. The current operating plan for Glen Canyon Dam no longer allows sustained discharges lower than 8,000 ft3/s to be released. Thus, closure of the dam has not only cut off the upstream supply of sediment, but operation of the dam has also largely eliminated discharges during which sand could be demonstrated to accumulate in the river. In addition to radically changing the hydrology of the river, operation of the dam for hydroelectric-power generation has introduced large daily fluctuations in discharge. During the pre-dam era, the median daily range in discharge was only 542 ft3/s, although daily ranges in discharge exceeding 20,000 ft3/s were observed during the summer thunderstorm season. Relative to the pre-dam period of record, dam operations have increased the daily range in discharge during all but 0.1 percent of all days. The post-dam median daily range in discharge, 8,580 ft3/s, exceeds the pre-dam median discharge of 7,980 ft3/s. Operation of the dam has also radically changed the frequency of floods on the Colorado River at Lees Ferry. The frequency of f
Tentative to use wastes from thermal power plants for construction building materials
NASA Astrophysics Data System (ADS)
Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien
2018-04-01
Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).
Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi; Selvaraj, Rajaram
2017-06-01
Ten sampling locations in Nagarjuna Sagar Dam have been selected to assess the suitability of the reservoir water for human consumption. The sediment, water, and fish samples were collected and analyzed for radionuclide ( 238 U, 232 Th, 210 Po, 226 Ra, 210 Pb) and physicochemical parameters like pH, TOC, total hardness, alkalinity, DO, cation exchange capacity, and particle size. The spatial variations among the radionuclides ( 238 U, 232 Th, 210 Po, 226 Ra, 210 Pb) in water and bottom sediments of Nagarjuna Sagar Dam were determined. The uranium concentration in the sediment and water was in BDL (<0.5 ppb). The maximum permissible limits in water samples of the analyzed radionuclides are 238 U-10 Bq/l, 210 Po-0.1 Bq/l, 226 Ra-1 Bq/l, and 210 Pb-0.1 Bq/l. The radionuclides in our water samples were approximately 50 times far below the recommended limit. The ingestion of water and fish would not pose any significant radiological impact on health or cancer risk to the public, implicating that the fishes from Nagarjuna Sagar Dam reservoir are safe for human consumption except the fisherman community.
Estimated cumulative sediment trapping in future hydropower reservoirs in Africa
NASA Astrophysics Data System (ADS)
Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane
2017-04-01
Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41. Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf , N., & Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9), 494-502. Wischmeier, W. H. and D. D. Smith. (1978). Predicting rainfall erosion losses: guide to conservation planning. USDA, Agriculture Handbook 537. U.S. Government Printing Office, Washington, DC. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161-170.
NASA Astrophysics Data System (ADS)
Shafroth, P. B.; House, P. K.
2007-05-01
In arid and semiarid western North America, floodplain forests dominated by native cottonwood and willow trees are highly valued as wildlife habitat and preferred recreation sites and are thus the focus of conservation efforts. The Bill Williams River harbors some of the most extensive native floodplain forests in the lower Colorado River region. Our work is aimed at understanding the dynamics of the Bill Williams River floodplain forests, in the context of pre- and post-dam hydrology and geomorphology. We have mapped bottomland geomorphology and vegetation using seven sets of orthorectified aerial photographs spanning more than 50 years. Two sets of photos (1953 and 1964) pre-date the completion of Alamo Dam, a large flood control structure; and three sets of photos (1996, 2002, and 2005) are from an era during which streamflow downstream of the dam has been managed to promote the establishment and survival of native floodplain forest. Comparison of the aerial photographs to LiDAR data collected in 2005 is providing a framework for quantifying changes in valley bottom morphology and estimating reach-scale changes in volumes of stored and evacuated sediment between 1953 and 2005. Furthermore, comparison of the extent of pre-dam active channel in 1953 with the extent of floodwaters from a regulated moderate flood in 2005 provides an approximation of the predominant patterns of aggradation and degradation in the system over this interval of time. Flood magnitude on the Bill Williams has been dramatically reduced since the closure of Alamo Dam in 1968, and low flows have increased considerably since 1979. Channels along the Bill Williams R. narrowed an average of 111 m (71 %) between 1953 and 1987, with most narrowing occurring after dam closure. Multiple regression analysis revealed significant relationships among flood power, summer flows, intermittency (independent variables) and channel width (dependent variable). Concurrent with channel narrowing was an expansion of dense floodplain vegetation, consisting primarily of native cottonwood and willow and non-native tamarisk shrubs. Moderate flood releases (~7000 ft3/s) from Alamo Dam in the early 1990's widened the river channel and resulted in the establishment of new woody vegetation. For the following nine years, relatively steady, low discharges were released from the dam, resulting in channel narrowing, extensive beaver pond creation, and dense vegetation growth. Moderate flood releases in 2005 again widened channels, destroyed beaver ponds, and created conditions suitable for new vegetation establishment. In addition to understanding the specific conditions along the Bill Williams River, our work should contribute to a more general understanding of connections between fluvial processes and floodplain vegetation, in the contexts of geomorphic response downstream of a large dam and efforts to manage streamflow for ecological benefits downstream.
Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H
2007-01-01
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.
River flow maintenance turbine for Milner Hydroelectric Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, J.L.; Holveck, W.H.; Gokhman, A.
1995-12-31
The Milner Hydroelectric Project on the Snake River in Idaho was commissioned in 1992. The project included renovation of an existing dam, which was built to supply irrigation water to a canal system, construction of a new spillway, and the addition of a new powerhouse. The forebay of the main powerhouse is located on a combination power and irrigation canal, approximately 3500 feet (1070 m) from the dam, with a short tailrace returning the water to the river. There are two Kaplan turbines installed in the main powerhouse, rated at 1000 cfs and 4000 cfs respectively at a net headmore » of 150 feet. The FERC license required that a target flow of 200 cfs be released from the dam to maintain a stream flow between the dam and the powerhouse. In order to utilize this flow, a small powerhouse was constructed at the toe of the dam. The site conditions favored a vertical axial flow turbine, with a net head of 56 feet. As the flow is constant and the head is fairly constant, a fixed geometry turbine was selected, to be controlled solely by the intake gate. Due to the higher head, the main powerhouse can generate more power per unit of flow than can the bypass turbine. Therefore, it is undesirable for the discharge of the bypass turbine to be any greater than required by the license. Also, the release flow is determined by a river gauge, the accuracy of which is unknown, but assumed to be within five percent. In order to meet these two requirements, the turbine was specified to have manually adjustable runner blades to obtain the required release flow of 200 cfs at any head between 55 and 58 feet.« less
Why dentists don't use rubber dam during endodontics and how to promote its usage?
Madarati, Ahmad A
2016-02-25
This survey study aimed at investigating the frequency of rubber dam use during root canal treatment, identifying influencing factors for not using it by Saudi general dental practitioners (GDPs) and endodontists. It also aimed at identifying measures that increase rubber dam usage. After obtaining an ethical approval, two pilot studies were conducted on staff members at Taibah University College of Dentistry and a group of GDPs. A final online survey was constructed comprising 17 close-ended questions divided into six categories: demographics, endodontic practice, rubber dam use, alternative isolation methods, reasons for not using rubber dam, and measures and policies that increase its usage. The survey was emailed to 375 GDPs randomly selected from the dental register and all endodontists (n = 53) working in the western province, Saudi Arabia. Data were analyzed using the Chi-square and Linear-by-Linear association tests at p ≤ 0.05. The proportion of endodontists who used rubber dam (84.8 %) was significantly greater than that of GDPs (21.6 %) (p < 0.001). Significantly the highest proportion (40.5 %) did not use rubber dam because of unavailability at working place. Most rubber dam none-users (69.25 %) used a combination of other isolation means. The highest proportion of those who used rubber dam were working in the governmental sector (54.3 %). Among rubber dam users, the greatest proportion graduated from Saudi Arabia (57.8 %) compared to those graduated from Egypt (34.3 %) and Syria (22.4 %). There was a significant correlation between the patterns of rubber dam use during undergraduate training and its usage after graduation (p = 0.001). The highest proportion of participants (48.1 %) reported better undergraduate education as the most important factor that would increase rubber dam use in dental practice. Using of rubber dam was not common in Saudi general dental practice. Dentists must follow the recommended standards of care. Place of work and patterns of using rubber dam during undergraduate study were the most influencing factors. Better undergraduate education was the most important proposed measure to increase its usage. The combination of cotton rolls and saliva high-volume ejector or gauze was the most common alternative to rubber dam isolation.
Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.
Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena
2018-01-01
The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosova, O.N.; Margolina, O.G.; Sergeeva, N.S.
1995-08-01
This article discusses Russian experiences in monitoring earth-filled dams of the Niva region. These are low and medium head facilities in operation from 30 to 60 years. As shown by the experiences of long-term operation of earth structures in this area and on embankments being constructed by the method of dumping soil into water, it is necessary to impose more stringent requirements with respect to determining the steepness of these slopes to increase their stability, as is done when the structures are constructed dry. To organize successful monitoring of seepage processes in the investigated structures having substantial anisotropy of themore » soil, special recommendations of the disposition of piezometers under such specific conditions should be worked out. Recommendations on the disposition of piezometers under conditions of a noticeable effect of the groundwater regime of the surrounding territory on the seepage regime of the hydro development should be worked out accordingly. Since the calculations made in the work, as a result of which instability of many slopes was detected, are not always confirmed by practice, it is advisable to correct the method of such calculations with consideration of the characteristics of the formation of the seepage flow in the downstream shoulder of dams with pronounced anisotropy of the soil.« less
NASA Astrophysics Data System (ADS)
Magintan, D.; Shukorb, M. N.; Lihan, Tukimat; Campos, Ahimza-arceiz; Saaban, Salman; Husin, Shahril Mohd; Ahmad, Mohd Noh
2016-11-01
Home ranges and movement patterns of elephants during construction of hydroelectric dams were carried out in Hulu Terengganu, Terengganu, Peninsular Malaysia. Two elephants from two herds were captured, collared and released in the catchment area four to five months before inundation started in early October 2014. The two elephants were identified as Puah (female) and Sireh (male). The home range size of each individual during the construction of dams was estimated at 96.53 km2 for Puah and 367.99 km2 for Sireh. The monthly estimates of ranging for Puah was between 5.1 km2 and 38.4 km2 with average monthly ranging of 19.2 ± 4.7, while for Sireh, the monthly ranging estimates were between 20.6 km2 and 184.7 km2 with average monthly ranging at 79.9 ± 34.7. The movement mean rate (based on distance per day) for Puah and Sireh per day were 1.3 ± 0.1 km and 1.9 ± 0.1 km, respectively. Puah movement estimates for the first day after putting the collar was 0.88 km, whereas, the distance movement for Sireh on the first day after the collar was 0.02 km. The total distance travelled for Puah before inundation was 226.18 km, while Sireh covered 267.38 km.
A paleolimnological investigation of historical environmental change in East Canyon Reservoir
NASA Astrophysics Data System (ADS)
Higby Halseth, Deanna Renee
East Canyon Reservoir is located 32 km east of Salt Lake City, Utah, and serves as a resource for irrigation, culinary water, and recreation. This research used paleolimnology and historical records to investigate the impacts of multiple stressors, including land clearance, dam construction and enlargement, and climate warming on East Canyon Reservoir. Recently, blue green algal blooms, typically indicative of eutrophication, have been increasing at East Canyon Reservoir despite reductions of nutrients from point sources, so part of the impetus for this study was to understand the forcing mechanisms of these blooms. A multiproxy analysis of three sediment cores retrieved from the reservoir determined changes in nutrient concentrations and sediment composition over time. Percent organics, magnetic susceptibility, and diatom analyses of 210Pb dated cores were compared to measurements of temperature and precipitation as well as records of historical land use, which were determined using remote sensing. Percent organics and magnetic susceptibility showed changes related to dam construction and increased development. Fossil diatom assemblages indicated that East Canyon Reservoir had been eutrophic since origination; however, principal components analyses of the diatom data indicated that the canyon became more P-enriched following dam construction and increased development. Recent increases in Cyclotella diatoms indicate changes related to warming temperatures, and we speculate that this warming is also what is causing blue-green algal blooms to increase.
Fish community response to dam removal in a Maine coastal river tributary
Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory
2016-01-01
Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Consolati, F.; Wheaton, J. M.; Neilson, B. T.; Bouwes, N.; Pollock, M. M.
2012-12-01
The incised and degraded habitat of Bridge Creek, tributary to the John Day River in central Oregon, is thought to be limiting the local population of ESA-listed steelhead trout (Oncorhynchus mykiss). Restoration efforts for this watershed are aimed to improve their habitat through reconnecting the channel with portions of its former floodplain (now terraces) to increase stream habitat complexity and the extent of riparian vegetation. This is being done via the installation of over a hundred beaver dam support (BDS) structures that are designed to either mimic beaver dams or support existing beaver dams. The overall objective of this study is to determine if the BDS structures have had an effect on stream channel habitat complexity and thermal refugia in selected sections of Bridge Creek. Analysis of stream temperature data in restoration treatment and control areas will show the effects of beaver dams on stream temperature. Analysis of aerial imagery and high resolution topographic data will exhibit how the number and types of geomorphic units have changed after the construction of beaver dams. Combined, the results of this research are aimed to increase our understanding of how beaver dams impact fish habitat and stream temperature.
Gowrisankar, G; Jagadeshan, G; Elango, L
2017-04-01
In many regions around the globe, including India, degradation in the quality of groundwater is of great concern. The objective of this investigation is to determine the effect of recharge from a check dam on quality of groundwater in a region of Krishnagiri District of Tamil Nadu State, India. For this study, water samples from 15 wells were periodically obtained and analysed for major ions and fluoride concentrations. The amount of major ions present in groundwater was compared with the drinking water guideline values of the Bureau of Indian Standards. With respect to the sodium and fluoride concentrations, 38% of groundwater samples collected was not suitable for direct use as drinking water. Suitability of water for agricultural use was determined considering the electrical conductivity, sodium adsorption ratio, sodium percentage, permeability index, Wilcox and United States Salinity Laboratory diagrams. The influence of freshwater recharge from the dam is evident as the groundwater in wells nearer to the check dam was suitable for both irrigation and domestic purposes. However, the groundwater away from the dam had a high ionic composition. This study demonstrated that in other fluoride-affected areas, the concentration can be reduced by dilution with the construction of check dams as a measure of managed aquifer recharge.
1981-08-01
elevation 47.5) is 394,000 cfs. , "C. Elevations (feet above NGVD) (1) Streambed at toe of dam (approximate) 0.0 (2) Botton of cutoff Unknown (3) Maximum...diameter. Condition of Discharge Channel Canal appears to be silted in. Two parking lots have been constructed in the canal, but culverts were...Checked ~ ~ t Date ’ 4J~ aw a7W 4r Śewww APajd1 ~/v’* ccuot AM 4W r1.0W OWj M49AA a 44r0 OA, Te J~xOOr 0. SS40Wl llhwWl 4/ toS~ Al fA ~w~’~y’ XV0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le
1999-07-01
The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.
1988-08-01
present and likely to be encountered during excavation. Nonetheless, the four groups do provide an adequate method for representing the different ...It different from Report) Approved for Public Release; Distribution Unlimited IS. SUPPLEMENTARY NOTES IS. KEY WORDS (Continue on reverse M e II...between the dam embankment and the spillway. The two 800-foot long conduits would be constructed by open excavation and backfill method . Downstream
1981-05-04
8217 Aav a 7p or S p4005 b. Inspection Personnel R. E/VA/- L4., LA/- / c. Persons Contacted (Including Address & Phone No.) d. History: Date Constructed...Apr. 25 (gags height, 6.18 it): minimt, 4.9 cis Sept. 30. 160-66: rHasnum .~ hsc rue. 1.940 cfs Feb. 26. 1961 (gage heiqht, 7.68 it); minimum, 0.8 cis
Archaeological and Historical Reconnaissance Survey of the Ugum River Valley, Guam, Mariana Islands,
1978-08-01
important food plant in Micro- neisa; and betel nut (Areca catechu), chewed for its stimulant effect . Although feral yams (Dioscorea sp.) were not found...determining action required to mitigate the adverse effects of proposed dam construction and sub- sequent flooding of the upper Ugum River drainage. The dam...A:33). Plant identifications were made with reference to Stone (1970). Zone 1 is a mixed, broad- leafed , tropical forest (Fosberg’s Unit 2;. Tracey et
Estimated sediment deposition in Lake Corpus Christi, Texas, 1972-85
Leibbrand, Norman F.
1987-01-01
Some difference was found in comparison of the results of the U.S. Geological Survey (Water Resources Division) study and the McCaughan and Etheridge Consulting Engineers study. Total sediment outflow from Lake Corpus Christi was estimated at 177 acre-feet (dry) by the Geological Survey and 1,070 acre-feet (dry) by McCaughan and Etheridge Consulting Engineers. This difference may be due to construction of a new dam, completed in 1958, that is higher and inundated the old dam.
25. Photographic copy of photograph. (Source: U.S. Department of Interior. ...
25. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1928. Vol I. Irrigation District #4, California and Southern Arizona, RG 75, BIA-Phoenix, BOx 40, National Archives, Pacific Southwest Region.) SACATON DAM SHOWING CONSTRUCTION OF CONDUIT AND EXCAVATION OF GRAVEL, APRIL 10, 1928 - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
17. Photographic copy of photograph. (Source: U.S. Department of Interior. ...
17. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1925. Vol. I, Narrative and Photographs, Irrigation District #4, California and Southern Arizona, RG 75, Entry 655, Box 28, National Archives, Washington, DC.) Photographer unknown. SACATON DAM AND BRIDGE, CONSTRUCTION OF WEIR, 1/17/25 - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
15. Photographic copy of photograph. (Source: U.S. Department of Interior. ...
15. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1925. Vol. I, Narrative and Photographs, Irrigation District #4, California and Southern Arizona, RG 75, Entry 655, Box 28, National Archives, Washington, DC.) Photographer unknown. SACATON DAM AND BRIDGE, CONSTRUCTION BRIDGE DECK, 4/5/25 - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
13. Photographic copy of photograph. (Source: U.S. Department of Interior. ...
13. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1925. Vol. I, Narrative and Photographs, Irrigation District #4, California and Southern Arizona, RG 75, Entry 655, Box 28, National Archives, Washington, DC.) Photographer unknown. SACATON DAM AND BRIDGE, CONSTRUCTION OF MAIN APRON, 12/9/24 - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
UPLOAD: THE NEW NORRIS HOUSE – A SUSTAINABLE HOME FOR THE 21ST CENTURY
In 1933 the Tennessee Valley Authority constructed a model community, Norris, Tennessee, as part of the Norris Dam construction project. A key feature of this New Deal village was the Norris House, a series of home designs built as models for modern, efficient, and sustain...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ALONG EAST WALL, WITH REACTOR PADS BEHIND FRAMED AND SCREENED CAGE, AND PORCELAIN-LINED CABLE DUCTS VISIBLE IN WALL NEAR FLOOR AT REAR - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
Photographic copy of photograph, Walter Lubken, photographer, 1908 (original print ...
Photographic copy of photograph, Walter Lubken, photographer, 1908 (original print located at U.S. Bureau of Reclamation Pacific Northwest Regional Office, Boise, Idaho). GOVERNMENT FORCES CONSTRUCTION CAMP AT THE BOISE RIVER DIVERSION DAMSITE BEFORE BEGINNING OF CONSTRUCTION ON DIVERSION STRUCTURE - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID
13. Photographic copy of original construction drawing dated May 5, ...
13. Photographic copy of original construction drawing dated May 5, 1935, from the files at the Office of the Chief Engineer, U.S. Fish and Wildlife Service Regional Office, Denver. STRUCTURAL DETAILS GATE STRUCTURE 320 - J. Clark Salyer National Wildlife Refuge, Dam 320, Along Lower Souris River, Kramer, Bottineau County, ND
NASA Astrophysics Data System (ADS)
Tessler, Zachary D.; Vörösmarty, Charles J.; Overeem, Irina; Syvitski, James P. M.
2018-03-01
Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning and affect the long-term sustainability of these landscapes for human and for natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea level rise across 46 global deltas. We model scenarios of contemporary and future water resource management schemes and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea level rise in delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea level rise result in delta relative sea level rise rates that average 6.8 mm/y. Assessment of impacts of planned and under-construction dams on relative sea level rise rates suggests increases on the order of 1 mm/y in deltas with new upstream construction. Sediment fluxes are estimated to decrease by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Meghna if all currently planned dams are constructed. Reduced sediment retention on deltas caused by increased river channelization and management has a larger impact, increasing relative sea level rise on average by nearly 2 mm/y. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Local and regional strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea level rise.
Contini, Daniele; Belosi, Franco; Gambaro, Andrea; Cesari, Daniela; Stortini, Angela Maria; Bove, Maria Chiara
2012-01-01
The Venice Lagoon is exposed to atmospheric pollutants from industrial activities, thermoelectric power plants, petrochemical plants, incinerator, domestic heating, ship traffic, glass factories and vehicular emissions on the mainland. In 2005, construction began on the mobile dams (MOSE), one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide. These construction works could represent an additional source of pollutants. PM10 samples were taken on random days between 2007 and 2010 at three different sites: Punta Sabbioni, Chioggia and Malamocco, located near the respective dam construction worksites. Chemical analyses of V, Cr, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl and Pb in PM10 samples were performed by Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources. The correlation of measured data with meteorology, and source apportionment, failed to highlight a contribution specifically associated to the emissions of the MOSE construction works. The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area. Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10. Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal). A specific anthropogenic source of PM10 rich in Ni and Cr, active at the Chioggia site, was also identified.
Geomorphic responses to large check-dam removal on a mountain river in Taiwan
NASA Astrophysics Data System (ADS)
Wang, H.; Stark, C. P.; Cook, K. L.; Kuo, W.
2011-12-01
Dam removal has become an important aspect of river restoration in recent years, but studies documenting the physical and ecological response to dam removal are still lacking - particularly in mountain rivers and following major floods. This presentation documents the recent removal of a large dam on a coarse-grained, steep (an order of magnitude greater than on the Marmot) mountain channel in Taiwan. The Chijiawan river, a tributary of the Tachia River draining a 1236 km2 watershed, is the only habitat in Taiwan of the endangered Formosan landlocked salmon. The habitat of this fish has been cut significantly since the 1960s following construction of check dams designed to prevent reservoir sedimentation downstream. The largest and lowermost barrier on Chijiawan creek is the 15m high, "No. 1 Check Dam" built in 1971. Forty years later, in early 2011, the sediment wedge behind the dam had reached an estimated 0.2 million m3 and the dam toe had been scoured about 4m below its foundation, posing a serious risk of dam failure. For these reasons, the Shei-Pa National Park removed the dam in late May 2011. To monitor the response of the river to dam removal, we installed video cameras, time-lapse cameras, stage recorders, and turbidity sensors, conducted surveys of grain size distributions and longitudinal profiles, and carried out repeat photography. Channel changes were greatest immediately following removal as a result of the high stream power, steep energy slope, and unconsolidated alluvial fill behind the dam. Headcut propagation caused immediate removal of the sand-grade sediment and progressive channel widening. One month after dam removal, a minor flood event excavated a big wedge of sediment from the impoundment. Most of the subsequent downstream deposition occurred within 500m of the dam, with alluviation reaching up to 0.5m in places. Two months after dam removal, erosion had propagated 300m upstream into the impounded sediment along a bed profile of gradient at 1.4% at a headcut with a local gradient of 5.1%. The change in grain size was a fining of the sediment at the two downstream sites and a slight coarsening at the upstream site from April 2010 to July 2011. This is likely due to the increase in energy upstream of the dam post-removal, which has transported the fine-grained sediments downstream. As the river adjusts over coming months and years, we anticipate that observations such as these will help generate an important resource for all those concerned with dam removal and river restoration.
NASA Astrophysics Data System (ADS)
Hamdon, Alaa
2010-05-01
The Dohuk's dam is one of the most important Aggregated dams in Iraq, located about 1 km from Dohuk city in northern Iraq, So; this vital project provides Dohuk city by water while the city formerly dependent on wells water prior to the establishing of the dam, and this is one of the main reasons for land-use expansion in Dohuk city and its vicinity,which is meant that the Dohuk's dam safety factor ,it is the key of the city safety factor .This dam has initiated the establishment of the dam in 1980 and was established in 1988, and it's capacity is 47.5 million cubic meters. This study aims to analyze the morphometric or geometric properties and the environmental factors at drainage systems and drainage network for Dohuk area's drainage basins (which recharges water of Dohuk Dam's Lake and it is accumulated by rainfall and spring water) scientifically and geometrically. Study of the geology of construction area of the dam Structuraly and tectonically. Satellite image, topographic maps and aerial photographs used in this study for merging its results together and preparing a drainage basin's maps and a geologic interpretation map for the study area to recognize the important geologic impact on the river which comes out from dam lake, also some of the field work investigation has been depended in this study. As a final result from morphometric analysis of drainage basins, tectonic analysis and geological investigations for study area, found as the following: 1 - Determining the amount of the accumulated sediments on the dam body, which has been carried by the collected rain-full water from the drainage basins, snow and spring water (the resources of Dam Lake). Study of the impact of these deposits on dam stability and evaluate the risk of these deposits on dam body and on its safety. 2 - Identification of geological features, which are that threaten the safety of the river of city which concern the only resource for the city and stability of dam body and its related to other geological phenomena (such as earthquakes and floods ... etc.). 3 - Suggestions some of the proposals for the maintenance of the dam lake to preserve the stability of the dam body and to protect the river properties. 4- Prepare some scientific criteria to avoid a disaster affecting human activity or agricultural or industrial, which are located in the city of Dohuk.
Hydrological impact of high-density small dams in a humid catchment, Southeast China
NASA Astrophysics Data System (ADS)
Lu, W.; Lei, H.; Yang, D.
2017-12-01
The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.
NASA Astrophysics Data System (ADS)
Abdoulhalik, Antoifi; Ahmed, Ashraf A.
2017-10-01
The main purpose of this work was to examine how aquifer layering impacts the ability of subsurface dams to retain seawater intrusion (SWI) and to clean up contaminated coastal aquifers using both experimental and numerical techniques. Four different layering configurations were investigated, including a homogeneous case (case H), and three different layered cases where a low permeability layer was set at the top of the aquifer (case LH), at the middle part of the aquifer as interlayer (case HLH), and at the lower part of the aquifer (case HL). The subsurface dam was able to retain the saltwater wedge associated with a drop of the hydraulic gradient from 0.0158 down to 0.0095 in all the cases, thereby achieving up to 78% reduction in the saltwater toe length. In cases LH and HLH, the start of the saltwater spillage was delayed compared to the homogeneous case, and the time taken for the freshwater zone to be fully contaminated (post-spillage) was twice and three times longer, respectively. By contrast, the existence of a low K layer at the bottom of the aquifer (case HL) considerably weakened the ability of dams to retain the intrusion, allowing for quicker saltwater spillage past the wall. The natural cleanup of SWI-contaminated coastal aquifers was, for the first time, evidenced in heterogeneous settings. Depending on the stratification pattern, the presence of stratified layers however prolonged the cleanup time to various degrees, compared to the homogeneous scenario, particularly in case HL, where the cleanup time was nearly 50% longer.
2014-08-23
ISS040-E-105768 (23 Aug. 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying at an altitude of 221 nautical miles, captured this image of Egypt's Nile River and Lake Nasser on Aug. 23, 2014. The Aswan High Dam is to the right of center in the 70mm focal-length image, as the Nile flows southward (to the right in this image) toward Cairo and it?s Mediterranean delta (both out of frame at right). The Red Sea, which runs more or less parallel to the Nile, is out of frame at bottom.
The Shock and Vibration Digest. Volume 16, Number 6
1984-06-01
formulation is emphasized. Tabarrok [5] used both fluid variables to construct dual variational principles; these can be used as the basis for...Metal Working and Forming 37 STRUCTURAL SYSTEMS 39 Buildings 39 Towers 39 Foundations 40 Harbors and Dams 40 Roads and Tracks 41 Construction ...under the fating. Assuming that the super-structure is composed of idertically constructed story-units and the soil behavior is characterized by a
Translations on Latin America, Number 1630
1977-04-07
0 ESTADO DE SAO PAULO, 15 Mar 77) 23 - a - [III - LA - 144] CONTENTS (Continued) Page Construction Industry Problems Analyzed Construction...sedimentary basins, especially in Amazonia and in Parana. For these areas it will be necessary to de - termine more attractive conditions in order to increase...Dam, and surfacing construction industry). Jorge Luis de La Rocque, a representative of that union, ex- pressed the hope that "the dialog will start
Management of turbidity current venting in reservoirs under different bed slopes.
Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton J
2017-12-15
The lifetime and efficiency of dams is endangered by the process of sedimentation. To ensure the sustainable use of reservoirs, many sediment management techniques exist, among which venting of turbidity currents. Nevertheless, a number of practical questions remain unanswered due to a lack of systematic investigations. The present research introduces venting and evaluates its performance using an experimental model. In the latter, turbidity currents travel on a smooth bed towards the dam and venting is applied through a rectangular bottom outlet. The combined effect of outflow discharge and bed slopes on the sediment release efficiency of venting is studied based on different criteria. Several outflow discharges are tested using three different bed slopes (i.e., 0%, 2.4% and 5.0%). Steeper slopes yield higher venting efficiency. Additionally, the optimal outflow discharge leading to the largest venting efficiency with the lowest water loss increases when moving from the horizontal bed to the inclined positions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot
Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi
2016-01-01
Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery. PMID:27532150
Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.
Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo
2016-01-01
Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.
Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.
2013-01-01
Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring only included 2 years with below average river discharge during the spawning season; data from years with higher flows may provide a different perspective on the effects of dam removal on the spawning migrations of the two endangered sucker species.
Efficiency evaluation of agricultural underground dam in South Korea
NASA Astrophysics Data System (ADS)
Myoung, W.; Song, S. H.; Yong, H. H.
2017-12-01
Climate change has resulted in severe droughts in a rice-planting season (i.e., April to June) in South Korea since 2012. Therefore, all time high-amount water resources in rice-farming seasons (i.e., April to October) were required against natural crises like droughts. The underground dam, which is able to increase groundwater amounts in the alluvium aquifer, has been considered to be an alternative for securing more groundwater resources. In this study, irrigation efficiencies of five pre-existing agricultural underground dams in South Korea were evaluated during the drought periods. A total amount of groundwater storage capacities in alluvial aquifers of these five ones were estimated approximate 15 × 107 m3: above 4 × 106 m3 for two underground dams (Ian, Namsong), 2 3 × 106 m3, for 2 dams (Oksung, Wooil), below 2 × 106 m3 for 1 dam (Gocheon), respectively. Irrigating amounts of groundwater accounted for three underground dams (Ian, Namsong, Gocheon), supplied in rice-farming season are 8.5 × 105 m3/year, 8.3 × 105 m3/year, 6.3 × 105 m3/year, respectively. The total demand of agricultural water in these underground dams is 2.0 × 106 m3/year, 1.9 × 106 m3/year, 2.2 × 106 m3/year, respectively. Irrigating amounts of groundwater accounted for whole of rice-farming area in South Korea is 4.3 × 108 m3/year whereas total demand of agricultural water is 9.4 × 109 m3/year. Groundwater were pumped from the radial collector wells located in the upstream from the underground dams. Oksung underground dam, one representative underground dam located in Chungnam province in South Korea, irrigated approximate 3 × 105 m3 during a dried rice-planting season (between April to June) in 2017. It was three times more than usual (9 × 104 m3). Groundwater levels during the same period maintained above 5.55 m, which was slightly lower than usual (6.00 m). Results of Oksung underground dam demonstrated that underground dams in South Korea were effectively operated against drought. Recently, Korea Rural Community Corporation, a governmental institute of South Korea, plans to construct more underground dams against drought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S. A.; Sinha, N.; Bojanowski, C.
This report is a supplement to a previous report [ref] covering optimization of wedge shaped pier extensions to streamline large bluff body piers as a local scour countermeasure for the Burlington Northern and Santa Fe (BNSF) Railroad Bridge over the Santa Ana River downstream of Prado Dam in Riverside County, CA. The optimized design was tested in a 1/30 scale physical model at U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, MS, and the optimized design was used as the base for the construction design. Constructability issues having to do with both materials and site conditions including accessmore » underneath the BNSF bridge yielded a construction design that required making the pier extensions wider and either moving the western curve of the west guide wall upstream or changing its geometry.« less
Ecological studies of a regulated stream: Huntington River, Emery County, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winget, R.N.
1984-04-30
A 36.9 x 10/sup 6/ m/sup 3/ reservoir constructed on Huntington River, Emery County, Utah, resulted in changes in physical habitat, water quality, temperature, and flow regime. The greatest changes in physical habitat resulted from: (1) sediment additions from dam and road construction plus erosion of reservoir basin during filling; and (2) changing stream flow from a spring high runoff regime to a moderated flow regime. Elimination of spring nutrient concentration peaks and overall reduction of total dissolved nutrient availability in the river plus moderate reductions in pH were the most apparent water quality changes below the reservoir. Water temperaturemore » changes were an increased diurnal and seasonal constancy, summer depression, and winter elevation, generally limited to a 10-12 km reach below the dam. Physical and chemical changes altered macroinvertebrate community structure, with changes greatest near the dam and progressively less as distance downstream increased. Below the dam: (1) more environmentally tolerant taxa increased their dominance; (2) relative numbers of smaller sized individuals increased in relation to larger individuals; and (3) filter feeding, collector/gatherers, and scapers gained an advantage over shredders. Macroinvertebrate taxa with small instar larvae present from late summer to early fall were negatively impacted by the unnaturally high July and August flows. The reservoir became a physical barrier to downstream larval drift and upcanyon and downcanyon immigration of adults, resulting in reduced numbers of several species above and below the reservoir. 50 references, 12 figures, 3 tables.« less
Examining the economic impacts of hydropower dams on property values using GIS.
Bohlen, Curtis; Lewis, Lynne Y
2009-07-01
While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water function as real estate amenities and boost local property values. Results with respect to the effect of proximity to hydropower generating plants are equivocal. Homeowners pay a small premium for houses close to hydropower dams in our region, but the statistical significance of that result depends on the specific model form used to estimate the effect. Consideration of the social and economic impacts of dam removal-based river restoration can complement studies of the ecological impacts of the practice. Such studies help us understand the extent to which human society's subjective perception of value of aquatic ecosystems relates to objective measures of ecosystem health. The paper also illustrates how geographic information systems (GIS) can help inform these analyses.
Modeling Streamflow and Water Temperature in the North Santiam and Santiam Rivers, Oregon, 2001-02
Sullivan, Annett B.; Roundsk, Stewart A.
2004-01-01
To support the development of a total maximum daily load (TMDL) for water temperature in the Willamette Basin, the laterally averaged, two-dimensional model CE-QUAL-W2 was used to construct a water temperature and streamflow model of the Santiam and North Santiam Rivers. The rivers were simulated from downstream of Detroit and Big Cliff dams to the confluence with the Willamette River. Inputs to the model included bathymetric data, flow and temperature from dam releases, tributary flow and temperature, and meteorologic data. The model was calibrated for the period July 1 through November 21, 2001, and confirmed with data from April 1 through October 31, 2002. Flow calibration made use of data from two streamflow gages and travel-time and river-width data. Temperature calibration used data from 16 temperature monitoring locations in 2001 and 5 locations in 2002. A sensitivity analysis was completed by independently varying input parameters, including point-source flow, air temperature, flow and water temperature from dam releases, and riparian shading. Scenario analyses considered hypothetical river conditions without anthropogenic heat inputs, with restored riparian vegetation, with minimum streamflow from the dams, and with a more-natural seasonal water temperature regime from dam releases.
NASA Astrophysics Data System (ADS)
Correia, M. F.; da Silva Dias, M. A. F.; da Silva Aragão, M. R.
2006-11-01
Sobradinho Lake lies in the São Francisco River Basin, in one of the most arid regions in Northeastern Brazil, within a land stretch categorized as the Lower-middle São Francisco, situated at about 40 km away from the municipality of Petrolina (09°23'S 40°30'W) in the state of Pernambuco. The dam, in its full capacity, consists of a lake of approximately 4,214 km2; 280 km in length, the width of which varies from 5 to 50 km. The dam storage capacity is that of 34.1 billion m3 of water. Being situated in a semi-arid region, the dam brought about significant development to local irrigated agriculture. The caatinga ecosystem has, for that matter, undergone considerable changes. Statistical analysis techniques applied to data collected before and after the filling of the lake, made it possible both to make an assessment of the impact of the dam construction on the region meteorology and to diagnose the variability of such an impact on environmental conditions. Results showed that the dam has brought about considerable changes to regional meteorology. The alterations were observed to be more significant as regards atmospheric humidity and wind speed.
Landscape change and sediment yield of rivers in the northeastern US during 19th century
NASA Astrophysics Data System (ADS)
Urbanova, T.; Wreschnig, A. J.; Ruffing, C. M.; McCormack, S. M.; Bain, D. J.; Hermans, C. M.
2009-12-01
During the 19th century, population growth, dam construction, and large scale forest clearing, particularly for agriculture, was followed by a massive migration to urban and industrialized centers. This led to the high degree of rural land abandonment in many parts of northeastern US. Such significant changes in land use and demography impacted sediment loading and delivery to receiving waters. The objective of this study is to assess the historical changes in sediment loading to waters as a result of land use change and related change in soil erosion, dam dynamics and sediment trapping. Various methods for assessing soil erosion, sediment yield and dam influence will be used and compared (RUSLE, BQART model, dam trapping efficiency). We expect to see 1) an accelerated erosion rates and sediment yield following forest clearing and intensification of agriculture and 2) decreased sediment delivery to estuaries with an increasing number of dams. While sediment management often focuses on fluvial corridors, our understanding of historic upland dynamics remains rudimentary. This study aims to highlight and explain the interconnectedness of the landscape-hydro system; with a particular emphasis on anthropogenic forcing and influences.
Michalski, Fernanda; Gibbs, James P.
2018-01-01
The global expansion of energy demands combined with abundant rainfall, large water volumes and high flow in tropical rivers have led to an unprecedented expansion of dam constructions in the Amazon. This expansion generates an urgent need for refined approaches to river management; specifically a move away from decision-making governed by overly generalized guidelines. For the first time we quantify direct impacts of hydropower reservoir establishment on an Amazon fresh water turtle. We conducted surveys along 150 km of rivers upstream of a new dam construction during the low water months that correspond to the nesting season of Podocnemis unifilis in the study area. Comparison of nest-areas before (2011, 2015) and after (2016) reservoir filling show that reservoir impacts extend 13% beyond legally defined limits. The submerged nesting areas accounted for a total of 3.8 ha of nesting habitat that was inundated as a direct result of the reservoir filling in 2016. Our findings highlight limitations in the development and implementation of existing Brazilian environmental impact assessment process. We also propose potential ways to mitigate the negative impacts of dams on freshwater turtles and the Amazonian freshwater ecosystems they inhabit. PMID:29333347
Norris, Darren; Michalski, Fernanda; Gibbs, James P
2018-01-01
The global expansion of energy demands combined with abundant rainfall, large water volumes and high flow in tropical rivers have led to an unprecedented expansion of dam constructions in the Amazon. This expansion generates an urgent need for refined approaches to river management; specifically a move away from decision-making governed by overly generalized guidelines. For the first time we quantify direct impacts of hydropower reservoir establishment on an Amazon fresh water turtle. We conducted surveys along 150 km of rivers upstream of a new dam construction during the low water months that correspond to the nesting season of Podocnemis unifilis in the study area. Comparison of nest-areas before (2011, 2015) and after (2016) reservoir filling show that reservoir impacts extend 13% beyond legally defined limits. The submerged nesting areas accounted for a total of 3.8 ha of nesting habitat that was inundated as a direct result of the reservoir filling in 2016. Our findings highlight limitations in the development and implementation of existing Brazilian environmental impact assessment process. We also propose potential ways to mitigate the negative impacts of dams on freshwater turtles and the Amazonian freshwater ecosystems they inhabit.
Walder, J.S.
1997-01-01
We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/ D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether ?? > 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.
Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.
2016-01-01
Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a system-wide reduction in trout from 2000-06, possibly due to several years of natural reproduction under limited food supply. Uncertainties about dam operations and ecosystem responses remain, including how native and nonnative fish will interact and respond to possible increased river temperatures under drier basin conditions. Ongoing assessment of operating policies by the AMP’s diverse stakeholders represents a major commitment to the river’s valued resources, while surprise learning opportunities can also help identify a resilient climate-change strategy for co-managing nonnative and endangered native fish, sandbar habitats and other river resources in a region with already complex and ever-increasing water demands.
NASA Astrophysics Data System (ADS)
Serrano Juan, Alejandro; Vázquez-Suñè, Enric; Pujades, Estanislao; Velasco, Violeta; Criollo, Rotman; Jurado, Anna
2016-04-01
Underground constructions search the most efficient solutions to increase safety, reduce impacts in both underground construction (such as bottom slab water pressures) and groundwater (such as groundwater barrier effect), reduce future maintenance processes and ensure that everything is implemented by the minimum cost. Even being all the previous solutions directly related to groundwater, independent solutions are usually designed to independently deal with each problem. This paper shows how with a groundwater by-pass design that enables the groundwater flow through the structure it is possible to provide an homogeneous distribution of the water pressures under the bottom slab and reduce the barrier effect produced by the structure. The new integrated design has been applied to the largest infrastructure of Barcelona: La Sagrera railway station. Through a hydrogeological model has been possible to test the project and the integrated designs in three different scenarios. This new solution resolves the barrier effect produced by the structure and optimizes the bottom slab, reducing considerably the costs and increasing safety during the construction phase.
Integrated Research Methods for Applied Urban Hydrogeology of Karst Sites
NASA Astrophysics Data System (ADS)
Epting, J.; Romanov, D. K.; Kaufmann, G.; Huggenberger, P.
2008-12-01
Integrated and adaptive surface- and groundwater monitoring and management in urban areas require innovative process-oriented approaches. To accomplish this, it is necessary to develop and combine interdisciplinary instruments that facilitate adequately quantifying cumulative effects on groundwater flow regimes. While the characterization and modeling of flow in heterogeneous and fractured media has been investigated intensively, there are no well-developed long-term hydrogeological research sites for gypsum karst. Considering that infrastructures in karst regions, particularly in gypsum, are prone to subsidence, severe problems can arise in urban areas. In the 1880's, a river dam was constructed on gypsum-containing rock, Southeast of Basel, Switzerland. Over the last 30 years, subsidence of the dam and an adjacent highway has been observed. Surface water infiltrates upstream of the dam, circulates in the gravel deposits and in the weathered bedrock around and beneath the dam and exfiltrates downstream into the river. These processes enhance karstification processes in the soluble units of the gypsum. As a result an extended weathering zone within the bedrock and the development of preferential flow paths within voids and conduits can be observed. To prevent further subsidence, construction measures were conducted in two major project phases in 2006 and 2007. The highway was supported by a large number of pillars embedded in the non- weathered rock and by a sealing pile wall, to prevent infiltrating river water circulating around the dam and beneath the foundation of the highway. To safeguard surface and subsurface water resources during the construction measures, an extensive observation network was set up. Protection schemes and geotechnical investigations that are necessary for engineering projects often provide "windows of opportunity", bearing the possibility to change perceptions concerning the sustainable development of water resources and coordinate future measures. Theories describing the evolution of karst systems are mainly based on conceptual models. Although these models are based on fundamental and well established physical and chemical principles that allow studying important processes from initial small scale fracture networks to the mature karst, systems for monitoring the evolution of karst phenomena are rare. Integrated process-oriented investigation methods are presented, comprising the combination of multiple data sources (lithostratigraphic information of boreholes, extensive groundwater monitoring, dye tracer tests, geophysics) with high-resolution numerical groundwater modeling and model simulations of karstification below the dam. Subsequently, different scenarios evaluated the future development of the groundwater flow regime, the karstification processes as well as possible remediation measures. The approach presented assists in optimizing investigation methods, including measurement and monitoring technologies with predictive character for similar subsidence problems within karst environments in urban areas.
Del Valle-Zermeño, R; Chimenos, J M; Giró-Paloma, J; Formosa, J
2014-12-01
The presence of neoformed cement-like phases during the weathering of non-stabilized freshly quenched bottom ash favors the development of a bound pavement material with improved mechanical properties. Use of weathered and freshly quenched bottom ash mix layers placed one over the other allowed the retention of leached heavy metals and metalloids by means of a reactive percolation barrier. The addition of 50% of weathered bottom ash to the total subbase content diminished the release of toxic species to below environmental regulatory limits. The mechanisms of retention and the different processes and factors responsible of leaching strongly depended on the contaminant under concern as well as on the chemical and physical factors. Thus, the immediate reuse of freshly quenched bottom ash as a subbase material in road constructions is possible, as both the mechanical properties and long-term leachability are enhanced. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Syahroni, N.; Hartono, A. B. W.; Murtedjo, M.
2018-03-01
In the ship fabrication industry, welding is the most critical stage. If the quality of welding on ship fabrication is not good, then it will affect the strength and overall appearance of the structure. One of the factors that affect the quality of welding is residual stress and distortion. In this research welding simulation is performed on the inner bottom construction of Geomarin IV Ship Survey using shell element and has variation to welding sequence. In this study, welding simulations produced peak temperatures at 2490 K at variation 4. While the lowest peak temperature was produced by variation 2 with a temperature of 2339 K. After welding simulation, it continued simulating residual stresses and distortion. The smallest maximum tensile residual stress found in the inner bottom construction is 375.23 MPa, and the maximum tensile pressure is -20.18 MPa. The residual stress is obtained from variation 3. The distortion occurring in the inner bottom construction for X=720 mm is 4.2 mm and for X=-720 mm, the distortion is 4.92 mm. The distortion is obtained from the variation 3. Near the welding area, distortion value reaches its minimum point. This is because the stiffeners in the form of frames serves as anchoring.
American shad in the Columbia River
Petersen, J.H.; Hinrichsen, R.A.; Gadomski, D.M.; Feil, D.H.; Rondorf, D.W.
2003-01-01
American shad Alosa sapidissima from the Hudson River, New York, were introduced into the Sacramento River, California, in 1871 and were first observed in the Columbia River in 1876. American shad returns to the Columbia River increased greatly between 1960 and 1990, and recently 2-4 million adults have been counted per year at Bonneville Dam, Oregon and Washington State (river kilometer 235). The total return of American shad is likely much higher than this dam count. Returning adults migrate as far as 600 km up the Columbia and Snake rivers, passing as many as eight large hydroelectric dams. Spawning occurs primarily in the lower river and in several large reservoirs. A small sample found returning adults were 2-6 years old and about one-third of adults were repeat spawners. Larval American shad are abundant in plankton and in the nearshore zone. Juvenile American shad occur throughout the water column during night, but school near the bottom or inshore during day. Juveniles consume a variety of zooplankton, but cyclopoid copepods were 86% of the diet by mass. Juveniles emigrate from the river from August through December. Annual exploitation of American shad by commercial and recreational fisheries combined is near 9% of the total count at Bonneville Dam. The success of American shad in the Columbia River is likely related to successful passage at dams, good spawning and rearing habitats, and low exploitation. The role of American shad within the aquatic community is poorly understood. We speculate that juveniles could alter the zooplankton community and may supplement the diet of resident predators. Data, however, are lacking or sparse in some areas, and more information is needed on the role of larval and juvenile American shad in the food web, factors limiting adult returns, ocean distribution of adults, and interactions between American shad and endangered or threatened salmonids throughout the river. ?? 2003 by the American Fisheries Society.
Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Marilyn A.
1993-02-01
This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.
77 FR 50493 - Sam Rayburn Dam Project Power Rate
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
...-purpose reservoir projects with hydroelectric power facilities constructed and operated by the U.S. Army... Corporate Operations, Southwestern Power Administration, One West Third, Tulsa, OK 74103, (918) 595-6680 or...
Behera, M D; Gupta, A K; Barik, S K; Das, P; Panda, R M
2018-06-15
With the availability of satellite data from free data domain, remote sensing has increasingly become a fast-hand tool for monitoring of land and water resources development activities with minimal cost and time. Here, we verified construction of check dams and implementation of plantation activities in two districts of Tripura state using Landsat and Sentinel-2 images for the years 2008 and 2016-2017, respectively. We applied spectral reflectance curves and index-based proxies to quantify these activities for two time periods. A subset of the total check dams and plantation sites was chosen on the basis of site condition, nature of check dams, and planted species for identification on satellite images, and another subset was randomly chosen to validate identification procedure. The normalized difference water index (NDWI) derived from Landsat and Senitnel-2 were used to quantify water area evolved, qualify the water quality, and influence of associated tree shadows. Three types of check dams were observed, i.e., full, partial, and fully soil exposed on the basis of the presence of grass or scrub on the check dams. Based on the nature of check dam and site characteristics, we classified the water bodies under 11-categories using six interpretation keys (size, shape, water depth, quality, shadow of associated trees, catchment area). The check dams constructed on existing narrow gullies totally covered by branches or associated plants were not identified without field verification. Further, use of EVI enabled us to approve the plantation activities and adjudge the corresponding increase in vegetation vigor. The plantation activities were established based on the presence and absence of existing vegetation. Clearing on the plantation sites for plantation shows differential increase in EVI values during the initial years. The 403 plantation sites were categorized into 12 major groups on the basis of presence of dominant species and site conditions. The dominant species were Areca catechu, Musa paradisiaca, Ananas comosus, Bambusa sp., and mix plantation of A. catechu and M. paradisiaca. However, the highest maximum increase in average EVI was observed for the pine apple plantation sites (0.11), followed by Bambussa sp. (0.10). These sites were fully covered with plantation without any exposed soil. The present study successfully demonstrates a satellite-based survey supplemented with ground information evaluating the changes in vegetation profile due to plantation activities, locations of check dams, extent of water bodies, downstream irrigation, and catchment area of water bodies.
Modeling of snow avalanches for protection measures designing
NASA Astrophysics Data System (ADS)
Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton
2017-04-01
Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in Khibini Mountains by different avalanche scenarios and discuss the technical procedure and obtained results. RAMMS results were compared with field observations data and values received with Russian well-known one dimensional avalanche models. In the Caucasus, Russia, new ski resorts are being under the development which is impossible without avalanche protection. The choice of the avalanche mitigation type has to be done by experts depending on many factors. Within the ski resort Arkhyz, Caucasus we implemented RAMMS into the procedure of the structural measures type decision making. RAMMS as well as Russian well-known one-dimensional models were used to calculate the key input parameters for structures designing. The calculation results were coupled with field observations data and historical records. Finally we suggested the avalanche protection plan for the area of interest. The interpretation of RAMMS simulations including mitigation structures has been made in order to assess the reliability of the proposed protection.
Full implementation of a distributed hydrological model based on check dam trapped sediment volumes
NASA Astrophysics Data System (ADS)
Bussi, Gianbattista; Francés, Félix
2014-05-01
Lack of hydrometeorological data is one of the most compelling limitations to the implementation of distributed environmental models. Mediterranean catchments, in particular, are characterised by high spatial variability of meteorological phenomena and soil characteristics, which may prevents from transferring model calibrations from a fully gauged catchment to a totally o partially ungauged one. For this reason, new sources of data are required in order to extend the use of distributed models to non-monitored or low-monitored areas. An important source of information regarding the hydrological and sediment cycle is represented by sediment deposits accumulated at the bottom of reservoirs. Since the 60s, reservoir sedimentation volumes were used as proxy data for the estimation of inter-annual total sediment yield rates, or, in more recent years, as a reference measure of the sediment transport for sediment model calibration and validation. Nevertheless, the possibility of using such data for constraining the calibration of a hydrological model has not been exhaustively investigated so far. In this study, the use of nine check dam reservoir sedimentation volumes for hydrological and sedimentological model calibration and spatio-temporal validation was examined. Check dams are common structures in Mediterranean areas, and are a potential source of spatially distributed information regarding both hydrological and sediment cycle. In this case-study, the TETIS hydrological and sediment model was implemented in a medium-size Mediterranean catchment (Rambla del Poyo, Spain) by taking advantage of sediment deposits accumulated behind the check dams located in the catchment headwaters. Reservoir trap efficiency was taken into account by coupling the TETIS model with a pond trap efficiency model. The model was calibrated by adjusting some of its parameters in order to reproduce the total sediment volume accumulated behind a check dam. Then, the model was spatially validated by obtaining the simulated sedimentation volume at the other eight check dams and comparing it to the observed sedimentation volumes. Lastly, the simulated water discharge at the catchment outlet was compared with observed water discharge records in order to check the hydrological sub-model behaviour. Model results provided highly valuable information concerning the spatial distribution of soil erosion and sediment transport. Spatial validation of the sediment sub-model provided very good results at seven check dams out of nine. This study shows that check dams can be a useful tool also for constraining hydrological model calibration, as model results agree with water discharge observations. In fact, the hydrological model validation at a downstream water flow gauge obtained a Nash-Sutcliffe efficiency of 0.8. This technique is applicable to all catchments with presence of check dams, and only requires rainfall and temperature data and soil characteristics maps.
Moser, M.L.; Matter, A.L.; Stuehrenberg, L.C.; Bjornn, T.C.
2002-01-01
We used an extensive network of more than 170 radio receiving stations to document fine-scale passage efficiency of adult anadromous Pacific lamprey at Bonneville and The Dalles Dams in the lower Columbia River in the northwestern U.S.A. Each spring from 1997 to 2000, we released 197-299 lamprey with surgically implanted radio transmitters. Unique transmitter codes and the date and time of reception at each antenna site were downloaded electronically, and initial processing was conducted to eliminate false positive signals. The resulting large Oracle database was analyzed using an Arc View-based coding protocol. Underwater antennas positioned outside the fishway entrances detected lamprey approaches, and antennas positioned immediately inside the entrances indicated successful entries. Entrance efficiency (the number of lamprey that successfully entered a fishway divided by the number that approached that fishway) was compared for different types of entrances (main entrances versus orifice entrances) and entrance locations (powerhouse versus spillway). Lamprey used orifice-type entrances less frequently than main entrances, and passage success was generally low (< 50%) at all entrances to fishways at Bonneville Dam (the lowest dam in the system). Lamprey activity at the entrances was highest at night, and entrance success was significantly higher at The Dalles Dam (the next dam upstream from Bonneville Dam) than at Bonneville Dam. In 1999 and 2000, construction modifications were made to Bonneville Dam spillway entrances, and water velocity at these entrances was reduced at night. Modifications to increase lamprey attachment at the entrances improved lamprey entrance efficiency, but entrance efficiency during reduced velocity tests was not significantly higher than during control conditions.
Is there enough sand? Evaluating the fate of Grand Canyon sandbars
Wright, S.A.; Schmidt, J.C.; Meles, T.S.; Topping, D.J.; Rubin, D.M.
2008-01-01
Large dams have the potential to dramatically alter the flow regime, geomorphology, and aquatic ecosystem of downstream river reaches. Development of flow release regimes in order to meet multiple objectives is a challenge facing dam operators, resource managers, and scientists. Herein, we review previous work and present new analyses related to the effects of Glen Canyon Dam on the downstream reach of the Colorado River in Marble and Grand Canyons. The dam traps the entire incoming sediment load in Lake Powell and modulates the hydrologic regime by, for example, eliminating spring snowmelt floods, resulting in changes in the geomorphology of the river downstream. The primary geomorphic impact has been the erosion of sandbars along the banks of the river. Recognition of this impact has led to many scientific studies and a variety of experimental operations of Glen Canyon Dam with the goal of rebuilding the eroding sandbars. These efforts have thus far been generally unsuccessful and the question remains as to whether or not the dam can be operated such that sandbars can be rebuilt and maintained over extended periods with the existing sediment supply. We attempt to answer this question by evaluating a dam operation that may be considered a "best-case scenario" for rebuilding and maintaining eroded sandbars. Our analysis suggests that this best-case scenario may indeed have viability for rebuilding sandbars, and that the initial rate at which sandbars could be rebuilt is comparable to the rate at which sandbars have been eroded since dam construction. The question remains open as to the viability of operations that deviate from the best-case scenario that we have defined.
Acosta, Luis Enrique; de Lacy, M Clara; Ramos, M Isabel; Cano, Juan Pedro; Herrera, Antonio Manuel; Avilés, Manuel; Gil, Antonio José
2018-04-27
The aim of this paper is to study the behavior of an earth fill dam, analyzing the deformations determined by high precision geodetic techniques and those obtained by the Finite Element Method (FEM). A large number of control points were established around the area of the dam, and the measurements of their displacements took place during several periods. In this study, high-precision leveling and GNSS (Global Navigation Satellite System) techniques were used to monitor vertical and horizontal displacements respectively. Seven surveys were carried out: February and July 2008, March and July 2013, August 2014, September 2015 and September 2016. Deformations were predicted, taking into account the general characteristics of an earth fill dam. A comparative evaluation of the results derived from predicted (FEM) and observed deformations shows the differences on average being 20 cm for vertical displacements, and 6 cm for horizontal displacements at the crest. These differences are probably due to the simplifications assumed during the FEM modeling process: critical sections are considered homogeneous along their longitude, and the properties of the materials were established according to the general characteristics of an earth fill dam. These characteristics were taken from the normative and similar studies in the country. This could also be due to the geodetic control points being anchored in the superficial layer of the slope when the construction of the dam was finished.
White, M.A.; Schmidt, J.C.; Topping, D.J.
2005-01-01
Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.
Influence of El Niño Southern Oscillation on global hydropower production
NASA Astrophysics Data System (ADS)
Ng, Jia Yi; Turner, Sean W. D.; Galelli, Stefano
2017-03-01
El Niño Southern Oscillation (ENSO) strongly influences the global climate system, affecting hydrology in many of the world’s river basins. This raises the prospect of ENSO-driven variability in global and regional hydroelectric power generation. Here we study these effects by generating time series of power production for 1593 hydropower dams, which collectively represent more than half of the world’s existing installed hydropower capacity. The time series are generated by forcing a detailed dam model with monthly-resolution, 20th century inflows—the model includes plant specifications, storage dynamics and realistic operating schemes, and runs irrespectively of the dam construction year. More than one third of simulated dams exhibit statistically significant annual energy production anomalies in at least one of the two ENSO phases of El Niño and La Niña. For most dams, the variability of relative anomalies in power production tends to be less than that of the forcing inflows—a consequence of dam design specifications, namely maximum turbine release rate and reservoir storage, which allows inflows to accumulate for power generation in subsequent dry years. Production is affected most prominently in Northwest United States, South America, Central America, the Iberian Peninsula, Southeast Asia and Southeast Australia. When aggregated globally, positive and negative energy production anomalies effectively cancel each other out, resulting in a weak and statistically insignificant net global anomaly for both ENSO phases.