Sample records for constructing explicit magnetic

  1. Remanent Magnetization: Signature of Many-Body Localization in Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Ros, V.; Müller, M.

    2017-06-01

    We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin chains, initialized in a fully magnetized state. Its long time limit is an order parameter for the localization transition, which is readily accessible by standard experimental probes in magnets. We analytically calculate its value in the strong-disorder regime exploiting the explicit construction of quasilocal conserved quantities of the localized phase. We discuss analogies in cold atomic systems.

  2. The usefulness of Poynting's theorem in magnetic turbulence

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-12-01

    We rewrite Poynting's theorem, already used in a previous publication Treumann and Baumjohann (2017a) to derive relations between the turbulent magnetic and electric power spectral densities, to make explicit where the mechanical contributions enter. We then make explicit use of the relativistic transformation of the turbulent electric fluctuations to obtain expressions which depend only on the magnetic and velocity fluctuations. Any electric fluctuations play just an intermediate role. Equations are constructed for the turbulent conductivity spectrum in Alfvénic and non-Alfvénic turbulence in extension of the results in the above citation. An observation-based discussion of their use in application to solar wind turbulence is given. The inertial range solar wind turbulence exhibits signs of chaos and self-organization.

  3. Magnetically charged calorons with non-trivial holonomy

    NASA Astrophysics Data System (ADS)

    Kato, Takumi; Nakamula, Atsushi; Takesue, Koki

    2018-06-01

    Instantons in pure Yang-Mills theories on partially periodic space R^3× {S}^1 are usually called calorons. The background periodicity brings on characteristic features of calorons such as non-trivial holonomy, which plays an essential role for confinement/deconfinement transition in pure Yang-Mills gauge theory. For the case of gauge group SU(2), calorons can be interpreted as composite objects of two constituent "monopoles" with opposite magnetic charges. There are often the cases that the two monopole charges are unbalanced so that the calorons possess net magnetic charge in R3. In this paper, we consider several mechanism how such net magnetic charges appear for certain types of calorons through the ADHM/Nahm construction with explicit examples. In particular, we construct analytically the gauge configuration of the (2 , 1)-caloron with U(1)-symmetry, which has intrinsically magnetic charge.

  4. Explicitly covariant dispersion relations and self-induced transparency

    NASA Astrophysics Data System (ADS)

    Mahajan, S. M.; Asenjo, Felipe A.

    2017-02-01

    Explicitly covariant dispersion relations for a variety of plasma waves in unmagnetized and magnetized plasmas are derived in a systematic manner from a fully covariant plasma formulation. One needs to invoke relatively little known invariant combinations constructed from the ambient electromagnetic fields and the wave vector to accomplish the program. The implication of this work applied to the self-induced transparency effect is discussed. Some problems arising from the inconsistent use of relativity are pointed out.

  5. The Radius and Entropy of a Magnetized, Rotating, Fully Convective Star: Analysis with Depth-dependent Mixing Length Theories

    NASA Astrophysics Data System (ADS)

    Ireland, Lewis G.; Browning, Matthew K.

    2018-04-01

    Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.

  6. Vector Galileon and inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Nandi, Debottam; Shankaranarayanan, S.

    2018-01-01

    Cosmological inflation provides the initial conditions for the structure formation. However, the origin of large-scale magnetic fields can not be addressed in this framework. The key issue for this long-standing problem is the conformal invariance of the electromagnetic (EM) field in 4-D. While many approaches have been proposed in the literature for breaking conformal invariance of the EM action, here, we provide a completely new way of looking at the modifications to the EM action and generation of primordial magnetic fields during inflation. We explicitly construct a higher derivative EM action that breaks conformal invariance by demanding three conditions—theory be described by vector potential Aμ and its derivatives, Gauge invariance be satisfied, and equations of motion be linear in second derivatives of vector potential. The unique feature of our model is that appreciable magnetic fields are generated at small wavelengths while tiny magnetic fields are generated at large wavelengths that are consistent with current observations.

  7. Thermodynamics of dyonic black holes with Thurston horizon geometries

    NASA Astrophysics Data System (ADS)

    Bravo-Gaete, Moisés; Hassaïne, Mokhtar

    2018-01-01

    In five dimensions, we consider a model described by the Einstein gravity with a source given by a scalar field and various Abelian gauge fields with dilatoniclike couplings. For this model, we are able to construct two dyonic black holes whose three-dimensional horizons are modeled by two nontrivial homogeneous Thurston's geometries. The dyonic solutions are of Lifshitz type with an arbitrary value of the dynamical exponent. In fact, the first gauge field ensures the anisotropy asymptotic while the remaining Abelian fields sustain the electric and magnetic charges. Using the Hamiltonian formalism, the mass, the electric, and magnetic charges are explicitly computed. Interestingly enough, the dyonic solutions behave like Chern-Simons vortices in the sense that their electric and magnetic charges turn to be proportional. The extension with an hyperscaling violating factor is also scrutinized where we notice that for specific values of the violating factor, purely magnetic solutions are possible.

  8. Global Auroral Energy Deposition Compared with Magnetic Indices

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Elsen, R.; Parks, G. K.; Germany, G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. in this session. Magnetic indices, such as Kp, AE, and Dst, which are sensitive to variations in magnetospheric current systems have been constructed from ground magnetometer measurements and employed as measures of activity. The systematic study of global energy deposition raises the possibility of constructing a global magnetospheric activity index explicitly based on particle precipitation to supplement magnetic indices derived from ground magnetometer measurements. The relationship between global magnetic activity as measured by these indices and the rate of total global energy loss due to precipitation is not known at present. We study the correlation of the traditional magnetic index of Kp for the month of January 1997 with the energy deposition derived from the UVI images. We address the question of whether the energy deposition through particle precipitation generally matches the Kp and AE indices, or the more exciting, but distinct, possibility that this particle-derived index may provide an somewhat independent measure of global magnetospheric activity that could supplement traditional magnetically-based activity indices.

  9. Analysis of Lightning-induced Impulse Magnetic Fields in the Building with an Insulated Down Conductor

    NASA Astrophysics Data System (ADS)

    Du, Patrick Y.; Zhou, Qi-Bin

    This paper presents an analysis of lightning-induced magnetic fields in a building. The building of concern is protected by the lightning protection system with an insulated down conductor. In this paper a system model for metallic structure of the building is constructed first using the circuit approach. The circuit model of the insulated down conductor is discussed extensively, and explicit expressions of the circuit parameters are presented. The system model was verified experimentally in the laboratory. The modeling approach is applied to analyze the impulse magnetic fields in a full-scale building during a direct lightning strike. It is found that the impulse magnetic field is significantly high near the down conductor. The field is attenuated if the down conductor is moved to a column in the building. The field can be reduced further if the down conductor is housed in an earthed metal pipe. Recommendations for protecting critical equipment against lightning-induced magnetic fields are also provided in the paper.

  10. Quantum mechanics of a photon

    NASA Astrophysics Data System (ADS)

    Babaei, Hassan; Mostafazadeh, Ali

    2017-08-01

    A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.

  11. High resolution approach to the native state ensemble kinetics and thermodynamics.

    PubMed

    Wu, Sangwook; Zhuravlev, Pavel I; Papoian, Garegin A

    2008-12-15

    Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.

  12. On the accuracy of palaeopole estimations from magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Vervelidou, F.; Lesur, V.; Morschhauser, A.; Grott, M.; Thomas, P.

    2017-12-01

    Various techniques have been proposed for palaeopole position estimation based on magnetic field measurements. Such estimates can offer insights into the rotational dynamics and the dynamo history of moons and terrestrial planets carrying a crustal magnetic field. Motivated by discrepancies in the estimated palaeopole positions among various studies regarding the Moon and Mars, we examine the limitations of magnetic field measurements as source of information for palaeopole position studies. It is already known that magnetic field measurements cannot constrain the null space of the magnetization nor its full spectral content. However, the extent to which these limitations affect palaeopole estimates has not been previously investigated in a systematic way. In this study, by means of the vector Spherical Harmonics formalism, we show that inferring palaeopole positions from magnetic field measurements necessarily introduces, explicitly or implicitly, assumptions about both the null space and the full spectral content of the magnetization. Moreover, we demonstrate through synthetic tests that if these assumptions are inaccurate, then the resulting palaeopole position estimates are wrong. Based on this finding, we make suggestions that can allow future palaeopole studies to be conducted in a more constructive way.

  13. Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea; Collura, Mario; De Nardis, Jacopo

    2017-07-01

    We construct exact steady states of unitary nonequilibrium time evolution in the gapless XXZ spin-1/2 chain where integrability preserves ballistic spin transport at long times. We characterize the quasilocal conserved quantities responsible for this feature and introduce a computationally effective way to evaluate their expectation values on generic matrix product initial states. We employ this approach to reproduce the long-time limit of local observables in all quantum quenches which explicitly break particle-hole or time-reversal symmetry. We focus on a class of initial states supporting persistent spin currents and our predictions remarkably agree with numerical simulations at long times. Furthermore, we propose a protocol for this model where interactions, even when antiferromagnetic, are responsible for the unbounded growth of a macroscopic magnetic domain.

  14. AM363 martensitic stainless steel: A multiphase equation of state

    NASA Astrophysics Data System (ADS)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  15. Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Space-Time

    NASA Astrophysics Data System (ADS)

    Spinelly, J.; Bezerra de Mello, E. R.

    In this paper, we analyze the effect produced by the temperature in the vacuum polarization associated with a charged massless scalar field in the presence of a magnetic flux tube in the cosmic string space-time. Three different configurations of magnetic fields are taken into account: (i) a homogeneous field inside the tube, (ii) a field proportional to 1/r, and (iii) a cylindrical shell with δ-function. In these three cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. Because of the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above-mentioned situations considering points in the region outside the tube. We explicitly calculate, in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.

  16. Weaving Knotted Vector Fields with Tunable Helicity.

    PubMed

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  17. The structure of the inner heliosphere from Pioneer Venus and IMP observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.

  18. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  19. Pre-gilbertian conceptions of terrestrial magnetism

    USGS Publications Warehouse

    Smith, P.J.

    1968-01-01

    It is now well known that William Gilbert, in his De Magnete of 1600, first suggested that the earth behaves as a great magnet. By their very nature, however, such explicit statements tend, in retrospect, to be emphasised at the expense of less explicit antecedent ideas and experiments, with the result that, in the example under consideration here, the impression has sometimes been given that before Gilbert there was not the slightest suspicion that the earth exerts influence on the magnetic needle. In fact, Gilbert's conclusion represented the culmination of many centuries of thought and experimentation on the subject. This essay traces the main steps in the evolutionary process from the idea that magnetic 'virtue' derived from the heave, through the gradual realisation that magnetism is closely associated with the earth, up to the time of Gilbert's definite statement. ?? 1968.

  20. Analytic topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model and extended duality

    NASA Astrophysics Data System (ADS)

    Avilés, L.; Canfora, F.; Dimakis, N.; Hidalgo, D.

    2017-12-01

    We construct the first analytic examples of topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model within a finite box in (3 +1 )-dimensional flat space-time. There are two types of gauged solitons. The first type corresponds to gauged Skyrmions living within a finite volume. The second corresponds to gauged time crystals (smooth solutions of the U (1 ) gauged Skyrme model whose periodic time dependence is protected by a winding number). The notion of electromagnetic duality can be extended for these two types of configurations in the sense that the electric and one of the magnetic components can be interchanged. These analytic solutions show very explicitly the Callan-Witten mechanism (according to which magnetic monopoles may "swallow" part of the topological charge of the Skyrmion) since the electromagnetic field contributes directly to the conserved topological charge of the gauged Skyrmions. As it happens in superconductors, the magnetic field is suppressed in the core of the gauged Skyrmions. On the other hand, the electric field is strongly suppresed in the core of gauged time crystals.

  1. Dirac’s magnetic monopole and the Kontsevich star product

    NASA Astrophysics Data System (ADS)

    Soloviev, M. A.

    2018-03-01

    We examine relationships between various quantization schemes for an electrically charged particle in the field of a magnetic monopole. Quantization maps are defined in invariant geometrical terms, appropriate to the case of nontrivial topology, and are constructed for two operator representations. In the first setting, the quantum operators act on the Hilbert space of sections of a nontrivial complex line bundle associated with the Hopf bundle, whereas the second approach uses instead a quaternionic Hilbert module of sections of a trivial quaternionic line bundle. We show that these two quantizations are naturally related by a bundle morphism and, as a consequence, induce the same phase-space star product. We obtain explicit expressions for the integral kernels of star-products corresponding to various operator orderings and calculate their asymptotic expansions up to the third order in the Planck constant \\hbar . We also show that the differential form of the magnetic Weyl product corresponding to the symmetric ordering agrees completely with the Kontsevich formula for deformation quantization of Poisson structures and can be represented by Kontsevich’s graphs.

  2. General structure of fermion two-point function and its spectral representation in a hot magnetized medium

    NASA Astrophysics Data System (ADS)

    Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.

    2018-02-01

    We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.

  3. Effect of the magnetic field on coexisting stimulated Raman and Brillouin backscattering of an extraordinary mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Ashish, E-mail: ashishvyas.optics@gmail.com; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ernet.in

    2016-01-15

    This paper presents a model to study the interplay between the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in the presence of background magnetic field. This formalism is applicable to laser produced plasma as well as to heating mechanism in toroidal system by an extraordinary electromagnetic wave. In the former case, the magnetic field is self-generated, while in the latter case (toroidal plasmas) magnetic field is applied externally. The behavior of one scattering process is explicitly dependent on the coexisting scattering process as well as on the magnetic field. Explicit expressions for the back-reflectivity of scattered beams (SRSmore » and SBS) are presented. It has been demonstrated that due to the magnetic field and coexistence of the scattering processes (SRS and SBS) the back-reflectivity gets modified significantly. Results are also compared with the three wave interaction case (isolated SRS or SBS case)« less

  4. Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.

    2017-02-01

    In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.

  5. Explicitly-correlated non-born-oppenheimer calculations of the HD molecule in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Adamowicz, Ludwik; Stanke, Monika; Tellgren, Erik; Helgaker, Trygve

    2017-08-01

    Explicitly correlated all-particle Gaussian functions with shifted centers (ECGs) are implemented within the earlier proposed effective variational non-Born-Oppenheimer method for calculating bound states of molecular systems in magnetic field (Adamowicz et al., 2015). The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Test ECG calculations are performed for the HD molecule.

  6. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    NASA Astrophysics Data System (ADS)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  7. Interpolation Inequalities and Spectral Estimates for Magnetic Operators

    NASA Astrophysics Data System (ADS)

    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael

    2018-05-01

    We prove magnetic interpolation inequalities and Keller-Lieb-Thir-ring estimates for the principal eigenvalue of magnetic Schr{\\"o}dinger operators. We establish explicit upper and lower bounds for the best constants and show by numerical methods that our theoretical estimates are accurate.

  8. Effects of Explicit Instructions, Metacognition, and Motivation on Creative Performance

    ERIC Educational Resources Information Center

    Hong, Eunsook; O'Neil, Harold F.; Peng, Yun

    2016-01-01

    Effects of explicit instructions, metacognition, and intrinsic motivation on creative homework performance were examined in 303 Chinese 10th-grade students. Models that represent hypothesized relations among these constructs and trait covariates were tested using structural equation modelling. Explicit instructions geared to originality were…

  9. Constructing and Verifying Program Theory Using Source Documentation

    ERIC Educational Resources Information Center

    Renger, Ralph

    2010-01-01

    Making the program theory explicit is an essential first step in Theory Driven Evaluation (TDE). Once explicit, the program logic can be established making necessary links between the program theory, activities, and outcomes. Despite its importance evaluators often encounter situations where the program theory is not explicitly stated. Under such…

  10. Investigation the Relationship among Language Learning Strategies, English Self-Efficacy, and Explicit Strategy Instructions

    ERIC Educational Resources Information Center

    Yang, Pei-Ling; Wang, Ai-Ling

    2015-01-01

    The present study aims to investigate the relationship among EFL college learners' language learning strategies, English self-efficacy, and explicit strategy instruction from the perspectives of Social Cognitive Theory. Three constructs, namely language learning strategies, English learning self-efficacy, and explicit strategy instruction, were…

  11. Aharonov-Bohm effect with many vortices

    NASA Astrophysics Data System (ADS)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-12-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  12. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A. G., E-mail: smirnov@lpi.ru

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to themore » three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.« less

  13. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  14. Propofol and memory: a study using a process dissociation procedure and functional magnetic resonance imaging.

    PubMed

    Quan, X; Yi, J; Ye, T H; Tian, S Y; Zou, L; Yu, X R; Huang, Y G

    2013-04-01

    Thirty volunteers randomly received either mild or deep propofol sedation, to assess its effect on explicit and implicit memory. Blood oxygen level-dependent functional magnetic resonance during sedation examined brain activation by auditory word stimulus and a process dissociation procedure was performed 4 h after scanning. Explicit memory formation did not occur in either group. Implicit memories were formed during mild but not deep sedation (p = 0.04). Mild propofol sedation inhibited superior temporal gyrus activation (Z value 4.37, voxel 167). Deep propofol sedation inhibited superior temporal gyrus (Z value 4.25, voxel 351), middle temporal gyrus (Z value 4.39, voxel 351) and inferior parietal lobule (Z value 5.06, voxel 239) activation. Propofol only abolishes implicit memory during deep sedation. The superior temporal gyrus is associated with explicit memory processing, while the formation of both implicit and explicit memories is associated with superior and middle temporal gyri and inferior parietal lobule activation. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  15. Alcohol-Approach Inclinations and Drinking Identity as Predictors of Behavioral Economic Demand for Alcohol

    PubMed Central

    Ramirez, Jason J.; Dennhardt, Ashley A.; Baldwin, Scott A.; Murphy, James G.; Lindgren, Kristen P.

    2016-01-01

    Behavioral economic demand curve indices of alcohol consumption reflect decisions to consume alcohol at varying costs. Although these indices predict alcohol-related problems beyond established predictors, little is known about the determinants of elevated demand. Two cognitive constructs that may underlie alcohol demand are alcohol-approach inclinations and drinking identity. The aim of this study was to evaluate implicit and explicit measures of these constructs as predictors of alcohol demand curve indices. College student drinkers (N = 223, 59% female) completed implicit and explicit measures of drinking identity and alcohol-approach inclinations at three timepoints separated by three-month intervals, and completed the Alcohol Purchase Task to assess demand at Time 3. Given no change in our alcohol-approach inclinations and drinking identity measures over time, random intercept-only models were used to predict two demand indices: Amplitude, which represents maximum hypothetical alcohol consumption and expenditures, and Persistence, which represents sensitivity to increasing prices. When modeled separately, implicit and explicit measures of drinking identity and alcohol-approach inclinations positively predicted demand indices. When implicit and explicit measures were included in the same model, both measures of drinking identity predicted Amplitude, but only explicit drinking identity predicted Persistence. In contrast, explicit measures of alcohol-approach inclinations, but not implicit measures, predicted both demand indices. Therefore, there was more support for explicit, versus implicit, measures as unique predictors of alcohol demand. Overall, drinking identity and alcohol-approach inclinations both exhibit positive associations with alcohol demand and represent potentially modifiable cognitive constructs that may underlie elevated demand in college student drinkers. PMID:27379444

  16. Children's Implicit and Explicit Gender Stereotypes about Mathematics and Reading Ability

    ERIC Educational Resources Information Center

    Nowicki, Elizabeth A.; Lopata, Joel

    2017-01-01

    Study objectives were to clarify children's gender-based implicit and explicit mathematics and reading stereotypes, and to determine if implicit and explicit measures were related or represented distinct constructs. One hundred and fifty-six boys and girls (mean age 11.3 years) from six elementary schools completed math or reading stereotype…

  17. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    NASA Astrophysics Data System (ADS)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  18. Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2018-01-01

    Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.

  19. Implicit Knowledge, Explicit Knowledge, and Achievement in Second Language (L2) Spanish

    ERIC Educational Resources Information Center

    Gutierrez, Xavier

    2012-01-01

    Implicit and explicit knowledge of the second language (L2) are two central constructs in the field of second language acquisition (SLA). In recent years, there has been a renewed interest in obtaining valid and reliable measures of L2 learners' implicit and explicit knowledge (e.g., Bowles, 2011; R. Ellis, 2005). The purpose of the present study…

  20. An Attempt to Elaborate a Construct to Measure the Degree of Explicitness and Implicitness in ELT Materials

    ERIC Educational Resources Information Center

    Criado Sanchez, Raquel; Perez, Aquilino Sanchez; Gomez, Pascual Cantos

    2010-01-01

    The concepts of "explicit" and "implicit" (knowledge) are at the core of SLA studies. We take "explicit" as conscious and declarative (knowledge); "implicit" as unconscious, automatic and procedural (knowledge) (DeKeyser, 2003; R. Ellis, 2005a, 2005b, 2009; Hulstjin, 2005; Robinson, 1996; Schmidt, 1990, 1994). The importance of those concepts and…

  1. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  2. Loss-less propagation, elastic and inelastic interaction of electromagnetic soliton in an anisotropic ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.

    2017-10-01

    Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.

  3. Constructing an explicit AdS/CFT correspondence with Cartan geometry

    NASA Astrophysics Data System (ADS)

    Hazboun, Jeffrey S.

    2018-04-01

    An explicit AdS/CFT correspondence is shown for the Lie group SO (4 , 2). The Lie symmetry structures allow for the construction of two physical theories through the tools of Cartan geometry. One is a gravitational theory that has anti-de Sitter symmetry. The other is also a gravitational theory but is conformally symmetric and lives on 8-dimensional biconformal space. These "extra" four dimensions have the degrees of freedom used to construct a Yang-Mills theory. The two theories, based on AdS or conformal symmetry, have a natural correspondence in the context of their Lie algebras alone where neither SUSY, nor holography, is necessary.

  4. Orthogonal Polynomials on the Unit Circle with Fibonacci Verblunsky Coefficients, II. Applications

    NASA Astrophysics Data System (ADS)

    Damanik, David; Munger, Paul; Yessen, William N.

    2013-10-01

    We consider CMV matrices with Verblunsky coefficients determined in an appropriate way by the Fibonacci sequence and present two applications of the spectral theory of such matrices to problems in mathematical physics. In our first application we estimate the spreading rates of quantum walks on the line with time-independent coins following the Fibonacci sequence. The estimates we obtain are explicit in terms of the parameters of the system. In our second application, we establish a connection between the classical nearest neighbor Ising model on the one-dimensional lattice in the complex magnetic field regime, and CMV operators. In particular, given a sequence of nearest-neighbor interaction couplings, we construct a sequence of Verblunsky coefficients, such that the support of the Lee-Yang zeros of the partition function for the Ising model in the thermodynamic limit coincides with the essential spectrum of the CMV matrix with the constructed Verblunsky coefficients. Under certain technical conditions, we also show that the zeros distribution measure coincides with the density of states measure for the CMV matrix.

  5. CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL

    EPA Science Inventory

    We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...

  6. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  7. Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Demina, Maria V.; Kudryashov, Nikolay A.

    2011-03-01

    Meromorphic solutions of autonomous nonlinear ordinary differential equations are studied. An algorithm for constructing meromorphic solutions in explicit form is presented. General expressions for meromorphic solutions (including rational, periodic, elliptic) are found for a wide class of autonomous nonlinear ordinary differential equations.

  8. From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction

    NASA Astrophysics Data System (ADS)

    de Tilière, Béatrice

    2013-04-01

    Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.

  9. Z3 topological order in the face-centered-cubic quantum plaquette model

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep

    2018-04-01

    We examine the topological order in the resonating singlet valence plaquette (RSVP) phase of the hard-core quantum plaquette model (QPM) on the face centered cubic (FCC) lattice. To do this, we construct a Rohksar-Kivelson type Hamiltonian of local plaquette resonances. This model is shown to exhibit a Z3 topological order, which we show by identifying a Z3 topological constant (which leads to a 33-fold topological ground state degeneracy on the 3-torus) and topological pointlike charge and looplike magnetic excitations which obey Z3 statistics. We also consider an exactly solvable generalization of this model, which makes the geometrical origin of the Z3 order explicitly clear. For other models and lattices, such generalizations produce a wide variety of topological phases, some of which are novel fracton phases.

  10. HexSim - A general purpose framework for spatially-explicit, individual-based modeling

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications. This talk will focus on a subset of those ap...

  11. Radiation-MHD Simulations of Pillars and Globules in HII Regions

    NASA Astrophysics Data System (ADS)

    Mackey, J.

    2012-07-01

    Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.

  12. On the He-McKellar-Wilkens phase of an electric dipole

    NASA Astrophysics Data System (ADS)

    Rai, Yam P.; Rai, Dhurba

    2017-08-01

    The He-McKellar-Wilkens (HMW) phase of an electric dipole moving in a static magnetic field is derived by explicitly considering the interaction between the currents associated with the moving dipole and the magnetic vector potential. Conditions for the observation of the HMW phase in different field configurations are investigated. A practical setup is proposed that provides essentially a radial magnetic field with inverse radial dependence for the observation of the HMW phase with magnetic field alone. Possible magnetic field control of exciton current in an open ring setup is discussed.

  13. The construction of combinatorial manifolds with prescribed sets of links of vertices

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. A.

    2008-10-01

    To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation \\mathcal{L} is the main object of study in this paper. We pose an inversion problem for \\mathcal{L} and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin-Schwartz-Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of \\mathcal{L}. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of \\mathcal{L} after passing to a multiple set and adding several pairs of the form (Z,-Z), where -Z is the sphere Z with the orientation reversed. Given any singular simplicial cycle \\xi of a space X, this construction enables us to find explicitly a combinatorial manifold M and a map \\varphi\\colon M\\to X such that \\varphi_* \\lbrack M \\rbrack =r[\\xi] for some positive integer r. The construction is based on resolving singularities of \\xi. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.

  14. Conceptual Acrobatics: Talking about Assessment Standards in the Transparency Era

    ERIC Educational Resources Information Center

    Hudson, Jane; Bloxham, Sue; den Outer, Birgit; Price, Margaret

    2017-01-01

    Since their introduction in the 1990s, explicit standards documents have pervaded higher education assessment--success likely linked to their compatibility with constructive alignment and quality assurance regimes. Researchers, however, criticise that such documents are based on a misconception of standards as explicit and absolute, when in fact…

  15. Raising the Pedagogical Bar: Teachers' Co-Construction of Explicit Teaching

    ERIC Educational Resources Information Center

    O'Neill, Shirley; Geoghegan, Deborah; Petersen, Shauna

    2013-01-01

    Recent shifts in the conceptualization of effective literacy teaching have focused on the need for teachers to make teaching explicit (Edwards-Groves, 2010; Purcell-Gates, Duke, & Martineau, 2007; Rosenshine, 1986) or in Hattie's (2005) terms, learning "visible". Research has shown that the analysis of classroom interactive…

  16. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  17. Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2015-05-01

    We begin with a brief description of the role of the Nernst-Ettingshausen effect in the studies of the high-temperature superconductors and Dirac materials such as graphene. The theoretical analysis of the NE effect is involved because the standard Kubo formalism has to be modified by the presence of magnetization currents in order to satisfy the third law of thermodynamics. A new generation of the low-buckled Dirac materials is expected to have a strong spin Nernst effect that represents the spintronics analog of the NE effect. These Dirac materials can be considered as made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem the gap breaks a time-reversal symmetry and thus plays a role of an effective magnetic field. We explicitly demonstrate how the correct thermoelectric coefficient emerges both by the explicit calculation of the magnetization and by a formal cancelation in the modified Kubo formula. We conclude by showing that the nontrivial dependences of the spin Nersnt signal on the carrier concentration and electric field applied are expected in silicene and other low-buckled Dirac materials.

  18. Design and construction of the astronautics refrigerator magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresner, L.

    1994-05-01

    This document reports on the design, construction, and testing of a 7-Tesla, 4-in. bore superconducting magnet for use in the Astronautics Refrigerator Experiment. The magnet is a single-strand, layer-wound, potted solenoid wound with Formvar-insulated SSC strands. The magnet was constructed by American Magnetics, Inc. of Oak Ridge and has been installed in the Astronautics Refrigerator Experiment at the Astronautics Technology Center in Madison, Wisconsin.

  19. On the plethora of representations arising in noncommutative quantum mechanics and an explicit construction of noncommutative 4-tori

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. Hasibul Hassan

    2017-06-01

    We construct a 2-parameter family of unitarily equivalent irreducible representations of the triply extended group GNC of translations of R4 associated with a family of its 4-dimensional coadjoint orbits and show how a continuous 2-parameter family of gauge potentials emerges from these unitarily equivalent representations. We show that the Landau and the symmetric gauges of noncommutative quantum mechanics, widely used in the literature, in fact, belong to this 2-parameter family of gauges. We also provide an explicit construction of noncommutative 4-tori and compute the associated star products using the unitary dual of the group GNC that was studied at length in an earlier paper [S. H. H. Chowdhury and S. T. Ali, J. Phys. A: Math. Theor. 47, 085301 (2014)]. Finally, we construct projective modules over such noncommutative 4-tori and compute constant curvature connections on them using Rieffel's method.

  20. On pseudo-hyperkähler prepotentials

    NASA Astrophysics Data System (ADS)

    Devchand, Chandrashekar; Spiro, Andrea

    2016-10-01

    An explicit surjection from a set of (locally defined) unconstrained holomorphic functions on a certain submanifold of Sp1(ℂ) × ℂ4n onto the set HKp,q of local isometry classes of real analytic pseudo-hyperkähler metrics of signature (4p, 4q) in dimension 4n is constructed. The holomorphic functions, called prepotentials, are analogues of Kähler potentials for Kähler metrics and provide a complete parameterisation of HKp,q. In particular, there exists a bijection between HKp,q and the set of equivalence classes of prepotentials. This affords the explicit construction of pseudo-hyperkähler metrics from specified prepotentials. The construction generalises one due to Galperin, Ivanov, Ogievetsky, and Sokatchev. Their work is given a coordinate-free formulation and complete, self-contained proofs are provided. The Appendix provides a vital tool for this construction: a reformulation of real analytic G-structures in terms of holomorphic frame fields on complex manifolds.

  1. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  2. Essential elements of the nursing practice environment in nursing homes: Psychometric evaluation.

    PubMed

    de Brouwer, Brigitte Johanna Maria; Kaljouw, Marian J; Schoonhoven, Lisette; van Achterberg, Theo

    2017-06-01

    To develop and psychometrically test the Essentials of Magnetism II in nursing homes. Increasing numbers and complex needs of older people in nursing homes strain the nursing workforce. Fewer adequately trained staff and increased care complexity raise concerns about declining quality. Nurses' practice environment has been reported to affect quality of care and productivity. The Essentials of Magnetism II © measures processes and relationships of practice environments that contribute to productivity and quality of care and can therefore be useful in identifying processes requiring change to pursue excellent practice environments. However, this instrument was not explicitly evaluated for its use in nursing home settings so far. In a preparatory phase, a cross-sectional survey study focused on face validity of the essentials of magnetism in nursing homes. A second cross-sectional survey design was then used to further test the instrument's validity and reliability. Psychometric testing included evaluation of content and construct validity, and reliability. Nurses (N = 456) working at 44 units of three nursing homes were included. Respondent acceptance, relevance and clarity were adequate. Five of the eight subscales and 54 of the 58 items did meet preset psychometric criteria. All essentials of magnetism are considered relevant for nursing homes. The subscales Adequacy of Staffing, Clinically Competent Peers, Patient Centered Culture, Autonomy and Nurse Manager Support can be used in nursing homes without problems. The other subscales cannot be directly applied to this setting. The valid subscales of the Essentials of Magnetism II instrument can be used to design excellent nursing practice environments that support nurses' delivery of care. Before using the entire instrument, however, the other subscales have to be improved. © 2016 John Wiley & Sons Ltd.

  3. Gravitational Radiation of a Vibrating Physical String as a Model for the Gravitational Emission of an Astrophysical Plasma

    NASA Astrophysics Data System (ADS)

    Lewis, Ray A.; Modanese, Giovanni

    Vibrating media offer an important testing ground for reconciling conflicts between General Relativity, Quantum Mechanics and other branches of physics. For sources like a Weber bar, the standard covariant formalism for elastic bodies can be applied. The vibrating string, however, is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized energy-momentum tensor. Renormalization (in a classical sense) is necessary to take into account the effect of external constraints, which affect the emission considerably. Our computation also relaxes usual simplifying assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and absence of internal interference. In a further step towards unification, the method is then adapted to give the radiation field of a transversal Alfven wave in a rarefied astrophysical plasma, where the tension is produced by an external static magnetic field.

  4. Devil's staircases, quantum dimer models, and stripe formation in strong coupling models of quantum frustration.

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Papanikolaou, Stefanos; Fradkin, Eduardo

    2007-03-01

    We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries, and is generic in that it does not involve the fine tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries. Please see cond-mat/0611390 for more details.

  5. Analysis of current distribution in a large superconductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa

    An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.

  6. Shock-drift particle acceleration in superluminal shocks - A model for hot spots in extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Kirk, John G.

    1990-01-01

    Shock-drift acceleration at relativistic shock fronts is investigated using a fully relativistic treatment of both the microphysics of the shock-drift acceleration and the macrophysics of the shock front. By explicitly tracing particle trajectories across shocks, it is shown how the adiabatic invariance of a particle's magnetic moment breaks down as the upstream shock speed becomes relativistic, and is recovered at subrelativistic velocities. These calculations enable the mean increase in energy of a particle which encounters the shock with a given pitch angle to be calculated. The results are used to construct the downstream electron distribution function in terms of the incident distribution function and the bulk properties of the shock. The synchrotron emissivity of the transmitted distribution is calculated, and it is demonstrated that amplification factors are easily obtained which are more than adequate to explain the observed constrasts in surface brightness between jets and hot spots.

  7. Quantum spin dynamics with pairwise-tunable, long-range interactions

    PubMed Central

    Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.

    2016-01-01

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin–spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom–atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom–atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329

  8. "Building" 3D visualization skills in mineralogy

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Ajoku, C. N.; McCarthy, B. S.; Lambart, S.

    2016-12-01

    Studying mineralogy is fundamental for understanding the composition and physical behavior of natural materials in terrestrial and extraterrestrial environments. However, some students struggle and ultimately get discouraged with mineralogy course material because they lack well-developed spatial visualization skills that are needed to deal with three-dimensional (3D) objects, such as crystal forms or atomic-scale structures, typically represented in two-dimensional (2D) space. Fortunately, spatial visualization can improve with practice. Our presentation demonstrates a set of experiential learning activities designed to support the development and improvement of spatial visualization skills in mineralogy using commercially available magnetic building tiles, rods, and spheres. These instructional support activities guide students in the creation of 3D models that replicate macroscopic crystal forms and atomic-scale structures in a low-pressure learning environment and at low cost. Students physically manipulate square and triangularly shaped magnetic tiles to build 3D open and closed crystal forms (platonic solids, prisms, pyramids and pinacoids). Prismatic shapes with different closing forms are used to demonstrate the relationship between crystal faces and Miller Indices. Silica tetrahedra and octahedra are constructed out of magnetic rods (bonds) and spheres (oxygen atoms) to illustrate polymerization, connectivity, and the consequences for mineral formulae. In another activity, students practice the identification of symmetry elements and plane lattice types by laying magnetic rods and spheres over wallpaper patterns. The spatial visualization skills developed and improved through our experiential learning activities are critical to the study of mineralogy and many other geology sub-disciplines. We will also present pre- and post- activity assessments that are aligned with explicit learning outcomes.

  9. All (4,1): Sigma models with (4 , q) off-shell supersymmetry

    NASA Astrophysics Data System (ADS)

    Hull, Chris; Lindström, Ulf

    2017-03-01

    Off-shell (4 , q) supermultiplets in 2-dimensions are constructed for q = 1 , 2 , 4. These are used to construct sigma models whose target spaces are hyperkähler with torsion. The off-shell supersymmetry implies the three complex structures are simultaneously integrable and allows us to construct actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

  10. Note on use of slope diffraction coefficients for aperture antennas on finite ground planes

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, F. B.

    1995-01-01

    The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.

  11. Two charges on a plane in a magnetic field: hidden algebra, (particular) integrability, polynomial eigenfunctions

    NASA Astrophysics Data System (ADS)

    Turbiner, A. V.; Escobar-Ruiz, M. A.

    2013-07-01

    The quantum mechanics of two Coulomb charges on a plane (e1, m1) and (e2, m2) subject to a constant magnetic field B perpendicular to the plane is considered. Four integrals of motion are explicitly indicated. It is shown that for two physically important particular cases, namely that of two particles of equal Larmor frequencies, {e_c} \\propto \\frac{e_1}{m_1}-\\frac{e_2}{m_2}=0 (e.g. two electrons) and one of a neutral system (e.g. the electron-positron pair, hydrogen atom) at rest (the center-of-mass momentum is zero) some outstanding properties occur. They are the most visible in double polar coordinates in CMS (R, ϕ) and relative (ρ, φ) coordinate systems: (i) eigenfunctions are factorizable, all factors except one with the explicit ρ-dependence are found analytically, they have definite relative angular momentum, (ii) dynamics in the ρ-direction is the same for both systems, it corresponds to a funnel-type potential and it has hidden sl(2) algebra, at some discrete values of dimensionless magnetic fields b ⩽ 1, (iii) particular integral(s) occur, (iv) the hidden sl(2) algebra emerges in finite-dimensional representation, thus, the system becomes quasi-exactly-solvable and (v) a finite number of polynomial eigenfunctions in ρ appear. Nine families of eigenfunctions are presented explicitly.

  12. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  13. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  14. Single- or multi-flavor Kondo effect in graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal

    2010-06-01

    Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.

  15. Schwarzschild fuzzball and explicitly unitary Hawking radiation

    NASA Astrophysics Data System (ADS)

    Zeng, Ding-fang

    2018-05-01

    We provide a fuzzball picture for Schwarzschild black holes, in which matters and energy consisting the hole are not positioned on the central point exclusively but oscillate around there in a serial of eigen-modes, each of which features a special level of binding degrees and are quantum mechanically possible to be measured outside the horizon. By listing these modes explicitly for holes as large as 6Mpl, we find that their number increases exponentially with the area. Basing on these results, we construct a simple but explicitly unitary formulation of Hawking radiations.

  16. Knotted fields and explicit fibrations for lemniscate knots

    NASA Astrophysics Data System (ADS)

    Bode, B.; Dennis, M. R.; Foster, D.; King, R. P.

    2017-06-01

    We give an explicit construction of complex maps whose nodal lines have the form of lemniscate knots. We review the properties of lemniscate knots, defined as closures of braids where all strands follow the same transverse (1, ℓ) Lissajous figure, and are therefore a subfamily of spiral knots generalizing the torus knots. We then prove that such maps exist and are in fact fibrations with appropriate choices of parameters. We describe how this may be useful in physics for creating knotted fields, in quantum mechanics, optics and generalizing to rational maps with application to the Skyrme-Faddeev model. We also prove how this construction extends to maps with weakly isolated singularities.

  17. Construction of optimal resources for concatenated quantum protocols

    NASA Astrophysics Data System (ADS)

    Pirker, A.; Wallnöfer, J.; Briegel, H. J.; Dür, W.

    2017-06-01

    We consider the explicit construction of resource states for measurement-based quantum information processing. We concentrate on special-purpose resource states that are capable to perform a certain operation or task, where we consider unitary Clifford circuits as well as non-trace-preserving completely positive maps, more specifically probabilistic operations including Clifford operations and Pauli measurements. We concentrate on 1 →m and m →1 operations, i.e., operations that map one input qubit to m output qubits or vice versa. Examples of such operations include encoding and decoding in quantum error correction, entanglement purification, or entanglement swapping. We provide a general framework to construct optimal resource states for complex tasks that are combinations of these elementary building blocks. All resource states only contain input and output qubits, and are hence of minimal size. We obtain a stabilizer description of the resulting resource states, which we also translate into a circuit pattern to experimentally generate these states. In particular, we derive recurrence relations at the level of stabilizers as key analytical tool to generate explicit (graph) descriptions of families of resource states. This allows us to explicitly construct resource states for encoding, decoding, and syndrome readout for concatenated quantum error correction codes, code switchers, multiple rounds of entanglement purification, quantum repeaters, and combinations thereof (such as resource states for entanglement purification of encoded states).

  18. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes a useful tool for quantifying the force-distance relationship on the premise of polar discs. Given these insights, it may now be possible to address the original motivating problem of the behavior of real dental magnets. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  20. Pulse propagation, dispersion, and energy in magnetic materials.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Bertolotti, Mario

    2005-12-01

    We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single interface, and find that in addition to the now-established negative refraction process an energy exchange occurs between the electric and magnetic fields as the pulse traverses the boundary.

  1. Venus' nighttime horizontal plasma flow, 'magnetic congestion', and ionospheric hole production

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Mayr, H. G.; Curtis, S. A.; Taylor, H. A., Jr.

    1983-01-01

    A simple rectilinear, two-dimensional MHD model is used to investigate the effects of field-aligned plasma loss and cooling on a dense plasma convecting across a weak magnetic field, in order to illumine the Venus nighttime phenomena of horizontal plasma flow, magnetic congestion and ionospheric hole production. By parameterizing field-aligned variations and explicitly solving for cross magnetic field variations, it is shown that the abrupt horizontal enhancements of the vertical magnetic field, as well as sudden decreases of the plasma density to very low values (which are characteristic of ionospheric holes), can be produced in the presence of field-aligned losses.

  2. Nonadiabatic Berry phase in nanocrystalline magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skomski, R.; Sellmyer, D. J.

    2016-12-20

    In this study, it is investigated how a Berry phase is created in polycrystalline nanomagnets and how the phase translates into an emergent magnetic field and into a topological Hall-effect contribution. The analysis starts directly from the spin of the conduction electrons and does not involve any adiabatic Hamiltonian. Completely random spin alignment in the nanocrystallites does not lead to a nonzero emergent field, but a modulation of the local magnetization does. As an explicit example, we consider a wire with a modulated cone angle.

  3. Moving magnets in a micromagnetic finite-difference framework

    NASA Astrophysics Data System (ADS)

    Rissanen, Ilari; Laurson, Lasse

    2018-05-01

    We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.

  4. sl(1|2) Super-Toda Fields

    NASA Astrophysics Data System (ADS)

    Yang, Zhan-Ying; Xue, Pan-Pan; Zhao, Liu; Shi, Kang-Jie

    2008-11-01

    Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1.

  5. The Explicit and Implicit Organizational Structures for the Collective Bargaining Process under the California Legislation.

    ERIC Educational Resources Information Center

    Criswell, Larry W.

    Douglas Mitchell suggests that statute construction issues arise from the interaction between the realities of power resources and the goal of giving each interest group sufficient power to protect and pursue its own interests while preserving the rights or interests of others. California SB 160 explicitly limits the scope of bargaining to wages,…

  6. Explicit Knowledge and Processes from a Usage-Based Perspective: The Developmental Trajectory of an Instructed L2 Learner

    ERIC Educational Resources Information Center

    Roehr-Brackin, Karen

    2014-01-01

    This article considers explicit knowledge and processes in second language (L2) learning from a usage-based theoretical perspective. It reports on the long-term development of a single instructed adult learner's use of two L2 constructions, the German Perfekt of "gehen" ("go," "walk") and "fahren"…

  7. Adolescents' Use of Sexually Explicit Internet Material and Their Sexual Attitudes and Behavior: Parallel Development and Directional Effects

    ERIC Educational Resources Information Center

    Doornwaard, Suzan M.; Bickham, David S.; Rich, Michael; ter Bogt, Tom F. M.; van den Eijnden, Regina J. J. M.

    2015-01-01

    Although research has repeatedly demonstrated that adolescents' use of sexually explicit Internet material (SEIM) is related to their endorsement of permissive sexual attitudes and their experience with sexual behavior, it is not clear how linkages between these constructs unfold over time. This study combined 2 types of longitudinal modeling,…

  8. Front-form spinors in the Weinberg-Soper formalism and generalized Melosh transformations for any spin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, D.V.; Sawicki, M.

    Using the Weinberg-Soper formalism we construct the front-form ([ital j],0)[direct sum](0,[ital j]) spinors. Explicit expressions for the generalized Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces the spin-1/2 front-form results of Melosh, Lepage and Brodsky, and Dziembowski.

  9. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  10. Noncollinear magnetic order induced by Dzyaloshinskii-Moriya interaction in oxygen-assisted Pt nanojunctions

    NASA Astrophysics Data System (ADS)

    Yuan, J. R.; Yan, X. H.; Xiao, Y.; Guo, Y. D.; Dai, C. J.

    2016-11-01

    Motivated by recent measurement of the magnetism and conductance of the oxygen-assisted Pt nanojunctions, we performed first principle calculations of the magnetic order and electronic transport by explicitly including fully relativistic effects. Our results show that the spin alignment is a cycloidal spiral feature attributed to the Dzyaloshinskii-Moriya interaction, which indicates that the observed magnetism in experiments is of noncollinear nature. The oxygen concentration is the responsible for the switching of the rotational sense of the spiral magnetic order found in oxygen-assisted Pt nanojunctions. Furthermore, the magnetic moments and magnetoresistances vary with oxygen concentration in the chain, which can be used to tune the magnetism and magnetotransport. The oxygen-assisted Pt nanojunctions offer a possibility for spintronic applications in magnetic memory and quantum devices.

  11. Classical impurities and boundary Majorana zero modes in quantum chains

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Nersesyan, Alexander A.

    2016-09-01

    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  12. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  13. Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments

    PubMed Central

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333

  14. Ubiquitous mobile knowledge construction in collaborative learning environments.

    PubMed

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).

  15. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  16. Calabi-Yau structures on categories of matrix factorizations

    NASA Astrophysics Data System (ADS)

    Shklyarov, Dmytro

    2017-09-01

    Using tools of complex geometry, we construct explicit proper Calabi-Yau structures, that is, non-degenerate cyclic cocycles on differential graded categories of matrix factorizations of regular functions with isolated critical points. The formulas involve the Kapustin-Li trace and its higher corrections. From the physics perspective, our result yields explicit 'off-shell' models for categories of topological D-branes in B-twisted Landau-Ginzburg models.

  17. Complex eigenvalue analysis of rotating structures

    NASA Technical Reports Server (NTRS)

    Patel, J. S.; Seltzer, S. M.

    1972-01-01

    A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.

  18. An Explicit Algorithm for the Simulation of Fluid Flow through Porous Media

    NASA Astrophysics Data System (ADS)

    Trapeznikova, Marina; Churbanova, Natalia; Lyupa, Anastasiya

    2018-02-01

    The work deals with the development of an original mathematical model of porous medium flow constructed by analogy with the quasigasdynamic system of equations and allowing implementation via explicit numerical methods. The model is generalized to the case of multiphase multicomponent fluid and takes into account possible heat sources. The proposed approach is verified by a number of test predictions.

  19. Transport coefficients for the shear dynamo problem at small Reynolds numbers.

    PubMed

    Singh, Nishant K; Sridhar, S

    2011-05-01

    We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients α(il) and η(il) are derived. We prove that when the velocity field is nonhelical, the transport coefficient α(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X(3) and time τ; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Rädler, M. Rheinhardt, and P. J. Käpylä [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor η(il)(τ). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter. © 2011 American Physical Society

  20. Transport coefficients for the shear dynamo problem at small Reynolds numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nishant K.; Joint Astronomy Programme, Indian Institute of Science, Bangalore 560 012; Sridhar, S.

    2011-05-15

    We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients {alpha}{sub il} and {eta}{sub iml} are derived. We prove that when the velocity field is nonhelical, the transport coefficient {alpha}{sub il} vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynoldsmore » number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X{sub 3} and time {tau}; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Raedler, M. Rheinhardt, and P. J. Kaepylae [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor {eta}{sub ij}({tau}). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.« less

  1. Overstability and cooling in sunspots

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1976-01-01

    The role played by overstable Alfven modes in magnetic structures such as sunspots is considered in detail for a column of magnetic field. It is demonstrated explicitly that overstable Alfven waves cool the interior of the magnetic column. It is suggested that these waves account for the cooling in sunspot umbrae, and therefore, in concurrence with Parker, we conclude that a sunspot is a region of enhanced heat transport. The calculations indicate that sunspots have small regions at normal photospheric brightness, and we tentatively suggest that these regions are umbral dots. We also suggest that cooling by overstable Alfven waves may explain the existence of the intense small magnetic flux tubes that constitute the general solar magnetic field.

  2. The Construction of Visual-spatial Situation Models in Children's Reading and Their Relation to Reading Comprehension

    PubMed Central

    Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.

    2014-01-01

    Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376

  3. The construction of meaning.

    PubMed

    Kintsch, Walter; Mangalath, Praful

    2011-04-01

    We argue that word meanings are not stored in a mental lexicon but are generated in the context of working memory from long-term memory traces that record our experience with words. Current statistical models of semantics, such as latent semantic analysis and the Topic model, describe what is stored in long-term memory. The CI-2 model describes how this information is used to construct sentence meanings. This model is a dual-memory model, in that it distinguishes between a gist level and an explicit level. It also incorporates syntactic information about how words are used, derived from dependency grammar. The construction of meaning is conceptualized as feature sampling from the explicit memory traces, with the constraint that the sampling must be contextually relevant both semantically and syntactically. Semantic relevance is achieved by sampling topically relevant features; local syntactic constraints as expressed by dependency relations ensure syntactic relevance. Copyright © 2010 Cognitive Science Society, Inc.

  4. Explicit and Implicit Emotion Regulation: A Dual-Process Framework

    PubMed Central

    Gyurak, Anett; Gross, James J.; Etkin, Amit

    2012-01-01

    It is widely acknowledged that emotions can be regulated in an astonishing variety of ways. Most research to date has focused on explicit (effortful) forms of emotion regulation. However, there is growing research interest in implicit (automatic) forms of emotion regulation. To organize emerging findings, we present a dual-process framework that integrates explicit and implicit forms of emotion regulation, and argue that both forms of regulation are necessary for well-being. In the first section of this review, we provide a broad overview of the construct of emotion regulation, with an emphasis on explicit and implicit processes. In the second section, we focus on explicit emotion regulation, considering both neural mechanisms that are associated with these processes and their experiential and physiological consequences. In the third section, we turn to several forms of implicit emotion regulation, and integrate the burgeoning literature in this area. We conclude by outlining open questions and areas for future research. PMID:21432682

  5. Explicit construction of BRST charge of noncommutative D-brane system

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae

    2006-01-01

    In the BRST BFV scheme for noncommutative D-branes with constant NS B-field, introducing ghost degrees of freedom we construct the gauge-fixed Hamiltonian and corresponding effective Lagrangian invariant under nilpotent BRST charge. It is also shown that the presence of auxiliary variables introduced via the improved Dirac formalism plays a crucial role in the construction of the BRST invariant Lagrangian.

  6. The Imperative in Chinese.

    ERIC Educational Resources Information Center

    Hashimoto, Anne Yue

    A preliminary study of the syntactic characteristics of the imperative construction in modern Chinese is presented. The term "imperative" is used to refer to the type of syntactic construction which is marked by an implicit or explicit second person subject, and which expresses a direct command. Indirect or implied commands expressed by a…

  7. Root mean square fluctuation of a weak magnetic field in an infinite medium of homogeneous stationary turbulence.

    NASA Technical Reports Server (NTRS)

    Low, B.-C.

    1972-01-01

    The generation of a magnetic field by statistically homogeneous, stationary velocity turbulence is considered. The generation of rms magnetic fluctuation is explicitly demonstrated in the limit of short turbulence correlation time. It is shown that the fluctuation associated with a growing or stationary mean field grows with time such that the ratio of the fluctuation and the square of the mean field tends to a steady value, which is a monotonically decreasing function of the growth rate of the mean field.

  8. General methods for determining the linear stability of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.

    1988-01-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.

  9. General methods for determining the linear stability of coronal magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, I.J.D.; Sneyd, A.D.; McClymont, A.N.

    1988-12-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak. 19 references.

  10. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.

    PubMed

    Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G

    2012-06-13

    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.

  11. Supersymmetric quantum mechanics of the flux tube

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2016-12-01

    The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.

  12. Nucleus Accumbens Mediates Relative Motivation for Rewards in the Absence of Choice

    PubMed Central

    Clithero, John A.; Reeck, Crystal; Carter, R. McKell; Smith, David V.; Huettel, Scott A.

    2011-01-01

    To dissociate a choice from its antecedent neural states, motivation associated with the expected outcome must be captured in the absence of choice. Yet, the neural mechanisms that mediate behavioral idiosyncrasies in motivation, particularly with regard to complex economic preferences, are rarely examined in situations without overt decisions. We employed functional magnetic resonance imaging in a large sample of participants while they anticipated earning rewards from two different modalities: monetary and candy rewards. An index for relative motivation toward different reward types was constructed using reaction times to the target for earning rewards. Activation in the nucleus accumbens (NAcc) and anterior insula (aINS) predicted individual variation in relative motivation between our reward modalities. NAcc activation, however, mediated the effects of aINS, indicating the NAcc is the likely source of this relative weighting. These results demonstrate that neural idiosyncrasies in reward efficacy exist even in the absence of explicit choices, and extend the role of NAcc as a critical brain region for such choice-free motivation. PMID:21941472

  13. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    NASA Astrophysics Data System (ADS)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  14. Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model

    NASA Astrophysics Data System (ADS)

    Chu, Kit-fai; Huang, Peng-hui; Liu, Hui

    2018-05-01

    The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.

  15. The Auto-Bäcklund transformations for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet

    2017-01-01

    In this work, the homogeneous balance method is used to construct Auto-Bäcklund transformation of the Boiti-Leon-Manna-Pempinelli (BLMP) equation. With the aid of the transformations founded in this paper and Maple packet programme, abundant exact and explicit solutions to the BLMP equation are constructed.

  16. Interactional Competence: Challenges for Validity.

    ERIC Educational Resources Information Center

    Young, Richard F.

    One of the ways in which language testing interfaces with applied linguistics is in the definition and validation of the constructs that underlie language tests. When language testers and score users interpret scores on a test, they do so by implicit and explicit reference to the construct on which the test is based. Equally, when applied to new…

  17. Spectral distances on the doubled Moyal plane using Dirac eigenspinors

    NASA Astrophysics Data System (ADS)

    Kumar, Kaushlendra; Chakraborty, Biswajit

    2018-04-01

    We present here a novel method for computing spectral distances in the doubled Moyal plane in a noncommutative geometrical framework using Dirac eigenspinors, while solving the Lipschitz ball condition explicitly through matrices. The standard results of longitudinal, transverse, and hypotenuse distances between different pairs of pure states have been computed and the Pythagorean equality between them has been reproduced. The issue of the nonunital nature of the Moyal plane algebra is taken care of through a sequence of projection operators constructed from Dirac eigenspinors, which plays a crucial role throughout this paper. At the end, a toy model for a "Higgs field" has been constructed by fluctuating the Dirac operator and the variation on the transverse distance has been demonstrated, through an explicit computation.

  18. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less

  19. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-06-13

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less

  20. Construction and performance of the magnetic bunch compressor for the THz facility at Chiang Mai University

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Kusoljariyakul, K.; Rimjaem, S.; Kangrang, N.; Wichaisirimongkol, P.; Thamboon, P.; Rhodes, M. W.; Thongbai, C.

    2011-05-01

    The Plasma and Beam Physics Research Facility at Chiang Mai University has established a THz facility to focus on the study of ultra-short electron pulses. Short electron bunches can be generated from a system that consists of a radio-frequency (RF) gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator as a post-acceleration section. The alpha magnet is a conventional and simple instrument for low-energy electron bunch compression. With the alpha magnet constructed in-house, several hundred femtosecond electron bunches for THz radiation production can be generated from the thermionic RF gun. The construction and performance of the alpha magnet, as well as some experimental results, are presented in this paper.

  1. Operational Approach to Generalized Coherent States

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    Generalized coherent states for general potentials, constructed through a controlling mechanism, can also be obtained applying on a reference state suitable operators. An explicit example is supplied.

  2. Shaping magnetic fields to direct therapy to ears and eyes.

    PubMed

    Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A

    2014-07-11

    Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

  3. Single-Particle Quantum Dynamics in a Magnetic Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  4. A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Guan, Liang; Xue, Bo

    A hierarchy of generalized Jaulent-Miodek (JM) equations related to a new spectral problem with energy-dependent potentials is proposed. Depending on the Lax matrix and elliptic variables, the generalized JM hierarchy is decomposed into two systems of solvable ordinary differential equations. Explicit theta function representations of the meromorphic function and the Baker-Akhiezer function are constructed, the solutions of the hierarchy are obtained based on the theory of algebraic curves.

  5. Eigenfunctions and heat kernels of super Maass Laplacians on the super Poincaré upper half-plane

    NASA Astrophysics Data System (ADS)

    Oshima, Kazuto

    1992-03-01

    Heat kernels of ``super Maass Laplacians'' are explicitly constructed on super Poincaré upper half-plane by a serious treatment of a complete set of eigenfunctions. By component decomposition an explicit treatment can be done for arbitrary weight and a knowledge of classical Maass Laplacians becomes helpful. The result coincides with that of Aoki [Commun. Math. Phys. 117, 405 (1988)] which was obtained by solving differential equations.

  6. Traveling waves in a spring-block chain sliding down a slope

    NASA Astrophysics Data System (ADS)

    Morales, J. E.; James, G.; Tonnelier, A.

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  7. Traveling waves in a spring-block chain sliding down a slope.

    PubMed

    Morales, J E; James, G; Tonnelier, A

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  8. Two-level schemes for the advection equation

    NASA Astrophysics Data System (ADS)

    Vabishchevich, Petr N.

    2018-06-01

    The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.

  9. Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness.

    PubMed

    Creemers, Daan H M; Scholte, Ron H J; Engels, Rutger C M E; Prinstein, Mitchell J; Wiers, Reinout W

    2012-03-01

    The aim of the present study was to examine whether explicit and implicit self-esteem, the interaction between these two constructs, and their discrepancy are associated with depressive symptoms, suicidal ideation, and loneliness. Participants were 95 young female adults (M = 21.2 years, SD = 1.88) enrolled in higher education. We administered the Name Letter Task to measure implicit self-esteem, and the Rosenberg self-esteem scale to assess explicit self-esteem. The results indicated that explicit but not implicit self-esteem was negatively associated with depressive symptoms, suicidal ideation, and loneliness. The interaction of implicit and explicit self-esteem was associated with suicidal ideation, indicating that participants with high implicit self-esteem combined with a low explicit self-esteem showed more suicidal ideation. Furthermore, the size of the discrepancy between implicit and explicit self-esteem was positively associated with depressive symptoms, suicidal ideation, and loneliness. In addition, results showed that the direction of the discrepancy is an important: damaged self-esteem (high implicit self-esteem combined with low explicit self-esteem) was consistently associated with increased levels of depressive symptoms, suicidal ideation, and loneliness, while defensive or fragile self-esteem (high explicit and low implicit self-esteem) was not. Together, these findings provide new insights into the relationship of implicit and explicit self-esteem with depressive symptoms, suicidal ideation, and loneliness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Spectroscopic properties of vitamin E models in solution

    NASA Astrophysics Data System (ADS)

    Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.

    2015-05-01

    We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.

  11. Grammatical Constructions in Typical Developing Children: Effects of Explicit Reinforcement, Automatic Reinforcement and Parity

    ERIC Educational Resources Information Center

    Ostvik, Leni; Eikeseth, Svein; Klintwall, Lars

    2012-01-01

    This study replicated and extended Wright (2006) and Whitehurst, Ironsmith, and Goldfein (1974) by examining whether preschool aged children would increase their use of passive grammatical voice rather than using the more age-appropriate active grammatical construction when the former was modeled by an adult. Results showed that 5 of the 6…

  12. Construction of a Conceptualization of Personal Knowledge within a Knowledge Management Perspective Using Grounded Theory Methodology

    ERIC Educational Resources Information Center

    Straw, Eric M.

    2013-01-01

    The current research used grounded theory methodology (GTM) to construct a conceptualization of personal knowledge within a knowledge management (KM) perspective. The need for the current research was based on the use of just two categories of knowledge, explicit and tacit, within KM literature to explain diverse characteristics of personal…

  13. Attentional Processing of Input in Explicit and Implicit Conditions: An Eye-Tracking Study

    ERIC Educational Resources Information Center

    Indrarathne, Bimali; Kormos, Judit

    2017-01-01

    In this study we examined language learners' attentional processing of a target syntactic construction in written L2 input in different input conditions, the change in learners' knowledge of the targeted construction in these conditions, and the relationship between the change in knowledge and attentional processing. One hundred L2 learners of…

  14. Personal construct psychology as a constructivist approach to learning

    NASA Astrophysics Data System (ADS)

    Fetherston, Tony

    1994-12-01

    This paper proposes that Kelly's Personal Construct Psychology deserves examination as a constructivist basis for science teaching and learning. It argues that because of the explicit nature of the psychology, the clear definition of learning and meaning and the integration of affective, psychomotor and cognitive dimensions of learning, the psychology has much to offer science education.

  15. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factorsmore » from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.« less

  16. Magnetic Nulls and Super-Radial Expansion in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Gibson, Sarah E.; Dalmasse, Kevin; Rachmeler, Laurel A.; De Rosa, Marc L.; Tomczyk, Steven; De Toma, Giuliana; Burkepile, Joan; Galloy, Michael

    2017-01-01

    Magnetic fields in the Sun's outer atmosphere, the corona, control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity.CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  17. J dependence in the LSDA+U treatment of noncollinear magnets

    NASA Astrophysics Data System (ADS)

    Bousquet, Eric; Spaldin, Nicola

    2010-12-01

    We re-examine the commonly used density-functional theory plus Hubbard U (DFT+U) method for the case of noncollinear magnets. While many studies neglect to explicitly include the exchange-correction parameter J , or consider its exact value to be unimportant, here we show that in the case of noncollinear magnetism calculations the J parameter can strongly affect the magnetic ground state. We illustrate the strong J dependence of magnetic canting and magnetocrystalline anisotropy by calculating trends in the magnetic lithium orthophosphate family LiMPO4 ( M=Fe and Ni) and difluorite family MF2 ( M=Mn , Fe, Co, and Ni). Our results can be readily understood by expanding the usual DFT+U equations within the spinor scheme, in which the J parameter acts directly on the off-diagonal components which determine the spin canting.

  18. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2001-06-01

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.

  19. Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs. explicit processing of individual repeated search displays

    PubMed Central

    Geyer, Thomas; Baumgartner, Florian; Müller, Hermann J.; Pollmann, Stefan

    2012-01-01

    Using visual search, functional magnetic resonance imaging (fMRI) and patient studies have demonstrated that medial temporal lobe (MTL) structures differentiate repeated from novel displays—even when observers are unaware of display repetitions. This suggests a role for MTL in both explicit and, importantly, implicit learning of repeated sensory information (Greene et al., 2007). However, recent behavioral studies suggest, by examining visual search and recognition performance concurrently, that observers have explicit knowledge of at least some of the repeated displays (Geyer et al., 2010). The aim of the present fMRI study was thus to contribute new evidence regarding the contribution of MTL structures to explicit vs. implicit learning in visual search. It was found that MTL activation was increased for explicit and, respectively, decreased for implicit relative to baseline displays. These activation differences were most pronounced in left anterior parahippocampal cortex (aPHC), especially when observers were highly trained on the repeated displays. The data are taken to suggest that explicit and implicit memory processes are linked within MTL structures, but expressed via functionally separable mechanisms (repetition-enhancement vs. -suppression). They further show that repetition effects in visual search would have to be investigated at the display level. PMID:23060776

  20. Symbols on Formal Groups

    NASA Astrophysics Data System (ADS)

    Vostokov, S. V.

    1982-04-01

    The theory of a continuous Steinberg symbol in a local field is generalized to formal commutative groups. For Lubin-Tate groups, a universal symbol is constructed in explicit form, and it is shown that the module of values of an arbitrary symbol imbeds into the group of points of the formal group. By means of this theory of symbols a new approach is given to obtaining an explicit form for the Hilbert norm residue symbol on Lubin-Tate formal groups. Bibliography: 10 titles.

  1. Solitons in two attractive semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Vroumsia, David; Mibaile, Justin; Gambo, Betchewe; Doka, Yamigno Serge; Kofane, Timoleon Crepin

    2018-02-01

    In this paper, by using two semiconductor nanowires attracted to each other by means of Lorentz force, we construct through similarity transformations, explicit solutions to the coupled nonlinear Schrodinger equations (CNSE) with potentials as a function of time and spatial coordinates. We find explicit solutions of electrons and holes such as periodic, bright and dark solitons. We also study the instability of the modulation (MI) of (CNSE) and note that the velocity of the electrons influences the gain MI spectrum.

  2. Higher-order hybrid implicit/explicit FDTD time-stepping

    NASA Astrophysics Data System (ADS)

    Tierens, W.

    2016-12-01

    Both partially implicit FDTD methods, and symplectic FDTD methods of high temporal accuracy (3rd or 4th order), are well documented in the literature. In this paper we combine them: we construct a conservative FDTD method which is fourth order accurate in time and is partially implicit. We show that the stability condition for this method depends exclusively on the explicit part, which makes it suitable for use in e.g. modelling wave propagation in plasmas.

  3. Communication: A new class of non-empirical explicit density functionals on the third rung of Jacob's ladder

    NASA Astrophysics Data System (ADS)

    de Silva, Piotr; Corminboeuf, Clémence

    2015-09-01

    We construct an orbital-free non-empirical meta-generalized gradient approximation (GGA) functional, which depends explicitly on density through the density overlap regions indicator [P. de Silva and C. Corminboeuf, J. Chem. Theory Comput. 10, 3745 (2014)]. The functional does not depend on either the kinetic energy density or the density Laplacian; therefore, it opens a new class of meta-GGA functionals. By construction, our meta-GGA yields exact exchange and correlation energy for the hydrogen atom and recovers the second order gradient expansion for exchange in the slowly varying limit. We show that for molecular systems, overall performance is better than non-empirical GGAs. For atomization energies, performance is on par with revTPSS, without any dependence on Kohn-Sham orbitals.

  4. Tornado model for a magnetised plasma

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Fedun, V.; Smolyakov, A.; Horton, W.; Pokhotelov, O. A.; Verth, G.

    2018-05-01

    A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equations for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises when the radial flow that tends to concentrate vorticity in a narrow column around the axis of symmetry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for the velocity and magnetic field components are obtained. The proposed analytic model may be used to parameterise the observed solar tornadoes and can provide a new indirect way for estimating magnetic twist from the observed azimuthal velocity profiles.

  5. Explicit reference governor for linear systems

    NASA Astrophysics Data System (ADS)

    Garone, Emanuele; Nicotra, Marco; Ntogramatzidis, Lorenzo

    2018-06-01

    The explicit reference governor is a constrained control scheme that was originally introduced for generic nonlinear systems. This paper presents two explicit reference governor strategies that are specifically tailored for the constrained control of linear time-invariant systems subject to linear constraints. Both strategies are based on the idea of maintaining the system states within an invariant set which is entirely contained in the constraints. This invariant set can be constructed by exploiting either the Lyapunov inequality or modal decomposition. To improve the performance, we show that the two strategies can be combined by choosing at each time instant the least restrictive set. Numerical simulations illustrate that the proposed scheme achieves performances that are comparable to optimisation-based reference governors.

  6. Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph.

    PubMed

    Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2015-01-01

    In this paper we give the complete classification of solitons for a cubic nonlinear Schrödinger equation on the simplest network with a nontrivial topology: the tadpole graph, i.e., a ring with a half line attached to it and free boundary conditions at the junction. This is a step toward the modelization of condensate propagation and confinement in quasi-one-dimensional traps. The model, although simple, exhibits a surprisingly rich behavior and in particular we show that it admits: (i) a denumerable family of continuous branches of embedded solitons vanishing on the half line and bifurcating from linear eigenstates and threshold resonances of the system; (ii) a continuous branch of edge solitons bifurcating from the previous families at the threshold of the continuous spectrum with a pitchfork bifurcation; and (iii) a finite family of continuous branches of solitons without linear analog. All the solutions are explicitly constructed in terms of elliptic Jacobian functions. Moreover we show that families of nonlinear bound states of the above kind continue to exist in the presence of a uniform magnetic field orthogonal to the plane of the ring when a well definite flux quantization condition holds true. In this sense the magnetic field acts as a control parameter. Finally we highlight the role of resonances in the linearization as a signature of the occurrence of bifurcations of solitons from the continuous spectrum.

  7. Toward laboratory torsional spine magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  8. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  9. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  10. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  11. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocker, H.; Anerella, M.; Gupta, R.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconductingmore » magnets.« less

  12. Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four Electromagnets at a Distance

    PubMed Central

    Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.

    2010-01-01

    Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electro-magnet charging time delays. With this control, we show that dynamic actuation of electro-magnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain – an example of precision control of a ferrofluid by magnets acting at a distance. PMID:21218157

  13. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  14. Magnetic Fluxtube Tunneling

    NASA Technical Reports Server (NTRS)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  15. Quasi-Classical Asymptotics for the Pauli Operator

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander V.

    We study the behaviour of the sums of the eigenvalues of the Pauli operator in , in a magnetic field and electric field V(x) as the Planck constant ħ tends to zero and the magnetic field strength μ tends to infinity. We show that for the sum obeys the natural Weyl type formula where σ = (d- 2)/2 + γ, with an explicit constant Cγ, d. If the field B has a constant direction, then this formula is uniform in μ>= 0. The method is based on Colin de Verdiere's approach proposed in his work on ``magnetic bottles'' (Commun. Math Phys, 105 , 327-335 (1986)).

  16. Simple metric for a magnetized, spinning, deformed mass

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2018-05-01

    We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks, and we write it in a concise explicit form that is very suitable for concrete applications. An interesting peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial extreme limit, which we elaborate completely in terms of four polynomial factors.

  17. Anomalous thermospin effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2014-10-01

    A strong spin Nernst effect with nontrivial dependences on the carrier concentration and electric field applied is expected in silicene and other low-buckled Dirac materials. These Dirac materials can be considered as being made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem, the gap breaks a time-reversal symmetry and thus plays the role of an effective magnetic field. Accordingly, the standard Kubo formalism has to be altered by including the effective magnetization in order to satisfy the third law of thermodynamics. We explicitly demonstrate this by calculating the magnetization and showing how the correct thermoelectric coefficient emerges.

  18. A tale of two Bethe ansätze

    NASA Astrophysics Data System (ADS)

    Lima-Santos, Antonio; Nepomechie, Rafael I.; Pimenta, Rodrigo A.

    2018-04-01

    We revisit the construction of the eigenvectors of the single and double-row transfer matrices associated with the Zamolodchikov–Fateev model, within the algebraic Bethe ansatz method. The left and right eigenvectors are constructed using two different methods: the fusion technique and Tarasov’s construction. A simple explicit relation between the eigenvectors from the two Bethe ansätze is obtained. As a consequence, we obtain the Slavnov formula for the scalar product between on-shell and off-shell Tarasov–Bethe vectors.

  19. Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review.

    PubMed

    Liu, Lin; Lv, Hongying; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2015-01-01

    This review presents a comprehensive attempt to conclude and discuss various glucose biosensors based on core@shell magnetic nanomaterials. Owing to good biocompatibility and stability, the core@shell magnetic nanomaterials have found widespread applications in many fields and draw extensive attention. Most magnetic nanoparticles possess an intrinsic enzyme mimetic activity like natural peroxidases, which invests magnetic nanomaterials with great potential in the construction of glucose sensors. We summarize the synthesis of core@shell magnetic nanomaterials, fundamental theory of glucose sensor and the advances in glucose sensors based on core@shell magnetic nanomaterials. The aim of the review is to provide an overview of the exploitation of the core@shell magnetic nanomaterials for glucose sensors construction.

  20. Comparison Of The Global Analytic Models Of The Main Geomagnetic Field With The Stratospheric Balloon Magnetic Data 335

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu.; Filippov, S.; Frunze, A.

    2013-12-01

    Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp <20, that leads to an error of representation of main MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.

  1. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly.

    PubMed

    Parfenov, Vladislav A; Koudan, Elizaveta V; Bulanova, Elena A; Karalkin, Pavel A; Pereira, Frederico DAS; Norkin, Nikita E; Knyazeva, Alisa D; Gryadunova, Anna A; Petrov, Oleg F; Vasiliev, M M; Myasnikov, Maxim; Chernikov, Valery P; Kasyanov, Vladimir A; Marchenkov, Artem Yu; Brakke, Kenneth A; Khesuani, Yusef D; Demirci, Utkan; Mironov, Vladimir A

    2018-05-31

    Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first-time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering. . © 2018 IOP Publishing Ltd.

  2. Worldline construction of a covariant chiral kinetic theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2017-07-27

    Here, we discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning, colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is straightforward.more » In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase in the fermion determinant that places it on the same footing as the real part. We construct the corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. Finally, we outline some further applications of this framework in many-body systems.« less

  3. Worldline construction of a covariant chiral kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning, colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is straightforward.more » In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase in the fermion determinant that places it on the same footing as the real part. We construct the corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. Finally, we outline some further applications of this framework in many-body systems.« less

  4. 75 FR 48628 - Approval and Promulgation of Implementation Plans; State of Nebraska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... compounds; clarify language and incorporate rules related to construction permits to incorporate application... clarify language related to open fires and explicitly include an exemption for fires used for religious...

  5. Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.

    PubMed

    Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi

    2017-06-28

    In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.

  6. Solving Set Cover with Pairs Problem using Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre

    2016-09-01

    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.

  7. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  8. A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms

    NASA Astrophysics Data System (ADS)

    Hasbestan, Jaber J.; Senocak, Inanc

    2017-12-01

    Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.

  9. Brain substrates of implicit and explicit memory: the importance of concurrently acquired neural signals of both memory types.

    PubMed

    Voss, Joel L; Paller, Ken A

    2008-11-01

    A comprehensive understanding of human memory requires cognitive and neural descriptions of memory processes along with a conception of how memory processing drives behavioral responses and subjective experiences. One serious challenge to this endeavor is that an individual memory process is typically operative within a mix of other contemporaneous memory processes. This challenge is particularly disquieting in the context of implicit memory, which, unlike explicit memory, transpires without the subject necessarily being aware of memory retrieval. Neural correlates of implicit memory and neural correlates of explicit memory are often investigated in different experiments using very different memory tests and procedures. This strategy poses difficulties for elucidating the interactions between the two types of memory process that may result in explicit remembering, and for determining the extent to which certain neural processing events uniquely contribute to only one type of memory. We review recent studies that have succeeded in separately assessing neural correlates of both implicit memory and explicit memory within the same paradigm using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI), with an emphasis on studies from our laboratory. The strategies we describe provide a methodological framework for achieving valid assessments of memory processing, and the findings support an emerging conceptualization of the distinct neurocognitive events responsible for implicit and explicit memory.

  10. On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Bouchaud, J.-P.

    2007-12-01

    An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.

  11. A systematic review of the use of theory in the design of guideline dissemination and implementation strategies and interpretation of the results of rigorous evaluations.

    PubMed

    Davies, Philippa; Walker, Anne E; Grimshaw, Jeremy M

    2010-02-09

    There is growing interest in the use of cognitive, behavioural, and organisational theories in implementation research. However, the extent of use of theory in implementation research is uncertain. We conducted a systematic review of use of theory in 235 rigorous evaluations of guideline dissemination and implementation studies published between 1966 and 1998. Use of theory was classified according to type of use (explicitly theory based, some conceptual basis, and theoretical construct used) and stage of use (choice/design of intervention, process/mediators/moderators, and post hoc/explanation). Fifty-three of 235 studies (22.5%) were judged to have employed theories, including 14 studies that explicitly used theory. The majority of studies (n = 42) used only one theory; the maximum number of theories employed by any study was three. Twenty-five different theories were used. A small number of theories accounted for the majority of theory use including PRECEDE (Predisposing, Reinforcing, and Enabling Constructs in Educational Diagnosis and Evaluation), diffusion of innovations, information overload and social marketing (academic detailing). There was poor justification of choice of intervention and use of theory in implementation research in the identified studies until at least 1998. Future research should explicitly identify the justification for the interventions. Greater use of explicit theory to understand barriers, design interventions, and explore mediating pathways and moderators is needed to advance the science of implementation research.

  12. Intersectionality Dis/ability Research: How Dis/ability Research in Education Engages Intersectionality to Uncover the Multidimensional Construction of Dis/abled Experiences

    ERIC Educational Resources Information Center

    Hernández-Saca, David I.; Gutmann Kahn, Laurie; Cannon, Mercedes A.

    2018-01-01

    The purpose of this chapter is to systematically review the research within the field of education that explicitly examined how various social constructions of identity intersect with dis/ability to qualitatively affect young adults' experiences by asking the following question: What are the key findings in education research focusing on youth and…

  13. The Roles of Attention and (Un)awareness in SLA: Conceptual Replication of N. C. Ellis & Sagarra (2010a) and Leung & Williams (2012)

    ERIC Educational Resources Information Center

    Leow, Ronald P.

    2015-01-01

    There is no doubt that attention and (un)awareness in second/foreign language (L2 learning) are two constructs that have permeated, explicitly or implicitly, second language acquisition (SLA) studies since their inception. Indeed, we have witnessed several empirical studies attempting to probe more deeply into the roles of these two constructs in…

  14. Dynamics of a Definition: A Framework to Analyse Student Construction of the Concept of Solution to a Differential Equation

    ERIC Educational Resources Information Center

    Raychaudhuri, Debasree

    2008-01-01

    In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…

  15. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe 1-xMn xPt

    DOE PAGES

    Pujari, B. S.; Larson, P.; Antropov, V. P.; ...

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe 1–xMn xPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of themore » magnetic phase diagram is demonstrated.« less

  16. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  17. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  18. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  19. Unraveling the temperature and voltage dependence of magnetic field effects in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Janssen, Paul; Wouters, Steinar H. W.; Cox, Matthijs; Koopmans, Bert

    2013-11-01

    In recent years, it was discovered that the current through an organic semiconductor, sandwiched between two non-magnetic electrodes, can be changed significantly by applying a small magnetic field. This surprisingly large magnetoresistance effect, often dubbed as organic magnetoresistance (OMAR), has puzzled the young field of organic spintronics during the last decade. Here, we present a detailed study on the voltage and temperature dependence of OMAR, aiming to unravel the lineshapes of the magnetic field effects and thereby gain a deeper fundamental understanding of the underlying microscopic mechanism. Using a full quantitative analysis of the lineshapes, we are able to extract all linewidth parameters and the voltage and temperature dependencies are explained with a recently proposed trion mechanism. Moreover, explicit microscopic simulations show a qualitative agreement to the experimental results.

  20. Non-collinear magnetism with analytic Bond-Order Potentials

    NASA Astrophysics Data System (ADS)

    Ford, Michael E.; Pettifor, D. G.; Drautz, Ralf

    2015-03-01

    The theory of analytic Bond-Order Potentials as applied to non-collinear magnetic structures of transition metals is extended to take into account explicit rotations of Hamiltonian and local moment matrix elements between locally and globally defined spin-coordinate systems. Expressions for the gradients of the energy with respect to the Hamiltonian matrix elements, the interatomic forces and the magnetic torques are derived. The method is applied to simulations of the rotation of magnetic moments in α iron, as well as α and β manganese, based on d-valent orthogonal tight-binding parametrizations of the electronic structure. A new weighted-average terminator is introduced to improve the convergence of the Bond-Order Potential energies and torques with respect to tight-binding reference values, although the general behavior is qualitatively correct for low-moment expansions.

  1. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  2. Coherent transport structures in magnetized plasmas. I. Theory

    NASA Astrophysics Data System (ADS)

    Di Giannatale, G.; Falessi, M. V.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2018-05-01

    In a pair of linked articles (called Papers I and II, respectively), we apply the concept of Lagrangian Coherent Structures (LCSs) borrowed from the study of dynamical systems to magnetic field configurations in order to separate regions where field lines have a different kind of behaviour. In the present article, Paper I, after recalling the definition and the properties of the LCSs, we show how this conceptual framework can be applied to the study of particle transport in a magnetized plasma. Furthermore, we introduce a simplified model that allows us to consider explicitly the case where the magnetic configuration evolves in time on time scales comparable to the particle transit time through the configuration. In contrast with previous works on this topic, this analysis requires that a system that is aperiodic in time be investigated.

  3. On the continuum limit for a semidiscrete Hirota equation

    PubMed Central

    Pickering, Andrew; Zhao, Hai-qiong

    2016-01-01

    In this paper, we propose a new semidiscrete Hirota equation which yields the Hirota equation in the continuum limit. We focus on the topic of how the discrete space step δ affects the simulation for the soliton solution to the Hirota equation. The Darboux transformation and explicit solution for the semidiscrete Hirota equation are constructed. We show that the continuum limit for the semidiscrete Hirota equation, including the Lax pair, the Darboux transformation and the explicit solution, yields the corresponding results for the Hirota equation as δ→0. PMID:27956884

  4. Repetition Suppression and Multi-Voxel Pattern Similarity Differentially Track Implicit and Explicit Visual Memory

    PubMed Central

    Chun, Marvin M.; Kuhl, Brice A.

    2013-01-01

    Repeated exposure to a visual stimulus is associated with corresponding reductions in neural activity, particularly within visual cortical areas. It has been argued that this phenomenon of repetition suppression is related to increases in processing fluency or implicit memory. However, repetition of a visual stimulus can also be considered in terms of the similarity of the pattern of neural activity elicited at each exposure—a measure that has recently been linked to explicit memory. Despite the popularity of each of these measures, direct comparisons between the two have been limited, and the extent to which they differentially (or similarly) relate to behavioral measures of memory has not been clearly established. In the present study, we compared repetition suppression and pattern similarity as predictors of both implicit and explicit memory. Using functional magnetic resonance imaging, we scanned 20 participants while they viewed and categorized repeated presentations of scenes. Repetition priming (facilitated categorization across repetitions) was used as a measure of implicit memory, and subsequent scene recognition was used as a measure of explicit memory. We found that repetition priming was predicted by repetition suppression in prefrontal, parietal, and occipitotemporal regions; however, repetition priming was not predicted by pattern similarity. In contrast, subsequent explicit memory was predicted by pattern similarity (across repetitions) in some of the same occipitotemporal regions that exhibited a relationship between priming and repetition suppression; however, explicit memory was not related to repetition suppression. This striking double dissociation indicates that repetition suppression and pattern similarity differentially track implicit and explicit learning. PMID:24027275

  5. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  6. The Swarm Initial Field Model for the 2014 Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger

    2015-01-01

    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.

  7. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  8. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.

    PubMed

    Murray, James M; Tesanović, Zlatko

    2010-07-16

    A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.

  9. Large-scale magnetic fields, non-Gaussianity, and gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2017-12-01

    We explore the generation of large-scale magnetic fields in the so-called moduli inflation. The hypercharge electromagnetic fields couple to not only a scalar field but also a pseudoscalar one, so that the conformal invariance of the hypercharge electromagnetic fields can be broken. We explicitly analyze the strength of the magnetic fields on the Hubble horizon scale at the present time, the local non-Gaussianity of the curvature perturbations originating from the massive gauge fields, and the tensor-to-scalar ratio of the density perturbations. As a consequence, we find that the local non-Gaussianity and the tensor-to-scalar ratio are compatible with the recent Planck results.

  10. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    DOE PAGES

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less

  11. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  12. A position-dependent mass model for the Thomas–Fermi potential: Exact solvability and relation to δ-doped semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; García-Ravelo, Jesús; Pacheco-García, Christian

    We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed inmore » closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.« less

  13. A Knowledge Navigation Method for the Domain of Customers' Services of Mobile Communication Corporations in China

    NASA Astrophysics Data System (ADS)

    Wu, Jiangning; Wang, Xiaohuan

    Rapidly increasing amount of mobile phone users and types of services leads to a great accumulation of complaining information. How to use this information to enhance the quality of customers' services is a big issue at present. To handle this kind of problem, the paper presents an approach to construct a domain knowledge map for navigating the explicit and tacit knowledge in two ways: building the Topic Map-based explicit knowledge navigation model, which includes domain TM construction, a semantic topic expansion algorithm and VSM-based similarity calculation; building Social Network Analysis-based tacit knowledge navigation model, which includes a multi-relational expert navigation algorithm and the criterions to evaluate the performance of expert networks. In doing so, both the customer managers and operators in call centers can find the appropriate knowledge and experts quickly and exactly. The experimental results show that the above method is very powerful for knowledge navigation.

  14. General integrable n-level, many-mode Janes-Cummings-Dicke models and classical r-matrices with spectral parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrypnyk, T., E-mail: taras.skrypnyk@unimib.it, E-mail: tskrypnyk@imath.kiev.ua

    Using the technique of classical r-matrices and quantum Lax operators, we construct the most general form of the quantum integrable “n-level, many-mode” spin-boson Jaynes-Cummings-Dicke-type hamiltonians describing an interaction of a molecule of N n-level atoms with many modes of electromagnetic field and containing, in general, additional non-linear interaction terms. We explicitly obtain the corresponding quantum Lax operators and spin-boson analogs of the generalized Gaudin hamiltonians and prove their quantum commutativity. We investigate symmetries of the obtained models that are associated with the geometric symmetries of the classical r-matrices and construct the corresponding algebra of quantum integrals. We consider in detailmore » three classes of non-skew-symmetric classical r-matrices with spectral parameters and explicitly obtain the corresponding quantum Lax operators and Jaynes-Cummings-Dicke-type hamiltonians depending on the considered r-matrix.« less

  15. Computational assignment of redox states to Coulomb blockade diamonds.

    PubMed

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  16. All (4,0): Sigma models with (4,0) off-shell supersymmetry

    NASA Astrophysics Data System (ADS)

    Hull, Chris; Lindström, Ulf

    2017-08-01

    Off-shell (4, 0) supermultiplets in 2-dimensions are formulated. These are used to construct sigma models whose target spaces are vector bundles over manifolds that are hyperkähler with torsion. The off-shell supersymmetry implies that the complex structures are simultaneously integrable and allows us to write actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

  17. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  18. Rethinking the solar flare paradigm

    NASA Astrophysics Data System (ADS)

    D, B. MELROSE

    2018-07-01

    It is widely accepted that solar flares involve release of magnetic energy stored in the solar corona above an active region, but existing models do not include the explicitly time-dependent electrodynamics needed to describe such energy release. A flare paradigm is discussed that includes the electromotive force (EMF) as the driver of the flare, and the flare-associated current that links different regions where magnetic reconnection, electron acceleration, the acceleration of mass motions and current closure occur. The EMF becomes localized across regions where energy conversion occurs, and is involved in energy propagation between these regions.

  19. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  20. Electromagnetic fields in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Tsagas, Christos G.

    2005-01-01

    We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.

  1. The essence of the Blandford-Znajek process

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichiro; Igata, Takahisa

    2018-03-01

    From a spacetime perspective, the dynamics of magnetic field lines of force-free electromagnetic fields can be rewritten into a quite similar form for the dynamics of strings, i.e., dynamics of "field sheets". Using this formalism, we explicitly show that the field sheets of stationary and axisymmetric force-free electromagnetic fields have identical intrinsic properties to the world sheets of rigidly rotating Nambu-Goto strings. Thus, we conclude that the Blandford-Znajek process is kinematically identical to an energy-extraction mechanism by the Nambu-Goto string with an effective magnetic tension.

  2. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  3. Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.

    2017-10-01

    Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.

  4. Experiments on Magnetic Materials

    ERIC Educational Resources Information Center

    Schneider, C. S.; Ertel, John P.

    1978-01-01

    Describes the construction and use of a simple apparatus to measure the magnetization density and magnetic susceptibility of ferromagnetic, paramagnetic, and the diamagnetic solids and liquids. (Author/GA)

  5. Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoxia; Zhong, Jiayong; Zhang, Zhe; Zhou, Weimin; Teng, Jian; Li, Yutong; Han, Bo; Yuan, Dawei; Lin, Jun; Liu, Chang; Li, Yanfei; Zhu, Baojun; Wei, Huigang; Liang, Guiyun; Hong, Wei; He, Shukai; Yang, Siqian; Zhao, Yongqiang; Deng, Zhigang; Lu, Feng; Zhang, Zhimeng; Zhu, Bin; Zhou, Kainan; Su, Jingqin; Zhao, Zongqing; Gu, Yuqiu; Zhao, Gang; Zhang, Jie

    2018-06-01

    A double-turn capacitor-coil is used to produce a magnetic field (38.5 T) and construct a topology of magnetic reconnection in a low-β (β < 1) plasma environment. The device is constructed with two metallic U-turn coils connecting two parallel metallic disks. High energy lasers are employed to ablate one disk spontaneously driving two currents in the two coils, which produces an interactive magnetic field topology. We demonstrated through experiments and numerical simulations that the reconnection process takes place between two non-uniform magnetic fields created by the coils, and that the plasma state and the associated magnetic topology in the process can be seen via the technology of the optical probe beam and the proton backlight.

  6. Construction of CHESS compact undulator magnets at Kyma

    NASA Astrophysics Data System (ADS)

    Temnykh, Alexander B.; Lyndaker, Aaron; Kokole, Mirko; Milharcic, Tadej; Pockar, Jure; Geometrante, Raffaella

    2015-05-01

    In 2014 KYMA S.r.l. has built two CHESS Compact Undulator (CCU) magnets that are at present installed and successfully operate at the Cornell Electron Storage Ring. This type of undulator was developed for upgrade of Cornell High Energy Synchrotron Source beam-lines, but it can be used elsewhere as well. CCU magnets are compact, lightweight, cost efficient and in-vacuum compatible. They are linearly polarized undulators and have a fixed gap. Magnetic field tuning is achieved by phasing (shifting) top magnetic array relative bottom. Two CCUs constructed by KYMA S.r.l. have 28.4 mm period, 6.5 mm gap, 0.93 T peak field. Magnetic structure is of PPM type, made with NdFeB (40UH grade) permanent magnet material. Transitioning from the laboratory to industrial environment for a novel design required additional evaluation, design adjusting and extensive testing. Particular attention was given to the soldering technique used for fastening of the magnetic blocks to holders. This technique had thus far never been used before for undulator magnet construction by industry. The evaluation included tests of different types of soldering paste, measurements of strength of solder and determining the deformations of the soldered magnet and holder under simulated loading forces. This paper focuses on critical features of the CCU design, results of the soldering technique testing and the data regarding permanent magnets magnetization change due to soldering. In addition it deals with optimization-assisted assembly and the performance of the assembled devices and assesses some of the results of the CCU magnets operation at CESR.

  7. Phonon and magnetic structure in δ-plutonium from density-functional theory

    DOE PAGES

    Söderlind, Per; Zhou, F.; Landa, A.; ...

    2015-10-30

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure andmore » (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.« less

  8. Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdik, C., E-mail: burdik@kmlinux.fjfi.cvut.cz; Navratil, O.

    2011-06-15

    We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.

  9. Effects of Air Pollution and Other Environmental Variables on Offered Wages (1980)

    EPA Pesticide Factsheets

    The purpose of this report is to construct some exploratory estimates of the effect of changes in air pollution levels on offered wage rates. Repercussions on the work time choice are not explicitly considered.

  10. Accuracy estimates for some global analytical models of the Earth's main magnetic field on the basis of data on gradient magnetic surveys at stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu. P.; Brekhov, O. M.; Bondar, T. N.; Filippov, S. V.; Petrov, V. G.; Tsvetkova, N. M.; Frunze, A. Kh.

    2014-03-01

    Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ˜30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ˜30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.

  11. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  12. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  13. Implicit and explicit preferences for physical attractiveness in a romantic partner: a double dissociation in predictive validity.

    PubMed

    Eastwick, Paul W; Eagly, Alice H; Finkel, Eli J; Johnson, Sarah E

    2011-11-01

    Five studies develop and examine the predictive validity of an implicit measure of the preference for physical attractiveness in a romantic partner. Three hypotheses were generally supported. First, 2 variants of the go/no-go association task revealed that participants, on average, demonstrate an implicit preference (i.e., a positive spontaneous affective reaction) for physical attractiveness in a romantic partner. Second, these implicit measures were not redundant with a traditional explicit measure: The correlation between these constructs was .00 on average, and the implicit measures revealed no reliable sex differences, unlike the explicit measure. Third, explicit and implicit measures exhibited a double dissociation in predictive validity. Specifically, explicit preferences predicted the extent to which attractiveness was associated with participants' romantic interest in opposite-sex photographs but not their romantic interest in real-life opposite-sex speed-daters or confederates. Implicit preferences showed the opposite pattern. This research extends prior work on implicit processes in romantic relationships and offers the first demonstration that any measure of a preference for a particular characteristic in a romantic partner (an implicit measure of physical attractiveness, in this case) predicts individuals' evaluation of live potential romantic partners.

  14. Implicit and explicit self-esteem in remitted depressed patients.

    PubMed

    Smeijers, Danique; Vrijsen, Janna N; van Oostrom, Iris; Isaac, Linda; Speckens, Anne; Becker, Eni S; Rinck, Mike

    2017-03-01

    Low self-esteem is a symptom of depression and depression vulnerability. Prior research on self-esteem has largely focused on implicit (ISE) and explicit self-esteem (ESE) as two separate constructs, missing their interaction. Therefore, the current study investigated the interaction between ISE and ESE in a depression-vulnerable group (remitted depressed patients; RDs), compared to never-depressed controls (ND). Seventy-five RDs and 75 NDs participated in the study. To measure ESE, the Rosenberg Self-Esteem Scale (RSES) was used. The Implicit Association Test (IAT) and the Name Letter Preference Task (NLPT) were used to assess ISE. RDs reported lower ESE than NDs. However, the two groups did not differ on ISE. RDs exhibited a damaged self-esteem or a low-congruent self-esteem, similar to what has been found in currently depressed patients. Moreover, damaged self-esteem was associated with residual depressive symptoms. The results need to be interpreted with care because the IAT and NLPT did not reveal the same associations with the clinical measures. Implicit and explicit self-esteem may be different constructs in depression and studying the combination is important. The present study provides evidence indicating that damaged self-esteem may be more detrimental than low congruent self-esteem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. SOME PROBLEMS IN THE CONSTRUCTION OF AN ELECTRON LINEAR ACCELERATOR (in Dutch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaeghe, J.; Vanhuyse, V.; Van Leuven, P.

    1959-01-01

    Special problems encountered in the construction of the electron linear accelerator of the Natuurkundig Laboratorium der Rijksuniversiteit of Ghent are discussed. The subjects considered are magnetic focusing, magnetic screening of the electron gun cathode, abnormal attenuation-multipactor effects, and electron energy control. (J.S.R.)

  16. Analysing Simple Electric Motors in the Classroom

    ERIC Educational Resources Information Center

    Yap, Jeff; MacIsaac, Dan

    2006-01-01

    Electromagnetic phenomena and devices such as motors are typically unfamiliar to both teachers and students. To better visualize and illustrate the abstract concepts (such as magnetic fields) underlying electricity and magnetism, we suggest that students construct and analyse the operation of a simply constructed Johnson electric motor. In this…

  17. History of Physics and Conceptual Constructions: The Case of Magnetism

    ERIC Educational Resources Information Center

    Voutsina, Lambrini; Ravanis, Konstantinos

    2011-01-01

    This study documents the mental representations of magnetism constructed by students aged 15-17 and attempts to investigate whether these display the characteristics of models with an inner cohesiveness and constancy; whether they share common features with typical historical models of the Sciences; and whether they evolve through conventional…

  18. Prolonged physiological reactivity and loss: Association of pupillary reactivity with negative thinking and feelings.

    PubMed

    Siegle, Greg J; D'Andrea, Wendy; Jones, Neil; Hallquist, Michael N; Stepp, Stephanie D; Fortunato, Andrea; Morse, Jennifer Q; Pilkonis, Paul A

    2015-11-01

    Prolonged psychophysiological reactions to negative information have long been associated with negative thinking and feeling. This association is operationalized in the RDoC negative affect construct of loss, which is nominally indexed by prolonged physiological reactivity, cognitive loss-related constructs such as rumination and guilt, and more feeling-related constructs such as sadness, crying, and anhedonia. These associations have not been tested explicitly. If thinking and feeling aspects of loss reflect different physiological mechanisms, as might be suggested by their putative neurobiology, different intervention pathways might be suggested. Here we examined the extent to which self-reported negative thinking and feeling constructs were associated with prolonged pupillary reactivity following negative words and a subsequent cognitive distractor in a diverse heterogeneously diagnosed sample of N=84 participants. We also considered indices of abuse and variables associated with borderline personality disorder as possible moderators. Consistently, feeling-related negative affect constructs were related to prolonged pupillary reactivity during the distractor after a negative stimulus whereas thinking-related constructs were not. These data suggest that people who have sustained physiological reactions to emotional stimuli may be more strongly characterized by non-linguistic negative feelings than explicit cognitions related to loss. Sustained physiological reactions could reflect efforts to regulate feeling states. In contrast to cognitive and affective variables, abuse was associated with decreased physiological reactivity, consistent with decreased neural engagement. Interventions that target mechanisms underlying feelings and their regulation may be more mechanistically specific to sustained reactivity than those which directly address cognitions. Copyright © 2015. Published by Elsevier B.V.

  19. Examples of Integrated Academic and Vocational Curriculum from High School Academies in the Oakland Unified School District.

    ERIC Educational Resources Information Center

    de Leeuw, David; And Others

    This report provides examples of curricular integration produced by teachers in three career academies in Oakland, California. It describes ways in which academic and vocational teachers have created explicit connections between their separate subjects. Following a preface, "Oakland Academies Magnet Programs--An Overview" (Allie…

  20. The Discursive Construction of Gender in Physical Education in Sweden, 1945-2003: Is Meeting the Learner's Needs Tantamount to Meeting the Market's Needs?

    ERIC Educational Resources Information Center

    Olofsson, Eva

    2005-01-01

    This study focuses on the subject of PE in state texts and how the PE teacher and gender are constructed. The study is based on discourse analysis of state reports and curricula. Three teacher positions are identified: the body, the character and the lifestyle constructor. At the beginning of the studied period the state explicitly designed the PE…

  1. On vector-valued Poincaré series of weight 2

    NASA Astrophysics Data System (ADS)

    Meneses, Claudio

    2017-10-01

    Given a pair (Γ , ρ) of a Fuchsian group of the first kind, and a unitary representation ρ of Γ of arbitrary rank, the problem of construction of vector-valued Poincaré series of weight 2 is considered. Implications in the theory of parabolic bundles are discussed. When the genus of the group is zero, it is shown how an explicit basis for the space of these functions can be constructed.

  2. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  3. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  4. Construction of a solenoid used on a magnetized plasma experiment

    DOE PAGES

    Klein, S. R.; Manuel, M. J. -E.; Pollock, B. B.; ...

    2014-10-30

    Creating magnetized jets in the laboratory is relevant to studying young stellar objects, but generating these types of plasmas within the laboratory setting has proven to be challenging. Here, we present the construction of a solenoid designed to produce an axial magnetic field with strengths in the gap of up to 5 T. This novel design was a compact 75 mm × 63 mm × 88 mm, allowing it to be placed in the Titan target chamber. As a result, it was robust, surviving over 50 discharges producing fields ≲ 5 T, reaching a peak magnetic field of 12.5 T.

  5. Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.

    PubMed

    Dujko, S; White, R D; Petrović, Z Lj; Robson, R E

    2010-04-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models.

  6. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    PubMed

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  7. Applications of Derandomization Theory in Coding

    NASA Astrophysics Data System (ADS)

    Cheraghchi, Mahdi

    2011-07-01

    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.

  8. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  9. Optimizing an undulating magnetic microswimmer for cargo towing

    NASA Astrophysics Data System (ADS)

    Or, Yizhar; Gutman, Emiliya

    2015-11-01

    One of the promising applications of robotic microswimmers is towing a cargo for controlled drug delivery, micro-surgery or tumor detection. This capability has been demonstrated by the magnetically-actuated microswimmer of Dreyfus et al. [Nature 2005] in which a red blood cell was attached to a chain of magnetic beads connected by flexible DNA links. A key question is what should be the optimal size of the magnetic tail for towing a given cargo. This question is addressed here for the simplest theoretical model of a magnetic microswimmer under planar undulations - a spherical load connected by a torsion spring to a magnetized rigid slender link. The swimmer's dynamics is formulated assuming negligible hydrodynamic interaction and leading-order expressions for the resulting motion are obtained explicitly under small amplitude approximation. Optimal combinations of magnetic actuation frequency, torsion stiffness, and tail length for maximizing displacement or average speed are obtained. The theoretical results are compared with several reported magnetic microswimmers, and also agree qualitatively with recent results on cargo towing by screw rotation of magnetic helical tails [Walker et al., ACS Nano Letters 2015]. This work is supported by the Israeli Science Foundation (ISF) under Grant No. 567/14.

  10. Role of Spontaneous Brain Activity in Explicit and Implicit Aspects of Cognitive Flexibility under Socially Conflicting Situations: A Resting-state fMRI Study using Fractional Amplitude of Low-frequency Fluctuations.

    PubMed

    Fujino, Junya; Tei, Shisei; Jankowski, Kathryn F; Kawada, Ryosaku; Murai, Toshiya; Takahashi, Hidehiko

    2017-12-26

    We are constantly exposed to socially conflicting situations in everyday life, and cognitive flexibility is essential for adaptively coping with such difficulties. Flexible goal choice and pursuit are not exclusively conscious, and therefore cognitive flexibility involves both explicit and implicit forms of processing. However, it is unclear how individual differences in explicit and implicit aspects of flexibility are associated with neural activity in a resting state. Here, we measured intrinsic fractional amplitude of low-frequency fluctuations (fALFF) by resting-state functional magnetic resonance imaging (RS-fMRI) as an indicator of regional brain spontaneous activity, together with explicit and implicit aspects of cognitive flexibility using the Cognitive Flexibility Scale (CFS) and Implicit Association Test (IAT). Consistent with the dual processing theory, there was a strong association between explicit aspects of flexibility (CFS score) and "rationalism" thinking style and between implicit aspects (IAT effect) and "experientialism." The level of explicit flexibility was also correlated with fALFF values in the left lateral prefrontal cortex, whereas the level of implicit flexibility was correlated with fALFF values in the right cerebellum. Furthermore, the fALFF values in both regions predicted individual preference for flexible decision-making strategy in a vignettes simulation task. These results add to our understanding of the neural mechanisms underlying flexible decision-making for solving social conflicts. More generally, our findings highlight the utility of RS-fMRI combined with both explicit and implicit psychometric measures for better understanding individual differences in social cognition. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction.

    PubMed

    Ma, Qingyu; He, Bin

    2007-08-21

    A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.

  12. Chaotic coordinates for the Large Helical Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, S. R., E-mail: shudson@pppl.gov; Suzuki, Y.

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that fluxmore » surfaces become “straight” and islands become “square.”.« less

  13. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.

    2018-05-01

    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.

  14. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong

    2010-08-01

    Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.

  15. Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function

    PubMed Central

    2015-01-01

    Hyperpolarized magnetic resonance allows for noninvasive measurements of biochemical reactions in vivo. Although this technique provides a unique tool for assaying enzymatic activities in intact organs, the scope of its application is still elusive for the wider scientific community. The purpose of this review is to provide key principles and parameters to guide the researcher interested in adopting this technology to address a biochemical, biomedical, or medical issue. It is presented in the form of a compendium containing the underlying essential physical concepts as well as suggestions to help assess the potential of the technique within the framework of specific research environments. Explicit examples are used to illustrate the power as well as the limitations of hyperpolarized magnetic resonance. PMID:25369537

  16. LETTER TO THE EDITOR: Landau levels on the hyperbolic plane

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Shariati, M.

    2004-11-01

    The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength.

  17. A projection operator method for the analysis of magnetic neutron form factors

    NASA Astrophysics Data System (ADS)

    Kaprzyk, S.; Van Laar, B.; Maniawski, F.

    1981-03-01

    A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.

  18. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules

    NASA Astrophysics Data System (ADS)

    Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-12-01

    In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.

  19. Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV

    NASA Astrophysics Data System (ADS)

    Saslow, W. M.

    1992-08-01

    Using the example of a monopole that is spontaneously generated above a thin conducting sheet, the simplicity and power of Maxwell's 1872 theory of eddy currents in thin conducting sheets is illustrated. This theory employs a receding image construction, with a characteristic recession velocity v0=2/(μ0σd), where the sheet has conductivity σ and thickness d. A modern derivation of the theory, employing the magnetic scalar potential, is also presented, with explicit use of the uniqueness theorem. Also discussed are limitations on the theory of which Maxwell, living in a time before the discovery of the electron, could not have been aware. Previous derivations either have not appealed explicitly to the uniqueness theorem, or have employed the now unfamiliar current function, and are therefore either incomplete or inaccessible to the modern reader. After the derivation, two important examples considered by Maxwell are presented-a monopole moving above a thin conducting sheet, and a monopole above a rotating thin conducting sheet (Arago's disk)-and it is argued that the lift force thus obtained makes Maxwell the grandfather, if not the father, of eddy current MAGLEV transportation systems. An energy conservation argument is given to derive Davis's result that, for a magnet of arbitrary size and shape moving parallel to a thin conducting sheet at a characteristic height h, with velocity v, the ratio of drag force to lift force is equal to v0/v, provided that d≪δc, where δc =√2h/(μ0σv). If d≫δc, the eddy currents are confined to a thickness δc, leading to an increase in the dissipation and the drag by a factor of d/δc, so that the ratio of drag to lift force becomes proportional to √v'0/v, where v'0 = 2/(μ0σh). The case of a monopole fixed in position, but oscillating in strength (such as can be simulated by one end of a long, narrow, ac solenoid), is also treated. This is employed to obtain the results for an oscillating magnetic dipole whose moment is normal to the sheet. A general discussion of electromagnetic induction and electrical conductors, both thick and thin, is given, emphasizing the difference between the high-frequency limit, where flux expulsion occurs and the self-inductance dominates, and the low-frequency limit, where the flux penetrates and the electrical resistance dominates. A discussion of Lenz's law, as a statement about motion, is given. It is argued that the most general form of such a statement of Lenz's law is that induced currents tend to accelerate a conductor in the direction that most effectively decreases the rate of Joule heating. A calculation, in the low-frequency limit, of the drag force on a magnetic dipole falling down a long conducting tube, is also given. This last case can be given a striking demonstration with the newly available neodymium-iron-boron magnets.

  20. Parameterization of subgrid-scale stress by the velocity gradient tensor

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.; Novikov, E. A.

    1993-01-01

    The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.

  1. Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Gu, Zhu-Xiao; Jin, Xin; Wang, Hao-Yao; Gu, Ning

    2013-10-01

    Generation of magnetic micrbubbles and their basic magnetic and acoustic mechanism are reviewed. The ultrasound (US) and magnetic resonance (MR) dual imaging, the controlled therapeutic delivery, as well as theranostic multifunctions are all introduced based on recent research results. Some on-going research is also discussed.

  2. Constructing the quantum Hall system on the Grassmannians Gr2(CN)

    NASA Astrophysics Data System (ADS)

    Ballı, F.; Behtash, A.; Kürkçüoğlu, S.; Ünal, G.

    2015-04-01

    In this talk, we give the formulation of Quantum Hall Effects (QHEs) on the complex Grassmann manifolds Gr2(CN). We set up the Landau problem in Gr2(CN), solve it using group theoretical techniques and provide the energy spectrum and the eigenstates in terms of the SU(N) Wigner D-functions for charged particles on Gr2(CN) under the influence of abelian and non-abelian background magnetic monopoles or a combination of these thereof. For the simplest case of Gr2(C4) we provide explicit constructions of the single and many- particle wavefunctions by introducing the Plucker coordinates and show by calculating the two-point correlation function that the lowest Landau level (LLL) at filling factor v = 1 forms an incompressible fluid. Finally, we heuristically identify a relation between the U(1) Hall effect on Gr2(C4) and the Hall effect on the odd sphere S5, which is yet to be investigated in detail, by appealing to the already known analogous relations between the Hall effects on CP3 and CP7 and those on the spheres S4 and S8, respectively. The talk is given by S. Kürkçüoğlu at the Group 30 meeting at Ghent University, Ghent, Belgium in July 2014 and based on the article by F.Ballı, A.Behtash, S. Kürkçüoğlu, G.Ünal [1].

  3. Effects of Phylogenetic Tree Style on Student Comprehension

    NASA Astrophysics Data System (ADS)

    Dees, Jonathan Andrew

    Phylogenetic trees are powerful tools of evolutionary biology that have become prominent across the life sciences. Consequently, learning to interpret and reason from phylogenetic trees is now an essential component of biology education. However, students often struggle to understand these diagrams, even after explicit instruction. One factor that has been observed to affect student understanding of phylogenetic trees is style (i.e., diagonal or bracket). The goal of this dissertation research was to systematically explore effects of style on student interpretations and construction of phylogenetic trees in the context of an introductory biology course. Before instruction, students were significantly more accurate with bracket phylogenetic trees for a variety of interpretation and construction tasks. Explicit instruction that balanced the use of diagonal and bracket phylogenetic trees mitigated some, but not all, style effects. After instruction, students were significantly more accurate for interpretation tasks involving taxa relatedness and construction exercises when using the bracket style. Based on this dissertation research and prior studies on style effects, I advocate for introductory biology instructors to use only the bracket style. Future research should examine causes of style effects and variables other than style to inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  4. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation.

    PubMed

    Fan, Bingfei; Li, Qingguo; Liu, Tao

    2017-12-28

    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.

  5. Nonlocal integrable PDEs from hierarchies of symmetry laws: The example of Pohlmeyer-Lund-Regge equation and its reflectionless potential solutions

    NASA Astrophysics Data System (ADS)

    Demontis, F.; Ortenzi, G.; van der Mee, C.

    2018-04-01

    By following the ideas presented by Fukumoto and Miyajima in Fukumoto and Miyajima (1996) we derive a generalized method for constructing integrable nonlocal equations starting from any bi-Hamiltonian hierarchy supplied with a recursion operator. This construction provides the right framework for the application of the full machinery of the inverse scattering transform. We pay attention to the Pohlmeyer-Lund-Regge equation coming from the nonlinear Schrödinger hierarchy and construct the formula for the reflectionless potential solutions which are generalizations of multi-solitons. Some explicit examples are discussed.

  6. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrez, Loujaine; Ghanem, Roger; McAuliffe, Colin

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  7. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.

    PubMed

    Chen, Shih-Wei; Lai, Jr-Jie; Chiang, Chen-Li; Chen, Cheng-Lung

    2012-06-01

    Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.

  8. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Wei; Lai-Jie, Jr.; Chiang, Chen-Li; Chen, Cheng-Lung

    2012-06-01

    Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.

  9. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu

    2018-03-01

    Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.

  10. Neutral signature Walker-CSI metrics

    NASA Astrophysics Data System (ADS)

    Coley, A.; Musoke, N.

    2015-03-01

    We will construct explicit examples of four-dimensional neutral signature Einstein Walker spaces for which all of the polynomial scalar curvature invariants are constant. We show that these Einstein Walker spaces are Kundt. We then investigate the mathematical properties of the spaces, including holonomy and universality.

  11. Integrable mappings with transcendental invariants

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.; Ramani, A.

    2007-06-01

    We examine a family of integrable mappings which possess rational invariants involving polynomials of arbitrarily high degree. Next we extend these mappings to the case where their parameters are functions of the independent variable. The resulting mappings do not preserve any invariant but are solvable by linearisation. Using this result we then proceed to construct the solution of the initial autonomous mappings and use it to explicitly construct the invariant, which turns out to be transcendental in the generic case.

  12. General solutions of the supersymmetric ℂP{sup 2} sigma model and its generalisation to ℂP{sup N−1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delisle, L., E-mail: laurent.delisle@imj-prg.fr; Hussin, V., E-mail: hussin@dms.umontreal.ca; Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7

    A new approach for the construction of finite action solutions of the supersymmetric ℂP{sup N−1} sigma model is presented. We show that this approach produces more non-holomorphic solutions than those obtained in previous approaches. We study the ℂP{sup 2} model in detail and present its solutions in an explicit form. We also show how to generalise this construction to N > 3.

  13. Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices

    NASA Astrophysics Data System (ADS)

    Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo

    2016-11-01

    We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.

  14. Preservice and inservice teachers' knowledge of language constructs in Finland.

    PubMed

    Aro, Mikko; Björn, Piia Maria

    2016-04-01

    The aim of the study was to explore the Finnish preservice and inservice teachers' knowledge of language constructs relevant for literacy acquisition. A total of 150 preservice teachers and 74 inservice teachers participated in the study by filling out a questionnaire that assessed self-perceived expertise in reading instruction, knowledge of phonology and phonics, and knowledge of morphology. The inservice teachers outperformed the preservice teachers in knowledge of phonology and phonics, as well as morphology. Both groups' knowledge of morphology was markedly lower than their knowledge of phonology and phonics. Because early reading instruction does not focus on the morphological level of language but is phonics-based, this result was expected. However, the findings also revealed a lack of explicit knowledge of basic phonological constructs and less-than-optimal phonemic awareness skills in both groups. Problems in phonemic skills manifested mostly as responding to the phonological tasks based on orthographic knowledge, which reflects an overreliance on the one-to-one correspondence between graphemes and phonemes. The preservice teachers' perceptions of expertise were weakly related to their knowledge and skills. Among the inservice teachers, perceived expertise and knowledge of language constructs were completely unrelated. Although the study was exploratory, these findings suggest that within the Finnish teacher education there is a need to focus more on explicit content studies for language structures and the concepts relevant for literacy instruction, as well as phonological and phonemic skills.

  15. Superfluid transition in the attractive Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Iskin, M.

    2016-08-01

    We consider a Fermi gas that is loaded onto a square optical lattice and subjected to a perpendicular artificial magnetic field, and determine its superfluid transition boundary by adopting a BCS-like mean-field approach in momentum space. The multiband structure of the single-particle Hofstadter spectrum is taken explicitly into account while deriving a generalized pairing equation. We present the numerical solutions as functions of the artificial magnetic flux, interaction strength, Zeeman field, chemical potential, and temperature, with a special emphasis on the roles played by the density of single-particle states and center-of-mass momentum of Cooper pairs.

  16. Magnetic field effects on peristaltic flow of blood in a non-uniform channel

    NASA Astrophysics Data System (ADS)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    The objective of this paper is to carry out the effect of the MHD on the peristaltic transport of blood in a non-uniform channel have been explored under long wavelength approximation with low (zero) Reynolds number. Blood is made of an incompressible, viscous and electrically conducting. Explicit expressions for the axial velocity, axial pressure gradient are derived using long wavelength assumptions with slip and regularity conditions. It is determined that the pressure gradient diminishes as the couple stress parameter increments and it decreases as the magnetic parameter increments. We additionally concentrate the embedded parameters through graphs.

  17. Berezinskii-Kosterlitz-Thouless transition in the time-reversal-symmetric Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-01-01

    Assuming that two-component Fermi gases with opposite artificial magnetic fields on a square optical lattice are well described by the so-called time-reversal-symmetric Hofstadter-Hubbard model, we explore the thermal superfluid properties along with the critical Berezinskii-Kosterlitz-Thouless (BKT) transition temperature in this model over a wide range of its parameters. In particular, since our self-consistent BCS-BKT approach takes the multiband butterfly spectrum explicitly into account, it unveils how dramatically the interband contribution to the phase stiffness dominates the intraband one with an increasing interaction strength for any given magnetic flux.

  18. Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Hanazato, Taro; Saito, Keiji

    2018-03-01

    For classical ballistic transport in a multiterminal geometry, we derive a universal trade-off relation between total dissipation and the precision, at which particles are extracted from individual reservoirs. Remarkably, this bound becomes significantly weaker in the presence of a magnetic field breaking time-reversal symmetry. By working out an explicit model for chiral transport enforced by a strong magnetic field, we show that our bounds are tight. Beyond the classical regime, we find that, in quantum systems far from equilibrium, the correlated exchange of particles makes it possible to exponentially reduce the thermodynamic cost of precision.

  19. Collision-induced stimulated photon echoes in ‘strong’ magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2018-05-01

    Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.

  20. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic fieldmore » of 200 G.« less

  1. Industrial production of RHIC magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.

    1996-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the startmore » of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less

  2. Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole

    ERIC Educational Resources Information Center

    Leung, P. T.

    2008-01-01

    The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…

  3. The Difficulties of a Curriculum Helper in an Urban School.

    ERIC Educational Resources Information Center

    Smith, Michael S.

    This paper describes the experiences of a teacher and a curriculum helper in designing and implementing a fifth grade language arts curriculum at an inner city, magnet school in Indianapolis (Indiana). The report describes the work in three phases: (1) making explicit the problems with the previous language arts curriculum; (2) formulating a plan…

  4. Geomagnetism-Aided Indoor Wi-Fi Radio-Map Construction via Smartphone Crowdsourcing.

    PubMed

    Li, Wen; Wei, Dongyan; Lai, Qifeng; Li, Xianghong; Yuan, Hong

    2018-05-08

    Wi-Fi radio-map construction is an important phase in indoor fingerprint localization systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor layout and extra infrastructure support. The key novelty is that it recognizes road segments from crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world indoor areas, the method is proved to have good performance on magnetism similarity calculation, road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by crowdsourcing data are validated to provide competitive indoor localization accuracy.

  5. Geomagnetism-Aided Indoor Wi-Fi Radio-Map Construction via Smartphone Crowdsourcing

    PubMed Central

    Li, Wen; Wei, Dongyan; Lai, Qifeng; Li, Xianghong; Yuan, Hong

    2018-01-01

    Wi-Fi radio-map construction is an important phase in indoor fingerprint localization systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor layout and extra infrastructure support. The key novelty is that it recognizes road segments from crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world indoor areas, the method is proved to have good performance on magnetism similarity calculation, road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by crowdsourcing data are validated to provide competitive indoor localization accuracy. PMID:29738454

  6. Magnet Trade Books: Attracting and Repelling Concepts

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Robinson, Richard D.

    2007-01-01

    A series of magnet trade books were analyzed against a validated list of magnet concepts (Barrow, 1990a) and their Flesch (1974) Readability was determined. These trade books were used to supplement a second grade unit on magnetism locally constructed from AIM's "Mostly Magnets" (1991). All trade books accurately described how like and unlike…

  7. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  8. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.

    2016-02-01

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.

  9. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  10. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  11. The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1988-10-01

    Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.

  12. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. II. Fe XIV 5303 A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, L.L.; Querfeld, C.W.; Rees, D.E.

    1982-04-15

    Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less

  13. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).

  14. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    PubMed Central

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  15. The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature

    PubMed Central

    Gąsior, Monika; Śnieżek, Elżbieta; Kwolek, Andrzej

    2016-01-01

    Magnetic fields are commonly used in therapies designed for subjects with rheumatic diseases, yet the effects of magnetotherapy are not entirely clear in these disorders. This study is designed to examine the literature investigating applications of magnetotherapy in the treatment of rheumatoid arthritis (RA). The review focused on publications related to administering magnetotherapy in patients with RA. The databases Science Direct, SpringerLink, Medline, PubMed, and Polska Bibliografia Lekarska were searched for reports published since 2005. Despite the numerous reports showing an impact of magnetic field in subjects with RA, the effectiveness of magnetotherapy has not been explicitly confirmed. Given the above, further research appears to be necessary to clarify the impact of magnetic fields on biological systems, and the relationship between magnetic field intensity and the obtained results as well as their durability. The majority of clinical trials have failed to identify any undesirable outcomes or side effects of this physical therapeutic factor. PMID:27826175

  16. The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature.

    PubMed

    Zwolińska, Jolanta; Gąsior, Monika; Śnieżek, Elżbieta; Kwolek, Andrzej

    Magnetic fields are commonly used in therapies designed for subjects with rheumatic diseases, yet the effects of magnetotherapy are not entirely clear in these disorders. This study is designed to examine the literature investigating applications of magnetotherapy in the treatment of rheumatoid arthritis (RA). The review focused on publications related to administering magnetotherapy in patients with RA. The databases Science Direct, SpringerLink, Medline, PubMed, and Polska Bibliografia Lekarska were searched for reports published since 2005. Despite the numerous reports showing an impact of magnetic field in subjects with RA, the effectiveness of magnetotherapy has not been explicitly confirmed. Given the above, further research appears to be necessary to clarify the impact of magnetic fields on biological systems, and the relationship between magnetic field intensity and the obtained results as well as their durability. The majority of clinical trials have failed to identify any undesirable outcomes or side effects of this physical therapeutic factor.

  17. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  18. Nonlinear Vibration of a Magnetic Spring

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Ge, Ziming; Zhang, Yuelan; Lu, Wenqiang; Song, Feng; Li, Chuanyong

    2012-01-01

    To demonstrate the different vibration characteristics of a magnetic spring compared with those of a metal one, a magnetic spring apparatus was constructed from a pair of circular magnets of the same size with an inside diameter of 2.07 cm and an outside diameter of 4.50 cm. To keep the upper magnet in a suspension state, the two magnets were…

  19. Determination of the expansion of the potential of the earth's normal gravitational field

    NASA Astrophysics Data System (ADS)

    Kochiev, A. A.

    The potential of the generalized problem of 2N fixed centers is expanded in a polynomial and Legendre function series. Formulas are derived for the expansion coefficients, and the disturbing function of the problem is constructed in an explicit form.

  20. An Operational Definition of the Emergence Criterion

    ERIC Educational Resources Information Center

    Pallotti, Gabriele

    2007-01-01

    Although acquisition criteria are a fundamental issue for SLA research, they have not always been adequately defined or elaborated in the literature. This article critically scrutinizes one such criterion, the emergence criterion, proposing an explicit, operational definition. After discussing emergence as a theoretical construct, the article…

  1. Building Arguments: Key to Collaborative Scaffolding

    ERIC Educational Resources Information Center

    Cáceres, M.; Nussbaum, M.; Marroquín, M.; Gleisner, S.; Marquínez, J. T.

    2018-01-01

    Collaborative problem-solving in the classroom is a student-centred pedagogical practice that looks to improve learning. However, collaboration does not occur spontaneously; instead it needs to be guided by appropriate scaffolding. In this study we explore whether a script that explicitly incorporates constructing arguments in collaborative…

  2. Meta-Modeling: A Knowledge-Based Approach to Facilitating Model Construction and Reuse

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Dungan, Jennifer L.

    1997-01-01

    In this paper, we introduce a new modeling approach called meta-modeling and illustrate its practical applicability to the construction of physically-based ecosystem process models. As a critical adjunct to modeling codes meta-modeling requires explicit specification of certain background information related to the construction and conceptual underpinnings of a model. This information formalizes the heretofore tacit relationship between the mathematical modeling code and the underlying real-world phenomena being investigated, and gives insight into the process by which the model was constructed. We show how the explicit availability of such information can make models more understandable and reusable and less subject to misinterpretation. In particular, background information enables potential users to better interpret an implemented ecosystem model without direct assistance from the model author. Additionally, we show how the discipline involved in specifying background information leads to improved management of model complexity and fewer implementation errors. We illustrate the meta-modeling approach in the context of the Scientists' Intelligent Graphical Modeling Assistant (SIGMA) a new model construction environment. As the user constructs a model using SIGMA the system adds appropriate background information that ties the executable model to the underlying physical phenomena under investigation. Not only does this information improve the understandability of the final model it also serves to reduce the overall time and programming expertise necessary to initially build and subsequently modify models. Furthermore, SIGMA's use of background knowledge helps eliminate coding errors resulting from scientific and dimensional inconsistencies that are otherwise difficult to avoid when building complex models. As a. demonstration of SIGMA's utility, the system was used to reimplement and extend a well-known forest ecosystem dynamics model: Forest-BGC.

  3. Introduction to quantized LIE groups and algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjin, T.

    1992-10-10

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less

  4. Conformally Invariant Powers of the Laplacian, Q-Curvature, and Tractor Calculus

    NASA Astrophysics Data System (ADS)

    Gover, A. Rod; Peterson, Lawrence J.

    We describe an elementary algorithm for expressing, as explicit formulae in tractor calculus, the conformally invariant GJMS operators due to C.R. Graham et alia. These differential operators have leading part a power of the Laplacian. Conformal tractor calculus is the natural induced bundle calculus associated to the conformal Cartan connection. Applications discussed include standard formulae for these operators in terms of the Levi-Civita connection and its curvature and a direct definition and formula for T. Branson's so-called Q-curvature (which integrates to a global conformal invariant) as well as generalisations of the operators and the Q-curvature. Among examples, the operators of order 4, 6 and 8 and the related Q-curvatures are treated explicitly. The algorithm exploits the ambient metric construction of Fefferman and Graham and includes a procedure for converting the ambient curvature and its covariant derivatives into tractor calculus expressions. This is partly based on [12], where the relationship of the normal standard tractor bundle to the ambient construction is described.

  5. Majorana neutrino and the vacuum of Bogoliubov quasiparticle

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-06-01

    The Lagrangian of the seesaw mechanism is C violating but the same Lagrangian when re-written in terms of Majorana neutrinos is manifestly C invariant. To resolve this puzzling feature, a relativistic analogue of Bogoliubov transformation, which preserves CP but explicitly breaks C and P separately, was introduced together with the notions of a Bogoliubov quasiparticle and an analogue of the energy gap in BCS theory. The idea of Majorana neutrino as Bogoliubov quasiparticle was then suggested. In this paper, we study the vacuum structure of the Bogoliubov quasiparticle which becomes heavy by absorbing the C-breaking. By treating an infinitesimally small C violating term as an analogue of the chiral symmetry breaking nucleon mass in the model of Nambu and Jona-Lasinio, we construct an explicit form of the vacuum of the Bogoliubov quasiparticle which defines Majorana neutrinos in seesaw mechanism. The vacuum of the Bogoliubov quasiparticle thus constructed has an analogous condensate structure as the vacuum of the quasiparticle (nucleon) in the Nambu-Jona-Lasinio model.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Karla

    Although the high-performance computing (HPC) community increasingly embraces object-oriented programming (OOP), most HPC OOP projects employ the C++ programming language. Until recently, Fortran programmers interested in mining the benefits of OOP had to emulate OOP in Fortran 90/95. The advent of widespread compiler support for Fortran 2003 now facilitates explicitly constructing object-oriented class hierarchies via inheritance and leveraging related class behaviors such as dynamic polymorphism. Although C++ allows a class to inherit from multiple parent classes, Fortran and several other OOP languages restrict or prohibit explicit multiple inheritance relationships in order to circumvent several pitfalls associated with them. Nonetheless, whatmore » appears as an intrinsic feature in one language can be modeled as a user-constructed design pattern in another language. The present paper demonstrates how to apply the facade structural design pattern to support a multiple inheritance class relationship in Fortran 2003. As a result, the design unleashes the power of the associated class relationships for modeling complicated data structures yet avoids the ambiguities that plague some multiple inheritance scenarios.« less

  7. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  8. Construction of Solar-Wind-Like Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  9. Implicit attitudes towards homosexuality: reliability, validity, and controllability of the IAT.

    PubMed

    Banse, R; Seise, J; Zerbes, N

    2001-01-01

    Two experiments were conducted to investigate the psychometric properties of an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) that was adapted to measure implicit attitudes towards homosexuality. In a first experiment, the validity of the Homosexuality-IAT was tested using a known group approach. Implicit and explicit attitudes were assessed in heterosexual and homosexual men and women (N = 101). The results provided compelling evidence for the convergent and discriminant validity of the Homosexuality-IAT as a measure of implicit attitudes. No evidence was found for two alternative explanations of IAT effects (familiarity with stimulus material and stereotype knowledge). The internal consistency of IAT scores was satisfactory (alpha s > .80), but retest correlations were lower. In a second experiment (N = 79) it was shown that uninformed participants were able to fake positive explicit but not implicit attitudes. Discrepancies between implicit and explicit attitudes towards homosexuality could be partially accounted for by individual differences in the motivation to control prejudiced behavior, thus providing independent evidence for the validity of the implicit attitude measure. Neither explicit nor implicit attitudes could be changed by persuasive messages. The results of both experiments are interpreted as evidence for a single construct account of implicit and explicit attitudes towards homosexuality.

  10. Implicit vs. explicit dimensions of guilt and dominance in criminal psychopathy.

    PubMed

    Nentjes, Lieke; Bernstein, David P; Cima, Maaike; Wiers, Reinout W

    The current study investigated the relationship between psychopathy and two concepts that hold a central position in conceptualizations of this disorder, being guilt and dominance. Both constructs were measured using explicit measures (i.e., self-report), as well as indirect assessment (i.e., the Single Category Implicit Association Test; Sc-IAT). Our sample consisted of 43 psychopathic offenders, 42 nonpsychopathic offenders, and 26 nonoffender controls. Although no overall group differences emerged, the lifestyle/antisocial traits of psychopathy (Factor 2) predicted reduced self-reported guilt on a dimensional level. As hypothesized, such a relationship was absent for the interpersonal/affective dimension of psychopathy (Factor 1). Psychopathy was unrelated to implicit self-guilt associations. Regarding dominance, psychopathy was not significantly associated with indirectly or explicitly assessed dominance. These findings are interpreted in the light of empirical knowledge on moral emotions, insight and response distortion in highly antisocial offenders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Integrable aspects and rogue wave solution of Sasa-Satsuma equation with variable coefficients in the inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ping; Yu, Lan; Wei, Guang-Mei

    2018-02-01

    Under investigation with symbolic computation in this paper, is a variable-coefficient Sasa-Satsuma equation (SSE) which can describe the ultra short pulses in optical fiber communications and propagation of deep ocean waves. By virtue of the extended Ablowitz-Kaup-Newell-Segur system, Lax pair for the model is directly constructed. Based on the obtained Lax pair, an auto-Bäcklund transformation is provided, then the explicit one-soliton solution is obtained. Meanwhile, an infinite number of conservation laws in explicit recursion forms are derived to indicate its integrability in the Liouville sense. Furthermore, exact explicit rogue wave (RW) solution is presented by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the RW can exhibit graphically an intriguing twisted rogue-wave (TRW) pair that involve four well-defined zero-amplitude points.

  12. Strongly anomalous diffusion in sheared magnetic configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Eijnden, E.; Balescu, R.

    1996-03-01

    The statistical behavior of magnetic lines in a sheared magnetic configuration with reference surface {ital x}=0 is investigated within the framework of the kinetic theory. A Liouville equation is associated with the equations of motion of the stochastic magnetic lines. After averaging over an ensemble of realizations, it yields a convection-diffusion equation within the quasilinear approximation. The diffusion coefficients are space dependent and peaked around the reference surface {ital x}=0. Due to the shear, the diffusion of lines away from the reference surface is slowed down. The behavior of the lines is asymptotically strongly non-Gaussian. The reference surface acts likemore » an attractor around which the magnetic lines spread with an effective subdiffusive behavior. Comparison is also made with more usual treatments based on the study of the first two moments equations. For sheared systems, it is explicitly shown that the Corrsin approximation assumed in the latter approach is no longer valid. It is also concluded that the diffusion coefficients cannot be derived from the mean square displacement of the magnetic lines in an inhomogeneous medium. {copyright} {ital 1996 American Institute of Physics.}« less

  13. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  14. Hidden symmetries in Sasaki-Einstein geometries

    NASA Astrophysics Data System (ADS)

    Slesar, V.; Visinescu, M.; Vîlcu, G. E.

    2017-07-01

    We describe a method for constructing Killing-Yano tensors on Sasaki spaces using their geometrical properties, without the need of solving intricate generalized Killing equations. We obtain the Killing-Yano tensors on toric Sasaki-Einstein spaces using the fact that the metric cones of these spaces are Calabi-Yau manifolds which in turn are described in terms of toric data. We extend the search of Killing-Yano tensors on mixed 3-Sasakian manifolds. We illustrate the method by explicit construction of Killing forms on some spaces of current interest.

  15. Motives of Log Schemes

    NASA Astrophysics Data System (ADS)

    Howell, Nicholas L.

    This thesis introduces two notions of motive associated to a log scheme. We introduce a category of log motives a la Voevodsky, and prove that the embedding of Voevodsky motives is an equivalence, in particular proving that any homotopy-invariant cohomology theory of schemes extends uniquely to log schemes. In the case of a log smooth degeneration, we give an explicit construction of the motivic Albanese of the degeneration, and show that the Hodge realization of this construction gives the Albanese of the limit Hodge structure.

  16. Constructing increment-decrement life tables.

    PubMed

    Schoen, R

    1975-05-01

    A life table model which can recognize increments (or entrants) as well as decrements has proven to be of considerable value in the analysis of marital status patterns, labor force participation patterns, and other areas of substantive interest. Nonetheless, relatively little work has been done on the methodology of increment-decrement (or combined) life tables. The present paper reviews the general, recursive solution of Schoen and Nelson (1974), develops explicit solutions for three cases of particular interest, and compares alternative approaches to the construction of increment-decrement tables.

  17. Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Kurien, Susan; Cambon, Claude

    2015-06-22

    The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.

  18. a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra

    NASA Astrophysics Data System (ADS)

    Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.

    Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.

  19. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, T.; Kapec, D.; Raclariu, A.

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  20. The Solution Construction of Heterotic Super-Liouville Model

    NASA Astrophysics Data System (ADS)

    Yang, Zhan-Ying; Zhen, Yi

    2001-12-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.

  1. The formal de Rham complex

    NASA Astrophysics Data System (ADS)

    Zharinov, V. V.

    2013-02-01

    We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field {F} = {R},{C}. All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.

  2. Functional Specification and Simulation of a Floating Point Co-Processor for SPUR

    DTIC Science & Technology

    1986-08-01

    depend on this state will not be stable until the next phase; this leaves the problem of how to control events that must occur on phi 1 of a cycle. The... problems with the structure of the chip description. The worst of these problems is the absence of Slang constructs for coding separate chip component...constructs such as UNK as well. Another related problem was the inability to explicitly declare the size of Slang node values. \\Vhile the correct

  3. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE PAGES

    He, T.; Kapec, D.; Raclariu, A.; ...

    2017-08-16

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  4. Dovetail Rotor Construction For Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  5. Studying the Transfer of Magnetic Helicity in Solar Active Regions with the Connectivity-based Helicity Flux Density Method

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Pariat, É.; Valori, G.; Jing, J.; Démoulin, P.

    2018-01-01

    In the solar corona, magnetic helicity slowly and continuously accumulates in response to plasma flows tangential to the photosphere and magnetic flux emergence through it. Analyzing this transfer of magnetic helicity is key for identifying its role in the dynamics of active regions (ARs). The connectivity-based helicity flux density method was recently developed for studying the 2D and 3D transfer of magnetic helicity in ARs. The method takes into account the 3D nature of magnetic helicity by explicitly using knowledge of the magnetic field connectivity, which allows it to faithfully track the photospheric flux of magnetic helicity. Because the magnetic field is not measured in the solar corona, modeled 3D solutions obtained from force-free magnetic field extrapolations must be used to derive the magnetic connectivity. Different extrapolation methods can lead to markedly different 3D magnetic field connectivities, thus questioning the reliability of the connectivity-based approach in observational applications. We address these concerns by applying this method to the isolated and internally complex AR 11158 with different magnetic field extrapolation models. We show that the connectivity-based calculations are robust to different extrapolation methods, in particular with regard to identifying regions of opposite magnetic helicity flux. We conclude that the connectivity-based approach can be reliably used in observational analyses and is a promising tool for studying the transfer of magnetic helicity in ARs and relating it to their flaring activity.

  6. Magnetomechanical coupling in thermal amorphous solids

    NASA Astrophysics Data System (ADS)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  7. Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Zheng, Si-Yang

    2014-11-01

    A magnetic enzyme nanosystem have been designed and constructed by a polydopamine (PDA)-modification strategy. The magnetic enzyme nanosystem has well defined core-shell structure and a relatively high saturation magnetization (Ms) value of 48.3 emu g-1. The magnetic enzyme system can realize rapid, efficient and reusable tryptic digestion of proteins by taking advantage of its magnetic core and biofunctional shell. Various standard proteins (e.g. cytochrome C (Cyt-C), myoglobin (MYO) and bovine serum albumin (BSA)) have been used to evaluate the effectiveness of the magnetic enzyme nanosystem. The results show that the magnetic enzyme nanosystem can digest the proteins in 30 minutes, and the results are comparable to conventional 12 hours in-solution digestion. Furthermore, the magnetic enzyme nanosystem is also effective in the digestion of low-concentration proteins, even at as low as 5 ng μL-1 substrate concentration. Importantly, the system can be reused several times, and has excellent stability for storage. Therefore, this work will be highly beneficial for the rapid digestion and identification of proteins in future proteomics.

  8. Flux and Hall states in ABJM with dynamical flavors

    NASA Astrophysics Data System (ADS)

    Bea, Yago; Jokela, Niko; Lippert, Matthew; Ramallo, Alfonso V.; Zoakos, Dimitrios

    2015-03-01

    We study the physics of probe D6-branes with quantized internal worldvolume flux in the ABJM background with unquenched massless flavors. This flux breaks parity in the (2+1)-dimensional gauge theory and allows quantum Hall states. Parity breaking is also explicitly demonstrated via the helicity dependence of the meson spectrum. We obtain general expressions for the conductivities, both in the gapped Minkowski embeddings and in the compressible black hole ones. These conductivities depend on the flux and contain a contribution from the dynamical flavors which can be regarded as an effect of intrinsic disorder due to quantum fluctuations of the fundamentals. We present an explicit, analytic family of supersymmetric solutions with nonzero charge density, electric, and magnetic fields.

  9. Precision Magnetic Bearing Six Degree of Freedom Stage

    NASA Technical Reports Server (NTRS)

    Williams, M. E.; Trumper, David L.

    1996-01-01

    Magnetic bearings are capable of applying force and torque to a suspended object without rigidly constraining any degrees of freedom. Additionally, the resolution of magnetic bearings is limited only by sensors and control, and not by the finish of a bearing surface. For these reasons, magnetic bearings appear to be ideal for precision wafer positioning in lithography systems. To demonstrate this capability a linear magnetic bearing has been constructed which uses variable reluctance actuators to control the motion of a 14.5 kg suspended platen in five degrees of freedom. A Lorentz type linear motor of our own design and construction is used to provide motion and position control in the sixth degree of freedom. The stage performance results verify that the positioning requirements of photolithography can be met with a system of this type. This paper describes the design, control, and performance of the linear magnetic bearing.

  10. Construction of a Simple Low-Cost Teslameter and Its Use with Arduino and MakerPlot Software

    ERIC Educational Resources Information Center

    Atkin, Keith

    2016-01-01

    This paper shows how it is possible to construct a very simple device for the measurement of magnetic flux densities in an educational context. It is also shown how such a device can be interfaced to a microcontroller with plotting-software to facilitate the study of magnetic fields produced by a current-carrying coil.

  11. Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zocco, A.; Plunk, G. G.; Xanthopoulos, P.

    The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less

  12. Professional Socialization: A Bridge between the Explicit and Implicit Curricula

    ERIC Educational Resources Information Center

    Miller, Shari E.

    2013-01-01

    Professional socialization has become a notable construct for social work with the publication of the Council on Social Work Education's (2008) revised "Educational Policy and Accreditation Standards." Though historically regarded as essential, little is known about the professional socialization of social workers. This article presents…

  13. Backward Design: Targeting Depth of Understanding for All Learners

    ERIC Educational Resources Information Center

    Childre, Amy; Sands, Jennifer R.; Pope, Saundra Tanner

    2009-01-01

    Curriculum design is at the center of developing student ability to construct understanding. Without appropriately designed curriculum, instruction can be ineffective at scaffolding understanding. Often students with disabilities need more explicit instruction or guidance in applying their schema to new information. Thus, instruction must not only…

  14. Self-esteem discrepancies and identity-expressive consumption: Evidence from Norwegian adolescents.

    PubMed

    Tunca, Burak

    2018-02-01

    Prior research established that simultaneously holding discrepant explicit (deliberate, controlled) and implicit (automatic, uncontrolled) self-esteem gives rise to self-enhancing behaviours. Given that individuals tend to enhance their self-concepts with brands that are associated with positive identities, this study examined whether self-esteem discrepancy was related to the extent to which individuals developed connections with brands that are associated with their in-groups. Findings from an adolescent sample (ages 16-18) indicated that adolescents with larger discrepancies between explicit and implicit self-esteem were more likely to construct their self-concepts using in-group-linked brands. © 2016 International Union of Psychological Science.

  15. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation

    PubMed Central

    Li, Qingguo

    2017-01-01

    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method. PMID:29283432

  16. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    NASA Astrophysics Data System (ADS)

    El-Alaily, T. M.; El-Nimr, M. K.; Saafan, S. A.; Kamel, M. M.; Meaz, T. M.; Assar, S. T.

    2015-07-01

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability.

  17. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  18. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  19. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  20. Magnetic phase diagrams of erbium

    NASA Astrophysics Data System (ADS)

    Frazer, B. H.; Gebhardt, J. R.; Ali, N.

    1999-04-01

    The magnetic phase diagrams of erbium in the magnetic field-temperature plane have been constructed for applied magnetic fields along the a and b axes. For an a-axis applied field our H-T phase diagrams determined from magnetization and magnetoresistance data are in good agreement and consistent with that of Jehan et al. for temperatures below 50 K. A splitting of the basal plane Néel temperature (TN⊥) above 3.75 T introduces two new magnetic phases. Also a transition from a fan to a canted fan phase as suggested by Jehan et al. is observed in an increasing field below TC. Our phase diagram for a b-axis applied field constructed from magnetization data is very similar to the phase diagram of Watson and Ali using magnetoresistance measurements. However, the anomaly at 42 K reported by Watson and Ali is not observed in the present study. No splitting of the TN⊥ transition is observed in either work for a field applied along the b axis.

  1. Superconducting Magnets for Accelerators

    NASA Astrophysics Data System (ADS)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  3. Anyons in an electromagnetic field and the Bargmann-Michel-Telegdi equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.

    1995-05-15

    The Lagrangian model for anyons, presented earlier, is extended to include interactions with an external, homogeneous electromagnetic field. Explicit electric and magnetic moment terms for the anyon are introduced in the Lagrangian. The (2+1)-dimensional Bargmann-Michel-Telegdi equation as well as the correct value (2) of the gyromagnetic ratio is rederived, in the Hamiltonian framework.

  4. Constructing an Indoor Floor Plan Using Crowdsourcing Based on Magnetic Fingerprinting

    PubMed Central

    Zhao, Fang; Jiang, Mengling; Ma, Hao; Zhang, Yuexia

    2017-01-01

    A large number of indoor positioning systems have recently been developed to cater for various location-based services. Indoor maps are a prerequisite of such indoor positioning systems; however, indoor maps are currently non-existent for most indoor environments. Construction of an indoor map by external experts excludes quick deployment and prevents widespread utilization of indoor localization systems. Here, we propose an algorithm for the automatic construction of an indoor floor plan, together with a magnetic fingerprint map of unmapped buildings using crowdsourced smartphone data. For floor plan construction, our system combines the use of dead reckoning technology, an observation model with geomagnetic signals, and trajectory fusion based on an affinity propagation algorithm. To obtain the indoor paths, the magnetic trajectory data obtained through crowdsourcing were first clustered using dynamic time warping similarity criteria. The trajectories were inferred from odometry tracing, and those belonging to the same cluster in the magnetic trajectory domain were then fused. Fusing these data effectively eliminates the inherent tracking errors originating from noisy sensors; as a result, we obtained highly accurate indoor paths. One advantage of our system is that no additional hardware such as a laser rangefinder or wheel encoder is required. Experimental results demonstrate that our proposed algorithm successfully constructs indoor floor plans with 0.48 m accuracy, which could benefit location-based services which lack indoor maps. PMID:29156639

  5. Processing of false belief passages during natural story comprehension: An fMRI study.

    PubMed

    Kandylaki, Katerina D; Nagels, Arne; Tune, Sarah; Wiese, Richard; Bornkessel-Schlesewsky, Ina; Kircher, Tilo

    2015-11-01

    The neural correlates of theory of mind (ToM) are typically studied using paradigms which require participants to draw explicit, task-related inferences (e.g., in the false belief task). In a natural setup, such as listening to stories, false belief mentalizing occurs incidentally as part of narrative processing. In our experiment, participants listened to auditorily presented stories with false belief passages (implicit false belief processing) and immediately after each story answered comprehension questions (explicit false belief processing), while neural responses were measured with functional magnetic resonance imaging (fMRI). All stories included (among other situations) one false belief condition and one closely matched control condition. For the implicit ToM processing, we modeled the hemodynamic response during the false belief passages in the story and compared it to the hemodynamic response during the closely matched control passages. For implicit mentalizing, we found activation in typical ToM processing regions, that is the angular gyrus (AG), superior medial frontal gyrus (SmFG), precuneus (PCUN), middle temporal gyrus (MTG) as well as in the inferior frontal gyrus (IFG) billaterally. For explicit ToM, we only found AG activation. The conjunction analysis highlighted the left AG and MTG as well as the bilateral IFG as overlapping ToM processing regions for both implicit and explicit modes. Implicit ToM processing during listening to false belief passages, recruits the left SmFG and billateral PCUN in addition to the "mentalizing network" known form explicit processing tasks. © 2015 Wiley Periodicals, Inc.

  6. The Neural Basis of Event Simulation: An fMRI Study

    PubMed Central

    Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-01-01

    Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353

  7. Development of a dc motor with virtually zero powered magnetic bearing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  8. Indexing Volumetric Shapes with Matching and Packing

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707

  9. Are preservice teachers prepared to teach struggling readers?

    PubMed

    Washburn, Erin K; Joshi, R Malatesha; Binks Cantrell, Emily

    2011-06-01

    Reading disabilities such as dyslexia, a specific learning disability that affects an individual's ability to process written language, are estimated to affect 15-20% of the general population. Consequently, elementary school teachers encounter students who struggle with inaccurate or slow reading, poor spelling, poor writing, and other language processing difficulties. However, recent evidence may suggest that teacher preparation programs are not providing preservice teachers with information about basic language constructs and other components related to scientifically based reading instruction. As a consequence preservice teachers have not exhibited explicit knowledge of such concepts in previous studies. Few studies have sought to assess preservice teachers' knowledge about dyslexia in conjunction with knowledge of basic language concepts. The purpose of the present study was to examine elementary school preservice teachers' knowledge of basic language constructs and their perceptions and knowledge about dyslexia. Findings from the present study suggest that preservice teachers, on average, are able to display implicit skills related to certain basic language constructs (i.e., syllable counting), but fail to demonstrate explicit knowledge of others (i.e., phonics principles). Also, preservice teachers seem to hold the common misconception that dyslexia is a visual perception deficit rather than a problem with phonological processing. Implications for future research as well as teacher preparation are discussed.

  10. Relationship-centred care: antidote, guidepost or blind alley? The epistemology of 21st century health care.

    PubMed

    Wyer, Peter C; Alves Silva, Suzana; Post, Stephen G; Quinlan, Patricia

    2014-12-01

    Contemporary health care is increasing in complexity and lacks a unifying understanding of epistemology, methodology and goals. Lack of conceptual consistency in concepts such as 'patient-centred care' (PCC) typifies system-wide discordance. We contrast the fragmented descriptions of PCC and related tools to its own origins in the writings of Balint and to a subsequent construct, relationship-centred care (RCC). We identify the explicit and elaborated connection between RCC and a defined epistemological foundation as a distinguishing feature of the construct and we demonstrate that this makes possible the recognition of alignments between RCC and independently developed constructs. Among these, we emphasize Schon's reflective practice, Nonaka's theory of organizational knowledge creation and the research methodology of realist synthesis. We highlight the relational principles common to these domains and to their common epistemologies and illustrate unsatisfying consequences of adherence to less adequate epistemological frameworks such as positivism. We offer RCC not as an 'antidote' to the dilemmas identified at the outset but as an example that illuminates the value and importance of explicit identification of the premises and assumptions underlying approaches to improvement of the health care system. We stress the potential value of identifying epistemological affinities across otherwise disparate fields and disciplines. © 2014 John Wiley & Sons, Ltd.

  11. Rogue periodic waves of the modified KdV equation

    NASA Astrophysics Data System (ADS)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  12. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  13. Performance of a continuous flow ventricular assist device: magnetic bearing design, construction, and testing.

    PubMed

    Allaire, P; Hilton, E; Baloh, M; Maslen, E; Bearnson, G; Noh, D; Khanwilkar, P; Olsen, D

    1998-06-01

    A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller.

  14. Brain response to masked and unmasked facial emotions as a function of implicit and explicit personality self-concept of extraversion.

    PubMed

    Suslow, Thomas; Kugel, Harald; Lindner, Christian; Dannlowski, Udo; Egloff, Boris

    2017-01-06

    Extraversion-introversion is a personality dimension referring to individual differences in social behavior. In the past, neurobiological research on extraversion was almost entirely based upon questionnaires which inform about the explicit self-concept. Today, indirect measures are available that tap into the implicit self-concept of extraversion which is assumed to result from automatic processing functions. In our study, brain activation while viewing facial expression of affiliation relevant (i.e., happiness, and disgust) and irrelevant (i.e., fear) emotions was examined as a function of the implicit and explicit self-concept of extraversion and processing mode (automatic vs. controlled). 40 healthy volunteers watched blocks of masked and unmasked emotional faces while undergoing functional magnetic resonance imaging. The Implicit Association Test and the NEO Five-Factor Inventory were applied as implicit and explicit measures of extraversion which were uncorrelated in our sample. Implicit extraversion was found to be positively associated with neural response to masked happy faces in the thalamus and temporo-parietal regions and to masked disgust faces in cerebellar areas. Moreover, it was positively correlated with brain response to unmasked disgust faces in the amygdala and cortical areas. Explicit extraversion was not related to brain response to facial emotions when controlling trait anxiety. The implicit compared to the explicit self-concept of extraversion seems to be more strongly associated with brain activation not only during automatic but also during controlled processing of affiliation relevant facial emotions. Enhanced neural response to facial disgust could reflect high sensitivity to signals of interpersonal rejection in extraverts (i.e., individuals with affiliative tendencies). Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.

    PubMed

    Rahaman, Badiur; Saha-Dasgupta, T

    2007-07-25

    We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.

  16. Influence of the electron intrinsic magnetic moment on the transverse dielectric permittivity of degenerate electron gas

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Bobrov, V. B.; Kirillin, A. V.; Trigger, S. A.

    2018-01-01

    Using the linear response theory, the transverse dielectric permittivity of a homogeneous and isotropic system of charged particles is considered. In the ideal gas approximation for the polarization function, an explicit analytical expression for the transverse permittivity of a degenerate electron plasma, which takes into account electron spin, is found. This result describes both the Landau diamagnetism and Pauli paramagnetism in electron plasma. The influence of the electron intrinsic magnetic moment on the spatial and frequency dispersion of the transverse dielectric permittivity of degenerate electron plasma is numerically studied, that is crucial for determining the optical characteristics of plasma.

  17. Examining the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzou, W. N.

    We discus the proof of the equivalence of relativistic quantum mechanical models based on the generalized Bakamjian-Thomas construction in all of Dirac's forms of dynamics. Explicit representations of the equivalent mass operators are given in all three of Dirac's forms of dynamics.

  18. Epistemology in Education: Epistemological Development Trajectory

    ERIC Educational Resources Information Center

    Labbas, Rachida

    2013-01-01

    Learning is a continuous process, and through the process of learning, people acquire or construct new knowledge; this knowledge is evaluated implicitly or explicitly (Hofer, 2000). Research on beliefs about knowledge has become an important field of inquiry in educational research (Hofer & Pintrich, 1997). This field of research has emerged…

  19. String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals.

    PubMed

    Janiszewski, Stefan; Karch, Andreas

    2013-02-22

    We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.

  20. Transformative Pedagogy: Emergent Bilinguals and "Perspective Taking"

    ERIC Educational Resources Information Center

    Huerta, Mary Esther Soto

    2017-01-01

    This study contributes to the limited research on emergent bilinguals, perspective taking, and second language reading of informative text. The explicit integration of Freire's (1993) notion of conscientizacao, or consciousness-raising, with the constructs of empathy and embodiment (Gee, 2001; Hurtado, 1996) and with translanguaging (García, 2009)…

  1. Survey of Classroom Use of Representations: Development, Field Test and Multilevel Analysis

    ERIC Educational Resources Information Center

    Nitz, Sandra; Prechtl, Helmut; Nerdel, Claudia

    2014-01-01

    Because of the multimodal nature of learning, doing and reporting science, it is important that students learn how to interpret, construct, relate and translate scientific representations or, in other words, to develop representational competence. Explicit instruction about multimodal representations is needed to foster students'…

  2. Toward a More Explicit Doctoral Pedagogy

    ERIC Educational Resources Information Center

    Garrett, Pamela S.

    2012-01-01

    The purpose of this mixed-methods study was to understand the key constructs and processes underlying the mentoring relationships between doctoral students and their mentors. First, exploratory and confirmatory factor analyses were used to evaluate the measurement structure underlying the 34-item Ideal Mentor Scale (IMS; Rose, 2003), followed by…

  3. Frequency Effects in Second Language Acquisition: An Annotated Survey

    ERIC Educational Resources Information Center

    Kartal, Galip; Sarigul, Ece

    2017-01-01

    The aim of this study is to investigate the relationship between frequency and language acquisition from many perspectives including implicit and explicit instruction, frequency effects on morpheme acquisition in L2, the relationship between frequency and multi-word constructions, frequency effects on phonetics, vocabulary, gerund and infinitive…

  4. US Policies toward Tehran: Redefining Counterproliferation for the Twenty-First Century

    DTIC Science & Technology

    2011-01-01

    latent weapons power, purposefully not constructing an explicit, fully weaponized arsenal, but rather cultivating and maintaining a hedged nuclear...decisively dropping the popular but empirically dubious assump­ tion that Iran’s primary intent is to put mushroom clouds over Tel Aviv and Washington as

  5. The Hidden Formula of Youth Digital Media Engagement. Tips

    ERIC Educational Resources Information Center

    Reynolds, Rebecca

    2009-01-01

    The slate of recent reports on youth technology engagement do not explicitly address the construct of "perceived competence," the third main affective state associated with intrinsically-motivated behavior in Edward Deci and Richard Ryan's broader psychological research. In the Spring of 2008, a team of researchers at Syracuse…

  6. Trajectories of Teacher Identity Development across Institutional Contexts: Constructing a Narrative Approach

    ERIC Educational Resources Information Center

    Richmond, Gail; Juzwik, Mary M.; Steele, Michael D.

    2011-01-01

    Background/Context: Teacher preparation programs are built on knowledge, practices, habits of mind, and professional standards that teacher educators (TEs) intend teachers to possess. Some foundations are explicitly manifest in standards, mission statements, and policies, whereas others are embedded in coursework, field experiences, and social…

  7. Argentina's transport privatization and re-regulation : ups and downs of a daring decade-long experience

    DOT National Transportation Integrated Search

    1999-11-01

    When Argentina initiated the reforms of its transport sector in 1989, it was constructing its own path-breaking way. It was the first in Latin America to privatize its inter-city railroad, the first to organize intra-port competition explicitly, the ...

  8. Curriculum Making as the Enactment of Dwelling in Places

    ERIC Educational Resources Information Center

    Ross, Hamish; Mannion, Greg

    2012-01-01

    This article uses an account of dwelling to interrogate the concept of curriculum making. Tim Ingold's use of dwelling to understand culture is productive here because of his implicit and explicit interest in intergenerational learning. His account of dwelling rests on a foundational ontological claim--that mental construction and representation…

  9. Developing a Dataset to Assess Ecosystem Services in the Midwest, United States

    EPA Science Inventory

    There is an urgent need in the science community to enhance our understanding of the services provided by the ecosystems of the Midwestern United States. The following paper describes a method for creating an enhanced spatially explicit land cover for the Midwest. We constructed...

  10. Help Seeking: Agentic Learners Initiating Feedback

    ERIC Educational Resources Information Center

    Fletcher, Anna Katarina

    2018-01-01

    Effective feedback is an essential tool for making learning explicit and an essential feature of classroom practice that promotes learner autonomy. Yet, it remains a pressing challenge for teachers to scaffold the active involvement of students as critical, reflective and autonomous learners who use feedback constructively. This paper seeks to…

  11. Iron dominated magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  12. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    ERIC Educational Resources Information Center

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  13. Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections.

    PubMed

    Parker, Anna J; Zia, Wasif; Rehorn, Christian W G; Blümich, Bernhard

    2016-04-01

    In recent years, permanent magnet-based NMR spectrometers have resurfaced as low-cost portable alternatives to superconducting instruments. While the development of these devices as well as clever shimming methods have yielded impressive advancements, scaling the size of these magnets to miniature lengths remains a problem to be addressed. Here we present the results of a study of a discrete shimming scheme for NMR Mandhalas constructed from a set of individual magnet blocks. While our calculations predict a modest reduction in field deviation by a factor of 9.3 in the case of the shimmed ideal Mandhala, a factor of 28 is obtained in the case of the shimmed imperfect Mandhala. This indicates that imperfections of magnet blocks can lead to improved field homogeneity. We also present a new algorithm to improve the homogeneity of a permanent magnet assembly. Strategies for future magnet construction can improve the agreement between simulation and practical implementation by using data from real magnets in these assemblies as the input to such an algorithm to optimize the homogeneity of a given design. Published by Elsevier Inc.

  14. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    NASA Astrophysics Data System (ADS)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  15. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.

    PubMed

    Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M

    2017-09-21

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  16. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  17. Multiwavelength observations of magnetic fields and related activity on XI Bootis A

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.; Huovelin, J.; Linsky, Jeffrey L.; Giampapa, Mark S.; Jordan, Carole

    1988-01-01

    Preliminary results of coordinated observations of magnetic fields and related activity on the active dwarf, Xi Boo A, are presented. Combining the magnetic fluxes with the linear polarization data, a simple map of the stellar active regions is constructed.

  18. Tribology of magnetic storage systems

    NASA Technical Reports Server (NTRS)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  19. Investigating the predictive validity of implicit and explicit measures of motivation in problem-solving behavioural tasks.

    PubMed

    Keatley, David; Clarke, David D; Hagger, Martin S

    2013-09-01

    Research into the effects of individuals'autonomous motivation on behaviour has traditionally adopted explicit measures and self-reported outcome assessment. Recently, there has been increased interest in the effects of implicit motivational processes underlying behaviour from a self-determination theory (SDT) perspective. The aim of the present research was to provide support for the predictive validity of an implicit measure of autonomous motivation on behavioural persistence on two objectively measurable tasks. SDT and a dual-systems model were adopted as frameworks to explain the unique effects offered by explicit and implicit autonomous motivational constructs on behavioural persistence. In both studies, implicit autonomous motivation significantly predicted unique variance in time spent on each task. Several explicit measures of autonomous motivation also significantly predicted persistence. Results provide support for the proposed model and the inclusion of implicit measures in research on motivated behaviour. In addition, implicit measures of autonomous motivation appear to be better suited to explaining variance in behaviours that are more spontaneous or unplanned. Future implications for research examining implicit motivation from dual-systems models and SDT approaches are outlined. © 2012 The British Psychological Society.

  20. Multiphoton amplitude in a constant background field

    NASA Astrophysics Data System (ADS)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  1. Orbit-orbit relativistic correction calculated with all-electron molecular explicitly correlated Gaussians.

    PubMed

    Stanke, Monika; Palikot, Ewa; Kȩdziera, Dariusz; Adamowicz, Ludwik

    2016-12-14

    An algorithm for calculating the first-order electronic orbit-orbit magnetic interaction correction for an electronic wave function expanded in terms of all-electron explicitly correlated molecular Gaussian (ECG) functions with shifted centers is derived and implemented. The algorithm is tested in calculations concerning the H 2 molecule. It is also applied in calculations for LiH and H 3 + molecular systems. The implementation completes our work on the leading relativistic correction for ECGs and paves the way for very accurate ECG calculations of ground and excited potential energy surfaces (PESs) of small molecules with two and more nuclei and two and more electrons, such as HeH - , H 3 + , HeH 2 + , and LiH 2 + . The PESs will be used to determine rovibrational spectra of the systems.

  2. Spontaneous decay of periodic magnetostatic equilibria

    DOE PAGES

    East, William E.; Zrake, Jonathan; Yuan, Yajie; ...

    2015-08-28

    In order to understand the conditions which lead a highly magnetized, relativistic plasma to become unstable, and in such cases how the plasma evolves, we study a prototypical class of magnetostatic equilibria where the magnetic field satisfies ∇ x B = αB , where \\alpha is spatially uniform, on a periodic domain. Using numerical solutions we show that generic examples of such equilibria are unstable to ideal modes (including incompressible ones) which are marked by exponential growth in the linear phase. We characterize the unstable mode, showing how it can be understood in terms of merging magnetic and current structures,more » and explicitly demonstrate its instability using the energy principle. Following the nonlinear evolution of these solutions, we find that they rapidly develop regions with relativistic velocities and electric fields of comparable magnitude to the magnetic field, liberating magnetic energy on dynamical timescales and eventually settling into a configuration with the largest allowable wavelength. Furthermore, these properties make such solutions a promising setting for exploring the mechanisms behind extreme cosmic sources of gamma rays.« less

  3. A Comprehensive Comparison of Relativistic Particle Integrators

    NASA Astrophysics Data System (ADS)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  4. Nonstationary magnetosonic wave dynamics in plasmas exhibiting collapse.

    PubMed

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2013-08-01

    In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti et al., Phys. Rev. Lett. 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass variable as a new spatial coordinate [Schamel, Phys. Rep. 392, 279 (2004)]. The obtained exact nonlinear wave solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing collapse only when dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special importance in the astrophysical context of magnetic star formation.

  5. Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions

    NASA Astrophysics Data System (ADS)

    Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.

    2018-01-01

    We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.

  6. Rational F-theory GUTs without exotics

    NASA Astrophysics Data System (ADS)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-07-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  7. Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection.

    PubMed

    Liang, Ru-Ping; Wang, Xiao-Ni; Liu, Chun-Ming; Meng, Xiang-Ying; Qiu, Jian-Ding

    2013-11-08

    A new strategy for facile construction of graphene oxide magnetic nanocomposites (GO/Fe3O4 MNCs)-based on-chip enzymatic microreactor and ultrasensitive pesticide detection has been proposed. GO/Fe3O4 MNCs were first prepared through an in situ chemical deposition strategy. Then, acetylcholinesterase (AChE) was adsorbed onto the GO/Fe3O4 surface to form GO/Fe3O4/AChE MNCs which was locally packed into PDMS microchannel simply with the help of external magnetic field to form an on-chip enzymatic microreactor. The constructed GO/Fe3O4/AChE MNCs-based enzymatic microreactor not only have the magnetism of Fe3O4 NPs that make them conveniently manipulated by an external magnetic field, but also have the larger surface and excellent biocompatibility of graphene which can incorporate much more AChE molecules and well maintain their biological activity. On the basis of the AChE inhibition principle, a novel on-chip enzymatic microreactor was constructed for analyzing dimethoate which is usually used as a model of organophosphorus pesticides. Under optimal conditions, a linear relationship between the inhibition rates of AChE and the concentration of dimethoate from 1 to 20 μgL(-1) with a detection limit of 0.18 μgL(-1) (S/N=3) was obtained. The developed electrophoretic and magnetic-based chip exhibited excellent reproducibility and stability with no decrease in the activity of enzyme for more than 20 repeated measurements over one week period, which provided a new and promising tool for the analysis of enzyme inhibitors with low cost and excellent performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. SDG Fermion-Pair Algebraic SO(12) and Sp(10) Models and Their Boson Realizations

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Geyer, H. B.; Dobes, J.; Dobaczewski, J.

    1995-11-01

    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry.

  9. A simple procedure for construction of the orthonormal basis vectors of irreducible representations of O(5) in the OT (3) ⊗ON (2) basis

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.

    2018-06-01

    A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.

  10. Integrability of geodesics and action-angle variables in Sasaki-Einstein space T^{1,1}

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2016-09-01

    We briefly describe the construction of Stäkel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of the homogeneous Sasaki-Einstein space T^{1,1}. We discuss the integrability of geodesics and construct explicitly the action-angle variables. Two pairs of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the system is perturbed.

  11. Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons ``piloted'' (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-Pierre

    1991-02-01

    Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.

  12. Modularity, quaternion-Kähler spaces, and mirror symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Sergei; Banerjee, Sibasish

    2013-10-15

    We provide an explicit twistorial construction of quaternion-Kähler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

  13. Geometry of Thin Nematic Elastomer Sheets

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this talk we describe the intrinsic geometry of such a sheet, and derive an expression for the metric induced by general smooth nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit analytical recipe for constructing any surface of revolution using this method. We demonstrate how the design of an arbitrary 2D geometry is accessible using approximate numerical methods.

  14. Polarized 3-folds in a codimension 10 weighted homogeneous F4 variety

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Imran

    2017-10-01

    We describe the construction of a codimension 10 weighted homogeneous variety wΣF4(μ , u) corresponding to the exceptional Lie group F4 by explicit computation of its graded ring structure. We give a formula for the Hilbert series of the generic weighted wΣF4(μ , u) in terms of representation theoretic data of F4. We also construct some families of polarized 3-folds in codimension 10 whose general member is a weighted complete intersection of some wΣF4(μ , u) .

  15. Evaluation of metal-foil strain gages for cryogenic application in magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.

    1977-07-08

    The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb/sub 3/Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so formore » the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets.« less

  16. Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law

    NASA Astrophysics Data System (ADS)

    Falugi, P.; Olaru, S.; Dumur, D.

    2010-08-01

    This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.

  17. Conditionals: a theory of meaning, pragmatics, and inference.

    PubMed

    Johnson-Laird, P N; Byrne, Ruth M J

    2002-10-01

    The authors outline a theory of conditionals of the form If A then C and If A then possibly C. The 2 sorts of conditional have separate core meanings that refer to sets of possibilities. Knowledge, pragmatics, and semantics can modulate these meanings. Modulation can add information about temporal and other relations between antecedent and consequent. It can also prevent the construction of possibilities to yield 10 distinct sets of possibilities to which conditionals can refer. The mental representation of a conditional normally makes explicit only the possibilities in which its antecedent is true, yielding other possibilities implicitly. Reasoners tend to focus on the explicit possibilities. The theory predicts the major phenomena of understanding and reasoning with conditionals.

  18. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  19. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.

    2016-02-17

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3/SrTiO3/YTiO3, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3/SrTiO3 and SrTiO3/YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3/SrTiO3 and localized SrTiO3/YTiO3 electrons. Our results provide a route with prospects for exploringmore » new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications.« less

  20. Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. G.; Samardak, A. S.; Stebliy, M. E.; Ognev, A. V.; Chebotkevich, L. A.; Sadovnikov, A. V.; Nikitov, S. A.; Kim, Yong Jin; Cha, In Ho; Kim, Young Keun

    2017-05-01

    One of the major societal challenges is reducing the power consumption of information technology (IT) devices and numerous data centers. Distinct from the current approaches based on switching of magnetic single-domain nanostructures or on movement of domain walls under high currents, an original magnetic skyrmion technology offers ultra-low power, fast, high-density, and scalable spintronic devices, including non-volatile random access memory. Using data-driven micromagnetic simulations, we demonstrate the possibility of spontaneous nucleation and stabilization of different skyrmionic states, such as skyrmions, merons, and meron-like configurations, in heavy metal/ferromagnetic nanodisks with the interfacial Dzyaloshinskii-Moriya interaction (iDMI) as a result of quasi-static magnetization reversal only. Since iDMI is not easily modulated in real systems, we show that skyrmion stabilization is easily achievable by manipulating magnetic anisotropy, saturation magnetization, and the diameters of nanodisks. The state diagrams, presented in terms of the topological charge, allow to explicitly distinguish the intermediate states between skyrmions and merons and can be used for developing a skyrmionic medium, which has been recently proposed to be a building block for future spin-orbitronic devices.

  1. Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Catto, P. J.; Lee, J.; Ram, A. K.

    2017-10-01

    The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.

  2. From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    2012-12-01

    Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baguet, A.; Pope, Christopher N.; Samtleben, H.

    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less

  4. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    PubMed Central

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  5. Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok

    2017-12-01

    A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.

  6. Passive Magnetic Bearing With Ferrofluid Stabilization

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; DiRusso, Eliseo

    1996-01-01

    A new class of magnetic bearings is shown to exist analytically and is demonstrated experimentally. The class of magnetic bearings utilize a ferrofluid/solid magnet interaction to stabilize the axial degree of freedom of a permanent magnet radial bearing. Twenty six permanent magnet bearing designs and twenty two ferrofluid stabilizer designs are evaluated. Two types of radial bearing designs are tested to determine their force and stiffness utilizing two methods. The first method is based on the use of frequency measurements to determine stiffness by utilizing an analytical model. The second method consisted of loading the system and measuring displacement in order to measure stiffness. Two ferrofluid stabilizers are tested and force displacement curves are measured. Two experimental test fixtures are designed and constructed in order to conduct the stiffness testing. Polynomial models of the data are generated and used to design the bearing prototype. The prototype was constructed and tested and shown to be stable. Further testing shows the possibility of using this technology for vibration isolation. The project successfully demonstrated the viability of the passive magnetic bearing with ferrofluid stabilization both experimentally and analytically.

  7. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  8. Explicit and Implicit Subject Bias in the "ABS Journal Quality Guide"

    ERIC Educational Resources Information Center

    Hoepner, Andreas G. F.; Unerman, Jeffrey

    2012-01-01

    This paper addresses issues raised in two recent papers published in this journal about the UK "Association of Business Schools' Journal Quality Guide (ABS Guide)". While much of the debate about journal rankings in general, and the "ABS Guide" in particular, has focused on the construction, power and (mis)use of these…

  9. Thermodynamics of urban population flows.

    PubMed

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  10. Construction, Categorization, and Consensus: Student Generated Computational Artifacts as a Context for Disciplinary Reflection

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle Hoda

    2014-01-01

    There are increasing calls to prepare K-12 students to use computational tools and principles when exploring scientific or mathematical phenomena. The purpose of this paper is to explore whether and how constructionist computer-supported collaborative environments can explicitly engage students in this practice. The Categorizer is a…

  11. Tutors' Assessment Practices and Students' Situated Learning in Higher Education: Chalk and Cheese

    ERIC Educational Resources Information Center

    Orsmond, Paul; Merry, Stephen

    2017-01-01

    This article uses situated learning theory to consider current tutor assessment and feedback practices in relation to learning practices employed by students outside the overt curriculum. The case is made that an emphasis on constructive alignment and explicitly articulating assessment requirements within curricula may be misplaced. Outside of the…

  12. Reusing Design Knowledge Based on Design Cases and Knowledge Map

    ERIC Educational Resources Information Center

    Yang, Cheng; Liu, Zheng; Wang, Haobai; Shen, Jiaoqi

    2013-01-01

    Design knowledge was reused for innovative design work to support designers with product design knowledge and help designers who lack rich experiences to improve their design capacity and efficiency. First, based on the ontological model of product design knowledge constructed by taxonomy, implicit and explicit knowledge was extracted from some…

  13. The universal propagator

    NASA Technical Reports Server (NTRS)

    Klauder, John R.

    1993-01-01

    For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.

  14. Impact of Consciousness-Raising Activities on Young English Language Learners' Grammar Performance

    ERIC Educational Resources Information Center

    Fatemipour, Hamidreza; Hemmati, Shiva

    2015-01-01

    Grammar Consciousness-Raising (GCR) is an approach to teaching of grammar which learners instead of being taught the given rules, experience language data. The data challenge them to rethink, restructure their existing mental grammar and construct an explicit rule to describe the grammatical feature which the data illustrate (Ellis, 2002). And…

  15. Humor-ing the Local: Multivocal Performance in Stand-Up Comedy in Hawai'i

    ERIC Educational Resources Information Center

    Furukawa, Toshiaki

    2011-01-01

    This dissertation takes a discursive approach to Hawai'i stand-up comedy, which is a highly dramaturgical genre, and it examines the cultural specificity of Hawaii comedy in an explicitly interactional context. This culturally-specific performative genre is a discursive site where comedians and their audiences jointly construct multivocal humor…

  16. The Use of Modeling-Based Text to Improve Students' Modeling Competencies

    ERIC Educational Resources Information Center

    Jong, Jing-Ping; Chiu, Mei-Hung; Chung, Shiao-Lan

    2015-01-01

    This study investigated the effects of a modeling-based text on 10th graders' modeling competencies. Fifteen 10th graders read a researcher-developed modeling-based science text on the ideal gas law that included explicit descriptions and representations of modeling processes (i.e., model selection, model construction, model validation, model…

  17. Implementing Concept-Based Learning in a Large Undergraduate Classroom

    ERIC Educational Resources Information Center

    Morse, David; Jutras, France

    2008-01-01

    An experiment explicitly introducing learning strategies to a large, first-year undergraduate cell biology course was undertaken to see whether awareness and use of strategies had a measurable impact on student performance. The construction of concept maps was selected as the strategy to be introduced because of an inherent coherence with a course…

  18. Validating Grammaticality Judgment Tests: Evidence from Two New Psycholinguistic Measures

    ERIC Educational Resources Information Center

    Vafaee, Payman; Suzuki, Yuichi; Kachisnke, Ilina

    2017-01-01

    Several previous factor-analytic studies on the construct validity of grammaticality judgment tests (GJTs) concluded that untimed GJTs measure explicit knowledge (EK) and timed GJTs measure implicit knowledge (IK) (Bowles, 2011; R. Ellis, 2005; R. Ellis & Loewen, 2007). It has also been shown that, irrespective of the time condition chosen,…

  19. Building an adiabatic quantum computer simulation in the classroom

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  20. Are Instructional Explanations More Effective in the Context of an Impasse?

    ERIC Educational Resources Information Center

    Sanchez, Emilio; Garcia-Rodicio, Hector; Acuna, Santiago R.

    2009-01-01

    Effective instructional explanations help the students to construct coherent mental representations. To do so, one condition is that they must be tailored to students' needs. It is hypothesized that explanations are more helpful if they also explicitly aid the students to detect problems in their mental representations, as this provokes an impasse…

  1. The Past in the Present: Historicising Contemporary Debates about Gender and Education

    ERIC Educational Resources Information Center

    Tinkler, Penny; Jackson, Carolyn

    2014-01-01

    History is often embedded, explicitly or implicitly, in discourses on contemporary aspects of gender and education, but relatively few scholars engage critically with history as they grapple with current issues. This article posits "historical sensibility" as a means of engaging constructively with the past when scrutinising and working…

  2. Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.

    ERIC Educational Resources Information Center

    Ley-Koo, E.; And Others

    1980-01-01

    Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…

  3. Schools Ethos and the Construction of Masculine Identity: Do Schools Create, Condone and Sustain Aggression?

    ERIC Educational Resources Information Center

    Carter, Charlotte

    2002-01-01

    An action research project in a British boys' school found the dominant school ethos to include an authoritarian style and an expectation of predetermined masculinity. The ethos was maintained by explicit and implicit encouragement of aggressive behavior. Students exhibited low self-esteem, deficit interpersonal skills, nonparticipation, and…

  4. Erasmus Student Mobility and the Construction of European Citizenship

    ERIC Educational Resources Information Center

    Llurda, Enric; Gallego-Balsà, Lídia; Barahona, Clàudia; Martin-Rubió, Xavier

    2016-01-01

    The Erasmus student mobility programme allocates three explicit objectives to the experience of spending a few months studying in another European country: (1) to benefit students educationally, linguistically and culturally; (2) to promote co-operation between institutions and (3) to contribute to the development of a pool of well-qualified,…

  5. Developmental Changes in Constructive Memory Abilities.

    ERIC Educational Resources Information Center

    Paris, Scott G.

    This paper describes three studies designed to determine whether there are age-related differences in children's memory for implicit and explicit information in prose. In the first study, six experimental paragraphs were read individually to a total of 60 children in grades K-5. Each child was then asked four verbatim recall questions (specific…

  6. Teaching Compound Nouns in ESP: Insights from Cognitive Semantics

    ERIC Educational Resources Information Center

    Fries, Marie-Hélène

    2017-01-01

    The objective of this chapter is to explore the relevance of cognitive linguistics for teaching [noun] + [noun] constructions to French learners of English for Specific Purposes (ESP), and more specifically, for process engineering. After a review of research on Compound Nouns (CNs) and explicit versus implicit learning, three basic tenets of…

  7. Likert or Not, Survey (In)Validation Requires Explicit Theories and True Grit

    ERIC Educational Resources Information Center

    McGrane, Joshua A.; Nowland, Trisha

    2017-01-01

    From the time of Likert (1932) on, attitudes of expediency regarding both theory and methodology became apparent with reference to survey construction and validation practices. In place of theory and more--theoretically minded methods, such as those found in the early work of Thurstone (1928) and Coombs (1964), statistical models and…

  8. An Alternative Time for Telling: When Conceptual Instruction Prior to Problem Solving Improves Mathematical Knowledge

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany

    2014-01-01

    Background: The sequencing of learning materials greatly influences the knowledge that learners construct. Recently, learning theorists have focused on the sequencing of instruction in relation to solving related problems. The general consensus suggests explicit instruction should be provided; however, when to provide instruction remains unclear.…

  9. Distributed Sensing and Processing: A Graphical Model Approach

    DTIC Science & Technology

    2005-11-30

    that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs

  10. Images of Imaging: Notes on Doing Longitudinal Field Work.

    ERIC Educational Resources Information Center

    Barley, Stephen R.

    1990-01-01

    Discusses the processes involved in a field study of technological change in radiology and how researchers can design a qualitative study and then collect data in a systematic and explicit manner. Illustrates the social and human problems of gaining entry into a research site, constructing a research role, and managing relationships. (63…

  11. The Hyperbolic Sine Cardinal and the Catenary

    ERIC Educational Resources Information Center

    Sanchez-Reyes, Javier

    2012-01-01

    The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…

  12. Elements for an Ontology of Care in the Field of Artificial Intelligence.

    PubMed

    González Aguña, Alexandra; Fernández Batalla, Marta; Cercas Duque, Adriana; Herrero Jaén, Sara; Monsalvo San Macario, Enrique; Jiménez Rodríguez, Ma Lourdes; Santamaría García, José Ma; Ramírez Sánchez, Sylvia Claudine; Vialart Vidal, Niurka; Condor Camara, Daniel Flavio

    2018-01-01

    An ontology of care is a formal, explicit specification of a shared conceptualization. Constructing an ontology is a process that requires four elements: knowledge object, subject that knows, knowledge operation and result. These elements configure theframework to generate ontologies that can be used in Artificial Intelligence systems for care.

  13. Learning as Accessing a Disciplinary Discourse: Integrating Academic Literacy into Introductory Physics through Collaborative Partnership

    ERIC Educational Resources Information Center

    Marshall, Delia; Conana, Honjiswa; Maclon, Rohan; Herbert, Mark; Volkwyn, Trevor

    2011-01-01

    This paper examines a collaborative partnership between discipline lecturers and an academic literacy practitioner in the context of undergraduate physics. Gee's sociocultural construct of Discourse is used as a framework for the design of an introductory physics course, explicitly framed around helping students access the disciplinary discourse…

  14. Undergraduates' Ability to Recognize Correlational and Causal Language before and after Explicit Instruction

    ERIC Educational Resources Information Center

    Mueller, Jon F.; Coon, Heather M.

    2013-01-01

    The ability to distinguish between correlational and causal claims is core knowledge for scientific literacy. News reports of scientific research prominently feature these claims. Thus, this knowledge has significant real-world application, and distinguishing among claims is critical to making sense of the reported research. We constructed an…

  15. Modified symplectic schemes with nearly-analytic discrete operators for acoustic wave simulations

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Yang, Dinghui; Lang, Chao; Wang, Wenshuai; Pan, Zhide

    2017-04-01

    Using a structure-preserving algorithm significantly increases the computational efficiency of solving wave equations. However, only a few explicit symplectic schemes are available in the literature, and the capabilities of these symplectic schemes have not been sufficiently exploited. Here, we propose a modified strategy to construct explicit symplectic schemes for time advance. The acoustic wave equation is transformed into a Hamiltonian system. The classical symplectic partitioned Runge-Kutta (PRK) method is used for the temporal discretization. Additional spatial differential terms are added to the PRK schemes to form the modified symplectic methods and then two modified time-advancing symplectic methods with all of positive symplectic coefficients are then constructed. The spatial differential operators are approximated by nearly-analytic discrete (NAD) operators, and we call the fully discretized scheme modified symplectic nearly analytic discrete (MSNAD) method. Theoretical analyses show that the MSNAD methods exhibit less numerical dispersion and higher stability limits than conventional methods. Three numerical experiments are conducted to verify the advantages of the MSNAD methods, such as their numerical accuracy, computational cost, stability, and long-term calculation capability.

  16. Comparative validation of self-report measures of negative attitudes towards Aboriginal Australians and Torres Strait Islanders.

    PubMed

    Skinner, Timothy C; Blick, Julie; Coffin, Juli; Dudgeon, Pat; Forrest, Simon; Morrison, David

    2013-01-01

    This study sought to determine the construct validity of two self-report measures of attitudes towards Aboriginal Australians and Torres Strait Islanders against an implicit measure of attitude. Total of 102 volunteer participants completed the three measures in a randomized order. The explicit measures of prejudice towards Aboriginal Australians were the Modern Racism Scale (MRS) and the Attitudes Towards Indigenous Australians Scale (ATIAS). The implicit attitudes measure was an adaptation of the Implicit Association Test (IAT) and utilised simple drawn head-and-shoulder images of Aboriginal Australians and White Australians as the stimuli. Both explicit measures and implicit measure varied in the extent to which negative prejudicial attitudes were held by participants, and the corresponding construct validities were unimpressive. The MRS was significantly correlated with the IAT, (r =.314;p<.05) where the ATIAS was not significantly correlated with IAT scores (r =.12). Of the two self-report measures of attitudes towards Aboriginal Australians, only the MRS evidenced validity when compared with the use of an implicit attitude measure.

  17. Emulating multiple inheritance in Fortran 2003/2008

    DOE PAGES

    Morris, Karla

    2015-01-24

    Although the high-performance computing (HPC) community increasingly embraces object-oriented programming (OOP), most HPC OOP projects employ the C++ programming language. Until recently, Fortran programmers interested in mining the benefits of OOP had to emulate OOP in Fortran 90/95. The advent of widespread compiler support for Fortran 2003 now facilitates explicitly constructing object-oriented class hierarchies via inheritance and leveraging related class behaviors such as dynamic polymorphism. Although C++ allows a class to inherit from multiple parent classes, Fortran and several other OOP languages restrict or prohibit explicit multiple inheritance relationships in order to circumvent several pitfalls associated with them. Nonetheless, whatmore » appears as an intrinsic feature in one language can be modeled as a user-constructed design pattern in another language. The present paper demonstrates how to apply the facade structural design pattern to support a multiple inheritance class relationship in Fortran 2003. As a result, the design unleashes the power of the associated class relationships for modeling complicated data structures yet avoids the ambiguities that plague some multiple inheritance scenarios.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, G. H.; Heitzenroeder, P.; Lyon, J.

    Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less

  19. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    NASA Astrophysics Data System (ADS)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  20. Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs

    NASA Astrophysics Data System (ADS)

    Franco, J. M.; Rández, L.

    The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.

  1. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization.

    PubMed

    Mazack, Michael J M; Gao, Jiali

    2014-05-28

    The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.

  2. On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    2000-01-01

    This grant was awarded by NASA to The University of Alabama in Huntsville (UAH) to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. In our proposal, we suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical wind models, and used these models to investigate the origin of "dividing lines" in the H-R diagram. In the following, we describe our completed work. We have accomplished the first main goal of our proposal by constructing first purely theoretical, time-dependent and two-component models of stellar chromospheres.1 The models require specifying only three basic stellar parameters, namely, the effective temperature, gravity and rotation rate, and they take into account non-magnetic and magnetic regions in stellar chromospheres. The non-magnetic regions are heated by acoustic waves generated by the turbulent convection in the stellar subphotospheric layers. The magnetic regions are identified with magnetic flux tubes uniformly distributed over the entire stellar surface and they are heated by longitudinal tube waves generated by turbulent motions in the subphotospheric and photospheric layers. The coverage of stellar surface by magnetic regions (the so-called filling factor) is estimated for a given rotation rate from an observational relationship. The constructed models are time-dependent and are based on the energy balance between the amount of mechanical energy supplied by waves and radiative losses in strong Ca II and Mg II emission lines. To calculate the amount of wave energy in the non-magnetic regions, we have used the Lighthill-Stein theory for sound generation.

  3. Magnetized anisotropic stars

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian; Dariescu, Marina-Aura; Dariescu, Ciprian

    2018-05-01

    We extend a known solution-generating technique for isotropic fluids in order to construct more general models of anisotropic stars with poloidal magnetic fields. In particular, we discuss the magnetized versions of some well-known exact solutions describing anisotropic stars and dark energy stars, and we describe some of their properties.

  4. Quantum oscillator on CP{sup n} in a constant magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Stefano; Nersessian, Armen; Yerevan Physics Institute, Alikhanian Brothers St., 2, Yerevan, 375036

    2004-10-15

    We construct the quantum oscillator interacting with a constant magnetic field on complex projective spaces CP{sup N}, as well as on their noncompact counterparts, i.e., the N-dimensional Lobachewski spaces L{sub N}. We find the spectrum of this system and the complete basis of wave functions. Surprisingly, the inclusion of a magnetic field does not yield any qualitative change in the energy spectrum. For N>1 the magnetic field does not break the superintegrability of the system, whereas for N=1 it preserves the exact solvability of the system. We extend these results to the cones constructed over CP{sup N} and L{sub N},more » and perform the Kustaanheimo-Stiefel transformation of these systems to the three dimensional Coulomb-like systems.« less

  5. Defining the next generation munitions handler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassiday, B.K.; Koury, G.J.; Pin, F.G.

    1995-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop-Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start ofmore » the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less

  6. Design, construction and measurements of an alpha magnet as a solution for compact bunch compressor for the electron beam from Thermionic RF Gun

    NASA Astrophysics Data System (ADS)

    Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.

    2018-03-01

    The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

  7. Status of the FLARE (Facility for Laboratory Reconnection Experiments) Construction Project and Plans as a User Facility

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Chen, Y.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2016-10-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. Most of major components either have been already fabricated or are near their completion, including the two most crucial magnets called flux cores. The hardware assembly and installation begin in this summer, followed by commissioning in 2017. Initial comprehensive set of research diagnostics will be constructed and installed also in 2017. The main diagnostics is an extensive set of magnetic probe arrays, covering multiple scales from local electron scales, to intermediate ion scales, and global MHD scales. The planned procedures and example topics as a user facility will be discussed.

  8. A functional magnetic resonance imaging investigation of theory of mind impairments in patients with temporal lobe epilepsy.

    PubMed

    Hennion, Sophie; Delbeuck, Xavier; Koelkebeck, Katja; Brion, Marine; Tyvaert, Louise; Plomhause, Lucie; Derambure, Philippe; Lopes, Renaud; Szurhaj, William

    2016-12-01

    Although patients with mesial temporal lobe epilepsy (mTLE) are known to have theory of mind (ToM) impairments, the latter's neural functional bases have yet to be explored. We used functional magnetic resonance imaging (fMRI) to gain insights into the neural dysfunction associated with ToM impairments in patients with mTLE. Twenty-five patients (12 and 13 with right and left mTLE, respectively) and 25 healthy controls performed the "animated shapes" task during fMRI. This complex ToM task requires both explicit reasoning about mental states and implicit processing of information on biological motion and action. The animated shapes evoke both ToM and non-ToM interaction perception, and the corresponding neural activation patterns were compared. Behavioral performance (i.e. categorization of the interactions) was also recorded. Relative to healthy controls, both patients with right and left mTLE were impaired in categorizing ToM interactions. The fMRI results showed that both patients with right and left mTLE had less intense neural activation (relative to controls) in regions involved in the implicit component of ToM processes (i.e. the fusiform gyrus in patients with right mTLE and the supplementary motor area in patients with left mTLE). In patients with right mTLE, we also observed more intense activation (relative to controls) in regions involved in the explicit component of ToM processes (i.e. the dorsal medial prefrontal cortex); age at onset of epilepsy also mediated activation in regions involved in the explicit component (i.e. the ventral medial prefrontal cortex and the temporoparietal junction). Patients with left mTLE displayed greater activation of the contralateral mesial regions (relative to controls); we speculate that this may correspond to the deployment of a compensatory mechanism. This study provides insights into the disturbances of the implicit/explicit ToM neural network in patients with mTLE. These impairments in the ToM neural network depend on clinical characteristics, such as the laterality (right or left mTLE) and the age at onset of epilepsy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nonperturbative quark-gluon thermodynamics at finite density

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 < μ < 400 MeV and 150 < T < 1000 MeV. For the first time, the explicit integral form is found in this region, demonstrating analytic structure in the complex μ plane. The resulting multiple complex branch points are found at the Roberge-Weiss values of Imμ, with Reμ defined by the values of Polyakov lines and color magnetic confinement.

  10. Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2015-12-01

    We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.

  11. Constructing a 4-TESLA Large Thin Solenoid at the Limit of what can BE Safely Operated

    NASA Astrophysics Data System (ADS)

    Hervé, A.

    The 4-tesla, 6 m free bore CMS solenoid has been successfully tested, operated and mapped at CERN during the autumn of 2006 in a surface hall and fully recommissioned in the underground experimental area in the autumn of 2008. The conceptual design started in 1990, the R&D studies in 1993, and the construction was approved in 1997. At the time the main parameters of this project were considered beyond what was thought possible as, in particular, the total stored magnetic energy reaches 2.6 GJ for a specific magnetic energy density exceeding 11 kJ/kg of cold mass. During this period, the international design and construction team had to make several important technical choices, particularly mechanical ones, to maximize the chances of reaching the nominal induction of 4 T. These design choices are explained and critically reviewed in the light of what is presently known to determine if better solutions would be possible today for constructing a new large high-field thin solenoid for a future detector magnet.

  12. Suggestion for extended Viking magnetic properties experiment on future Mars missions

    NASA Technical Reports Server (NTRS)

    Madsen, M. B.; Knudsen, J. M.; Vistisen, L.; Hargraves, R. B.

    1993-01-01

    A remarkable result from the Viking missions was the discovery that the Martian soil is highly magnetic, in the sense that the soil is attracted by a small magnet. The soil was found to adhere almost equally well to a strong and a weak SmCo magnet in the Viking lander backhoe at both landing sites. An array of permanent magnets, with the purpose of establishing if the magnetic particles on Mars are present as discrete or as composite particles, has been constructed.

  13. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.

    2012-07-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.

  14. Geological reasons for change in intensity of linear magnetic anomalies of the Kursk magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Zhavoronkin, I. A.; Kopayev, V. V.

    1985-01-01

    The geological reasons for fluctuations in the anomalous field intensity along the polar axes were examined. The Kursk magnetic anomaly is used as the basis for the study. A geological-geophysical section was constructed which used the results of the interpretation of gravimagnetic anomalies.

  15. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  16. Nonlinear experimental dye-doped nematic liquid crystal optical transmission spectra estimated by neural network empirical physical formulas

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Köysal, Oğuz

    2010-09-01

    In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10-250 W halogen lamp transmission spectra (wavelength 400-1200 nm) were measured at various bias voltages. Second, because the measured spectra were inherently highly nonlinear, it was difficult to construct explicit empirical physical formulas (EPFs) to employ as transmittance functions. To avoid this difficulty, layered feedforward neural networks (LFNNs) were used to construct explicit EPFs for these theoretically unknown nonlinear NLC transmittance functions. As we theoretically showed in a previous work, a LFNN, as an excellent nonlinear function approximator, is highly relevant to EPF construction. The LFNN-EPFs efficiently and consistently estimated both the measured and yet-to-be-measured nonlinear transmittance response values. The experimentally obtained doping ratio dependencies and applied bias voltage responses of transmittance were also confirmed by LFFN-EPFs. This clearly indicates that physical laws embedded in the physical data can be faithfully extracted by the suitable LFNNs. The extraordinary success achieved with LFNN here suggests two potential applications. First, although not attempted here, these LFNN-EPFs, by such mathematical operations as derivation, integration, minimization etc., can be used to obtain further transmittance related functions of NLCs. Second, for a given NLC response function, whose theoretical nonlinear functional form is yet unknown, a suitable experimental data based LFNN-EPF can be constructed to predict the yet-to-be-measured values.

  17. Stable SU(5) monopoles with higher magnetic charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, S.; Sato, H.; Tomohiro, S.

    1985-09-15

    Taking into account the electroweak breaking effects, some multiply charged monopoles were shown to be stable by Gardner and Harvey. We give the explicit Ansa$uml: tze for finite-energy, nonsingular solutions of these stable higher-strength monopoles with eg = 1,(3/2),3. We also give the general stability conditions and the detailed behavior of the interaction potentials between two monopoles which produce the stable higher-strength monopoles.

  18. Workshop II: Physics Education

    NASA Astrophysics Data System (ADS)

    Horton, Renee; Milner-Bolotin, Marina

    2015-12-01

    Participants in the Physics Education Workshop at the 5th IUPAP International Conference on Women in Physics heard about, among other topics, a study exploring why students have difficulty with concepts related to magnetism (and whether explicitly evoking gender affects the results), work in Europe to develop materials to help teachers implement inquiry-based science education, and the use of peer instruction and online collaboration to help teacher-candidates develop questioning skills.

  19. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  20. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  1. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  2. Microscopic Interpretation and Generalization of the Bloch-Torrey Equation for Diffusion Magnetic Resonance

    PubMed Central

    Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir

    2017-01-01

    In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566

  3. Scaling and intermittency in incoherent α-shear dynamo

    NASA Astrophysics Data System (ADS)

    Mitra, Dhrubaditya; Brandenburg, Axel

    2012-03-01

    We consider mean-field dynamo models with fluctuating α effect, both with and without large-scale shear. The α effect is chosen to be Gaussian white noise with zero mean and a given covariance. In the presence of shear, we show analytically that (in infinitely large domains) the mean-squared magnetic field shows exponential growth. The growth rate of the fastest growing mode is proportional to the shear rate. This result agrees with earlier numerical results of Yousef et al. and the recent analytical treatment by Heinemann, McWilliams & Schekochihin who use a method different from ours. In the absence of shear, an incoherent α2 dynamo may also be possible. We further show by explicit calculation of the growth rate of third- and fourth-order moments of the magnetic field that the probability density function of the mean magnetic field generated by this dynamo is non-Gaussian.

  4. Effective field model of roughness in magnetic nano-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepadatu, Serban, E-mail: SLepadatu@uclan.ac.uk

    2015-12-28

    An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domainmore » wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.« less

  5. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  6. Gauge-free gyrokinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  7. Path integration on the hyperbolic plane with a magnetic field

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1990-08-01

    In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.

  8. Generation of large-scale magnetic fields, non-Gaussianity, and primordial gravitational waves in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2015-02-01

    The generation of large-scale magnetic fields in inflationary cosmology is explored, in particular, in a kind of moduli inflation motivated by racetrack inflation in the context of the type IIB string theory. In this model, the conformal invariance of the hypercharge electromagnetic fields is broken thanks to the coupling of both the scalar and pseudoscalar fields to the hypercharge electromagnetic fields. The following three cosmological observable quantities are first evaluated: the current magnetic field strength on the Hubble horizon scale, which is much smaller than the upper limit from the backreaction problem, local non-Gaussianity of the curvature perturbations due to the existence of the massive gauge fields, and the tensor-to-scalar ratio. It is explicitly demonstrated that the resultant values of local non-Gaussianity and the tensor-to-scalar ratio are consistent with the Planck data.

  9. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less

  10. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  11. The world`s first 27 T and 30 T resistive magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, M.D.; Bole, S.; Eyssa, Y.M.

    1996-07-01

    The authors describe in detail a 30 Tesla, 32mm warm bore,m 15 MW resistive magnet which was put into operation at the National High Magnetic Field Laboratory in Tallahassee, FL in March 1995. The magnet consists of three concentric axially-cooled Bitter stacks connected electrically in series. This magnet employs a substantial new development in Bitter magnet technology which allows high current densities without the usually accompanying high stresses. Details of magnet optimization, design, construction, testing and operation are presented. The authors also report on operating experience with the 27 T magnets.

  12. Rotordynamic Characterization of a Hybrid Superconductor Magnet Bearing

    NASA Technical Reports Server (NTRS)

    Ma, Ki B.; Xia, Zule H.; Cooley, Rodger; Fowler, Clay; Chu, Wei-Kan

    1996-01-01

    A hybrid superconductor magnet bearing uses magnetic forces between permanent magnets to provide lift and the flux pinning force between permanent magnets and superconductors to stabilize against instabilities intrinsic to the magnetic force between magnets. We have constructed a prototype kinetic energy storage system, using a hybrid superconductor magnet bearing to support a 42 lb. flywheel at the center. With five sensors on the periphery of the flywheel, we have monitored the position and attitude of the flywheel during its spin down. The results indicate low values of stiffnesses for the bearing. The implications of this and other consequences will be discussed.

  13. Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization

    PubMed Central

    Bauer, L. M.; Hensley, D. W.; Zheng, B.; Tay, Z. W.; Goodwill, P. W.; Griswold, M. A.; Conolly, S. M.

    2016-01-01

    The development of magnetic particle imaging (MPI) has created a need for optimized magnetic nanoparticles. Magnetic particle relaxometry is an excellent tool for characterizing potential tracers for MPI. In this paper, we describe the design and construction of a high-throughput tabletop relaxometer that is able to make sensitive measurements of MPI tracers without the need for a dedicated shield room. PMID:27250472

  14. Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization.

    PubMed

    Bauer, L M; Hensley, D W; Zheng, B; Tay, Z W; Goodwill, P W; Griswold, M A; Conolly, S M

    2016-05-01

    The development of magnetic particle imaging (MPI) has created a need for optimized magnetic nanoparticles. Magnetic particle relaxometry is an excellent tool for characterizing potential tracers for MPI. In this paper, we describe the design and construction of a high-throughput tabletop relaxometer that is able to make sensitive measurements of MPI tracers without the need for a dedicated shield room.

  15. From Desktop Toy to Educational Aid: Neo Magnets as an Alternative to Ball-and-Stick Models in Representing Carbon Fullerenes

    ERIC Educational Resources Information Center

    Kao, Jacqueline Y.; Yang, Min-Han; Lee, Chi-Young

    2015-01-01

    Neo magnets are neodymium magnet beads that have been marketed as a desktop toy. We proposed using neo magnets as an alternative building block to traditional ball-and-stick models to construct carbon allotropes, such as fullerene and various nanocone structures. Due to the lack of predetermined physical connections, the versatility of carbon…

  16. In situ manufacture of magnetic tunnel junctions by a direct-write process

    NASA Astrophysics Data System (ADS)

    Costanzi, Barry N.; Riazanova, Anastasia V.; Dan Dahlberg, E.; Belova, Lyubov M.

    2014-06-01

    In situ construction of Co/SiO2/Co magnetic tunnel junctions using direct-write electron-beam-induced deposition is described. Proof-of-concept devices were built layer by layer depositing the specific components one at a time, allowing device manufacture using a strictly additive process. The devices exhibit a magnetic tunneling signature which agrees qualitatively with the Slonczewski model of magnetic tunneling.

  17. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  18. Alexithymia Components Are Differentially Related to Explicit Negative Affect But Not Associated with Explicit Positive Affect or Implicit Affectivity.

    PubMed

    Suslow, Thomas; Donges, Uta-Susan

    2017-01-01

    Alexithymia represents a multifaceted personality construct defined by difficulties in recognizing and verbalizing emotions and externally oriented thinking. According to clinical observations, experience of negative affects is exacerbated and experience of positive affects is decreased in alexithymia. Findings from research based on self-report indicate that all alexithymia facets are negatively associated with the experience of positive affects, whereas difficulties identifying and describing feelings are related to heightened negative affect. Implicit affectivity, which can be measured using indirect assessment methods, relates to processes of the impulsive system. The aim of the present study was to examine, for the first time, the relations between alexithymia components and implicit and explicit positive and negative affectivity in healthy adults. The 20-item Toronto Alexithymia Scale, the Implicit Positive and Negative Affect Test and the Positive and Negative Affect Schedule (PANAS) were administered to two hundred and forty-one healthy individuals along with measures of depression and trait anxiety. Difficulties identifying feelings were correlated with explicit negative trait affect, depressive mood and trait anxiety. Difficulties describing feelings showed smaller but also significant correlations with depressive mood and trait anxiety but were not correlated with explicit state or trait affect as assessed by the PANAS. Externally oriented thinking was not significantly correlated with any of the implicit and explicit affect measures. According to our findings, an externally oriented, concrete way of thinking appears to be generally unrelated to dispositions to develop positive or negative affects. Difficulties identifying feelings seem to be associated with increased conscious negative affects but not with a heightened disposition to develop negative affects at an automatic response level.

  19. A More Fine-Grained Measure of Students' Acceptance of Evolution: Development of the Inventory of Student Evolution Acceptance--I-SEA

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Southerland, Sherry

    2012-01-01

    The potential influences of affective perceptions on cognitive engagement in learning, particularly with emotionally charged topics such as evolution, provide justification for acknowledging and assessing learners' attitudes toward content. One approach to determining students' attitudes toward a construct is to explicitly ask them to what degree…

  20. Explicit Science Reading Instruction in Grade 7: Metacognitive Awareness, Metacognitive Self-Management and Science Reading Comprehension.

    ERIC Educational Resources Information Center

    Spence, David J.; And Others

    Reading science text is not simply a process of translating printed symbols into meaning; it involves the interaction of the reader's prior knowledge, beliefs, concurrent experience, and the text in a sociocultural context to construct new meaning and understanding. The purposes of this study were to: explore the associations between metacognition…

  1. Explicit Reasoning, Creativity and Co-Construction in Primary School Children's Collaborative Activities

    ERIC Educational Resources Information Center

    Rojas-Drummond, Sylvia; Mazon, Nancy; Fernandez, Manuel; Wegerif, Rupert

    2006-01-01

    This paper describes research that explored the question of whether or not it is possible to characterise and teach a single type of educationally productive talk. We analysed and compared the quality of children's interactional strategies when jointly working on a reasoning task and a psycholinguistic task. The latter involved writing an…

  2. From Cues to Action: Information Seeking and Exercise Self-Care among Older Adults Managing Chronic Illness

    ERIC Educational Resources Information Center

    Chou, Pak Hei Benedito; Wister, Andrew V.

    2005-01-01

    Drawing from the health belief model, cues to action have been theorized to influence health behaviours; however, few studies have examined these constructs explicitly. This study investigated the relationship between information cues to action and exercise self-care. It was hypothesized that reading about illness information, knowing about…

  3. On Counting the Rational Numbers

    ERIC Educational Resources Information Center

    Almada, Carlos

    2010-01-01

    In this study, we show how to construct a function from the set N of natural numbers that explicitly counts the set Q[superscript +] of all positive rational numbers using a very intuitive approach. The function has the appeal of Cantor's function and it has the advantage that any high school student can understand the main idea at a glance…

  4. Validity: One Word with a Plurality of Meanings

    ERIC Educational Resources Information Center

    St-Onge, Christina; Young, Meredith; Eva, Kevin W.; Hodges, Brian

    2017-01-01

    Validity is one of the most debated constructs in our field; debates abound about what is legitimate and what is not, and the word continues to be used in ways that are explicitly disavowed by current practice guidelines. The resultant tensions have not been well characterized, yet their existence suggests that different uses may maintain some…

  5. Delving beyond Conscious Attitudes: Validation of an Innovative Tool for Assessing Parental Implicit Attitudes toward Physical Punishment

    ERIC Educational Resources Information Center

    Sturge-Apple, Melissa L.; Rogge, Ronald D.; Peltz, Jack S.; Suor, Jennifer H.; Skibo, Michael A.

    2015-01-01

    Parenting scholars have long been interested in understanding the prevalence, determinants, and child outcomes associated with the use of physical discipline. To date, much of the empirical research in this area has utilized self-report measures to assess this construct. However, the subjective nature of participants' explicit reports presents an…

  6. Constructing a Positive Intrasection of Race and Class for the 21st Century

    ERIC Educational Resources Information Center

    McCray, Carlos R.

    2008-01-01

    This article attempts to provide some transparency with regard to how the intersection of race and class negatively affects African Americans in their effort to fight for social justice with regard to classism. Based on the explicit historical attempt to definitively make race and class synonymous, such a manufactured intersection is powerfully…

  7. Integrating the Epistemic and Ontological Aspects of Content Knowledge in Science Teaching and Learning

    ERIC Educational Resources Information Center

    Papadouris, Nicos; Constantinou, Constantinos P.

    2017-01-01

    Promoting facility with content knowledge is one of the most important objectives of science teaching. Conventionally, the focus for this objective is placed on the substantive side of content knowledge (e.g. science concepts/laws), whereas its epistemic or ontological aspects (e.g. why do we construct concepts?) rarely receive explicit attention.…

  8. p-Forms and diffeomorphisms: Hamiltonian formulation

    NASA Astrophysics Data System (ADS)

    Baulieu, Laurent; Henneaux, Marc

    1987-07-01

    The BRST charges corresponding to various (equivalent) ways of writing the action of the diffeomorphism group on p-form gauge fields are canonically related by a canonical transformation in the extended phase space which is explicitly constructed. The occurrence of higher order structure functions is pointed out. Also at: Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile.

  9. Teachers' Use of Curriculum to Support Students in Writing Scientific Arguments to Explain Phenomena

    ERIC Educational Resources Information Center

    McNeill, Katherine L.

    2009-01-01

    The role of the teacher is essential for students' successful engagement in scientific inquiry practices. This study focuses on teachers' use of an 8-week chemistry curriculum that explicitly supports students in one particular inquiry practice, the construction of scientific arguments to explain phenomena in which students justify their claims…

  10. The History of Chemistry. The Case of the Supposed Isomerism of the Hydrocarbon Ethane in the Construction of Knowledge: Implications for Chemical Education.

    ERIC Educational Resources Information Center

    Cross, Roger T.; Price, Ronald F.

    2001-01-01

    Contends that chemical education proposals for changing the conception of chemistry literacy should include making explicit the relationship between chemistry as science and chemistry as technology. Illustrates the importance of distinguishing between scientific and technological activities by explaining the events and processes that are…

  11. The Influence of Theoretical Tools on Teachers' Orientation to Notice and Classroom Practice: A Case Study

    ERIC Educational Resources Information Center

    Mellone, Maria

    2011-01-01

    Assumptions about the construction and the transmission of knowledge and about the nature of mathematics always underlie any teaching practice, even if often unconsciously. I examine the conjecture that theoretical tools suitably chosen can help the teacher to make such assumptions explicit and to support the teacher's reflection on his/her…

  12. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and testmore » results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less

  13. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1996-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing andmore » test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less

  14. Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity

    DOE PAGES

    Knodel, Gino; Lisbao, Pedro; Liu, James T.

    2016-06-06

    Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional N = 2 super-gravity [1]. Here in the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there aremore » $$\\frac{1}{2}$$ -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of N = 2 supergravity are connected to the solutions found here in the c → ∞ limit.« less

  15. Special solutions to Chazy equation

    NASA Astrophysics Data System (ADS)

    Varin, V. P.

    2017-02-01

    We consider the classical Chazy equation, which is known to be integrable in hypergeometric functions. But this solution has remained purely existential and was never used numerically. We give explicit formulas for hypergeometric solutions in terms of initial data. A special solution was found in the upper half plane H with the same tessellation of H as that of the modular group. This allowed us to derive some new identities for the Eisenstein series. We constructed a special solution in the unit disk and gave an explicit description of singularities on its natural boundary. A global solution to Chazy equation in elliptic and theta functions was found that allows parametrization of an arbitrary solution to Chazy equation. The results have applications to analytic number theory.

  16. The integrable case of Adler-van Moerbeke. Discriminant set and bifurcation diagram

    NASA Astrophysics Data System (ADS)

    Ryabov, Pavel E.; Oshemkov, Andrej A.; Sokolov, Sergei V.

    2016-09-01

    The Adler-van Moerbeke integrable case of the Euler equations on the Lie algebra so(4) is investigated. For the L- A pair found by Reyman and Semenov-Tian-Shansky for this system, we explicitly present a spectral curve and construct the corresponding discriminant set. The singularities of the Adler-van Moerbeke integrable case and its bifurcation diagram are discussed. We explicitly describe singular points of rank 0, determine their types, and show that the momentum mapping takes them to self-intersection points of the real part of the discriminant set. In particular, the described structure of singularities of the Adler-van Moerbeke integrable case shows that it is topologically different from the other known integrable cases on so(4).

  17. A Hands-On Approach to Maglev for Gifted Students.

    ERIC Educational Resources Information Center

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  18. Can the History of Science Contribute to Modelling in Physics Teaching?

    NASA Astrophysics Data System (ADS)

    Machado, Juliana; Braga, Marco Antônio Barbosa

    2016-10-01

    A characterization of the modelling process in science is proposed for science education, based on Mario Bunge's ideas about the construction of models in science. Galileo's Dialogues are analysed as a potentially fruitful starting point to implement strategies aimed at modelling in the classroom in the light of that proposal. It is argued that a modelling process for science education can be conceived as the evolution from phenomenological approaches towards more representational ones, emphasizing the role of abstraction and idealization in model construction. The shift of reference of theories—from sensible objects to conceptual objects—and the black-box models construction process, which are both explicitly presented features in Galileo's Dialogues, are indicated as highly relevant aspects for modelling in science education.

  19. Consistent Pauli reduction on group manifolds

    DOE PAGES

    Baguet, A.; Pope, Christopher N.; Samtleben, H.

    2016-01-01

    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less

  20. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  1. Plasma Equilibria With Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2009-05-01

    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  2. Second order gyrokinetic theory for particle-in-cell codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-15

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell–Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell–Vlasov system issuedmore » from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell–Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.« less

  3. Integrating the epistemic and ontological aspects of content knowledge in science teaching and learning

    NASA Astrophysics Data System (ADS)

    Papadouris, Nicos; Constantinou, Constantinos P.

    2017-04-01

    Promoting facility with content knowledge is one of the most important objectives of science teaching. Conventionally, the focus for this objective is placed on the substantive side of content knowledge (e.g. science concepts/laws), whereas its epistemic or ontological aspects (e.g. why do we construct concepts?) rarely receive explicit attention. In this article, we develop a theoretical argument for the value of elevating the attention paid to the epistemic/ontological aspects of content knowledge and integrating them with its substantive side. Our argument is structured in two parts. The first unpacks the epistemic/ontological aspects of content knowledge and their role in science. For this, we focus on two specific aspects (i.e. ontological status and epistemic value of science concepts), which we elaborate in the context of two particular content domains, namely magnetism and energy. The second part of the argument highlights the potential of discourse on epistemic/ontological aspects to facilitate learning in science. We delineate how such discourse could (a) promote coherent conceptual understanding, (b) foster a productive epistemological stance towards science learning, and (c) enhance students' appreciation of ideas associated with the nature of science. The article concludes with a discussion of ensuing implications for science education.

  4. The Stack of Yang-Mills Fields on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Benini, Marco; Schenkel, Alexander; Schreiber, Urs

    2018-03-01

    We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG con.

  5. Nonassociative differential geometry and gravity with non-geometric fluxes

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Ćirić, Marija Dimitrijević; Szabo, Richard J.

    2018-02-01

    We systematically develop the metric aspects of nonassociative differential geometry tailored to the parabolic phase space model of constant locally non-geometric closed string vacua, and use it to construct preliminary steps towards a nonassociative theory of gravity on spacetime. We obtain explicit expressions for the torsion, curvature, Ricci tensor and Levi-Civita connection in nonassociative Riemannian geometry on phase space, and write down Einstein field equations. We apply this formalism to construct R-flux corrections to the Ricci tensor on spacetime, and comment on the potential implications of these structures in non-geometric string theory and double field theory.

  6. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  7. Clock synchronization by accelerated observers - Metric construction for arbitrary congruences of world lines

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Nelson, L. A.

    1985-01-01

    Clock synchronization in an arbitrarily accelerated observer congruence is considered. A general solution is obtained that maintains the isotropy and coordinate independence of the one-way speed of light. Attention is also given to various particular cases including, rotating disk congruence or ring congruence. An explicit, congruence-based spacetime metric is constructed according to Einstein's clock synchronization procedure and the equation for the geodesics of the space-time was derived using Hamilton-Jacobi method. The application of interferometric techniques (absolute phase radio interferometry, VLBI) to the detection of the 'global Sagnac effect' is also discussed.

  8. Cryogenic System for J-Parc Neutrino Superconducting Magnet Beam LINE—DESIGN, Construction and Performance Test

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.

    2010-04-01

    A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.

  9. ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of themore » exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.« less

  10. Applying the Explicit Time Central Difference Method for Numerical Simulation of the Dynamic Behavior of Elastoplastic Flexible Reinforced Plates

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2017-12-01

    Based on a stepwise algorithm involving central finite differences for the approximation in time, a mathematical model is developed for elastoplastic deformation of cross-reinforced plates with isotropically hardening materials of components of the composition. The model allows obtaining the solution of elastoplastic problems at discrete points in time by an explicit scheme. The initial boundary value problem of the dynamic behavior of flexible plates reinforced in their own plane is formulated in the von Kármán approximation with allowance for their weakened resistance to the transverse shear. With a common approach, the resolving equations corresponding to two variants of the Timoshenko theory are obtained. An explicit "cross" scheme for numerical integration of the posed initial boundary value problem has been constructed. The scheme is consistent with the incremental algorithm used for simulating the elastoplastic behavior of a reinforced medium. Calculations of the dynamic behavior have been performed for elastoplastic cylindrical bending of differently reinforced fiberglass rectangular elongated plates. It is shown that the reinforcement structure significantly affects their elastoplastic dynamic behavior. It has been found that the classical theory of plates is as a rule unacceptable for carrying out the required calculations (except for very thin plates), and the first version of the Timoshenko theory yields reasonable results only in cases of relatively thin constructions reinforced by lowmodulus fibers. Proceeding from the results of the work, it is recommended to use the second variant of the Timoshenko theory (as a more accurate one) for calculations of the elastoplastic behavior of reinforced plates.

  11. Design of a poly-Bitter magnet at the NHMFL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, M.D.; Bole, S.; Eyssa, Y.M.

    1996-07-01

    The world`s first 33 Tesla resistive magnet is being designed and built at the National High Magnetic Field Laboratory in Tallahassee, FL. Completion of the magnet is expected in the fourth quarter of 1995. It will produce a peak on-axis field greater than 33 Teslas in a 32 mm warm bore while consuming 20 megawatts of power. This magnet consists of two small concentric parallel coils (poly-Bitter) in series with two larger Bitter coils. Details of optimization calculations and the resulting magnet design and construction are presented.

  12. Preparation of a Magnetically Switchable Bioelectrocatalytic System Employing Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinwoo; Lee, Dohun; Oh, Eunkeu

    2005-11-18

    Nanostructured magnetic materials (NMMs)[1] have attracted much attention recently because of their broad biotechnological applications including support matrices for enzyme immobilization,[2] immunoassays,[3] drug delivery,[4] and biosensors.[ 5] Specifically, the easy separation and controlled placement of NMMs by means of an external magnetic field enables their application in the development of immobilized enzyme processes[2] and the construction of magnetically controllable bio-electrocatalytic systems.[5, 6] Herein, we demonstrate the use of immobilized enzymes in NMMs for magnetically switchable bio-electrocatalysis.

  13. Parallel heat transport in integrable and chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve themore » local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.« less

  14. Baby MIND Experiment Construction Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonova, M.; et al.

    Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.

  15. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  16. Attainment of students’ conception in magnetic fields by using of direct observation and symbolic language ability

    NASA Astrophysics Data System (ADS)

    Desy Fatmaryanti, Siska; Suparmi; Sarwanto; Ashadi

    2017-11-01

    This study focuses on description attainment of students’ conception in the magnetic field. The conception was based by using of direct observation and symbolic language ability. The method used is descriptive quantitative research. The subject of study was about 86 students from 3 senior high school at Purworejo. The learning process was done by guided inquiry model. During the learning, students were required to actively investigate the concept of a magnetic field around a straight wire electrical current Data retrieval was performed using an instrument in the form of a multiple choice test reasoned and observation during the learning process. There was four indicator of direct observation ability and four indicators of symbolic language ability to grouping category of students conception. The results of average score showed that students conception about the magnitude more better than the direction of magnetic fields in view of symbolic language. From the observation, we found that students could draw the magnetic fields line not from a text book but their direct observation results. They used various way to get a good accuracy of observation results. Explicit recommendations are presented in the discussion section at the end of this paper.

  17. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles

    NASA Astrophysics Data System (ADS)

    Yin, H. M.; Sun, L. Z.; Chen, J. S.

    2006-05-01

    Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.

  18. AFT: Extending Solar Cycle Prediction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Upton, L.; Hathaway, D. H.

    2017-12-01

    The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.

  19. Non-ideal magnetohydrodynamics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  20. Niche construction theory: a practical guide for ecologists.

    PubMed

    Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N

    2013-03-01

    Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.

Top