Sample records for constructing fluorogenic bacillus

  1. Expanding the Use of a Fluorogenic Method to Determine Activity and Mode of Action of Bacillus thuringiensis Bacteriocins Against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    de la Fuente-Salcido, Norma M.; Barboza-Corona, J. Eleazar; Espino Monzón, A. N.; Pacheco Cano, R. D.; Balagurusamy, N.; Bideshi, Dennis K.; Salcedo-Hernández, Rubén

    2012-01-01

    Previously we described a rapid fluorogenic method to measure the activity of five bacteriocins produced by Mexican strains of Bacillus thuringiensis against B. cereus 183. Here we standardize this method to efficiently determine the activity of bacteriocins against both Gram-positive and Gram-negative bacteria. It was determined that the crucial parameter required to obtain reproducible results was the number of cells used in the assay, that is, ~4 × 108 cell/mL and ~7 × 108 cell/mL, respectively, for target Gram-positive and Gram-negative bacteria. Comparative analyses of the fluorogenic and traditional well-diffusion assays showed correlation coefficients of 0.88 to 0.99 and 0.83 to 0.99, respectively, for Gram-positive and Gram-negative bacteria. The fluorogenic method demonstrated that the five bacteriocins of B. thuringiensis have bacteriolytic and bacteriostatic activities against all microorganisms tested, including clinically significant bacteria such as Listeria monocytogenes, Proteus vulgaris, and Shigella flexneri reported previously to be resistant to the antimicrobials as determined using the well-diffusion protocol. These results demonstrate that the fluorogenic assay is a more sensitive, reliable, and rapid method when compared with the well-diffusion method and can easily be adapted in screening protocols for bacteriocin production by other microorganisms. PMID:22919330

  2. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  3. Engineering and characterization of fluorogenic glycine riboswitches.

    PubMed

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-07-08

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (k(on)), and dissociation (k(off)) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. k(on) and k(off) were in the order of 10(-3)s(-1) and 10(-2)s(-1), respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Direct Measurement of Acetylesterase in Living Protist Cells1

    PubMed Central

    Medzon, Edward L.; Brady, Marilyn L.

    1969-01-01

    The fluorogenic acetylesterase (acetic ester hydrolase EC 3.1.1.6.) substrate, fluorescein diacetate, was used to measure enzyme activity in living protist cells. The visual enzyme assay was done by monitoring fluorochromasia by fluorescent microscopy. Quantitative fluorogenic assays were done by measuring the evolved fluorescein in a fluorometer. Of 59 strains of bacteria, 35 were fluorochromatically positive. Eight of the fluorochromatically negative strains were fluorogenically positive. Of 22 strains of slime molds and fungi, all were fluorochromatically positive. Three out of 12 different algae were fluorochromatically positive. Several unidentified protozoa were also fluorochromatically positive. Four out of six protozoa were fluorochromatically positive. Structures of special interest showing acetylesterase activity were: the growing hyphal tips of fungi, the vacuolated areas of yeast and protozoa, newly formed bacterial spores or immature fungal spores, “mesosome-like” bodies in Bacillus megaterium, and the cell membrane and nuclear region of green algae. Yeast protoplasts and bacterial protoplasts and spheroplasts were fluorochromatically positive when derived from positive cells and negative when derived from negative cells. There was no correlation between the possession of a capsule and acetylesterase activity. There was no effect on the viability of bacterial cells incubated in the presence of fluorescein diacetate. Paraoxon inhibited bacterial and yeast enzyme at 10−5m. Eserine (10−5m) and Paraoxon (10−7m) inhibited B. megaterium enzyme. Sodium acetate at 10−2m did not inhibit bacterial enzyme. The implications of these findings on the location and expression of esterase activity in living cells are discussed. Images PMID:4974398

  5. Spore immobilization and its analytical performance for monitoring of aflatoxin M1 in milk.

    PubMed

    Singh, V K; Singh, N A; Kumar, N; Raghu, H V; Sharma, Pradeep Kumar; Singh, K P; Yadav, Avinash

    2014-12-01

    Immobilization of Bacillus megaterium spores on Eppendorf tubes through physical adsorption has been used in the detection of aflatoxin M1 (AFM1) in milk within real time of 45 ± 5 min using visual observation of changes in a chromogenic substrate. The appearance of a sky-blue colour indicates the absence of AFM1 in milk, whereas no colour change indicates the presence of AFM1 in milk at a 0.5 ppb Codex maximum residue limit. The working performance of the immobilized spores was shown to persist for up to 6 months. Further, spores immobilized on 96-well black microtitre plates by physical adsorption and by entrapment on sensor disk showed a reduction in detection sensitivity to 0.25 ppb within a time period of 20 ± 5 min by measuring fluorescence using a microbiological plate reader through the addition of milk and fluorogenic substrate. A high fluorescence ratio indicated more substrate hydrolysis due to spore-germination-mediated release of marker enzymes of spores in the absence of AFM1 in milk; however, low fluorescence ratios indicated the presence of AFM1 at 0.25 ppb. Immobilized spores on 96-well microtitre plates and sensor disks have shown better reproducibility after storage at 4 °C for 6 months. Chromogenic assay showed 1.38% false-negative and 2.77% false-positive results while fluorogenic assay showed 4.16% false-positive and 2.77% false-negative results when analysed for AFM1 using 72 milk samples containing raw, pasteurized, and dried milk. Immobilization of spores makes these chromogenic and fluorogenic assays portable, selective, cost-effective for real-time detection of AFM1 in milk at the dairy farm, reception dock, and manufacturing units of the dairy industry.

  6. A photophysical study of two fluorogen-activating proteins bound to their cognate fluorogens

    NASA Astrophysics Data System (ADS)

    Gaiotto, Tiziano; Nguyen, Hau B.; Jung, Jaemyeong; Gnanakaran, Gnana S.; Schmidt, Jurgen G.; Waldo, Geoffrey S.; Bradbury, Andrew M.; Goodwin, Peter M.

    2011-03-01

    We are exploring the use of fluorogen-activating proteins (FAPs) as reporters for single-molecule imaging. FAPs are single-chain antibodies selected to specifically bind small chromophoric molecules termed fluorogens. Upon binding to its cognate FAP the fluorescence quantum yield of the fluorogen increases giving rise to a fluorescent complex. Based on the seminal work of Szent-Gyorgyi et al. (Nature Biotechnology, Volume 26, Number 2, pp 235-240, 2008) we have chosen to study two fluorogen-activating single-chain antibodies, HL1.0.1-TO1 and H6-MG, bound to their cognate fluorogens, thiazole orange and malachite green derivatives, respectively. Here we use fluorescence correlation spectroscopy to study the photophysics of these fluorescent complexes.

  7. Carbofluoresceins and Carborhodamines as Scaffolds for High-Contrast Fluorogenic Probes

    PubMed Central

    2013-01-01

    Fluorogenic molecules are important tools for advanced biochemical and biological experiments. The extant collection of fluorogenic probes is incomplete, however, leaving regions of the electromagnetic spectrum unutilized. Here, we synthesize green-excited fluorescent and fluorogenic analogues of the classic fluorescein and rhodamine 110 fluorophores by replacement of the xanthene oxygen with a quaternary carbon. These anthracenyl “carbofluorescein” and “carborhodamine 110” fluorophores exhibit excellent fluorescent properties and can be masked with enzyme- and photolabile groups to prepare high-contrast fluorogenic molecules useful for live cell imaging experiments and super-resolution microscopy. Our divergent approach to these red-shifted dye scaffolds will enable the preparation of numerous novel fluorogenic probes with high biological utility. PMID:23557713

  8. Discovery of Small-Molecule Nonfluorescent Inhibitors of Fluorogen-Fluorogen Activating Protein Binding Pair.

    PubMed

    Wu, Yang; Stauffer, Shaun R; Stanfield, Robyn L; Tapia, Phillip H; Ursu, Oleg; Fisher, Gregory W; Szent-Gyorgyi, Christopher; Evangelisti, Annette; Waller, Anna; Strouse, J Jacob; Carter, Mark B; Bologa, Cristian; Gouveia, Kristine; Poslusney, Mike; Waggoner, Alan S; Lindsley, Craig W; Jarvik, Jonathan W; Sklar, Larry A

    2016-01-01

    A new class of biosensors, fluorogen activating proteins (FAPs), has been successfully used to track receptor trafficking in live cells. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens, and thus FAP-based assays are highly sensitive. Application of the FAP-based assay for protein trafficking in high-throughput flow cytometry resulted in the discovery of a new class of compounds that interferes with the binding between fluorogens and FAP, thus blocking the fluorescence signal. These compounds are high-affinity, nonfluorescent analogs of fluorogens with little or no toxicity to the tested cells and no apparent interference with the normal function of FAP-tagged receptors. The most potent compound among these, N,4-dimethyl-N-(2-oxo-2-(4-(pyridin-2-yl)piperazin-1-yl)ethyl)benzenesulfonamide (ML342), has been investigated in detail. X-ray crystallographic analysis revealed that ML342 competes with the fluorogen, sulfonated thiazole orange coupled to diethylene glycol diamine (TO1-2p), for the same binding site on a FAP, AM2.2. Kinetic analysis shows that the FAP-fluorogen interaction is more complex than a homogeneous one-site binding process, with multiple conformational states of the fluorogen and/or the FAP, and possible dimerization of the FAP moiety involved in the process. © 2015 Society for Laboratory Automation and Screening.

  9. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    PubMed

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  10. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging.

    PubMed

    Hilderbrand, Scott A; Kelly, Kimberly A; Niedre, Mark; Weissleder, Ralph

    2008-08-01

    Fluorogenic imaging agents emitting in the near-infrared are becoming important research tools for disease investigation in vivo. Often pathophysiological states such as cancer and cystic fibrosis are associated with disruptions in acid/base homeostasis. The development of optical sensors for pH imaging would facilitate the investigation of these diseased conditions. In this report, the design and synthesis of a ratiometric near-infrared emitting probe for pH quantification is detailed. The pH-responsive probe is prepared by covalent attachment of pH-sensitive and pH-insensitive fluorophores to a bacteriophage particle scaffold. The pH-responsive cyanine dye, HCyC-646, used to construct the probe, has a fluorogenic pKa of 6.2, which is optimized for visualization of acidic pH often associated with tumor hypoxia and other diseased states. Incorporation of pH-insensitive reference dyes enables the ratiometric determination of pH independent of the probe concentration. With the pH-responsive construct, measurement of intracellular pH and accurate determination of pH through optically diffuse biological tissue is demonstrated.

  11. Bistetrazine-cyanines as double-clicking fluorogenic two-point binder or crosslinker probes.

    PubMed

    Kormos, Attila; Koehler, Christine; Fodor, Eszter; Rutkai, Zsófia; Martin, Maddison; Mező, Gábor; Lemke, Edward; Kele, Péter

    2018-04-20

    Fluorogenic probes are capable of minimizing background fluorescence of unreacted and non-specifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems, i.e. on probes with red-shifted emission wavelength. In order to reach efficient quenching, i.e. fluorogenicity even in the red range of the spectrum, We present the synthesis, fluorogenic and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600-620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tyramine Hydrochloride Based Label-Free System for Operating Various DNA Logic Gates and a DNA Caliper for Base Number Measurements.

    PubMed

    Fan, Daoqing; Zhu, Xiaoqing; Dong, Shaojun; Wang, Erkang

    2017-07-05

    DNA is believed to be a promising candidate for molecular logic computation, and the fluorogenic/colorimetric substrates of G-quadruplex DNAzyme (G4zyme) are broadly used as label-free output reporters of DNA logic circuits. Herein, for the first time, tyramine-HCl (a fluorogenic substrate of G4zyme) is applied to DNA logic computation and a series of label-free DNA-input logic gates, including elementary AND, OR, and INHIBIT logic gates, as well as a two to one encoder, are constructed. Furthermore, a DNA caliper that can measure the base number of target DNA as low as three bases is also fabricated. This DNA caliper can also perform concatenated AND-AND logic computation to fulfil the requirements of sophisticated logic computing. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A photophysical study of two fluorogen-activating proteins bound to their cognate fluorogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaiotto, Tiziano; Nguyen, Hau B; Jung, Jaemyeong

    We are exploring the feasibility of using recently developed flu orogen-activating proteins (FAPs) as reporters for single-molecule imaging. FAPs are single-chain antibodies choosen to specifically bind small chromophoric molecules termed f1uorogens. Upon binding to its cognate FAP the fluorescence quantum yield of the fluorogen can increase substantially giving rise to a fluorescent complex. Based on the seminal work of Szent-Gyorgyi et al. (Nature Biotechnology, Volume 26, Number 2, pp 235-240, 2008) we have chosen to study two fluorogen-activating single-chain antibodies, HL 1.0.1-TOI and H6-MG bound to their cognate fluorogens, thiazole orange and malachite green derivatives, respectively. Here we use fluorescencemore » correlation spectroscopy study the photophysics of these fluorescent complexes.« less

  14. Breaking the color barrier - a multi-selective antibody reporter offers innovative strategies of fluorescence detection.

    PubMed

    Gallo, Eugenio; Jarvik, Jonathan W

    2017-08-01

    A novel bi-partite fluorescence platform exploits the high affinity and selectivity of antibody scaffolds to capture and activate small-molecule fluorogens. In this report, we investigated the property of multi-selectivity activation by a single antibody against diverse cyanine family fluorogens. Our fluorescence screen identified three cell-impermeant fluorogens, each with unique emission spectra (blue, green and red) and nanomolar affinities. Most importantly, as a protein fusion tag to G-protein-coupled receptors, the antibody biosensor retained full activity - displaying bright fluorogen signals with minimal background on live cells. Because fluorogen-activating antibodies interact with their target ligands via non-covalent interactions, we were able to perform advanced multi-color detection strategies on live cells, previously difficult or impossible with conventional reporters. We found that by fine-tuning the concentrations of the different color fluorogen molecules in solution, a user may interchange the fluorescence signal (onset versus offset), execute real-time signal exchange via fluorogen competition, measure multi-channel fluorescence via co-labeling, and assess real-time cell surface receptor traffic via pulse-chase experiments. Thus, here we inform of an innovative reporter technology based on tri-color signal that allows user-defined fluorescence tuning in live-cell applications. © 2017. Published by The Company of Biologists Ltd.

  15. The Cation−π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification

    PubMed Central

    2017-01-01

    The design of fluorogenic probes for a Halo tag is highly desirable but challenging. Previous work achieved this goal by controlling the chemical switch of spirolactones upon the covalent conjugation between the Halo tag and probes or by incorporating a “channel dye” into the substrate binding tunnel of the Halo tag. In this work, we have developed a novel class of Halo-tag fluorogenic probes that are derived from solvatochromic fluorophores. The optimal probe, harboring a benzothiadiazole scaffold, exhibits a 1000-fold fluorescence enhancement upon reaction with the Halo tag. Structural, computational, and biochemical studies reveal that the benzene ring of a tryptophan residue engages in a cation−π interaction with the dimethylamino electron-donating group of the benzothiadiazole fluorophore in its excited state. We further demonstrate using noncanonical fluorinated tryptophan that the cation−π interaction directly contributes to the fluorogenicity of the benzothiadiazole fluorophore. Mechanistically, this interaction could contribute to the fluorogenicity by promoting the excited-state charge separation and inhibiting the twisting motion of the dimethylamino group, both leading to an enhanced fluorogenicity. Finally, we demonstrate the utility of the probe in no-wash direct imaging of Halo-tagged proteins in live cells. In addition, the fluorogenic nature of the probe enables a gel-free quantification of fusion proteins expressed in mammalian cells, an application that was not possible with previously nonfluorogenic Halo-tag probes. The unique mechanism revealed by this work suggests that incorporation of an excited-state cation−π interaction could be a feasible strategy for enhancing the optical performance of fluorophores and fluorogenic sensors. PMID:28221782

  16. The Cation-π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification.

    PubMed

    Liu, Yu; Miao, Kun; Dunham, Noah P; Liu, Hongbin; Fares, Matthew; Boal, Amie K; Li, Xiaosong; Zhang, Xin

    2017-03-21

    The design of fluorogenic probes for a Halo tag is highly desirable but challenging. Previous work achieved this goal by controlling the chemical switch of spirolactones upon the covalent conjugation between the Halo tag and probes or by incorporating a "channel dye" into the substrate binding tunnel of the Halo tag. In this work, we have developed a novel class of Halo-tag fluorogenic probes that are derived from solvatochromic fluorophores. The optimal probe, harboring a benzothiadiazole scaffold, exhibits a 1000-fold fluorescence enhancement upon reaction with the Halo tag. Structural, computational, and biochemical studies reveal that the benzene ring of a tryptophan residue engages in a cation-π interaction with the dimethylamino electron-donating group of the benzothiadiazole fluorophore in its excited state. We further demonstrate using noncanonical fluorinated tryptophan that the cation-π interaction directly contributes to the fluorogenicity of the benzothiadiazole fluorophore. Mechanistically, this interaction could contribute to the fluorogenicity by promoting the excited-state charge separation and inhibiting the twisting motion of the dimethylamino group, both leading to an enhanced fluorogenicity. Finally, we demonstrate the utility of the probe in no-wash direct imaging of Halo-tagged proteins in live cells. In addition, the fluorogenic nature of the probe enables a gel-free quantification of fusion proteins expressed in mammalian cells, an application that was not possible with previously nonfluorogenic Halo-tag probes. The unique mechanism revealed by this work suggests that incorporation of an excited-state cation-π interaction could be a feasible strategy for enhancing the optical performance of fluorophores and fluorogenic sensors.

  17. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  18. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  19. Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties

    PubMed Central

    2015-01-01

    Recent advances in RNA nanotechnology allow the rational design of various nanoarchitectures. Previous methods utilized conserved angles from natural RNA motifs to form geometries with specific sizes. However, the feasibility of producing RNA architecture with variable sizes using native motifs featuring fixed sizes and angles is limited. It would be advantageous to display RNA nanoparticles of diverse shape and size derived from a given primary sequence. Here, we report an approach to construct RNA nanoparticles with tunable size and stability. Multifunctional RNA squares with a 90° angle were constructed by tuning the 60° angle of the three-way junction (3WJ) motif from the packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor. The physicochemical properties and size of the RNA square were also easily tuned by modulating the “core” strand and adjusting the length of the sides of the square via predictable design. Squares of 5, 10, and 20 nm were constructed, each showing diverse thermodynamic and chemical stabilities. Four “arms” extending from the corners of the square were used to incorporate siRNA, ribozyme, and fluorogenic RNA motifs. Unique intramolecular contact using the pre-existing intricacy of the 3WJ avoids relatively weaker intermolecular interactions via kissing loops or sticky ends. Utilizing the 3WJ motif, we have employed a modular design technique to construct variable-size RNA squares with controllable properties and functionalities for diverse and versatile applications with engineering, pharmaceutical, and medical potential. This technique for simple design to finely tune physicochemical properties adds a new angle to RNA nanotechnology. PMID:24971772

  20. Comparison of animal infectivity, excystation, and fluorogenic dye as measures of Giardia muris cyst inactivation by ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labatiuk, C.W.; Finch, G.R.; Belosevic, M.

    1991-11-01

    Giardia muris cyst viability after ozonation was compared by using fluorescein diacetate-ethidium bromide staining, the C3H/HeN mouse-G. muris model, and in vitro excystation. Bench-scale batch experiments were conducted under laboratory conditions (pH 6.7, 22C) in ozone-demand-free phosphate buffer. There was a significant difference between fluorogenic staining and infectivity with fluorogenic staining overestimating viability compared with infectivity estimates of viability. This suggests that viable cysts as indicated by fluorogenic dyes may not be able to complete the life cycle and produce an infection. No significant differences between infectivity and excystation and between fluorogenic staining and excystation were detected for inactivations upmore » to 99.9%. Only animal infectivity had the sensitivity to detect inactivations greater than 99.9%. Therefore, the animal model is the best method currently available for detecting high levels of G. muris cyst inactivation.« less

  1. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries

    PubMed Central

    Harris, Jennifer L.; Backes, Bradley J.; Leonetti, Francesco; Mahrus, Sami; Ellman, Jonathan A.; Craik, Charles S.

    2000-01-01

    A method is presented for the preparation and use of fluorogenic peptide substrates that allows for the configuration of general substrate libraries to rapidly identify the primary and extended specificity of proteases. The substrates contain the fluorogenic leaving group 7-amino-4-carbamoylmethylcoumarin (ACC). Substrates incorporating the ACC leaving group show kinetic profiles comparable to those with the traditionally used 7-amino-4-methylcoumarin (AMC) leaving group. The bifunctional nature of ACC allows for the efficient production of single substrates and substrate libraries by using 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase synthesis techniques. The approximately 3-fold-increased quantum yield of ACC over AMC permits reduction in enzyme and substrate concentrations. As a consequence, a greater number of substrates can be tolerated in a single assay, thus enabling an increase in the diversity space of the library. Soluble positional protease substrate libraries of 137,180 and 6,859 members, possessing amino acid diversity at the P4-P3-P2-P1 and P4-P3-P2 positions, respectively, were constructed. Employing this screening method, we profiled the substrate specificities of a diverse array of proteases, including the serine proteases thrombin, plasmin, factor Xa, urokinase-type plasminogen activator, tissue plasminogen activator, granzyme B, trypsin, chymotrypsin, human neutrophil elastase, and the cysteine proteases papain and cruzain. The resulting profiles create a pharmacophoric portrayal of the proteases to aid in the design of selective substrates and potent inhibitors. PMID:10869434

  2. DICER-ARGONAUTE2 Complex in Continuous Fluorogenic Assays of RNA Interference Enzymes

    PubMed Central

    Bernard, Mark A.; Wang, Leyu; Tachado, Souvenir D.

    2015-01-01

    Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC) have been hindered by lack of methods for continuous monitoring of enzymatic activity. “Quencherless” fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS) and hypoxia-inducible factor 1-α subunit (HIF1A). Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (K m=74 nM) with substrate inhibition kinetics (K i=105 nM), demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER) bound in the active site of DICER may undergo direct transfer (as AGO2 substrate) to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29), suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a strong (~2800-fold) improvement in potency for mRNA knockdown. This study lays the foundation of a systematic biochemical approach to optimize nucleic acid-based therapeutics for Dicing and ARGONAUTE2-loading for improving efficacy. PMID:25793518

  3. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes.

    PubMed

    Bassler, H A; Flood, S J; Livak, K J; Marmaro, J; Knorr, R; Batt, C A

    1995-10-01

    A PCR-based assay for Listeria monocytogenes that uses the hydrolysis of an internal fluorogenic probe to monitor the amplification of the target has been formatted. The fluorogenic 5' nuclease PCR assay takes advantage of the endogenous 5' --> 3' nuclease activity of Taq DNA polymerase to digest a probe which is labelled with two fluorescent dyes and hybridizes to the amplicon during PCR. When the probe is intact, the two fluorophores interact such that the emission of the reporter dye is quenched. During amplification, the probe is hydrolyzed, relieving the quenching of the reporter and resulting in an increase in its fluorescence intensity. This change in reporter dye fluorescence is quantitative for the amount of PCR product and, under appropriate conditions, for the amount of template. We have applied the fluorogenic 5' nuclease PCR assay to detect L. monocytogenes, using an 858-bp amplicon of hemolysin (hlyA) as the target. Maximum sensitivity was achieved by evaluating various fluorogenic probes and then optimizing the assay components and cycling parameters. With crude cell lysates, the total assay could be completed in 3 h with a detection limit of approximately 50 CFU. Quantification was linear over a range of 5 x 10(1) to 5 x 10(5) CFU.

  4. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization.

    PubMed

    Posada, Luisa F; Alvarez, Javier C; Hu, Chia-Hui; de-Bashan, Luz E; Bashan, Yoav

    2016-09-01

    Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.

  5. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates.

    PubMed

    Bassett, Braden; Waibel, Brent; White, Alex; Hansen, Heather; Stephens, Dominique; Koelper, Andrew; Larsen, Erik M; Kim, Charles; Glanzer, Adam; Lavis, Luke D; Hoops, Geoffrey C; Johnson, R Jeremy

    2018-04-16

    Among the proteins required for lipid metabolism in Mycobacterium tuberculosis are a significant number of uncharacterized serine hydrolases, especially lipases and esterases. Using a streamlined synthetic method, a library of immolative fluorogenic ester substrates was expanded to better represent the natural lipidomic diversity of Mycobacterium. This expanded fluorogenic library was then used to rapidly characterize the global structure activity relationship (SAR) of mycobacterial serine hydrolases in M. smegmatis under different growth conditions. Confirmation of fluorogenic substrate activation by mycobacterial serine hydrolases was performed using nonspecific serine hydrolase inhibitors and reinforced the biological significance of the SAR. The hydrolases responsible for the global SAR were then assigned using gel-resolved activity measurements, and these assignments were used to rapidly identify the relative substrate specificity of previously uncharacterized mycobacterial hydrolases. These measurements provide a global SAR of mycobacterial hydrolase activity, a picture of cycling hydrolase activity, and a detailed substrate specificity profile for previously uncharacterized hydrolases.

  6. Fluorogenic Behaviour of the Hetero-Diels-Alder Ligation of 5-Alkoxyoxazoles with Maleimides and their Applications.

    PubMed

    Renault, Kévin; Jouanno, Laurie-Anne; Lizzul-Jurse, Antoine; Renard, Pierre-Yves; Sabot, Cyrille

    2016-12-19

    Fluorogenic reactions are largely underrepresented in the toolbox of chemoselective ligations despite their tremendous potential, particularly in chemical biology and biochemistry. In this respect, we have investigated in full detail the fluorescence behaviour of the azaphthalamide, a scaffold which is generated through a hetero-Diels-Alder reaction of 5-alkoxyoxazole and maleimide derivatives under mild conditions that are compatible with, among others, peptide chemistry. The scope and limitations of such a fluorogenic labelling strategy were examined through four distinct applications, which target enzymatic activities or bioorthogonal reactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging.

    PubMed

    Chyan, Wen; Raines, Ronald T

    2018-06-20

    Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are powerful tools for chemical biology. Those probes that respond to enzymatic activity illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. Here, we review recent advances in enzyme-activated fluorogenic probes for biological imaging. We organize our survey by enzyme classification, with emphasis on fluorophore masking strategies, modes of enzymatic activation, and the breadth of current and future applications. Key challenges such as probe selectivity and spectroscopic requirements are described alongside of therapeutic, diagnostic, and theranostic opportunities.

  8. Fluorescent nanoparticles based on AIE fluorogens for bioimaging.

    PubMed

    Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing

    2016-02-07

    Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.

  9. Comparative study of Factor Xa fluorogenic substrates and their influence on the quantification of LMWHs.

    PubMed

    Castro-López, Vanessa; Harris, Leanne F; O'Donnell, James S; Killard, Anthony J

    2011-01-01

    Low molecular weight heparins (LMWHs) are recognised as the preferred anticoagulants in the prevention and treatment of venous thromboembolism. Anti-Factor Xa (anti-FXa) levels are used to monitor the anticoagulant effect of LMWHs and such assays are routinely employed in hospital diagnostic laboratories. In this study, a fluorogenic anti-FXa assay was developed using a commercially available fluorogenic substrate with an attached 6-amino-1-naphthalene-sulfonamide (ANSN) fluorophore and was used for the determination of two LMWHs, enoxaparin and tinzaparin and the heparinoid, danaparoid. The assay was based on the complexation of heparinised plasma with 100 nM exogenous FXa and 25 μM of the fluorogenic substrate Mes-D-LGR-ANSN (C(2)H(5))(2) (SN-7). The assay was tested with pooled plasma samples spiked with anticoagulant concentrations in the range 0-1.6 U mL(-1). The statistically sensitive assay range was 0-0.4 U mL(-1) for enoxaparin and tinzaparin and 0-0.2 U mL(-1) for danaparoid, with assay variation typically below 10.5%. This assay was then compared with a previously published fluorogenic anti-FXa assay developed with the peptide substrate, methylsulfonyl-D: -cyclohexylalanyl-glycyl-arginine-7-amino-4-methylcoumarin acetate (Pefafluor FXa). Both assays were compared in terms of fluorescence intensity, lag times and sensitivity to anticoagulants.

  10. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  11. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  12. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  13. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  14. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  15. SPECIES-SPECIFIC DETECTION OF THREE HUMAN-PATHOGENIC MICROSPORIDIAL SPECIES FROM THE GENUS ENCEPHALITOZOON VIA FLUOROGENIC 5' NUCLEASE PCR ASSAYS

    EPA Science Inventory

    This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...

  16. TanA: a fluorogenic probe for thiaminase activity

    USGS Publications Warehouse

    Zhu, Wanjun; Zajicek, James L.; Tillitt, Donald E.; Glass, Timothy E.

    2013-01-01

    A fluorogenic thiamine analogue is presented as a fluorescent probe for thiaminase activity. The emission of the fluorophore is quenched by photoinduced electron transfer (PET) to the N-substituted pyridinium portion of the probe. Action of the enzyme releases the free pyridine group causing a substantial increase in fluorescence.

  17. A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.

    2015-01-01

    Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…

  18. A Red-Emitting, Multidimensional Sensor for the Simultaneous Cellular Imaging of Biothiols and Phosphate Ions †

    PubMed Central

    Herrero-Foncubierta, Pilar; Cuerva, Juan M.; Miguel, Delia

    2018-01-01

    The development of new fluorescent probes for cellular imaging is currently a very active field because of the large potential in understanding cell physiology, especially targeting anomalous behaviours due to disease. In particular, red-emitting dyes are keenly sought, as the light in this spectral region presents lower interferences and a deeper depth of penetration in tissues. In this work, we have synthesized a red-emitting, dual probe for the multiplexed intracellular detection of biothiols and phosphate ions. We have prepared a fluorogenic construct involving a silicon-substituted fluorescein for red emission. The fluorogenic reaction is selectively started by the presence of biothiols. In addition, the released fluorescent moiety undergoes an excited-state proton transfer reaction promoted by the presence of phosphate ions, which modulates its fluorescence lifetime, τ, with the total phosphate concentration. Therefore, in a multidimensional approach, the intracellular levels of biothiols and phosphate can be detected simultaneously using a single fluorophore and with spectral clearing of cell autofluorescence interferences. We have applied this concept to different cell lines, including photoreceptor cells, whose levels of biothiols are importantly altered by light irradiation and other oxidants. PMID:29315248

  19. Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells.

    PubMed

    Zhang, Hui; Pi, Fengmei; Shu, Dan; Vieweger, Mario; Guo, Peixuan

    2015-01-01

    RNA nanotechnology is an emerging field at the interface of biochemistry and nanomaterials that shows immense promise for applications in nanomedicines, therapeutics and nanotechnology. Noncoding RNAs, such as siRNA, miRNA, ribozymes, and riboswitches, play important roles in the regulation of cellular processes. They carry out highly specific functions on a compact and efficient footprint. The properties of specificity and small size make them excellent modules in the construction of multifaceted RNA nanoparticles for targeted delivery and therapy. Biological activity of RNA molecules, however, relies on their proper folding. Therefore their thermodynamic and biochemical stability in the cellular environment is critical. Consequently, it is essential to assess global fold and intracellular lifetime of multifaceted RNA nanoparticles to optimize their therapeutic effectiveness. Here, we describe a method to express and assemble stable RNA nanoparticles in cells, and to assess the folding and turnover rate of RNA nanoparticles in vitro as well as in vivo in real time using a thermostable core motif derived from pRNA of bacteriophage Phi29 DNA packaging motor and fluorogenic RNA modules.

  20. Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.

    PubMed

    Yerramilli, V Siddartha; Kim, Kyung Hyuk

    2018-03-16

    RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and induces it to emit far-red fluorescence signals. Previous studies on MGA showed a potential for the use of MGA for genetically tagging other RNA molecules in live cells. However, these studies also exhibited low fluorescence signals and high background noise. Here we constructed and tested RNA scaffolds containing multiple tandem repeats of MGA as a strategy to increase the brightness of the MGA aptamer-fluorogen system as well as to make the system fluoresce when tagging various RNA molecules, in live cells. We demonstrate that our MGA scaffolds can induce fluorescence signals by up to ∼20-fold compared to the basal level as a genetic tag for other RNA molecules. We also show that our scaffolds function reliably as genetically encoded fluorescent tags for mRNAs of fluorescent proteins and other RNA aptamers.

  1. Programmed Pathogen Sense and Destroy Circuits

    DTIC Science & Technology

    2009-02-18

    detection and the peptide-mediated Com QS system of Bacillus subtilis for gram-positive detection. Together these two prototype sentinel circuits cover a...and E. coli. We are currently in the process of constructing receivers for a gram-positive pathogen, Bacillus subtilis . Gram-negative...QS signals. Figure 11: Gram positive QS systems. Agr QS of Staphylococcus aureus (left) and Com QS of Bacillus subtilis . Following the successful

  2. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  3. Genetic map of the Bacillus stearothermophilus NUB36 chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallier, H.; Welker, N.E.

    1990-02-01

    A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyra-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes inmore » Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.« less

  4. Selection of turning-on fluorogenic probe as protein-specific detector obtained via the 10BASEd-T

    NASA Astrophysics Data System (ADS)

    Uematsu, Shuta; Midorikawa, Taiki; Ito, Yuji; Taki, Masumi

    2017-01-01

    In order to obtain a molecular probe for specific protein detection, we have synthesized fluorogenic probe library of vast diversity on bacteriophage T7 via the gp10 based-thioetherification (10BASEd-T). A remarkable turning- on probe which is excitable by widely applicable visible light was selected from the library.

  5. Spiroguanidine rhodamines as fluorogenic probes for lysophosphatidic acid

    PubMed Central

    Wang, Lei; Sibrian-Vazquez, Martha; Escobedo, Jorge O.; Wang, Jialu; Moore, Richard G.

    2015-01-01

    Direct determination of total lysophosphatidic acid (LPA) was accomplished using newly developed spiroguanidines derived from rhodamine B as universal fluorogenic probes. Optimum conditions for the quantitative analysis of total LPA were investigated. The linear range for the determination of total LPA is up to 5 μM with a limit of detection of 0.512 μM. PMID:25516957

  6. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile Red.

    PubMed

    Prifti, Efthymia; Reymond, Luc; Umebayashi, Miwa; Hovius, Ruud; Riezman, Howard; Johnsson, Kai

    2014-03-21

    A fluorogenic probe for plasma membrane proteins based on the dye Nile Red and SNAP-tag is introduced. It takes advantage of Nile Red, a solvatochromic molecule highly fluorescent in an apolar environment, such as cellular membranes, but almost dark in a polar aqueous environment. The probe possesses a tuned affinity for membranes allowing its Nile Red moiety to insert into the lipid bilayer of the plasma membrane, becoming fluorescent, only after its conjugation to a SNAP-tagged plasma membrane protein. The fluorogenic character of the probe was demonstrated for different SNAP-tag fusion proteins, including the human insulin receptor. This work introduces a new approach for generating a powerful turn-on probe for "no-wash" labeling of plasma membrane proteins with numerous applications in bioimaging.

  7. Isolation and expression of a Bacillus cereus gene encoding benzil reductase.

    PubMed

    Maruyama, R; Nishizawa, M; Itoi, Y; Ito, S; Inoue, M

    2001-12-20

    Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase. Copyright 2001 John Wiley & Sons, Inc.

  8. A Fluorogenic TMP-tag for High Signal-to-Background Intracellular Live Cell Imaging

    PubMed Central

    Jing, Chaoran

    2013-01-01

    Developed to compliment the use of fluorescent proteins in live cell imaging, chemical tags enjoy the benefit of modular incorporation of organic fluorophores, opening the possibility of high photon output and special photophysical properties. However, the theoretical challenge in using chemical tags as opposed to fluorescent proteins for high-resolution imaging is background noise from unbound and/or non-specifically bound ligand-fluorophore. We envisioned we could overcome this limit by engineering fluorogenic trimethoprim-based chemical tags (TMP-tags) in which the fluorophore is quenched until binding with E. coli dihydrofolate reductase (eDHFR) tagged protein displaces the quencher. Thus, we began by building a non-fluorogenic, covalent TMP-tag based on a proximity-induced reaction known to achieve rapid and specific labeling both in vitro and inside of living cells. Here we take the final step and render the covalent TMP-tag fluorogenic. In brief, we designed a trimeric TMP-fluorophore-quencher molecule (TMP-Q-Atto520) with the quencher attached to a leaving group that, upon TMP binding to eDHFR, would be cleaved by a cysteine residue (Cys) installed just outside the binding pocket of eDHFR. We present the in vitro experiments showing that the eDHFR:L28C nucleophile cleaves the TMP-Q-Atto520 rapidly and efficiently, resulting in covalent labeling and remarkable fluorescence enhancement. Most significantly, while only our initial design, TMP-Q-Atto520 achieved the demanding goal of not only labeling highly abundant, localized intracellular proteins, but also less abundant, more dynamic cytoplasmic proteins. These results suggest that fluorogenic TMP-tag can significantly impact highresolution live cell imaging and further establish the potential of proximity-induced reactivity and organic chemistry more broadly as part of the growing toolbox for synthetic biology and cell engineering. PMID:23745575

  9. Solvent-Free Off-On Detection of the Improvised Explosive Triacetone Triperoxide (TATP) with Fluorogenic Materials.

    PubMed

    Calvo-Gredilla, Patricia; García-Calvo, José; Cuevas, José V; Torroba, Tomás; Pablos, Jesús-Luis; García, Félix C; García, José-Miguel; Zink-Lorre, Nathalie; Font-Sanchis, Enrique; Sastre-Santos, Ángela; Fernández-Lázaro, Fernando

    2017-10-09

    A fluorogenic perylenediimide-functionalized polyacrylate capable of generating color and fluorescence changes in the presence of triacetone triperoxide TATP), an improvised explosive used in terrorist attacks, under solvent-free, solid-state conditions has been developed. The material works by accumulating volatile TATP until it reaches a threshold; therefore, triggering colorimetric and fluorescent responses. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Challenges in paper-based fluorogenic optical sensing with smartphones

    NASA Astrophysics Data System (ADS)

    Ulep, Tiffany-Heather; Yoon, Jeong-Yeol

    2018-05-01

    Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.

  11. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications.

    PubMed

    Woronoff, Gabrielle; El Harrak, Abdeslam; Mayot, Estelle; Schicke, Olivier; Miller, Oliver J; Soumillion, Patrice; Griffiths, Andrew D; Ryckelynck, Michael

    2011-04-15

    Droplet-based microfluidics is a powerful tool for biology and chemistry as it allows the production and the manipulation of picoliter-size droplets acting as individual reactors. In this format, high-sensitivity assays are typically based on fluorescence, so fluorophore exchange between droplets must be avoided. Fluorogenic substrates based on the coumarin leaving group are widely used to measure a variety of enzymatic activities, but their application in droplet-based microfluidic systems is severely impaired by the fast transport of the fluorescent product between compartments. Here we report the synthesis of new amidase fluorogenic substrates based on 7-aminocoumarin-4-methanesulfonic acid (ACMS), a highly water-soluble dye, and their suitability for droplet-based microfluidics applications. Both substrate and product had the required spectral characteristics and remained confined in droplets from hours to days. As a model experiment, a phenylacetylated ACMS was synthesized and used as a fluorogenic substrate of Escherichia coli penicillin G acylase. Kinetic parameters (k(cat) and K(M)) measured in bulk and in droplets on-chip were very similar, demonstrating the suitability of this synthesis strategy to produce a variety of ACMS-based substrates for assaying amidase activities both in microtiter plate and droplet-based microfluidic formats. © 2011 American Chemical Society

  12. An Efficient and Rapid Method to Monitor the Oxidative Degradation of Protein Pharmaceuticals: Probing Tyrosine Oxidation with Fluorogenic Derivatization.

    PubMed

    Bommana, Rupesh; Mozziconacci, Olivier; John Wang, Y; Schöneich, Christian

    2017-07-01

    The loss of potency of protein therapeutics can be linked to the oxidation of specific amino acid residues leading to a great variety of oxidative modifications. The comprehensive identification of these oxidative modifications requires high-resolution mass spectrometry analysis, which requires time and expensive resources. Here, we propose a fluorogenic derivatization method of oxidized Tyr and Phe yielding benzoxazole derivatives, as an orthogonal technique for the rapid screening of protein oxidation. Four model proteins, IgG1, human growth hormone (hGH), insulin and bovine serum albumin (BSA) were exposed to oxidation via peroxyl radicals and metal-catalyzed reactions and efficiently screened by fluorogenic derivatization of Tyr and Phe oxidation products. Complementary LC-MS analysis was done to identify the extent of methionine oxidation in oxidized proteins. The Fluorogenic derivatization technique can easily be adapted to a 96-well plate, in which several protein formulations can be screened in short time. Representatively for hGH, we show that the formation of benzoxazole parallels the oxidation of Met to methionine sulfoxide which enables estimation of Met oxidation by just recording the fluorescence. Our rapid fluorescence based screening allows for the fast comparison of the stability of multiple formulations.

  13. Fluorogenic PNA probes

    PubMed Central

    2018-01-01

    Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years. PMID:29507634

  14. Endo-β-Glucosidase Tag Allows Dual Detection of Fusion Proteins by Fluorescent Mechanism-Based Probes and Activity Measurement.

    PubMed

    Kallemeijn, Wouter W; Scheij, Saskia; Voorn-Brouwer, Tineke M; Witte, Martin D; Verhoek, Marri; Overkleeft, Hermen S; Boot, Rolf G; Aerts, Johannes M F G

    2016-09-15

    β-Glucoside-configured cyclophellitols are activity-based probes (ABPs) that allow sensitive detection of β-glucosidases. Their applicability to detect proteins fused with β-glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M-777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4-methylumbelliferyl β-d-lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre-blocking with conduritol β-epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β-glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high-resolution detection moieties) should assist further research in living cells and organisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection.

    PubMed

    Mao, Wuyu; Xia, Lingying; Wang, Yaqun; Xie, Hexin

    2016-12-19

    The spread of antibiotic resistance in pathogenic bacteria has become one of the major concerns to public health. Improved monitoring of drug resistance is of high importance for infectious disease control. One of the major mechanisms for bacteria to overcome treatment of antibiotics is the production of β-lactamases, which are enzymes that hydrolyze the β-lactam ring of the antibiotic. In this study, we have developed a self-immobilizing and fluorogenic probe for the detection of β-lactamase activity. This fluorogenic reagent, upon activation by β-lactamases, turns on a fluorescence signal and, more importantly, generates a covalent linkage to the target enzymes or the nearby proteins. The covalent labeling of enzymes was confirmed by SDS-PAGE analysis and MALDI-TOF mass spectrometry. The utility of this structurally simple probe was further confirmed by the fluorescent labeling of a range of β-lactamase-expressing bacteria. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands.

    PubMed

    K C, Tara Bahadur; Suga, Kanako; Isoshima, Takashi; Aigaki, Toshiro; Ito, Yoshihiro; Shiba, Kiyotaka; Uzawa, Takanori

    2018-06-02

    Detection of the cells expressing an epithelial cell adhesion molecule (EpCAM) is a crucial step to identify circulating tumor cells (CTCs) from blood. To detect the EpCAM, we here designed and synthesized a series of fluorogenic peptides. Specifically, we functionalized an EpCAM-binding peptide, Ep114, by replacing its amino acids to an aminophenylalanine that was modified with environmentally sensitive 7-nitro-2,1,3-benzoxadiazole (NBD-amPhe). Among six synthesized peptides, we have found that two peptides, Q4X and V6X (X represents NBD-amPhe), retain the Ep114's binding ability and specifically mark EpCAM-expressing cells by just adding these peptides to the cultivation medium. Our wash-free, fluorogenic peptide ligands would boost the development of next generation devices for CTC diagnoses. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Fluorogenic DNA Sequencing in PDMS Microreactors

    PubMed Central

    Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney

    2012-01-01

    We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670

  18. Fluorogenic Ag+–Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining

    PubMed Central

    Xie, Sheng; Wong, Alex Y. H.; Kwok, Ryan T. K.; Li, Ying; Su, Huifang; Lam, Jacky W. Y.

    2018-01-01

    Abstract Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains. PMID:29575702

  19. Synthesis and characterization of a new fluorogenic substrate for alpha-galactosidase

    PubMed Central

    Shi, Zhen-Dan; Motabar, Omid; Goldin, Ehud; Liu, Ke; Southall, Noel; Sidransky, Ellen; Austin, Christopher P.; Griffiths, Gary L.

    2009-01-01

    Alpha-galactosidase A hydrolyzes the terminal alpha-galactosyl moieties from glycolipids and glycoproteins in lysosomes. Mutations in α-galactosidase cause lysosomal accumulation of the glycosphingolipid, globotriaosylceramide, which leads to Fabry disease. Small-molecule chaperones that bind to mutant enzyme proteins and correct their misfolding and mistrafficking have emerged as a potential therapy for Fabry disease. We have synthesized a red fluorogenic substrate, resorufinyl α-D-galactopyranoside, for a new α-galactosidase enzyme assay. This assay can be measured continuously at lower pH values, without the addition of a stop solution, due to the relatively low pKa of resorufin (~6). In addition, the assay emits red fluorescence, which can significantly reduce interferences due to compound fluorescence and dust/lint as compared to blue fluorescence. Therefore, this new red fluorogenic substrate and the resulting enzyme assay can be used in high-throughput screening to identify small-molecule chaperones for Fabry disease. PMID:19521690

  20. Effect of garlic solution to Bacillus sp. removal

    NASA Astrophysics Data System (ADS)

    Zainol, N.; Rahim, S. R.

    2018-04-01

    Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacillus sp. was used as biofilm model in this study. The purpose of this study is to determine the effect of Garlic solution in term of ratio of water and Garlic solution (W/G) and ratio of Garlic solution to Bacillus sp. (GS/B) on Bacillus sp removal. Garlic solution was used to remove Bacillus sp. In this study, Garlic solution was prepared by crushing the garlic and mixed it with water. the Garlic solution was added into Bacillus sp. mixture and mixed well. The mixture then was spread on nutrient agar. The Bacillus sp. weight on agar plate was measured by using dry weight measurement method. In this study, initially Garlic solution volume and Garlic solution concentration were studied using one factor at time (OFAT). Later two-level-factorial analysis was done to determine the most contributing factor in Bacillus sp. removal. Design Expert software (Version 7) was used to construct experimental table where all the factors were randomized. Bacilus sp removal was ranging between 42.13% to 99.6%. The analysis of the results showed that at W/G of 1:1, Bacillus sp. removal increased when more Garlic solution was added to Bacillus sp. Effect of Garlic solution to Bacillus sp. will be understood which in turn may be beneficial for the industrial purpose.

  1. Small-molecule-based protein-labeling technology in live cell studies: probe-design concepts and applications.

    PubMed

    Mizukami, Shin; Hori, Yuichiro; Kikuchi, Kazuya

    2014-01-21

    The use of genetic engineering techniques allows researchers to combine functional proteins with fluorescent proteins (FPs) to produce fusion proteins that can be visualized in living cells, tissues, and animals. However, several limitations of FPs, such as slow maturation kinetics or issues with photostability under laser illumination, have led researchers to examine new technologies beyond FP-based imaging. Recently, new protein-labeling technologies using protein/peptide tags and tag-specific probes have attracted increasing attention. Although several protein-labeling systems are com mercially available, researchers continue to work on addressing some of the limitations of this technology. To reduce the level of background fluorescence from unlabeled probes, researchers have pursued fluorogenic labeling, in which the labeling probes do not fluoresce until the target proteins are labeled. In this Account, we review two different fluorogenic protein-labeling systems that we have recently developed. First we give a brief history of protein labeling technologies and describe the challenges involved in protein labeling. In the second section, we discuss a fluorogenic labeling system based on a noncatalytic mutant of β-lactamase, which forms specific covalent bonds with β-lactam antibiotics such as ampicillin or cephalosporin. Based on fluorescence (or Förster) resonance energy transfer and other physicochemical principles, we have developed several types of fluorogenic labeling probes. To extend the utility of this labeling system, we took advantage of a hydrophobic β-lactam prodrug structure to achieve intracellular protein labeling. We also describe a small protein tag, photoactive yellow protein (PYP)-tag, and its probes. By utilizing a quenching mechanism based on close intramolecular contact, we incorporated a turn-on switch into the probes for fluorogenic protein labeling. One of these probes allowed us to rapidly image a protein while avoiding washout. In the future, we expect that protein-labeling systems with finely designed probes will lead to novel methodologies that allow researchers to image biomolecules and to perturb protein functions.

  2. Radiation-chemical and optical properties of a radio-fluorogenic gel

    NASA Astrophysics Data System (ADS)

    Yao, Tiantian; Gasparini, Alessia; Denkova, Antonia G.; Warman, John M.

    2015-01-01

    The radiation-induced polymerization and fluorescence intensity of a radio- fluorogenic medium consisting of tertiary-butyl acrylate (TBA) with ca 100 ppm maleimido- pyrene (MPy) display a super-linear dependence on dose and a close to inverse square root dependence on dose rate over the range from 2 to 30 Gy/min. In contrast with the fluorescence, the clarity and optical absorption remain unchanged on irradiation up to at least 17% monomer conversion for which the medium is a rigid gel.

  3. Fluorogens with Aggregation Induced Emission: Ideal Photoacoustic Contrast Reagents Due to Intramolecular Rotation.

    PubMed

    Geng, Junlong; Liao, Lun-De; Qin, Wei; Tang, Ben Zhong; Thakor, Nitish; Liu, Bin

    2015-02-01

    Exogenous contrast agents with high sensitivity are highly desirable for photoacoustic (PA) imaging. In this work, we show that fluorogens with aggregation induced emission (AIE) characteristics are born with strong PA signals. In addition, we find that the PA signal of conventional fluorophores could be significantly enhanced through conjugation with tetraphenylethene (TPE), an iconic AIE fluorogen. Taking 2,3-bis[4-(diphenylamino)phenyl]fumaronitrile (TPAFN) as an example, conjugation between TPAFN and TPE affords 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaroni-trile (TPETPAFN), a molecule with significant AIE characteristics, which shows 170% higher PA signals as compared to that of TPAFN. The higher PA signal of TPETPAFN is mainly ascribed to the enhanced molecular rotation, which is beneficial to its thermal expansion upon light absorption. Moreover, the significantly reduced PA signals for TPETPAFN in solvents with high viscosity or as nanoparticles further highlight the contribution of molecular rotation on PA signals.

  4. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress.

    PubMed

    Liu, Yu; Fares, Matthew; Dunham, Noah P; Gao, Zi; Miao, Kun; Jiang, Xueyuan; Bollinger, Samuel S; Boal, Amie K; Zhang, Xin

    2017-07-17

    Drug-induced proteome stress that involves protein aggregation may cause adverse effects and undermine the safety profile of a drug. Safety of drugs is regularly evaluated using cytotoxicity assays that measure cell death. However, these assays provide limited insights into the presence of proteome stress in live cells. A fluorogenic protein sensor is reported to detect drug-induced proteome stress prior to cell death. An aggregation prone Halo-tag mutant (AgHalo) was evolved to sense proteome stress through its aggregation. Detection of such conformational changes was enabled by a fluorogenic ligand that fluoresces upon AgHalo forming soluble aggregates. Using 5 common anticancer drugs, we exemplified detection of differential proteome stress before any cell death was observed. Thus, this sensor can be used to evaluate drug safety in a regime that the current cytotoxicity assays cannot cover and be generally applied to detect proteome stress induced by other toxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells

    PubMed Central

    2016-01-01

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  6. Automated reading of MIC microdilution trays containing fluorogenic enzyme substrates with the Sensititre Autoreader.

    PubMed Central

    Staneck, J L; Allen, S D; Harris, E E; Tilton, R C

    1985-01-01

    The Sensititre Autoreader is a microcomputer-driven instrument capable of automatically reading antimicrobial susceptibility microdilution trays. The instrument measures the fluorescence liberated by bacterial enzymatic activity on fluorogenic substrates as an indicator of growth in each well. A mathematical algorithm converts the fluorescent signals from an antimicrobial dilution series to an MIC endpoint. A three-center study evaluated the performance of the Autoreader in comparison with MIC determined visually in a duplicate set of control plates lacking fluorogenic substrate. Among 828 isolates of gram-negative bacilli tested against 17 antimicrobial agents, Autoreader 18-h MIC were within +/- 1 twofold dilution of control MIC values (agreement) in 95.3% of instances. In 3.5% of the instances, Autoreader values occurred +/- 2 half-step dilutions from control values (minor discrepancy), and in only 1.2% of instances did Autoreader values deviate from control values by greater than +/- 2 dilution steps (major discrepancy). Agreement, minor discrepancies, and major discrepancies were noted among 148 gram-positive cocci tested against 11 antimicrobial agents in 93.5, 4.8, and 1.7% of the instances, respectively. Over half of the major discrepancies noted with gram-negative bacilli occurred with Proteus mirabilis-beta-lactam combinations, a problem that was resolved when a lower initial inoculum was used. Inter-and intralaboratory reproducibility was excellent. Standard Sensititre susceptibility trays may be instrument read at 18 h reproducibly and accurately with only slight modification of conventional procedures to include fluorogenic enzyme substrates in the incubation broth. PMID:4031033

  7. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    PubMed

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  8. Imaging mycobacterial growth and division with a fluorogenic probe.

    PubMed

    Hodges, Heather L; Brown, Robert A; Crooks, John A; Weibel, Douglas B; Kiessling, Laura L

    2018-05-15

    Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.

  9. Screening glycosynthase libraries with a fluoride chemosensor assay independently of enzyme specificity: identification of a transitional hydrolase to synthase mutant.

    PubMed

    Andrés, Eduardo; Aragunde, Hugo; Planas, Antoni

    2014-03-01

    Glycosynthases have become efficient tools for the enzymatic synthesis of oligosaccharides, glycoconjugates and polysaccharides. Enzyme-directed evolution approaches are applied to improve the performance of current glycosynthases and engineer specificity for non-natural substrates. However, simple and general screening methods are required since most of the reported assays are specific for each particular enzyme. In the present paper, we report a general screening assay that is independent of enzyme specificity, and implemented in an HTS (high-throughput screening) format for the screening of cell extracts in directed evolution experiments. Fluoride ion is a general by-product released in all glycosynthase reactions with glycosyl fluoride donors. The new assay is based on the use of a specific chemical sensor (a silyl ether of a fluorogenic methylumbelliferone) to transduce fluoride concentration into a fluorescence signal. As a proof-of-concept, it has been applied to a nucleophile saturation mutant library of Bacillus licheniformis 1,3-1,4-β-glucanase. Beyond the expected mutations at the glutamic acid (catalytic) nucleophile, other variants have been shown to acquire glycosynthase activity. Surprisingly, an aspartic acid for glutamic acid replacement renders a highly active glycosynthase, but still retains low hydrolase activity. It appears as an intermediate state between glycosyl hydrolase and glycosynthase.

  10. Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging.

    PubMed

    Mendive-Tapia, Lorena; Subiros-Funosas, Ramon; Zhao, Can; Albericio, Fernando; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc

    2017-08-01

    Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C 2 -BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).

  11. Improved Photoinduced Fluorogenic Alkene-Tetrazole Reaction for Protein Labeling.

    PubMed

    Shang, Xin; Lai, Rui; Song, Xi; Li, Hui; Niu, Wei; Guo, Jiantao

    2017-11-15

    The 1,3-dipolar cycloaddition reaction between an alkene and a tetrazole represents one elegant and rare example of fluorophore-forming bioorthogonal chemistry. This is an attractive reaction for imaging applications in live cells that requires less intensive washing steps and/or needs spatiotemporal resolutions. In the present work, as an effort to improve the fluorogenic property of the alkene-tetrazole reaction, an aromatic alkene (styrene) was investigated as the dipolarophile. Over 30-fold improvement in quantum yield of the reaction product was achieved in aqueous solution. According to our mechanistic studies, the observed improvement is likely due to an insufficient protonation of the styrene-tetrazole reaction product. This finding provides useful guidance to the future design of alkene-tetrazole reactions for biological studies. Fluorogenic protein labeling using the styrene-tetrazole reaction was demonstrated both in vitro and in vivo. This was realized by the genetic incorporation of an unnatural amino acid containing the styrene moiety. It is anticipated that the combination of styrene with different tetrazole derivatives can generally improve and broaden the application of alkene-tetrazole chemistry in real-time imaging in live cells.

  12. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome.

    PubMed

    Watanabe, Satoru; Shiwa, Yuh; Itaya, Mitsuhiro; Yoshikawa, Hirofumi

    2012-12-01

    Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.

  13. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production.

    PubMed

    Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir

    2009-05-01

    L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.

  14. Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super‐Resolution STED Microscopy in Living Cells

    PubMed Central

    Mitronova, Gyuzel Yu.; Sidenstein, Sven C.; Klocke, Jessica L.; Kamin, Dirk; Meineke, Dirk N. H.; D'Este, Elisa; Kraemer, Philip‐Tobias; Danzl, Johann G.

    2016-01-01

    Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm. PMID:26844929

  15. Low-cost fluorimetric determination of radicals based on fluorogenic dimerization of the natural phenol sesamol.

    PubMed

    Makino, Yumi; Uchiyama, Seiichi; Ohno, Ken-ichi; Arakawa, Hidetoshi

    2010-02-15

    A novel fluorimetric method for determining radicals using the natural phenol sesamol as a fluorogenic reagent is reported. In this assay, sesamol was reacted with aqueous radicals to yield one isomer of a sesamol dimer exclusively. The dimer emitted purple fluorescence near 400 nm around neutral pH, where it assumed the monoanionic form. This method was applied to the straightforward detection of radical nitric oxide (NO). The ready availability of sesamol should enable rapid implementation of applications utilizing this new assay, particularly in high-throughput analysis or screening.

  16. Genetic analysis of Bacillus stearothermophilus by protoplast fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Wojcik, S.F.; Welker, N.E.

    1986-03-01

    Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA markers on the Bacillus subtilis chromosome. No analogous pur-1 marker has been reported in B. subtilis. The relative order of three of the markers (hom-1-thr-1-gly-1) was independently confirmed by transduction.

  17. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  18. Twisted cyanines: a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule.

    PubMed

    Shank, Nathaniel I; Pham, Ha H; Waggoner, Alan S; Armitage, Bruce A

    2013-01-09

    The cyanine dye thiazole orange (TO) is a well-known fluorogenic stain for DNA and RNA, but this property precludes its use as an intracellular fluorescent probe for non-nucleic acid biomolecules. Further, as is the case with many cyanines, the dye suffers from low photostability. Here, we report the synthesis of a bridge-substituted version of TO named α-CN-TO, where the central methine hydrogen of TO is replaced by an electron withdrawing cyano group, which was expected to decrease the susceptibility of the dye toward singlet oxygen-mediated degradation. An X-ray crystal structure shows that α-CN-TO is twisted drastically out of plane, in contrast to TO, which crystallizes in the planar conformation. α-CN-TO retains the fluorogenic behavior of the parent dye TO in viscous glycerol/water solvent, but direct irradiation and indirect bleaching studies showed that α-CN-TO is essentially inert to visible light and singlet oxygen. In addition, the twisted conformation of α-CN-TO mitigates nonspecific binding and fluorescence activation by DNA and a previously selected TO-binding protein and exhibits low background fluorescence in HeLa cell culture. α-CN-TO was then used to select a new protein that binds and activates fluorescence from the dye. The new α-CN-TO/protein fluoromodule exhibits superior photostability to an analogous TO/protein fluoromodule. These properties indicate that α-CN-TO will be a useful fluorogenic dye in combination with specific RNA and protein binding partners for both in vitro and cell-based applications. More broadly, structural features that promote nonplanar conformations can provide an effective method for reducing nonspecific binding of cationic dyes to nucleic acids and other biomolecules.

  19. Twisted Cyanines: A Non-Planar Fluorogenic Dye with Superior Photostability and its Use in a Protein-Based Fluoromodule

    PubMed Central

    Shank, Nathaniel I.; Pham, Ha; Waggoner, Alan S.; Armitage, Bruce A.

    2013-01-01

    The cyanine dye thiazole orange (TO) is a well-known fluorogenic stain for DNA and RNA, but this property precludes its use as an intracellular fluorescent probe for non-nucleic acid biomolecules. Further, as is the case with many cyanines, the dye suffers from low photostability. Here we report the synthesis of a bridge-substituted version of TO named α-CN-TO, where the central methine hydrogen of TO is replaced by an electron withdrawing cyano group, which was expected to decrease the susceptibility of the dye toward singlet oxygen-mediated degradation. An X-ray crystal structure shows that α-CN-TO is twisted drastically out of plane, in contrast to TO, which crystallizes in the planar conformation. α-CN-TO retains the fluorogenic behavior of the parent dye TO in viscous glycerol/water solvent, but direct irradiation and indirect bleaching studies showed that α-CN-TO is essentially inert to visible light and singlet oxygen. In addition, the twisted conformation of α-CN-TO mitigates non-specific binding and fluorescence activation by DNA and a previously selected TO-binding protein and exhibits low background fluorescence in HeLa cell culture. α-CN-TO was then used to select a new protein that binds and activates fluorescence from the dye. The new α-CN-TO/protein fluoromodule exhibits superior photostability to an analogous TO/protein fluoromodule. These properties indicate that α-CN-TO will be a useful fluorogenic dye in combination with specific RNA and protein binding partners for both in vitro and cell-based applications. More broadly, structural features that promote nonplanar conformations can provide an effective method for reducing nonspecific binding of cationic dyes to nucleic acids and other biomolecules. PMID:23252842

  20. Non-protein thiol imaging and quantification in live cells with a novel benzofurazan sulfide triphenylphosphonium fluorogenic compound.

    PubMed

    Yang, Yang; Guan, Xiangming

    2017-05-01

    Thiols (-SH) play various roles in biological systems. They are divided into protein thiols (PSH) and non-protein thiols (NPSH). Due to the significant roles thiols play in various physiological/pathological functions, numerous analytical methods have been developed for thiol assays. Most of these methods are developed for glutathione, the major form of NPSH. Majority of these methods require tissue/cell homogenization before analysis. Due to a lack of effective thiol-specific fluorescent/fluorogenic reagents, methods for imaging and quantifying thiols in live cells are limited. Determination of an analyte in live cells can reveal information that cannot be revealed by analysis of cell homogenates. Previously, we reported a thiol-specific thiol-sulfide exchange reaction. Based on this reaction, a benzofurazan sulfide thiol-specific fluorogenic reagent was developed. The reagent was able to effectively image and quantify total thiols (PSH+NPSH) in live cells through fluorescence microscopy. The reagent was later named as GUALY's reagent. Here we would like to report an extension of the work by synthesizing a novel benzofurazan sulfide triphenylphosphonium derivative [(((7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl))bis(methylazanediyl))bis(butane-4,1-diyl))bis(triphenylphosphonium) (TBOP)]. Like GUALY's reagent, TBOP is a thiol-specific fluorogenic agent that is non-fluorescent but forms fluorescent thiol adducts in a thiol-specific fashion. Different than GUALY's reagent, TBOP reacts only with NPSH but not with PSH. TBOP was effectively used to image and quantify NPSH in live cells using fluorescence microscopy. TBOP is a complementary reagent to GUALY's reagent in determining the roles of PSH, NPSH, and total thiols in thiol-related physiological/pathological functions in live cells through fluorescence microscopy. Graphical Abstract Live cell imaging and quantification of non-protein thiols by TBOP.

  1. Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, Drosophila brains and zebrafish.

    PubMed

    Zhao, Yanfei; Ni, Yun; Wang, Liulin; Xu, Chenchen; Xin, Chenqi; Zhang, Chengwu; Zhang, Gaobin; Xie, Xiaoji; Li, Lin; Huang, Wei

    2018-06-19

    Investigating the change in expression level of mercapto biomolecules (GSH/Cys/Hcy) necessitates a rapid detection method for a series of physiological and pathological processes. Herein, we present a ligand-displacement-based two-photon fluorogenic probe based on an Fe(iii) complex, TPFeS, which is a GSH/Cys/Hcy rapid detection fluorogenic probe for in vitro analysis and live cell/tissue/in vivo imaging. The "in situ" probe is non-fluorescent and was prepared from a 1 : 2 ratio of Fe(iii) and TPS, a novel two-photon (TP) fluorophore with excellent one-photon (OP) and TP properties under physiological conditions, as a fluorescent ligand. This probe shows a rapid and remarkable fluorescence restoration (OFF-ON) property due to the ligand-displacement reaction of mercapto biomolecules in a recyclable manner in vitro. A significant two-photon action cross-section, good selectivity for biothiols, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range allowed the direct visualization of mercapto biomolecules at different levels between normal/drug-treated live cells, as well as in Drosophila brain tissues/zebrafish based on the use of two-photon fluorescence microscopy.

  2. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions

    PubMed Central

    Friscourt, Frédéric; Fahrni, Christoph J.; Boons, Geert-Jan

    2016-01-01

    Fluorogenic reactions in which non- or weakly-fluorescent reagents produce highly fluorescent products are attractive for detecting a broad range of compounds in the fields of bio-conjugation and material sciences. We report here that Fl-DIBO, a dibenzocyclooctyne derivative modified with a cyclopropenone moiety, can undergo fast strain-promoted cycloadditions under catalyst-free conditions with azides, nitrones, nitrile oxides as well as mono- and disubstituted diazo-derivatives. While the reaction with nitrile oxides, nitrones and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H-pyrazole derivatives that exhibited a ~160-fold fluorescence enhancement over Fl-DIBO combined with a greater than 10,000-fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H-pyrazoles, which are formed by reaction with disubstituted diazo-derivatives, is likely due to the presence of energetically low-lying (n,π*) states. The fluorogenic probe Fl-DIBO was successfully employed for the labeling of diazo-tagged proteins without detectable background signal. Diazo-derivatives are emerging as attractive reporters for the labeling of biomolecules and the studies presented here demonstrate that Fl-DIBO can be employed for visualizing such biomolecules without the need for probe washout. PMID:26330090

  3. Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection

    PubMed Central

    Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan

    2014-01-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins –Protein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476

  4. Construction of a Bacterial Cell that Contains Only the Set of Essential Genes Necessary to Impart Life

    DTIC Science & Technology

    2014-08-15

    characterized genes from Bacillus subtilis , that is presented in a constitutive expression module. If the B. subtilis gene containing M. mycoides mutant is...essential gene MMYC_0361 with the rlmH gene from Bacillus subtilis . Mycoplasma mycoides containing the B. subtilis rlmH was viable. This tells us the...viable than the function of the conserved hypothetical gene is the same as the input B. subtilis gene. Table of Contents: Section

  5. A Dual Anticancer Efficacy Molecule: A Selective Dark Cytotoxicity Photosensitizer.

    PubMed

    Chen, Jyun-Wei; Chang, Cheng-Chung

    2016-11-09

    Unlike traditional binary nanostructures that construct chemotherapy drugs and photodynamic therapy photosensitizers, we introduce a molecule with a chemo-photodynamic dual therapy function. A water-soluble aggregation-induced emission enhancement (AIEE) fluorogen, NV-12P, was designed and synthesized based on asymmetric 1,6-disubstituted naphthalene and can generate particular reactive oxygen species to undergo type I photodynamic therapy under irradiation. Furthermore, this compound can specifically localize in mitochondria and, after biological evaluation, can cause mitochondrial dysfunction and potent cytotoxicity to cancer cells but not normal cells. We conclude that this compound is a potential dual-toxic efficacy molecule because it exhibits selective dark cytotoxicity and efficient photodamage in cancer cells. Additionally, we also supported the optimal combinational treatment course for the best chemo-phototherapy efficacy.

  6. Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum.

    PubMed Central

    Smith, M D; Flickinger, J L; Lineberger, D W; Schmidt, B

    1986-01-01

    The goal of this study was to investigate the likelihood of developing useful transformation systems for coryneform bacteria. Two species of coryneform bacteria, Brevibacterium lactofermentum and Corynebacterium lilium, were transformed with chimeras constructed from pUB110 and a cryptic coryneform plasmid (pGX1901). C. lilium protoplasts were also efficiently transfected with phage CS1 DNA. High transformation and transfection frequencies were obtained after only 2 min of lysozyme treatment of lysozyme-sensitive mutants. A series of experiments was also conducted to determine whether DNA from other species of important industrial microbes from the genus Bacillus could be expressed in coryneform bacteria. Evidence of restriction of Bacillus subtilis DNA by B. lactofermentum was observed but could be overcome. A Bacillus amyloliquefaciens alpha-amylase gene (amyEBamP) was subcloned onto a plasmid able to replicate in B. lactofermentum. B. lactofermentum transformants for this plasmid expressed amylase activity and produced material cross-reactive to amylase antibody. Images PMID:3008649

  7. Hyperexpression of the gene for a Bacillus alpha-amylase in Bacillus subtilis cells: enzymatic properties and crystallization of the recombinant enzyme.

    PubMed

    Ikawa, K; Araki, H; Tsujino, Y; Hayashi, Y; Igarashi, K; Hatada, Y; Hagihara, H; Ozawa, T; Ozaki, K; Kobayashi, T; Ito, S

    1998-09-01

    We have constructed a new excretion vector, pHSP64, to develop a hyperexcretion system for Bacillus subtilis [Sumitomo et al., Biosci. Biotech. Biochem., 59, 2172-2175 (1995)]. The structural gene for a novel liquefying semi-alkaline alpha-amylase from the alkaliphilic Bacillus sp. KSM-1378 was amplified by PCR. It was cloned into a SalI-SmaI site of pHSP64 and the recombinant plasmid obtained was introduced into B. subtilis. The transformed B. subtilis hyperproduced the alpha-amylase activity extracellularly, corresponding to approximately 1.0 g (5 x 10(6) units) per liter of an optimized liquid culture. The recombinant enzyme was purified to homogeneity by a simple purification procedure with very high yield. No significant differences in physiochemical and catalytic properties were observed between the recombinant enzyme and the native enzyme produced by Bacillus sp. KSM-1378. The enzymatic properties of the recombinant enzyme were further examined with respect to the responses to various metal ions. The recombinant enzyme could easily be crystallized at room temperature within one day in a buffered solution of 10% (w/v) ammonium sulfate (pH 6.5).

  8. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants

    PubMed Central

    Wu, Liming; Wu, Hui-Jun; Qiao, Junqing; Gao, Xuewen; Borriss, Rainer

    2015-01-01

    Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents. PMID:26696998

  9. A two-color fluorogenic carbene complex for tagging olefins via metathesis reaction

    NASA Astrophysics Data System (ADS)

    Wirtz, Marcel; Grüter, Andreas; Heib, Florian; Huch, Volker; Zapp, Josef; Herten, Dirk-Peter; Schmitt, Michael; Jung, Gregor

    2015-12-01

    We describe a fluorogenic ruthenium (II) carbene complex in which the chromophore is directly connected to the metal center. The compound introduces a boron dipyrromethene (BODIPY) moiety into target double bonds by metathesis. Tagging of terminal double bonds is demonstrated on immobilized styrene units on a glass surface. We also show that two compounds with distinguishable fluorescence properties are formed in the model reaction with styrene. The outcome of the metathesis reaction is characterized by 19F-NMR, optical spectroscopy, and, finally, single-molecule trajectories. This labeling scheme, in our perception, is of particular interest in the fields of interfacial science and biorthogonal ligation in combination with super-resolution imaging.

  10. Characterization of 9H-(1,3-dichlor-9, 9-dimethylacridin-2-ona-7-yl)-phosphate (DDAO) as substrate of PP-2A in a fluorimetric microplate assay for diarrhetic shellfish toxins (DSP).

    PubMed

    Leira, F; Vieites, J M; Vieytes, M R; Botana, L M

    2000-12-01

    Specific inhibition of protein-phosphatases by diarrhetic shellfish toxins (DSP) of the okadaic acid group, has led to the development of a fluorescent enzyme inhibition assay for these toxins using protein-phosphatase 2A (PP-2A) and fluorogenic substrates of the enzyme. Two different substrates of PP-2A have been previously used in this microplate assay: 4-methylumbelliferyl phosphate and fluorescein diphosphate (FDP). In this report, we present the results obtained using a new fluorogenic substrate of PP-2A, the compound dimethylacridinone phosphate (DDAO). A linear relationship between PP-2A concentration and DDAO-induced fluorescence was observed. Okadaic acid (0.0157-9.43 nM)-dependent inhibition of phosphatase activity showed similar results using FDP and DDAO. Recovery percentages obtained with FDP and DDAO in spiked mussel samples (both raw and canned) were very similar and reproducible. Comparative analysis of DSP-contaminated mussel samples by HPLC and FDP/DDAO-PP-2A showed a good correlation among all methods, thus demonstrating that DDAO can be used as a fluorogenic substrate to quantify okadaic acid and related toxins in bivalve molluscs with optimum reliability.

  11. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions.

    PubMed

    Friscourt, Frédéric; Fahrni, Christoph J; Boons, Geert-Jan

    2015-09-28

    Fluorogenic reactions, in which non- or weakly fluorescent reagents produce highly fluorescent products, are attractive for detecting a broad range of compounds in the fields of bioconjugation and material sciences. Herein, we report that a dibenzocyclooctyne derivative modified with a cyclopropenone moiety (Fl-DIBO) can undergo fast strain-promoted cycloaddition reactions under catalyst-free conditions with azides, nitrones, nitrile oxides, as well as mono- and disubstituted diazo-derivatives. Although the reaction with nitrile oxides, nitrones, and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H-pyrazole derivatives that exhibited an approximately 160-fold fluorescence enhancement over Fl-DIBO combined with a greater than 10,000-fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H-pyrazoles, which are formed by reaction with disubstituted diazo-derivatives, is likely due to the presence of energetically low-lying (n,π*) states. The fluorogenic probe Fl-DIBO was successfully employed for the labeling of diazo-tagged proteins without detectable background signal. Diazo-derivatives are emerging as attractive reporters for the labeling of biomolecules, and the studies presented herein demonstrate that Fl-DIBO can be employed for visualizing such biomolecules without the need for probe washout. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fluorogenic reaction-based prodrug conjugates as targeted cancer theranostics.

    PubMed

    Lee, Min Hee; Sharma, Amit; Chang, Min Jung; Lee, Jinju; Son, Subin; Sessler, Jonathan L; Kang, Chulhun; Kim, Jong Seung

    2018-01-02

    Theranostic systems are receiving ever-increasing attention due to their potential therapeutic utility, imaging enhancement capability, and promise for advancing the field of personalized medicine, particularly as it relates to the diagnosis, staging, and treatment of cancer. In this Tutorial Review, we provide an introduction to the concepts of theranostic drug delivery effected via use of conjugates that are able to target cancer cells selectively, provide cytotoxic chemotherapeutics, and produce readily monitored imaging signals in vitro and in vivo. The underlying design concepts, requiring the synthesis of conjugates composed of imaging reporters, masked chemotherapeutic drugs, cleavable linkers, and cancer targeting ligands, are discussed. Particular emphasis is placed on highlighting the potential benefits of fluorogenic reaction-based targeted systems that are activated for both imaging and therapy by cellular entities, e.g., thiols, reactive oxygen species and enzymes, which are present at relatively elevated levels in tumour environments, physiological characteristics of cancer, e.g., hypoxia and acidic pH. Also discussed are systems activated by an external stimulus, such as light. The work summarized in this Tutorial Review will help define the role fluorogenic reaction-based, cancer-targeting theranostics may have in advancing drug discovery efforts, as well as improving our understanding of cellular uptake and drug release mechanisms.

  13. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    PubMed

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  14. Design and application of a fluorogenic assay for monitoring inflammatory caspase activity.

    PubMed

    Ranganathan, Raj; Lenti, Gena; Tassone, Nicholas M; Scannell, Brian J; Southern, Cathrine A; Karver, Caitlin E

    2018-02-15

    Various fluorogenic assays exist for monitoring the activity of inflammatory caspases. However, there are no continuous assays that provide C-terminal substrate sequence specificity for inflammatory caspases. As a first step towards this, we have developed a continuous in vitro assay that relies on monitoring emission from tryptophan after cleavage of a quenching coumarin chromophore. The coumarin can be attached as an amino acid side chain or capping the C-terminus of the peptide. When the coumarin is a side chain, it allows for C-terminal and N-terminal sequence specificities to be explored. Using this assay, we obtained Michaelis-Menten kinetic data for four proof-of-principle peptides: WEHD-AMC (K M  = 15 ± 2 μM), WEHD-MCA (K M  = 93 ± 19 μM), WEHDG-MCA (K M  = 21 ± 6 μM) and WEHDA-MCA (K M  = 151 ± 37 μM), where AMC is 7-amino-4-methylcoumarin and MCA is β-(7-methoxy-coumarin-4-yl)-Ala. The results indicate the viability of this new assay approach in the design of effective fluorogenic substrates for inflammatory caspases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Continuous fluorometric method for measuring β-glucuronidase activity: comparative analysis of three fluorogenic substrates.

    PubMed

    Briciu-Burghina, Ciprian; Heery, Brendan; Regan, Fiona

    2015-09-07

    E. coli β-glucuronidase (GUS) activity assays are routinely used in fields such as plant molecular biology, applied microbiology and healthcare. Methods based on the optical detection of GUS using synthetic fluorogenic substrates are widely employed since they don't require expensive instrumentation and are easy to perform. In this study three fluorogenic substrates and their respective fluorophores were studied for the purpose of developing a continuous fluorometric method for GUS. The fluorescence intensity of 6-chloro-4-methyl-umbelliferone (6-CMU) at pH 6.8 was found to be 9.5 times higher than that of 4-methyl umbelliferone (4-MU) and 3.2 times higher than the fluorescence of 7-hydroxycoumarin-3-carboxylic acid (3-CU). Michaelis-Menten kinetic parameters of GUS catalysed hydrolysis of 6-chloro-4-methyl-umbelliferyl-β-D-glucuronide (6-CMUG) were determined experimentally (Km = 0.11 mM, Kcat = 74 s(-1), Kcat/Km = 6.93 × 10(5) s(-1) M(-1)) and compared with the ones found for 4-methyl-umbelliferyl-β-D-glucuronide (4-MUG) (Km = 0.07 mM, Kcat = 92 s(-1), Kcat/Km = 1.29 × 10(6) s(-1) M(-1)) and 3-carboxy-umbelliferyl-β-D-glucuronide (3-CUG) (Km = 0.48 mM, Kcat = 35 s(-1), Kcat/Km = 7.40 × 10(4) s(-1) M(-1)). Finally a continuous fluorometric method based on 6-CMUG as a fluorogenic substrate has been developed for measuring GUS activity. When compared with the highly used discontinuous method based on 4-MUG as a substrate it was found that the new method is more sensitive and reproducible (%RSD = 4.88). Furthermore, the developed method is less laborious, faster and more economical and should provide an improved alternative for GUS assays and kinetic studies.

  16. Fluorogenic, catalytic, photochemical reaction for amplified detection of nucleic acids.

    PubMed

    Dutta, Subrata; Fülöp, Annabelle; Mokhir, Andriy

    2013-09-18

    Photochemical, nucleic acid-induced reactions, which are controlled by nontoxic red light, are well-suited for detection of nucleic acids in live cells, since they do not require any additives and can be spatially and temporally regulated. We have recently described the first reaction of this type, in which a phenylselenyl derivative of thymidine (5'-PhSeT-ODNa) is cleaved in the presence of singlet oxygen (Fülöp, A., Peng, X., Greenberg, M. M., Mokhir, A. (2010) A nucleic acid directed, red light-induced chemical reaction. Chem. Commun. 46, 5659-5661). The latter reagent is produced upon exposure of a photosensitizer 3'-PS-ODNb (PS = Indium(III)-pyropheophorbide-a-chloride: InPPa) to >630 nm light. In 2012 we reported on a fluorogenic version of this reaction (Dutta, S., Flottmann, B., Heilemann, M., Mokhir, A. (2012) Hybridization and reaction-based, fluorogenic nucleic acid probes. Chem. Commun. 47, 9664-9666), which is potentially applicable for the detection of nucleic acids in cells. Unfortunately, its yield does not exceed 25% and no catalytic turnover could be observed in the presence of substrate excess. This problem occurs due to the efficient, competing oxidation of the substrate containing an electron rich carbon-carbon double bonds (SCH═CHS) in the presence of singlet oxygen with formation of a noncleavable product (SCH═CHSO). Herein we describe a related, but substantially improved photochemical, catalytic transformation of a fluorogenic, organic substrate, which consists of 9,10-dialkoxyanthracene linked to fluorescein, with formation of a bright fluorescent dye. In highly dilute solution this reaction occurs only in the presence of a nucleic acid template. We developed three types of such a reaction and demonstrated that they are high yielding and generate over 7.7 catalytic turnovers, are sensitive to single mismatches in nucleic acid targets, and can be applied for determination of both the amount of nucleic acids and potentially their localization.

  17. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus.

    PubMed

    Wang, Pengxia; Zhu, Yiguang; Zhang, Yuyang; Zhang, Chunyi; Xu, Jianyi; Deng, Yun; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2016-06-10

    Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains.

  18. A heating-superfusion platform technology for the investigation of protein function in single cells.

    PubMed

    Xu, Shijun; Ainla, Alar; Jardemark, Kent; Jesorka, Aldo; Jeffries, Gavin D M

    2015-01-06

    Here, we report on a novel approach for the study of single-cell intracellular enzyme activity at various temperatures, utilizing a localized laser heating probe in combination with a freely positionable microfluidic perfusion device. Through directed exposure of individual cells to the pore-forming agent α-hemolysin, we have controlled the membrane permeability, enabling targeted delivery of the substrate. Mildly permeabilized cells were exposed to fluorogenic substrates to monitor the activity of intracellular enzymes, while adjusting the local temperature surrounding the target cells, using an infrared laser heating system. We generated quantitative estimates for the intracellular alkaline phosphatase activity at five different temperatures in different cell lines, constructing temperature-response curves of enzymatic activity at the single-cell level. Enzymatic activity was determined rapidly after cell permeation, generating five-point temperature-response curves within just 200 s.

  19. Strain Screening from Traditional Fermented Soybean Foods and Induction of Nattokinase Production in Bacillus subtilis MX-6.

    PubMed

    Man, Li-Li; Xiang, Dian-Jun; Zhang, Chun-Lan

    2018-02-06

    The plasminogen-free fibrin plate assay method was used to isolate Bacillus subtilis MX-6, a strain with high production of nattokinase from Chinese douchi. The presence of aprN, a gene-encoding nattokinase, was verified with PCR method. The predicted amino acid sequence was aligned with homologous sequences, and a phylogenetic tree was constructed. Nattokinase was sublimated with ammonium sulfate, using a DEAE-Sepharose Fast Flow column, a CM-Sepharose Fast Flow column and a Sephadex G-75 gel filtration column. SDS-PAGE analysis indicated that the molecular weight of the purified nattokinase from Bacillus subtilis MX-6 was about 28 kDa. Fermentation of Bacillus subtilis MX-6 nattokinase showed that nattokinase production was maximized after 72 h; the diameter of clear zone reached 21.60 mm on the plasminogen-free fibrin plate. Nattokinase production by Bacillus subtilis MX-6 increased significantly after supplementation with supernatant I, supernatant II and soy peptone but decreased substantially after the addition of amino acids. This result indicated that the nattokinase production by B. subtilis MX-6 might be induced by soybean polypeptides. The addition of MgSO 4 and CaCl 2 increased B. subtilis MX-6 nattokinase production.

  20. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    PubMed

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  1. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  2. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications.

    PubMed

    Klymchenko, Andrey S

    2017-02-21

    Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies, aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (ii) minimizing nonspecific interactions of the probes in biological systems; (iii) their adaptation for advanced microscopies, notably for superresolution and in vivo imaging.

  3. Rapid detection of tuberculosis using droplet-based microfluidics

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Liat; Cheng, Yunfeng; Rao, Jianghong; Tang, Sindy K. Y.

    2014-03-01

    Tuberculosis is one of the most deadly diseases that kills over one million people each year and infects one-third of the world's population. The disease is spread by infection with Mycobacterium tuberculosis (Mtb). Owing to its airborne transmission, early diagnosis is critical to the prevention and control of TB. Standard diagnostic methods, acid-fast smear from sputum, often do not become positive until after transmission occurs, which allows the spread of the disease. Culture-based techniques are more sensitive, but take weeks to obtain results because of the extremely slow growth rate of Mtb. In this study a new method to detect indicator enzyme based on the isolation of tubercle bacillus in a large number of picoliter droplets combined with a fluorescent probe has been developed. We use BlaC (an enzyme naturally expressed/secreted by tubercle bacilli) as a marker and a designed BlaC-specific fluorogenic substrates as probes for Mtb detection. We present here a new method to detect the indicator enzyme based on the isolation, digitization and concentration of bacteria samples in a large number of picoliter drops. We show that by controlling the size of the droplets we can control the rate of conversion. Hence rapid increase in signal has been observed as the size of the drops has been decreased. Our vision is that this tool will be able to detect tubercle bacilli in a sensitive, rapid, specific and quantitative manner in vitro at a low cost, particularly in resource limited settings where TB is the most prevalent.

  4. The microbial-kill characteristics of saturated steam plus 1,000 to 10,000 ppm hydrogen peroxide at atmospheric pressure.

    PubMed

    Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P

    2008-01-01

    This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed.

  5. Hot and steamy: outbreak of Bacillus cereus in Singapore associated with construction work and laundry practices.

    PubMed

    Balm, M N D; Jureen, R; Teo, C; Yeoh, A E J; Lin, R T P; Dancer, S J; Fisher, D A

    2012-08-01

    A sudden increase in invasive infections caused by Bacillus cereus group organisms prompted an investigation at the National University Hospital in Singapore. To describe the investigation and management and subsequent difficulties controlling the outbreak. Clinical case reviews were performed on all patients with B. cereus group recovered from clinical samples. Widespread environmental sampling was performed followed by review of hospital ventilation systems, domestic cleaning and laundry practices. B. cereus was recovered from 171 patients during a six-month period coinciding with large-scale construction work beside the hospital. Most patients presented with bacteraemia (146/171; 85.4%) with 46/171 (26.9%) requiring extended treatment courses with vancomycin or other interventions. Sampling confirmed extensive airborne dispersal inside the hospital, including isolation rooms and air-conditioned wards. Hospital linen was heavily contaminated [7403 cfu/cm(2); 95% confidence interval (CI): 6349-8457; for 30 towels sampled], encouraged by inappropriate storage in airtight plastic bags (4437 cfu/cm(2); CI: 3125-5750) compared with storage in porous canvas bags (166 cfu/cm(2); CI: 76-256; P < 0.001). Interventions introduced included revision of laundry practices, transport and storage of hospital linen and towels; bleach-based environmental cleaning; and upgrading of ventilation systems throughout the hospital. Clinical case numbers returned to baseline levels within three months, only to rise again following relaxation of laundry practices. Construction work beside this Singapore hospital encouraged heavy contamination of air and environment with Bacillus spp., assumed to be responsible for the outbreak described. Failure to maintain revised laundry practices allowed resurgence of clinical cases, particularly among immunocompromised patients. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. A thiourea-appended rhodamine chemodosimeter for mercury(II) and its bioimaging application

    NASA Astrophysics Data System (ADS)

    Tantipanjaporn, Ajcharapan; Prabpai, Samran; Suksen, Kanoknetr; Kongsaeree, Palangpon

    2018-03-01

    A rhodamine-thiourea conjugate RTP with an o-phenylenediamine linker was developed as a fluorogenic chemodosimeter for Hg2+ detection. In the presence of Hg2+, a colorless solution of RTP turned pink with a maximum absorption band at 555 nm and with a 62-fold fluorescence enhancement at 578 nm (Φ = 0.34). RTP is highly selective to Hg2+ among other metal ions with a detection limit of 1.6 nM (0.3 ppb). A similar rhodamine analog with a flexible ethylenediamine spacer was less selective and less sensitive than RTP. Hg2+ induced cyclic guanylation to yield a benzimidazole moiety and a subsequent ring-opening of the spirolactam unit resulted in chromogenic and fluorogenic changes. The membrane-permeable RTP probe was successfully demonstrated in monitoring of Hg2+ in cultured HeLa cells.

  7. Applications of Fluorogens with Rotor Structures in Solar Cells.

    PubMed

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  8. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.

    PubMed

    Lang, Kathrin; Davis, Lloyd; Wallace, Stephen; Mahesh, Mohan; Cox, Daniel J; Blackman, Melissa L; Fox, Joseph M; Chin, Jason W

    2012-06-27

    Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.

  9. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    PubMed

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VK Q , prepared by coupling vitamin K 3 , also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VK Q is non-emissive, while upon reduction to the hydroquinone form, B-VK QH 2 , BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VK Q as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  10. Phylogenetic Analysis of Polygalacturonase-Producing Bacillus and Pseudomonas Isolated From Plant Waste Material

    PubMed Central

    Sohail, Muhammad; Latif, Zakia

    2016-01-01

    Background: Keeping in mind the commercial application of polygalacturonase (PG) in juice and beverages industry, bacterial strains were isolated from rotten fruits and vegetables to screen for competent producers of PG. Objectives: In this study, the plate method was used for preliminary screening of polygalacturonase-producing bacteria, while the Dinitrosalicylic Acid (DNS) method was used for quantifications of PG. Materials and Methods: Biochemically-identified polygalacturonase-producing Bacillus and Pseudomonas species were further characterized by molecular markers. The genetic diversity among these selected strains was analyzed by investigating microsatellite distribution in their genome. Out of 110 strains, 17 competent strains of Bacillus and eight strains of Pseudomonas were selected, identified and confirmed biochemically. Selected strains were characterized by 16S rRNA sequencing and data was submitted to the national center for biotechnology information (NCBI) website for accession numbers. Results: Among the Bacillus, Bacillus vallismortis (JQ990307) isolated from mango was the most competent producer of PG; producing up to 4.4 U/µL. Amongst Pseudomonas, Pseudomonas aeruginosa (JQ990314) isolated from oranges was the most competent PG producer equivalent to B. vallismortis (JQ990307). To determine genetic diversity of different strains of Pseudomonas and Bacillus varying in PG production, fingerprinting was done on the basis of Simple Sequence Repeats (SSR) or microsatellites. The data was analyzed and a phylogenetic tree was constructed using the Minitab 3 software for comparison of bacterial isolates producing different concentrations of PG. Fingerprinting showed that presence or absence of certain microsatellites correlated with the ability of PG production. Conclusions: Bacteria from biological waste were competent producers of PG and must be used on an industrial scale to cope with the demand of PG in the food industry. PMID:27099686

  11. Physiological assessment of bacteria using fluorochromes

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Yu, F. P.; Pyle, B. H.; Stewart, P. S.

    1995-01-01

    This minireview focuses on the application of fluorogenic compounds in the detection of bacteria with particular emphasis on the assessment of physiological activity using epifluorescence microscopy. Microbiological applications of several related methods will also be reviewed.

  12. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae.

    PubMed Central

    Philipp, W J; Poulet, S; Eiglmeier, K; Pascopella, L; Balasubramanian, V; Heym, B; Bergh, S; Bloom, B R; Jacobs, W R; Cole, S T

    1996-01-01

    An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom. Images Fig. 1 Fig. 2 PMID:8610181

  13. Construction of promoter-probe shuttle vectors for Escherichia coli and corynebacteria on the basis of promoterless alpha-amylase gene.

    PubMed

    Ugorcáková, J; Bukovská, G; Timko, J

    2000-01-01

    We constructed new promoter-probe vectors for E. coli and corynebacteria based on the promoterless alpha-amylase gene originating from Bacillus subtilis. Vectors pJUPAE1 and pJUPAE2 are suitable for isolation of transcriptionally active fragments from plasmids, phages or genomic DNA. alpha-Amylase activity can be easily visually detected on agar plates containing a chromogenic substrate, or by direct measurement of alpha-amylase activity.

  14. Study of capability of microorganisms to develop on construction materials used in space objects

    NASA Astrophysics Data System (ADS)

    Rakova, N.; Svistunova, Y.; Novikova, N.

    One of the most topical issues nowadays in the whole set of space research is the study of microbiological risks (medical, technical, technological). Experiments held onboard MIR station and International Space Station (ISS) clearly demonstrated capacity of microorganisms to contaminate the environment, equipment and belonging of habitual compartments of space objects. In this connection microorganisms-biodestructors play an important role. In their vital functioning they are capable of causing biological damage of different polymers, biocorrosion of metals which can lead to serious difficulties in performing long-term flights, namely the planned mission to Mars. Our purpose was to study capability of growth and reproduction of microorganisms on construction materials of various chemical composition as the first stage of biodestruction process. In our research we used "flight" strains of bacteria (Bacillus subtilus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas pumilus etc.) recovered from the ISS environment in several missions. For control we used "earth" bacteria species with typical properties. To model the environment of the ISS we took construction materials which are widely used in the interior and equipment of the ISS. The results we've obtained show that some microorganisms are capable of living and reproducing themselves on construction materials and their capability is more pronounced than that of the "earth" species. The best capability for growth and reproduction was characteristic of Bacillus subtilus.

  15. Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.

    PubMed

    Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A

    2015-03-28

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.

  16. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  17. Fluorogenic kinetic assay for high-throughput discovery of stereoselective ketoreductases relevant to pharmaceutical synthesis.

    PubMed

    Thai, Yen-Chi; Szekrenyi, Anna; Qi, Yuyin; Black, Gary W; Charnock, Simon J; Fessner, Wolf-Dieter

    2018-04-01

    Enantiomerically pure 1-(6-methoxynaphth-2-yl) and 1-(6-(dimethylamino)naphth-2-yl) carbinols are fluorogenic substrates for aldo/keto reductase (KRED) enzymes, which allow the highly sensitive and reliable determination of activity and kinetic constants of known and unknown enzymes, as well as an immediate enantioselectivity typing. Because of its simplicity in microtiter plate format, the assay qualifies for the discovery of novel KREDs of yet unknown specificity among this vast enzyme superfamily. The suitability of this approach for enzyme typing is illustrated by an exemplary screening of a large collection of short-chain dehydrogenase/reductase (SDR) enzymes arrayed from a metagenomic approach. We believe that this assay format should match well the pharmaceutical industry's demand for acetophenone-type substrates and the continuing interest in new enzymes with broad substrate promiscuity for the synthesis of chiral, non-racemic carbinols. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Novel fluorogenic probe for fluoride ion based on the fluoride-induced cleavage of tert-butyldimethylsilyl ether

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Feng

    2007-06-01

    A highly sensitive and selective fluorogenic probe for fluoride ion, 4-methylumbelliferyl tert-butyldimethylsilyl ether (4-MUTBS), was designed and synthesized. 4-MUTBS was a weakly fluorescent compound and was synthesized via the one-step reaction of 4-MU with tert-butyldimethylsilyl chloride. Upon incubation with fluoride ion in acetone-water solution (7:3, v/v), the Si-O bond of 4-MUTBS was cleaved and highly fluorescent 4-methylumbelliferone (4-MU) was released, hence leading to the fluorescence increase of the reaction solution. The fluorescence increase is linearly with fluoride concentration in the range 50-8000 nmol l -1 with a detection limit of 19 nmol l -1 (3 σ). Because of the high affinity of silicon toward fluoride ion, the proposed probe shows excellent selectivity toward fluoride ion over other anions. The method has been successfully applied to the fluoride determination in toothpaste and tap water samples.

  19. Two Successive Reactions on a DNA Template: A Strategy for Improving Background and Specificity in Nucleic Acid Detection

    PubMed Central

    Franzini, Raphael M.

    2015-01-01

    We report a new strategy for template-mediated fluorogenic chemistry that results in enhanced performance for the fluorescence detection of nucleic acids. In this approach, two successive templated reactions are required to induce a fluorescence signal, rather than only one. These novel fluorescein-labeled oligonucleotide probes, termed 2-STAR probes, contain two quencher groups tethered by separate reductively cleavable linkers. When a 2-STAR quenched probe binds adjacent to either two successive mono triphenyl-phosphine (TPP)-DNAs or a dual TPP-DNA, the two quenchers are released, resulting in a fluorescence signal. Because of the requirement for two consecutive reactions, 2-STAR probes display an unprecedented level of sequence-specificity for template-mediated probe designs. At the same time, background emission generated by off-template reactions or incomplete quenching is among the lowest of any fluorogenic reactive probes for the detection of DNA or RNA. PMID:21294182

  20. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.

    PubMed

    Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D

    2016-01-26

    The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy

    PubMed Central

    Grimm, Jonathan B.; Klein, Teresa; Kopek, Benjamin G.; Shtengel, Gleb; Hess, Harald F.; Sauer, Markus

    2015-01-01

    Abstract The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules. PMID:26661345

  2. A colorimetric and fluorogenic probe for bisulfite using benzopyrylium as the recognition unit.

    PubMed

    Zhang, Yun; Zhang, Xiangwen; Yang, Xiao-Feng; Zhang, Juan

    2017-11-01

    A coumarin-benzopyrylium (CB) platform has been developed for the colorimetric and fluorogenic detection of bisulfite. The proposed probe utilizes coumarin as the fluorophore and positively charged benzopyrylium as the reaction site. The method employs the nucleophilic addition of bisulfite to the benzopyrylium moiety of CB to inactivate the electron-deficient oxonium ion. The driving force for photo-induced electron transfer is considerably diminished, thereby promoting the emission intensity of the coumarin fluorophore. The fluorescence intensity at 510 nm is linear with bisulfite concentration over a range of 0.2-7.5 μM with a detection limit of 42 nM (3δ). CB shows a rapid response (within 30 s) and high selectivity and sensitivity for bisulfite. Preliminary studies show that CB has great potential for bisulfite detection in real samples and in living cells. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal† †Electronic supplementary information (ESI) available: Supplementary methods, figures, movies, and data. See DOI: 10.1039/c7sc01628j

    PubMed Central

    Bozhanova, Nina G.; Baranov, Mikhail S.; Klementieva, Natalia V.; Sarkisyan, Karen S.; Gavrikov, Alexey S.; Yampolsky, Ilia V.; Zagaynova, Elena V.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2017-01-01

    We present protein-PAINT – the implementation of the general principles of PAINT (Point Accumulation for Imaging in Nanoscale Topography) for live-cell protein labeling. Our method employs the specific binding of cell-permeable fluorogenic dyes to genetically encoded protein tags. We engineered three mutants of the bacterial lipocalin Blc that possess different affinities to a fluorogenic dye and exhibit a strong increase in fluorescence intensity upon binding. This allows for rapid labeling and washout of intracellular targets on a time scale from seconds to a few minutes. We demonstrate an order of magnitude higher photostability of the fluorescence signal in comparison with spectrally similar fluorescent proteins. Protein-PAINT ensures prolonged super-resolution fluorescence microscopy of living cells in both single molecule detection and stimulated emission depletion regimes. PMID:29147545

  4. A fluorogenic substrate of beta-lactamases and its potential as a probe to detect the bacteria resistant to the third-generation oxyimino-cephalosporins.

    PubMed

    Thai, Hien Bao Dieu; Yu, Jin Kyung; Park, Byung Sun; Park, Yeon-Joon; Min, Sun-Joon; Ahn, Dae-Ro

    2016-03-15

    We devised and synthesized a fluorogenic substrate of β-lactamases as a probe to detect the activity of the enzymes. Fluorescence of the probe emitted upon treatment of a β-lactamase and increased proportionally to the concentration of the enzyme, demonstrating its sensing property for the activity of the enzyme. We also showed that the probe could be utilized to assay the enzyme and to determine kinetic parameters of the enzyme. Moreover, the probe was able to detect resistance to the third-generation oxyimino-cephalosporin-derived antibiotics such as cefotaxime and ceftazidime. In particular, the probe could identify the ceftazidime-resistance in bacteria that was not detectable using conventional pH-sensing materials, indicating the practical utility of the probe. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    PubMed

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  6. Simple and sensitive analysis of long-chain free fatty acids in milk by fluorogenic derivatization and high-performance liquid chromatography.

    PubMed

    Lu, Chi-Yu; Wu, Hsin-Lung; Chen, Su-Hwei; Kou, Hwang-Shang; Wu, Shou-Mei

    2002-01-02

    A highly sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of some important saturated and unsaturated fatty acids in milk, including lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), palmitoleic (hexadecenoic), oleic (octadecenoic), and linoleic acids (octadecadienoic acids). The fatty acids were fluorogenically derivatized with 2-(2-naphthoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) as their naphthoxyethyl derivatives. The resulting derivatives were separated by isocratic HPLC and monitored with a fluorometric detector (lambdaex = 235 nm, lambdaem = 350 nm). The fatty acids in milk were extracted with toluene, and the extract with the fatty acids was directly derivatized with NOEPES without solvent replacement. Determination of long-chain free fatty acids in milk is feasible by a standard addition method. A small amount of milk product, 10 microL, is sufficient for the analysis.

  7. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    PubMed Central

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  8. Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity.

    PubMed

    Chen, Hong-Ming; Armstrong, Zachary; Hallam, Steven J; Withers, Stephen G

    2016-02-08

    Screening of large enzyme libraries such as those derived from metagenomic sources requires sensitive substrates. Fluorogenic glycosides typically offer the best sensitivity but typically must be used in a stopped format to generate good signal. Use of fluorescent phenols of pKa < 7, such as halogenated coumarins, allows direct screening at neutral pH. The synthesis and characterisation of a set of nine different glycosides of 6-chloro-4-methylumbelliferone are described. The use of these substrates in a pooled format for screening of expressed metagenomic libraries yielded a "hit rate" of 1 in 60. Hits were then readily deconvoluted with the individual substrates in a single plate to identify specific activities within each clone. The use of such a collection of substrates greatly accelerates the screening process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Chromatographic determination of aliphatic aldehydes in human serum after pre-column derivatization using 2,2'-furil, a novel fluorogenic reagent.

    PubMed

    Fathy Bakr Ali, Marwa; Kishikawa, Naoya; Ohyama, Kaname; Abdel-Mageed Mohamed, Horria; Mohamed Abdel-Wadood, Hanaa; Mohamed Mohamed, Ashraf; Kuroda, Naotaka

    2013-07-26

    A novel, highly sensitive and selective fluorimetric liquid chromatographic method for simultaneous determination of medium chain aliphatic aldehydes was developed. The method was based on the derivatization of aliphatic aldehydes with 1,2-di(2-furyl)-1,2-ethanedione (2,2'-furil), a novel fluorogenic reagent, to form highly fluorescent difurylimidazole derivatives. The fluorescence derivatives were separated in less than 20min on a reversed-phase ODS column using an isocratic elution with a mixture of methanol-water (80:20, v/v%). The detection limits were from 0.19 to 0.50nM (1-10fmol/injection) at a signal-to-noise ratio (S/N) of 3. This method was successfully applied for monitoring of aliphatic aldehydes in healthy human sera by a simple pretreatment procedure without interferences from serum constituents. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure.

    PubMed

    Xiong, Jukun; An, Taicheng; Li, Guiying; Peng, Ping'an

    2017-10-01

    Bisphenol A (BPA) is a synthetic chemical primarily used to produce polycarbonate plastics and epoxy resins. Significant industrial and consumer's consumption of BPA-containing products has contributed to extensive contamination in different environmental matrices. In this study, microcosms bioaugmented with Bacillus sp. GZB were constructed to investigate BPA biodegradation, identify the main bacterial community, and evaluate bacterial community responses in the microcosms. Under aerobic conditions, BPA was quickly depleted as a result of bioaugmentation with Bacillus sp. GZB in water-sediment contaminated with pollutants. The pollutants used were generally associated with the electronic wastes (mobile phones, computers, televisions) dismantling process. Adding BPA affected the bacterial community composition in the water-sediment. Furthermore, BPA biodegradation was enhanced by adding electron donors/co-substrates: humic acid, NaCl, glucose, and yeast extract. Metagenomic analysis of the total 16S rRNA genes from the BPA-degrading microcosms with bioaugmentation illustrated that the genera Bacillus, Thiobacillus, Phenylobacterium, and Cloacibacterium were dominant after a 7-week incubation period. A consortium of microorganisms from different bacterial genera may be involved in BPA biodegradation in electronic waste contaminated water-sediment. This study provides new insights about BPA bioaugmentation and bacterial ecology in the BPA-degrading environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Whole-animal imaging of bacterial infection using endoscopic excitation of β-lactamase (BlaC)-specific fluorogenic probe

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Cheng, Yunfeng; Xie, Hexin; Rao, Jianghong; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-03-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the most frequent causes of death worldwide. The slow growth rate of Mtb limits progress toward understanding tuberculosis including diagnosis of infections and evaluating therapeutic efficacy. Development of near-infrared (NIR) β-lactamase (BlaC)-specific fluorogenic substrate has made a significant breakthrough in the whole-animal imaging to detect Mtb infection. The reporter enzyme fluorescence (REF) system using a BlaC-specific fluorogenic substrate has improved the detection sensitivity in whole-animal optical imaging down to ~104 colony forming units (CFU) of bacteria, about 100-fold improvement over recombinant strains. However, improvement of detection sensitivity is strongly needed for clinical diagnosis of early stage infection at greater tissue depth. In order to improve detection sensitivity, we have integrated a fiber-based microendoscpe into a whole-animal imaging system to transmit the excitation light from the fiber bundle to the fluorescent target directly and measure fluorescent level using BlaC-specific REF substrate in the mouse lung. REF substrate, CNIR800, was delivered via aerosol route to the pulmonary infected mice with M. bovis BCG strain at 24 hours post-infection and groups of mice were imaged at 1-4 hours post-administration of the substrate using the integrated imaging system. In this study we evaluated the kinetics of CNIR800 substrate using REF technology using the integrated imaging system. Integration of these technologies has great promise for improved detection sensitivity allowing pre-clinical imaging for evaluation of new therapeutic agents.

  12. The proprotein convertase SKI-1/S1P. In vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors.

    PubMed

    Pasquato, Antonella; Pullikotil, Philomena; Asselin, Marie-Claude; Vacatello, Manuela; Paolillo, Livio; Ghezzo, Francesca; Basso, Federica; Di Bello, Carlo; Dettin, Monica; Seidah, Nabil G

    2006-08-18

    Herein we designed, synthesized, tested, and validated fluorogenic methylcoumarinamide (MCA) and chloromethylketone-peptides spanning the Lassa virus GPC cleavage site as substrates and inhibitors for the proprotein convertase SKI-1/S1P. The 7-mer MCA (YISRRLL-MCA) and 8-mer MCA (IYISRRLL-MCA) are very efficiently cleaved with respect to both the 6-mer MCA (ISRRLL-MCA) and point mutated fluorogenic analogues, except for the 7-mer mutant Y253F. The importance of the P7 phenylic residue was confirmed by digestions of two 16-mer non-fluorogenic peptidyl substrates that differ by a single point mutation (Y253A). Because NMR analysis of these 16-mer peptides did not reveal significant structural differences at recognition motif RRLL, the P7 Tyr residue is likely important in establishing key interactions within the catalytic pocket of SKI-1. Based on these data, we established through analysis of pro-ATF6 and pro-SREBP-2 cellular processing that decanoylated chloromethylketone 7-mer, 6-mer, and 4-mer peptides containing the core RRLL sequence are irreversible and potent ex vivo SKI-1 inhibitors. Although caution must be exercised in using these inhibitors in in vitro reactions, as they can also inhibit the basic amino acid-specific convertase furin, within cells and when used at concentrations < or = 100 microM these inhibitors are relatively specific for inhibition of SKI-1 processing events, as opposed to those performed by furin-like convertases.

  13. Thiol Specific and Mitochondria Selective Fluorogenic Benzofurazan Sulfide for Live Cell Nonprotein Thiol Imaging and Quantification in Mitochondria.

    PubMed

    Wang, Shenggang; Yin, Huihui; Huang, Yue; Guan, Xiangming

    2018-06-11

    Cellular thiols are divided into two major categories: nonprotein thiols (NPSH) and protein thiols (PSH). Thiols are unevenly distributed inside the cell and compartmentalized in subcellular structures. Most of our knowledge on functions/dysfunctions of cellular/subcellular thiols is based on the quantification of cellular/subcellular thiols through homogenization of cellular/subcellular structures followed by a thiol quantification method. We would like to report a thiol-specific mitochondria-selective fluorogenic benzofurazan sulfide {7,7'-thiobis( N-rhodamine-benzo[c][1,2,5]oxadiazole-4-sulfonamide) (TBROS)} that can effectively image and quantify live cell NPSH in mitochondria through fluorescence intensity. Limited methods are available for imaging thiols in mitochondria in live cells especially in a quantitative manner. The thiol specificity of TBROS was demonstrated by its ability to react with thiols and inability to react with biologically relevant nucleophilic functional groups other than thiols. TBROS, with minimal fluorescence, formed strong fluorescent thiol adducts (λ ex = 550 nm, λ em = 580 nm) when reacting with NPSH confirming its fluorogenicity. TBROS failed to react with PSH from bovine serum albumin and cell homogenate proteins. The high mitochondrial thiol selectivity of TBROS was achieved by its mitochondria targeting structure and its higher reaction rate with NPSH at mitochondrial pH. Imaging of mitochondrial NPSH in live cells was confirmed by two colocalization methods and use of a thiol-depleting reagent. TBROS effectively imaged NPSH changes in a quantitative manner in mitochondria in live cells. The reagent will be a useful tool in exploring physiological and pathological roles of mitochondrial thiols.

  14. Enzyme Characteristics of β-d-Galactosidase- and β-d-Glucuronidase-Positive Bacteria and Their Interference in Rapid Methods for Detection of Waterborne Coliforms and Escherichia coli

    PubMed Central

    Tryland, I.; Fiksdal, L.

    1998-01-01

    Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities of Bacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified as Aeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria. PMID:9501441

  15. [Molecular cloning and expression of Nattokinase gene in Bacillus subtilis].

    PubMed

    Liu, B Y; Song, H Y

    2002-05-01

    In order to characterize biochemically the nattokinase,the nucleotide sequence of the nattokinase gene was amplified from the chromosomal DNA of B.subtilis (natto) by PCR. The expression plasmid pBL NK was constructed and was used to transform Bacillus subtilis containing a chromosomal deletion in its subtilisin gene. The supernatant of the culture was collected after 15 h culture. The target proteins were identified by SDS-PAGE. Nattokinase was purified by a method including ultrafiltration, Sephacryl S-100 gel filtration and S-Sepharose ion-exchange chromatography, and 100 mg of purified nattokinase was obtained from one liter of culture. The purity of the protein and the specific activity were 95% and 12 000 u/mg (compared to tPA), respectively.

  16. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

    PubMed Central

    Hayden, Luke; Liu, Jintao; Wiggins, Chris H.; Süel, Gürol M.; Walczak, Aleksandra M.

    2016-01-01

    Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. PMID:27003682

  17. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis.

    PubMed

    Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D; Todor, Horia; Tong, Kenneth; Kimsey, Harvey; Wapinski, Ilan; Galardini, Marco; Cabal, Angelo; Peters, Jason M; Hachmann, Anna-Barbara; Rudner, David Z; Allen, Karen N; Typas, Athanasios; Gross, Carol A

    2017-03-22

    A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Construction of a Food Grade Recombinant Bacillus subtilis Based on Replicative Plasmids with an Auxotrophic Marker for Biotransformation of d-Fructose to d-Allulose.

    PubMed

    He, Weiwei; Mu, Wanmeng; Jiang, Bo; Yan, Xin; Zhang, Tao

    2016-04-27

    A food grade recombinant Bacillus subtilis that produces d-psicose 3-epimerase (DPEase; EC 5.1.3.30) was constructed by transforming a replicative multicopy plasmid with a d-alanine racemase gene marker into B. subtilis 1A751 with the d-alanine racemase gene knocked out. The DPEase was expressed in B. subtilis without antibiotic resistance genes and without adding antibiotics during fermentation. Whole cells of the food grade recombinant B. subtilis were used to biotransform d-fructose to d-allulose. The two tandem promoters, including the HpaII and P43 promoters, increased expression levels compared to the use of one promoter, HpaII. For large-scale d-allulose production, the optimal enzyme dose was 40 enzyme activity units of dry cells per gram of d-fructose, which produced a 28.5% turnover yield in 60 min. The recombinant plasmid exhibited stability over 100 generations. This food grade recombinant B. subtilis may be used for large-scale d-allulose production in the food industry.

  19. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase.

    PubMed

    Zheng, Zhong-liang; Zuo, Zhen-yu; Liu, Zhi-gang; Tsai, Keng-chang; Liu, Ai-fu; Zou, Guo-lin

    2005-01-01

    A three-dimensional structural model of nattokinase (NK) from Bacillus natto was constructed by homology modeling. High-resolution X-ray structures of Subtilisin BPN' (SB), Subtilisin Carlsberg (SC), Subtilisin E (SE) and Subtilisin Savinase (SS), four proteins with sequential, structural and functional homology were used as templates. Initial models of NK were built by MODELLER and analyzed by the PROCHECK programs. The best quality model was chosen for further refinement by constrained molecular dynamics simulations. The overall quality of the refined model was evaluated. The refined model NKC1 was analyzed by different protein analysis programs including PROCHECK for the evaluation of Ramachandran plot quality, PROSA for testing interaction energies and WHATIF for the calculation of packing quality. This structure was found to be satisfactory and also stable at room temperature as demonstrated by a 300ps long unconstrained molecular dynamics (MD) simulation. Further docking analysis promoted the coming of a new nucleophilic catalytic mechanism for NK, which is induced by attacking of hydroxyl rich in catalytic environment and locating of S221.

  20. Fluorescent labeling of tetracysteine-tagged proteins in intact cells.

    PubMed

    Hoffmann, Carsten; Gaietta, Guido; Zürn, Alexander; Adams, Stephen R; Terrillon, Sonia; Ellisman, Mark H; Tsien, Roger Y; Lohse, Martin J

    2010-09-01

    In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder-ethanedithiol (FlAsH-EDT₂). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg⁻¹ of protein, such as G protein-coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT₂ as described takes 2-3 h, depending on the number of samples to be processed.

  1. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    PubMed

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of L-ornithine.

    PubMed

    Wang, Meizhou; Xu, Meijuan; Rao, Zhiming; Yang, Taowei; Zhang, Xian

    2015-11-01

    L-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of L-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of L-arginine to L-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn(2+) preference. When using whole-cell biocatalyst-based bioconversion, a hyper L-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for L-ornithine production in industry.

  3. The Blueprint of a Minimal Cell: MiniBacillus

    PubMed Central

    Reuß, Daniel R.; Commichau, Fabian M.; Gundlach, Jan; Zhu, Bingyao

    2016-01-01

    SUMMARY Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome. PMID:27681641

  4. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  5. Monochrome Multiplexing in Polymerase Chain Reaction by Photobleaching of Fluorogenic Hydrolysis Probes.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Zengerle, Roland; von Stetten, Felix

    2016-03-01

    Multiplexing in polymerase chain reaction (PCR) is a technique widely used to save cost and sample material and to increase sensitivity compared to distributing a sample to several singleplex reactions. One of the most common methods to detect the different amplification products is the use of fluorogenic probes that emit at different wavelengths (colors). To reduce the number of detection channels, several methods for monochrome multiplexing have been suggested. However, they pose restrictions to the amplifiable target length, the sequence, or the melting temperature. To circumvent these limitations, we suggest a novel approach that uses different fluorophores with the same emission maximum. Discrimination is achieved by their different fluorescence stability during photobleaching. Atto488 (emitting at the same wavelength as 6-carboxyfluorescein, FAM) and Atto467N (emitting at the same wavelength as cyanine 5, Cy5) were found to bleach significantly less than FAM and Cy5; i.e., the final fluorescence of Atto dyes was more than tripled compared to FAM and Cy5. We successfully applied this method by performing a 4-plex PCR targeting antibiotic resistance genes in S. aureus using only 2 color channels. Confidence of discrimination between the targets was >99.9% at high copy initial copy numbers of 100 000 copies. Cases where both targets were present could be discriminated with equal confidence for Cy5 channel and reduced levels of confidence (>68%) for FAM channel. Moreover, a 2-plex digital PCR reaction in 1 color channel was shown. In the future, the degree of multiplexing may be increased by adding fluorogenic probe pairs with other emission wavelengths. The method may also be applied to other probe and assay formats, such as Förster resonance energy transfer (FRET) probes and immunoassays.

  6. The effects of commercial preparations of herbal supplements commonly used by women on the biotransformation of fluorogenic substrates by human cytochromes P450.

    PubMed

    Ho, Shirley H Y; Singh, Mohini; Holloway, Alison C; Crankshaw, Denis J

    2011-07-01

    The study set out to determine the potential for commercially available preparations of black cohosh (Actaea racemosa), chaste tree berry (Vitex agnus-castus), crampbark (Viburnum opulus) and false unicorn (Chamaelirium luteum) to inhibit the major human drug metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 as well as CYP1A1 which activates some carcinogens. In vitro microplate-based assays using cDNA-expressed CYP450 isoforms and fluorogenic substrates were used. Components of the commercial herbal preparations interfered with the assays and limited the concentration ranges that could be tested. Nevertheless, the fluorogenic assays were robust, reproducible and easy to perform and thus are still useful for initial screening for potential herb-drug interactions. None of the preparations affected CYPs 1A1 or 2C9 at the concentrations tested but all preparations inhibited some of the enzymes with potencies around 1 μg/mL. The three most potent interactions were: chaste tree berry and CYP2C19 (IC₅₀) 0.22 μg/mL); chaste tree berry and CYP3A4 (IC₅₀) 0.3 μg/mL); black cohosh and CYP2C19 (IC₅₀) 0.37 μg/mL,). Thus, the study successfully identified the potential for the commercial herbal preparations to inhibit human drug metabolizing enzymes. Whether this potential translates into clinically significant herb-drug interactions can only be confirmed by appropriate in vivo studies. Copyright © 2011 John Wiley & Sons, Ltd.

  7. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  8. Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking.

    PubMed

    Perkins, Lydia A; Yan, Qi; Schmidt, Brigitte F; Kolodieznyi, Dmytro; Saurabh, Saumya; Larsen, Mads Breum; Watkins, Simon C; Kremer, Laura; Bruchez, Marcel P

    2018-02-06

    Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged β2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.

  9. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation.

    PubMed

    Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya

    2018-02-07

    Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.

  10. Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging.

    PubMed

    Jing, Chaoran; Cornish, Virginia W

    2013-01-01

    Over the past decade, chemical tags have been developed to complement the use of fluorescent proteins in live-cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E. coli dihydrofolate reductase and the antibiotic trimethoprim and was subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live-cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live-cell imaging. Alternate protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. © 2013 by John Wiley & Sons, Inc.

  11. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    PubMed

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  12. In vivo sensing of proteolytic activity with an NSET-based NIR fluorogenic nanosensor.

    PubMed

    Ku, Minhee; Hong, Yoochan; Heo, Dan; Lee, Eugene; Hwang, Seungyeon; Suh, Jin-Suck; Yang, Jaemoon

    2016-03-15

    Biomedical in vivo sensing methods in the near-infrared (NIR) range, which that provide relatively high photon transparency, separation from auto-fluorescence background, and extended sensitivity, are being used increasingly for non-invasive mapping and monitoring of molecular events in cancer cells. In this study, we fabricated an NIR fluorogenic nanosensor based on the nanoparticle surface energy transfer effect, by conjugation of fluorescent proteolytic enzyme-specific cleavable peptides with gold nanorods (GNRs). Membrane-anchored membrane type 1-matrix metalloproteinases (MT1-MMPs), a family of zinc-dependent proteolytic enzymes, can induce the metastatic potential of cancer cells by promoting degradation of the extracellular matrix. Therefore, sensitive detection of MT1-MMP activity can provide essential information in the clinical setting. We have applied in vivo NIR sensing to evaluate MT1-MMP activity, as an NIR imaging target, in an MT1-MMP-expressing metastatic tumor mouse model. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis and evaluation of fluorogenic triglycerides as lipase assay substrates.

    PubMed

    Andersen, Rokhsana J; Brask, Jesper

    2016-06-01

    Three racemic fluorogenic triglycerides are synthesized and evaluated as lipase assay substrates. The presented synthesis route goes through a key triglyceride intermediate which can be chemoselectively functionalized with a wide range of different probes. Hence the substrate can be tailor-made for a specific assay, or focus can be on low cost in larger scale for applications in high-throughput screening (HTS) assays. In the specific examples, TG-ED, TG-FD and TG-F2 are assembled with the Edans-Dabcyl or the fluorescein-Dabcyl FRET pair, or relying on fluorescein self-quenching, respectively. Proof-of-concept assays allowed determination of 1st order kinetic parameters (kcat/KM) of 460s(-1)M(-1), 59s(-1)M(-1) and 346s(-1)M(-1), respectively, for the three substrates. Commercially available EnzChek lipase substrate provided 204s(-1)M(-1). Substrate concentration was identified as a critical parameter, with measured reaction rates decreasing at higher concentrations when intermolecular quenching becomes significant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Synthesis and evaluation of chromogenic and fluorogenic substrates for high-throughput detection of enzymes that hydrolyze inorganic polyphosphate.

    PubMed

    Hebbard, Carleigh F F; Wang, Yan; Baker, Catherine J; Morrissey, James H

    2014-08-11

    Inorganic polyphosphates, linear polymers of orthophosphate, occur naturally throughout biology and have many industrial applications. Their biodegradable nature makes them attractive for a multitude of uses, and it would be important to understand how polyphosphates are turned over enzymatically. Studies of inorganic polyphosphatases are, however, hampered by the lack of high-throughput methods for detecting and quantifying rates of polyphosphate degradation. We now report chromogenic and fluorogenic polyphosphate substrates that permit spectrophotometric monitoring of polyphosphate hydrolysis and allow for high-throughput analyses of both endopolyphosphatase and exopolyphosphatase activities, depending on assay configuration. These substrates contain 4-nitrophenol or 4-methylumbelliferone moieties that are covalently attached to the terminal phosphates of polyphosphate via phosphoester linkages formed during reactions mediated by EDAC (1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide). This report identifies Nudt2 as an inorganic polyphosphatase and also adds to the known coupling chemistry for polyphosphates, permitting facile covalent linkage of alcohols with the terminal phosphates of inorganic polyphosphate.

  15. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Dybwad, Marius; van der Laaken, Anton L; Blatny, Janet Martha; Paauw, Armand

    2013-09-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.

  16. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Gustafsson, Tomas N; Osman, Harer; Werngren, Jim; Hoffner, Sven; Engman, Lars; Holmgren, Arne

    2016-06-01

    Bacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms. We studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis. The most potent compounds in the series gave IC(50) values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1-1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure-activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier. These results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development. We have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Rapid Identification of Bacillus anthracis Spores in Suspicious Powder Samples by Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    van der Laaken, Anton L.; Blatny, Janet Martha; Paauw, Armand

    2013-01-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 106 spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min. PMID:23811517

  18. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum) by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    PubMed

    Singh, Amarjeet Kumar; Paritosh, Kumar; Kant, Uma; Burma, Pradeep Kumar; Pental, Deepak

    2016-01-01

    Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp), which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  19. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  20. Chromosomal inactivation of Bacillus subtilis exfusants: a prokaryotic model of epigenetic regulation.

    PubMed

    Grandjean, V; Hauck, Y; Beloin, C; Le Hégarat, F; Hirschbein, L

    1998-01-01

    Epigenetic mechanisms are not exclusively reserved to eukaryotic organisms. They are also observed in prokaryotes. As described first by Hotchkiss and Gabor, protoplast fusion between strains of Bacillus subtilis produces heterodiploid cells. Heterodiploidy is associated with the inactivation of one of the chromosomes. To study the physical structure of the fusion product and the molecular mechanisms of inactivation, we constructed heterodiploid clones containing two chromosomes labeled by a NotI restriction fragment length polymorphism. In the progeny, we identified haploid recombinant clones that contain a chromosome carrying large regions of inactivated DNA. Studies of both recombinants of the latter kind and heterodiploid cells indicated that chromosomal inactivation was not determined by alteration of the inactivated nucleotide sequence, but was probably due to a modification in the structure of the bacterial chromatin.

  1. QUANTITATIVE MEASUREMENT OF HELICOBACTER PYLORI BY THE TAQMAN FLUOROGENIC PROBE SYSTEM

    EPA Science Inventory

    Culturing of H. pylori from environmental sources continues to be an obstacle in detecting and enumerating this organism. Successful methods of isolation and growth from water samples have not yet been developed. In this study a method involving real tme PCR product detection wit...

  2. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    DTIC Science & Technology

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  3. The Role of Stefin A in Breast Metastasis

    DTIC Science & Technology

    2006-07-01

    buffer ( BioVision ) and protein concentrations determined by Bradford assay. Lysates ontaining 50 mg protein were added to cathepsin B, L, and S...activity assays utilizing fluorogenic substrates for etection of activity ( BioVision ) (B-D). ** Indicates P values of ɘ.01 between 67NR and 4T1.2 primary

  4. Test/QA Plan for Verification of Coliform Detection Technologies for Drinking Water

    EPA Science Inventory

    The coliform detection technologies to be tested use chromatogenic and fluorogenic growth media to detect coliforms and E. coli based on the enzymatic activity of these organisms. The systems consist of single-use sample containers that contain pre-measured reagents and can be u...

  5. QUANTITATIVE MEASUREMENT OF STACHYBOTRYS CHARTARUM CONIDIA USING REAL TIME DETECTION OF PCR PRODUCTS WITH THE TAQMAN TM FLUOROGENIC PROBE SYSTEM

    EPA Science Inventory

    The occurence of Stachybotrys chartarum in indoor environments has been associated with a number of human health concerns, including fatal pulmonary haemosiderosis in infants. Currently used culture-based and microscopic methods of fungal species identification are poorly suited ...

  6. Small RNA profiling reveals important roles for miRNAs in Arabidopsis response to Bacillus velezensis FZB42.

    PubMed

    Xie, Shanshan; Jiang, Haiyang; Xu, Zhilan; Xu, Qianqian; Cheng, Beijiu

    2017-09-20

    Bacillus velezensis FZB42 (previously classified as Bacillus amyloliquefaciens FZB42) has been confirmed to successfully colonize plant roots and enhance defense response against pathogen infection. This study indicated that FZB42 inoculation enhanced Arabidopsis defense response against Pseudomonas syringae DC3000 through inducing the expression of PR1, PDF1.2 and stomata closure. To further clarify the induced defense response at miRNA level, sRNA libraries from Arabidopsis roots inoculated with FZB42 and control were constructed and sequenced. The reads of 21nt and 24nt in length were the most abundant groups in FZB42-treated library and control library, respectively. 234 known miRNAs and 16 novel miRNAs were identified. Among them, 11 known miRNAs and 4 novel miRNAs were differentially expressed after FZB42 inoculation. Moreover cis-elements (TC-rich repeats, TCA-element and CGTCA-motif) associated with plant defense were also found in the promoters of these miRNAs. Additionally, 141 mRNAs were predicted as potential targets of these differentially expressed miRNAs. GO annotations of the target genes indicated their potential roles in polyamine biosynthetic process and intracellular protein transport biological process, which may contribute to increased defense response. Our findings indicated that Bacillus velezensis FZB42 inoculation altered the expression of Arabidopsis miRNAs and their target genes, which were associated with defense response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512.

    PubMed

    Shobharani, Papanna; Padmaja, Radhakrishnan J; Halami, Prakash M

    2015-01-01

    The aim of the present study was to investigate the characteristic diversity and stability of antimicrobial compounds produced by two probiotic strains of Bacillus licheniformis (MCC2514 and MCC2512). Antimicrobial compounds from the two strains notably varied, related to stability and potency. The inhibitory spectrum of B. licheniformis MCC2512 was higher than MCC2514, but, related to the effect on Micrococcus luteus ATCC9341, MCC2514 (LD50 = 450 AU ml(-1)) was more potent than MCC2512 (LD50 = 750 AU ml(-1)). The compounds were thermo-resistant and stable at a wide range of pH and exhibited considerable resistance to digestive enzymes and bile salts (anionic biological detergents), contributing to their appropriate application in various food systems. The isolate B. licheniformis MCC2512 gave a positive response to Bacillus subtilis-based biosensors BSF2470 and BS168.BS2, confirming the mode of action on the cell wall and subtilin-type, respectively. For B. licheniformis MCC2514, the mode of action was characterized by constructing B. subtilis reporters that interfered in five major biosynthetic pathways, i.e., biosynthesis of DNA, RNA, protein, the cell wall and fatty acids. B. licheniformis MCC2514 responded to the yvgS reporter, indicating it as an RNA synthesis inhibitor. Overall, the investigation reveals variability of the antimicrobial compounds from B. licheniformis of different origins and for their possible application as biopreservative agents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Phage Display of a Biologically Active Bacillus thuringiensis Toxin

    PubMed Central

    Kasman, Laura M.; Lukowiak, Andrew A.; Garczynski, Stephen F.; McNall, Rebecca J.; Youngman, Phil; Adang, Michael J.

    1998-01-01

    Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning. PMID:9687463

  9. Molecular Docking and Site-directed Mutagenesis of a Bacillus thuringiensis Chitinase to Improve Chitinolytic, Synergistic Lepidopteran-larvicidal and Nematicidal Activities

    PubMed Central

    Ni, Hong; Zeng, Siquan; Qin, Xu; Sun, Xiaowen; Zhang, Shan; Zhao, Xiuyun; Yu, Ziniu; Li, Lin

    2015-01-01

    Bacterial chitinases are useful in the biocontrol of agriculturally important pests and fungal pathogens. However, the utility of naturally occurring bacterial chitinases is often limited by their low enzyme activity. In this study, we constructed mutants of a Bacillus thuringiensis chitinase with enhanced activity based on homology modeling, molecular docking, and the site-directed mutagenesis of target residues to modify spatial positions, steric hindrances, or hydrophilicity/hydrophobicity. We first identified a gene from B. thuringiensis YBT-9602 that encodes a chitinase (Chi9602) belonging to glycosyl hydrolase family 18 with conserved substrate-binding and substrate-catalytic motifs. We constructed a structural model of a truncated version of Chi9602 (Chi960235-459) containing the substrate-binding domain using the homologous 1ITX protein of Bacillus circulans as the template. We performed molecular docking analysis of Chi960235-459 using di-N-acetyl-D-glucosamine as the ligand. We then selected 10 residues of interest from the docking area for the site-directed mutagenesis experiments and expression in Escherichia coli. Assays of the chitinolytic activity of the purified chitinases revealed that the three mutants exhibited increased chitinolytic activity. The ChiW50A mutant exhibited a greater than 60 % increase in chitinolytic activity, with similar pH, temperature and metal ion requirements, compared to wild-type Chi9602. Furthermore, ChiW50A exhibited pest-controlling activity and antifungal activity. Remarkable synergistic effects of this mutant with B. thuringiensis spore-crystal preparations against Helicoverpa armigera and Caenorhabditis elegans larvae and obvious activity against several plant-pathogenic fungi were observed. PMID:25678849

  10. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  11. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes.

    PubMed

    Mohammad, Balsam T; Al Daghistani, Hala I; Jaouani, Atef; Abdel-Latif, Saleh; Kennes, Christian

    2017-01-01

    The aim of this study was the isolation and characterization of thermophilic bacteria from hot springs in Jordan. Ten isolates were characterized by morphological, microscopic, biochemical, molecular, and physiological characteristics. Sequencing of the 16S rDNA of the isolates followed by BLAST search revealed that nine strains could be identified as Bacillus licheniformis and one isolate as Thermomonas hydrothermalis . This is the first report on the isolation of Thermomonas species from Jordanian hot springs. The isolates showed an ability to produce some thermostable enzymes such as amylase, protease, cellulose, gelatins, and lecithin. Moreover, the UPGMA dendrogram of the enzymatic characteristics of the ten isolates was constructed; results indicated a high phenotypic diversity, which encourages future studies to explore further industrial and environmental applications.

  12. Limiting an Insect Infestation of Nitrogen-Fixing Root Nodules of the Pigeon Pea (Cajanus cajan) by Engineering the Expression of an Entomocidal Gene in Its Root Nodules

    PubMed Central

    Nambiar, P. T. C.; Ma, S.-W.; Iyer, V. N.

    1990-01-01

    A region of DNA which determined the production of the insecticidal toxin of Bacillus thuringiensis subsp. israelensis was cloned into a derivative of a broad-host-range group IncQ plasmid vector of gram-negative bacteria. The plasmid which we constructed was transferred by conjugative mobilization into a Bradyrhizobium species that nodulates pigeon peas. In this species the construction was maintained stably in the absence of selection and expressed the gene that was installed. Experiments in a greenhouse with the strain which we constructed indicated that this organism provides protection against root nodule damage by the larvae of the insect Rivellia angulata (Diptera). Images PMID:16348294

  13. A Fluorogenic Aromatic Nucleophilic Substitution Reaction for Demonstrating Normal-Phase Chromatography and Isolation of Nitrobenzoxadiazole Chromophores

    ERIC Educational Resources Information Center

    Key, Jessie A.; Li, Matthew D.; Cairo, Christopher W.

    2011-01-01

    Normal-phase chromatography is an essential technique for monitoring chemical reactions, identifying the presence of specific components, as well as the purification of organic compounds. An experiment to facilitate the instruction and understanding of the concepts behind normal-phase chromatography at the introductory and intermediate…

  14. Fluorogenic membrane overlays to enumerate total coliforms, Escherichia coli, and total Vibrionaceae in shellfish and seawater

    USDA-ARS?s Scientific Manuscript database

    Three assays were developed to enumerate total coliforms, Escherichia coli, and total Vibrionaceae in shellfish and other foods and in seawater and other environmental samples. Assays involve membrane overlays of overnight colonies on non-selective agar plates to detect ß-glucuronidase and lysyl am...

  15. In Vitro Screening of Synthetic Fluorogenic Substrates for Detection of Cancer Procoagulant Activity.

    PubMed

    Krause, Jason; Frost, Carminita L

    2018-04-01

    Cancer procoagulant (CP), a direct activator of coagulation factor X, is among one of the tumour cell products or activities which may promote fibrin formation and has been suggested to be selectively associated with the malignant phenotype. At present, the most reliable assay for the quantification of CP activity is the three-stage chromogenic assay which utilises the ability of CP to activate factor X. In this assay, the activation of factor X leads to the formation of activated thrombin from prothrombin and the eventual hydrolyses of a thrombin chromogenic substrate which contains a p-nitroaniline leaving group. The complexity of the three-stage chromogenic assay suggests a need for a direct method of assaying CP activity. This study focuses on the design of a fluorogenic substrate that would enable the direct quantification of CP activity. The results of the study show two promising substrates for the determination of CP activity: Boc-PQVR-AMC and PQVR-AMC. Further analysis showed that Boc-PQVR-AMC could be excluded as a potential substrate for CP since it was also cleaved by collagenase.

  16. In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes.

    PubMed

    Wu, Haoxing; Yang, Jun; Šečkutė, Jolita; Devaraj, Neal K

    2014-06-02

    In spite of the wide application potential of 1,2,4,5-tetrazines, particularly in live-cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)-3-substituted 6-alkenyl-1,2,4,5-tetrazine derivatives through an elimination-Heck cascade reaction. By using this strategy, we provide 24 examples of π-conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta-1,3-diene-substituted tetrazines, and a diverse array of fluorescent probes suitable for live-cell imaging. These highly conjugated probes show very strong fluorescence turn-on (up to 400-fold) when reacted with dienophiles such as cyclopropenes and trans-cyclooctenes, and we demonstrate their application for live-cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-Checking Cell-Based Assays for GPCR Desensitization and Resensitization.

    PubMed

    Fisher, Gregory W; Fuhrman, Margaret H; Adler, Sally A; Szent-Gyorgyi, Christopher; Waggoner, Alan S; Jarvik, Jonathan W

    2014-09-01

    G protein-coupled receptors (GPCRs) play stimulatory or modulatory roles in numerous physiological states and processes, including growth and development, vision, taste and olfaction, behavior and learning, emotion and mood, inflammation, and autonomic functions such as blood pressure, heart rate, and digestion. GPCRs constitute the largest protein superfamily in the human and are the largest target class for prescription drugs, yet most are poorly characterized, and of the more than 350 nonolfactory human GPCRs, over 100 are orphans for which no endogenous ligand has yet been convincingly identified. We here describe new live-cell assays that use recombinant GPCRs to quantify two general features of GPCR cell biology-receptor desensitization and resensitization. The assays employ a fluorogen-activating protein (FAP) reporter that reversibly complexes with either of two soluble organic molecules (fluorogens) whose fluorescence is strongly enhanced when complexed with the FAP. Both assays require no wash or cleanup steps and are readily performed in microwell plates, making them adaptable to high-throughput drug discovery applications. © 2014 Society for Laboratory Automation and Screening.

  18. Real Time Detection of Protein Trafficking with High Throughput Flow Cytometry (HTFC) and Fluorogen Activating Protein (FAP) Base Biosensor

    PubMed Central

    Wu, Yang; Tapia, Phillip H.; Jarvik, Jonathan; Waggoner, Alan S.; Sklar, Larry A.

    2014-01-01

    We combined fluorogen activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform allows drug discovery for trafficking receptors, such as G-protein coupled receptors, receptor tyrosine kinases and ion channels, that were previously not suitable for high throughput screening by flow cytometry.. The system has been validated using the β2-adrenergic receptor (β2AR) system and extended to other GPCRs. When a chemical library containing ~1,200 off-patent drugs was screened against cells expressing FAP tagged β2AR, all known β2AR active ligands in the library were successfully identified, together with a few compounds that were later confirmed to regulate receptor internalization in a non-traditional manner. The unexpected discovery of new ligands by this approach indicates the potential of using this protocol for GPCR de-orphanization. In addition, screens of multiplexed targets promise improved efficiency with minor protocol modification. PMID:24510772

  19. Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions

    PubMed Central

    Ackermann, Mark R.

    2006-01-01

    The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional. PMID:17033699

  20. A proteomics method using immunoaffinity fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) to identify a set of interacting proteins.

    PubMed

    Nakata, Katsunori; Saitoh, Ryoichi; Ishigai, Masaki; Imai, Kazuhiro

    2018-02-01

    Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD-LC-MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC-tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90-beta. The results demonstrated that the proposed immunoaffinity-FD-LC-MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  2. Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging

    DOE PAGES

    Chen, Guanqun; Zou, Ningmu; Chen, Bo; ...

    2017-11-01

    Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanqun; Zou, Ningmu; Chen, Bo

    Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less

  4. Fluorescent labeling of tetracysteine-tagged proteins in intact cells

    PubMed Central

    Hoffmann, Carsten; Gaietta, Guido; Zürn, Alexander; Adams, Stephen R; Terrillon, Sonia; Ellisman, Mark H; Tsien, Roger Y; Lohse, Martin J

    2011-01-01

    In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder–ethanedithiol (FlAsH-EDT2). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg−1 of protein, such as G protein–coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT2 as described takes 2–3 h, depending on the number of samples to be processed. PMID:20885379

  5. A novel pyridyl triphenylamine-BODIPY aldoxime: Naked-eye visible and fluorometric chemodosimeter for hypochlorite.

    PubMed

    Xu, Xiu-Xiu; Qian, Ying

    2017-08-05

    An aldoxime containing fluorescent probe based on vinylpydine-appended triphenylamine-BODIPY has been designed and used for hypochlorite detection. OX-PPA-BODIPY was developed by introducing an aldoxime group into the 2-position of BODIPY, which can be used for the detection of hypochlorite with a sharp color change from pink to green. The attachment of 4-vinylpyridine moiety to triphenylamine-BODIPY constructs a fluorogen with desirable conjugated system. The probe, which displays extremely weak fluorescence owing to the CN isomerization mechanism at 2-position of BODIPY, responds to HClO/ClO - through a dramatic enhancement of its fluorescence intensity. This new probe, a naked-eye visible and fluorometric chemodosimeter, exhibits high selectivity and sensitivity toward hypochlorite over other reactive oxygen species (ROS) and anions. The detection is accompanied by a 20-fold increase in fluorescent intensity (Φ F from 0.02 to 0.43). The detection limit of the probe for hypochlorite is 7.37×10 -7 M. Moreover, OX-PPA-BODIPY can be used to detect hypochlorite in real water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A novel pyridyl triphenylamine-BODIPY aldoxime: Naked-eye visible and fluorometric chemodosimeter for hypochlorite

    NASA Astrophysics Data System (ADS)

    Xu, Xiu-xiu; Qian, Ying

    2017-08-01

    An aldoxime containing fluorescent probe based on vinylpydine-appended triphenylamine-BODIPY has been designed and used for hypochlorite detection. OX-PPA-BODIPY was developed by introducing an aldoxime group into the 2-position of BODIPY, which can be used for the detection of hypochlorite with a sharp color change from pink to green. The attachment of 4-vinylpyridine moiety to triphenylamine-BODIPY constructs a fluorogen with desirable conjugated system. The probe, which displays extremely weak fluorescence owing to the Cdbnd N isomerization mechanism at 2-position of BODIPY, responds to HClO/ClO- through a dramatic enhancement of its fluorescence intensity. This new probe, a naked-eye visible and fluorometric chemodosimeter, exhibits high selectivity and sensitivity toward hypochlorite over other reactive oxygen species (ROS) and anions. The detection is accompanied by a 20-fold increase in fluorescent intensity (ΦF from 0.02 to 0.43). The detection limit of the probe for hypochlorite is 7.37 × 10- 7 M. Moreover, OX-PPA-BODIPY can be used to detect hypochlorite in real water samples.

  7. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  8. [Expression of N domain of chromogranin A in Bacillus subtilis and its antifungal activity].

    PubMed

    Li, Rui-Fang; Lou, Jin-Xian; Zhang, Tian-Yuan

    2004-03-01

    Chromogranin A (CGA) is a soluble protein existed in most secreted cells and neurons. It was recently found that the bovine CGA N terminal region has vasoinhibitory, antibacterial and antifungal activities. Since the need for effective antifungal agents increases in parallel with the expanding number of immunocompromised patients at risk for fungal infections, it becomes imperative to find antifungal compounds with low toxicity toward mammalian cells. To study the antifungal activity of CGA N terminal region, the DNA fragment encoding for the N terminal 1-76 amino acid sequence (CGA1-76) of human CGA was amplified by PCR technique. After DNA sequence analysis, the amplified DNA fragment was cloned into the Bacillus subtilis inducible and expression vector pSBPTQ constructed in this study and the resultant plasmid pSVTQ was then transformed into triple-protease deficient Bacillus subtilis strain DB403 competent cells. The transformants was screened on LB plates containing 10 microg/mL kanamycin. The positive transformant DB403 (pSVTQ) was grown on kanmycin containing 2 x MSR medium and sucrose was added to 2% final concentration for induction after 2h cultivation. The culture supernatant was used to run SDS-PAGE. The result of SDS-PAGE showed that the CGA1-76 was expressed by sucrose induction and the expressed product secreted into the medium with a yield of 5 mg/L. The expressed product reacts specifically with mouse anti CGA47-68 monoclonal antibody. The antifungal activity of the expressed product was examined by adding the culture supernatant to the fungal spore or Candida albican suspensions at appropriate proportion and found that the recombinant human CGA1-76 produced in Bacillus subtilis inhibits the growth of Fusarium sp. Alternaria sp. and Candida albican at the concerntration of 4 micromol/L. These results demonstrate that human CGA1-76 has expressed in Bacillus subtilis and the expressed product is immunogenic and has the antifungal activity.

  9. Avirulent Bacillus anthracis Strain with Molecular Assay Targets as Surrogate for Irradiation-Inactivated Virulent Spores.

    PubMed

    Plaut, Roger D; Staab, Andrea B; Munson, Mark A; Gebhardt, Joan S; Klimko, Christopher P; Quirk, Avery V; Cote, Christopher K; Buhr, Tony L; Rossmaier, Rebecca D; Bernhards, Robert C; Love, Courtney E; Berk, Kimberly L; Abshire, Teresa G; Rozak, David A; Beck, Linda C; Stibitz, Scott; Goodwin, Bruce G; Smith, Michael A; Sozhamannan, Shanmuga

    2018-04-01

    The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.

  10. Enhanced secretion of natto phytase by Bacillus subtilis.

    PubMed

    Tsuji, Shogo; Tanaka, Kosei; Takenaka, Shinji; Yoshida, Ken-ichi

    2015-01-01

    Phytases comprise a group of phosphatases that trim inorganic phosphates from phytic acid (IP6). In this study, we aimed to achieve the efficient secretion of phytase by Bacillus subtilis. B. subtilis laboratory standard strain 168 and its derivatives exhibit no phytase activity, whereas a natto starter secretes phytase actively. The natto phytase gene was cloned into strain RIK1285, a protease-defective derivative of 168, to construct a random library of its N-terminal fusions with 173 different signal peptides (SPs) identified in the 168 genome. The library was screened to assess the efficiency of phytase secretion based on clear zones around colonies on plates, which appeared when IP6 was hydrolyzed. The pbp SP enhanced the secretion of the natto phytase most efficiently, i.e. twice that of the original SP. Thus, the secreted natto phytase was purified and found to remove up to 3 phosphates from IP6.

  11. Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging

    PubMed Central

    Overkamp, Wout; Beilharz, Katrin; Detert Oude Weme, Ruud; Solopova, Ana; Karsens, Harma; Kovács, Ákos T.; Kok, Jan

    2013-01-01

    Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two “superfolder” GFPs with codon adaptation specifically for Bacillus subtilis and Streptococcus pneumoniae and have benchmarked them against five other previously available variants of GFP in B. subtilis, S. pneumoniae, and Lactococcus lactis, using promoter-gfp fusions. Surprisingly, the best-performing GFP under our experimental conditions in B. subtilis was the one codon optimized for S. pneumoniae and vice versa. The data and tools described in this study will be useful for cell biology studies in low-GC-rich Gram-positive bacteria. PMID:23956387

  12. Method for screening inhibitors of the toxicity of Bacillus anthracis

    DOEpatents

    Cirino, Nick M.; Jackson, Paul J.; Lehnert, Bruce E.

    2001-01-01

    The protective antigen (PA) of Bacillus anthracis is integral to the mechanism of anthrax poisoning. The cloning, expression and purification of a 32 kDa B. anthracis PA fragment (PA32) is described. This fragment has also been expressed as a fusion construct to stabilized green fluorescent protein (EGFP-PA32). Both proteins were capable of binding to specific cell surface receptors as determined by fluorescent microscopy and a flow cytometric assay. To confirm binding specificity in the flow cytometric assay, non-fluorescent PA83 or PA32 was used to competitively inhibit fluorescent EGFP-PA32 binding to cell receptors. This assay can be employed as a rapid screen for compounds which disrupts binding of PA to cells. Additionally, the high intracellular expression levels and ease of purification make this recombinant protein an attractive vaccine candidate or therapeutic treatment for anthrax poisoning.

  13. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  14. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  15. Construction and Characterization of Broad-Spectrum Promoters for Synthetic Biology.

    PubMed

    Yang, Sen; Liu, Qingtao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian; Kang, Zhen

    2018-01-19

    Characterization of genetic circuits and biosynthetic pathways in different hosts always requires promoter substitution and redesigning. Here, a strong, broad-spectrum promoter, P bs , for Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae was constructed, and it was incorporated into the minimal E. coli-B. subtilis-S. cerevisiae shuttle plasmid pEBS (5.8 kb). By applying a random mutation strategy, three broad-spectrum promoters P bs1 , P bs2 , and P bs3 , with different strengths were generated and characterized. These broad-spectrum promoters will expand the synthetic biology toolbox for E. coli, B. subtilis, and S. cerevisiae.

  16. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  17. A COMPARATIVE STUDY OF THE BIOLOGICAL CHARACTERS AND PATHOGENESIS OF BACILLUS X (STERNBERG), BACILLUS ICTEROIDES (SANARELLI), AND THE HOG-CHOLERA BACILLUS (SALMON AND SMITH)

    PubMed Central

    Reed, Walter; Carroll, James

    1900-01-01

    1. Bacillus X (Sternberg) belongs to the colon group. 2. Bacillus icteroides (Sanarelli) is a member of the hog-cholera group. 3. The various channels of infection, the duration of the disease and the gross and microscopical lesions in mice, guinea-pigs and rabbits are the same for Bacillus icteroides and the hog-cholera bacillus. 4. The clinical symptoms and the lesions observed in dogs inoculated intravenously with Bacillus icteroides, are reproduced in these animals by infection with the hog-cholera bacillus. 5. Bacillus icteroides when fed to the domestic pig causes fatal infection, accompanied by diphtheritic, necrotic and ulcerative lesions in the digestive tract, such as are seen in hogs when infected with the hog-cholera bacillus. 6. This disease may be acquired by exposing swine in pens already infected with Bacillus icteroides, or by feeding them with the viscera of infected pigs. 7. Guinea-pigs may be immunized with sterilized cultures ofBacillus icteroides from a fatal dose of the hog-cholera bacillus and vice versa. 8. Rabbits may be rendered immune by gradually increasing doses of a living culture of Bacillus icteroides of weak virulence from a fatal dose of a virulent culture of the hog-cholera bacillus 9. The sera of animals immunized with Bacillus icteroides and with the hog-cholera bacillus, respectively, show a marked reciprocal agglutinative reaction. 10. While the blood of yellow fever practically does not exercise an agglutinative reaction upon Bacillus icteroides, the blood of hog-cholera agglutinates this bacillus in a much more marked degree, thus pointing, we think, to the closer etiological relationship of this bacillus to hog-cholera than to yellow fever. PMID:19866945

  18. Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots in Bacillus subtilis: A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction Between Bacillus subtilis and Staphylococcus aureus.

    PubMed

    Yan, Zheng-Yu; Ai, Xiao-Xia; Su, Yi-Long; Liu, Xin-Ying; Shan, Xiao-Hui; Wu, Sheng-Mei

    2016-02-01

    In this work, fluorescent Bacillus subtilis (B. subtilis) cells were developed as probes for imaging applications and to explore behaviorial interaction between B. subtilis and Staphylococcus aureus (S. aureus). A novel biological strategy of coupling intracellular biochemical reactions for controllable biosynthesis of CdSe quantum dots by living B. subtilis cells was demonstrated, through which highly luminant and photostable fluorescent B. subtilis cells were achieved with good uniformity. With the help of the obtained fluorescent B. subtilis cells probes, S. aureus cells responded to co-cultured B. subtilis and to aggregate. The degree of aggregation was calculated and nonlinearly fitted to a polynomial model. Systematic investigations of their interactions implied that B. subtilis cells inhibit the growth of neighboring S. aureus cells, and this inhibition was affected by both the growth stage and the amount of surrounding B. subtilis cells. Compared to traditional methods of studying bacterial interaction between two species, such as solid culture medium colony observation and imaging mass spectrometry detection, the procedures were more simple, vivid, and photostable due to the efficient fluorescence intralabeling with less influence on the cells' surface, which might provide a new paradigm for future visualization of microbial behavior.

  19. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  20. Interaction of Bio-Aerosols with Shock/Blast Waves: Dispersion, Activation, and Destruction of Airborne Biological Threats

    DTIC Science & Technology

    2011-05-01

    laboratory protocol was used to investigate the post-shock-heating survival of three strains of endospores ( Bacillus atrophaeus, Bacillus subtilis ...investigate the post-shock-heating survival of three strains of endospores ( Bacillus atrophaeus, Bacillus subtilis and Bacillus thuringiensis, Al Hakam...investigated: Bacillus subtilis , Bacillus atrophaeus and Bacillus thuringiensis (Al Hakam). The exposporium on these three strains are radically different

  1. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei

    PubMed Central

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-01-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. PMID:25044501

  2. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    PubMed

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Measurement of Metabolic Activity in Dormant Spores of Bacillus Species Report Title Spores of Bacillus megaterium and Bacillus subtilis were...ribosomal RNA when newly harvested Bacillus subtilis spores are incubated at physiological temperatures, as well as some evidence for transcription in

  4. Real-Time PCR Diagnostics for Detecting and Identifying Potential Bioweapons

    DTIC Science & Technology

    2003-11-18

    pestis Bacillus cereus Salmonella enteritidis Yersinia pestis Bacillus thurigiensis Serratia odorifera Yersinia pestis Bacillus coagulans Shigella...10fg NTC 100pg-opt 10pg-opt 1pg-opt 100fg-opt 10fg-opt NTC-opt USAMRIID Specificity Organism Organism Organism Acineobacter baumanni Bacillus subtilis...var niger Staphylococcus saprophyticus Bacillus anthracis BA0068 Bacillus bronchiseptica Staphylococcus epidermidis Bacillus anthracis Clostridium

  5. Global Genomic Analysis of Prostate, Breast and Pancreatic Cancer

    DTIC Science & Technology

    2012-10-01

    fever virus (Lauck et al. 2011). The success of transposon-based genomic library construction for genomic analyses suggests that it should be possible...2011. Novel, divergent simian hemorrhagic Fever viruses in a wild ugandan red colobus Gertz et al. 140 Genome Research www.genome.org Cold Spring...2009. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5: e1000569. doi: 10.1371

  6. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  7. NEW MEDIUM FOR THE SIMULTANEOUS DETECTION OF TOTAL COLIFORMS AND ESCHERICHIA COLI IN WATER (PUBLISHED ERRATUM APPEARS IN APP ENVIRON MICROBIOL 1993 DEC;59(12):4378)

    EPA Science Inventory

    A new membrane filter agar medium (MI agar) containing a chromogen, indoxyl-beta-D-glucuronide, and a fluorogen, 4-methylumbelliferyl-beta-D-galactopyranoside, was developed to simultaneously detect and enumerate Escherichia coli and total coliforms (TC) in water samples on the b...

  8. A fluorogenic molecular nanoprobe with an engineered internal environment for sensitive and selective detection of biological hydrogen sulfide.

    PubMed

    Kim, Myung; Seo, Young Hun; Kim, Youngsun; Heo, Jeongyun; Jang, Woo-Dong; Sim, Sang Jun; Kim, Sehoon

    2017-02-14

    A nanoreactor approach based on the amphiphilic assembly of various molecules offers a chance to finely engineer the internal reaction medium to enable highly selective and sensitive detection of H 2 S in biological media, being useful for microscopic imaging of cellular processes and in vitro diagnostics with blood samples.

  9. Reaction of fluorogenic reagents with proteins

    PubMed Central

    Swearingen, Kristian E.; Dickerson, Jane A.; Turner, Emily H.; Ramsay, Lauren M.; Wojcik, Roza; Dovichi, Norman J.

    2009-01-01

    The fluorogenic reagent Chromeo P465 is considered for analysis of proteins by capillary electrophoresis with laser-induced fluorescence detection. The reagent was first used to label α-lactalbumin; the product was analyzed by capillary zone electrophoresis in a sub-micellar sodium dodecyl sulfate (SDS) buffer. The product generated a set of equally spaced but poorly resolved peaks that formed a broad envelope with a net mobility of 4 × 10−4 cm2 V−1 s−1. The components of the envelope were presumably protein that had reacted with different numbers of labels. The mobility of these components decreased by roughly 1 % with the addition of each label. The signal increased linearly from 1.0 nM to 100 nM α-lactalbumin (r2 = 0.99), with a 3σ detection limit of 70 pM. We then considered the separation of a mixture of ovalbumin, α-chymotrypsinogen A, and αlactalbumin labeled with Chromeo P465; unfortunately, baseline resolution was not achieved with a borax/SDS buffer. Better resolution was achieved with N-cyclohexyl-2-aminoethanesulfonic acid/Tris/SDS/dextran capillary sieving electrophoresis; however, dye interactions with this buffer system produced a less than ideal blank. PMID:18479693

  10. Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin

    PubMed Central

    Kanada, Kimberly N.; Nakatsuji, Teruaki; Gallo, Richard L.

    2014-01-01

    The increased abundance and activity of cathelicidin and kallikrein 5 (KLK5), a predominant trypsin-like serine protease (TLSP) in the stratum corneum, have been implicated in the pathogenesis of rosacea, a disorder treated by the use of low-dose doxycycline. Here we hypothesized that doxycycline can inhibit activation of tryptic KLKs through an indirect mechanism by inhibition of matrix metalloproteinases (MMPs) in keratinocytes. The capacity of doxycycline to directly inhibit enzyme activity was measured in surface collections of human facial skin and extracts of cultured keratinocytes by fluorescence polarization assay against fluorogenic substrates specific for MMPs or TLSPs. Doxycycline did inhibit MMP activity but did not directly inhibit serine protease activity against a fluorogenic substrate specific for TLSPs. However, when doxycycline or other MMP inhibitors were added to live keratinocytes during the production of tryptic KLKs, this treatment indirectly resulted in decreased TLSP activity. Furthermore, doxycycline under these conditions inhibited the generation of the cathelicidin peptide LL-37 from its precursor protein hCAP18, a process dependent on KLK activity. These results demonstrate that doxycycline can prevent cathelicidin activation, and suggest a previously unknown mechanism of action for doxycycline through inhibiting generation of active cathelicidin peptides. PMID:22336948

  11. Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.

    PubMed

    Chahroudi, A; Silvestri, G; Feinberg, M B

    2003-10-01

    Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.

  12. Fluorogenic Cell-Based Biosensors for Monitoring Microbes

    NASA Technical Reports Server (NTRS)

    Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris

    2010-01-01

    Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.

  13. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  14. A new fluorogenic small molecule labeling tool for surface diffusion analysis and advanced fluorescence imaging of β-site amyloid precursor protein (APP)-cleaving enzyme 1 based on silicone rhodamine: SiR-BACE1.

    PubMed

    Karch, Sandra; Broichhagen, Johannes; Schneider, Julia; Böning, Daniel; Hartmann, Stephanie; Schmid, Benjamin; Tripal, Philipp; Palmisano, Ralf; Alzheimer, Christian; Johnsson, Kai; Huth, Tobias

    2018-06-25

    β-site APP-cleaving enzyme 1 (BACE1) is a major player in the pathogenesis of Alzheimer's disease. Structural and functional fluorescence microscopy offers a powerful approach to learn about the physiology and pathophysiology of this protease. Up to now, however, common labeling techniques either require genetic manipulation, use large antibodies, or are not compatible with live cell imaging. Fluorescent small molecules that specifically bind to the protein of interest can overcome these limitations. Herein, we introduce SiR-BACE1, a conjugate of the BACE1 inhibitor S-39 and SiR647, as a novel fluorogenic, tag-free, and antibody-free label for BACE1. We present its chemical development, characterize its photo-physical and pharmacologic properties, and evaluate its behavior in solution, in over-expression systems, and in native brain tissue. We demonstrate its applicability in confocal, stimulated emission depletion (STED), and dynamic single molecule microscopy. First functional studies with SiR-BACE1 on the surface mobility of BACE1 revealed a markedly confined diffusion pattern.

  15. Arylethynyl receptors for neutral molecules and anions: emerging applications in cellular imaging.

    PubMed

    Carroll, Calden N; Naleway, John J; Haley, Michael M; Johnson, Darren W

    2010-10-01

    This critical review will focus on the application of shape-persistent receptors for anions that derive their rigidity and optoelectronic properties from the inclusion of arylethynyl linkages. It will highlight a few of the design strategies involved in engineering selective and sensitive fluorescent probes and how arylacetylenes can offer a design pathway to some of the more desirable properties of a selective sensor. Additionally, knowledge gained in the study of these receptors in organic media often leads to improved receptor design and the production of chromogenic and fluorogenic probes capable of detecting specific substrates among the multitude of ions present in biological systems. In this ocean of potential targets exists a large number of geometrically distinct anions, which present their own problems to the design of receptors with complementary binding for each preferred coordination geometry. Our interest in targeting charged substrates, specifically how previous work on receptors for cations or neutral guests can be adapted to anions, will be addressed. Additionally, we will focus on the design and development of supramolecular arylethynyl systems, their shape-persistence and fluorogenic or chromogenic optoelectronic responses to complexation. We will also examine briefly how the "chemistry in the cuvet" translates into biological media (125 references).

  16. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  17. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    PubMed

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  18. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    PubMed

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  19. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates.

    PubMed

    Basheer, Sabeel M; Kumar, Saravana Loganathan Ashok; Kumar, Moorthy Saravana; Sreekanth, Anandaram

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The 1 H NMR and 13 C NMR titration studies strongly support the deprotonation was taken from the N-H protons followed by the formation of hydrogen bond via N-H … F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55kcal/mol). The calculated ΔE and ΔG values (-253.92 and -192.41kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F - and Cu 2+ ions, which was explained with "Read-Erase-Write-Read" behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  1. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase

    PubMed Central

    Dash, Biplab Kumar; Rahman, M. Mizanur; Sarker, Palash Kumar

    2015-01-01

    A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members of Bacillus sp. and identified as Bacillus subtilis BI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25%) as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37°C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L) and sodium lauryl sulfate (0.2 g/L) resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50°C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest that B. subtilis BI19 could be exploited for production of amylase at relatively low cost and time. PMID:26180814

  2. Genome engineering using a synthetic gene circuit in Bacillus subtilis.

    PubMed

    Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun

    2015-03-31

    Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Construction of an enzymatic route using a food-grade recombinant Bacillus subtilis for the production and purification of epilactose from lactose.

    PubMed

    Chen, Qiuming; He, Weiwei; Yan, Xin; Zhang, Tao; Jiang, Bo; Stressler, Timo; Fischer, Lutz; Mu, Wanmeng

    2018-03-01

    Lactose is a main by-product in the cheese industry. Many attempts have been made to convert the lactose to high value-added products, including epilactose. Epilactose is a valuable prebiotic and can be epimerized from lactose with cellobiose 2-epimerase (CEase). The objective of the present work was to construct a food-grade recombinant Bacillus subtilis that produces CEase from Thermoanaerobacterium saccharolyticum. The CEase was expressed in B. subtilis without antibiotic resistance genes. After fermentation, the maximum volumetric activity of the fermented broth was more than 7 U/mL. The activity of the recombinant B. subtilis was increased by up to 3.7 fold after ethanol permeabilization. Then, 66.9 ± 0.7 g/L of epilactose was produced from 300 g/L of whey powder solution in 1 h with 13.3 U/mL of permeabilized biocatalyst. In addition, an enzymatic route including degradation of the lactose, yeast fermentation, and cation exchange chromatography was described to further purify the produced epilactose from lactose. Finally, epilactose with a purity >98% was produced from 300 g/L of lactose with a yield of 24.0%. In conclusion, neither antibiotics nor pathogenic bacteria were used throughout the epilactose production and purification procedure. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Fluorescent discrimination between traces of chemical warfare agents and their mimics.

    PubMed

    Díaz de Greñu, Borja; Moreno, Daniel; Torroba, Tomás; Berg, Alexander; Gunnars, Johan; Nilsson, Tobias; Nyman, Rasmus; Persson, Milton; Pettersson, Johannes; Eklind, Ida; Wästerby, Pär

    2014-03-19

    An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the in-the-field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds.

  5. Three methods for isolating viable anthozoan endoderm cells with their intracellular symbiotic dinoflagellates

    NASA Astrophysics Data System (ADS)

    Gates, R. D.; Muscatine, L.

    1992-09-01

    Three maceration methods are described for the isolation of single endoderm cells from marine cnidarians. Two are enzymatic treatments suitable for fleshy anthozoans such as sea anemones and zoanthids. The third employs calcium free sea water and is suitable for stony corals. The viability and morphology of the endoderm cells is described using fluorogenic dyes and scanning and transmission electron microscopy.

  6. Validation of Respirator Filter Efficacy

    DTIC Science & Technology

    2003-03-20

    microorganism Bacillus atrophaeus formerly Bacillus globigii or BG). The BG spore of approximately 1 µm diameter and inert particles over a range...conducted using the spore form of the microorganism Bacillus atrophaeus (formerly Bacillus globigii or BG). The BG spore is elliptically shaped with...will be conducted using the spore form of the microorganism Bacillus atrophaeus (formerly Bacillus globigii or BG). The BG spore is elliptically

  7. Dynamics of bacterial class Bacilli in the deepest valley lake of Kashmir-the Manasbal Lake.

    PubMed

    Shafi, Sana; Kamili, Azra N; Shah, Manzoor A; Bandh, Suhaib A; Dar, Rubiya

    2017-03-01

    In recognition of the importance of bacteria as ecological indicators of the aquatic systems a comprehensive and systematic analysis was carried out on Manasbal Lake, the deepest spring fed valley lake of Kashmir. The main objective envisaged was to analyze bacterial community composition (BCC) and for this purpose systematic and regular sampling of waters from ten different sampling stations, predetermined in the Lake according to differences in degree of human interference and also as zones of special ecological interests were selected. The isolated species were identified according to Bergey's Manual specification by examining their micro and macro morphological characteristics and biochemical characteristics on different culture media. Further confirmation was done by sequencing the 16s rRNA gene by using universal bacterial primers 27F and 1429R. From all the sampling stations the class Bacilli showed a maximum relative abundance with a contribution of 16 bacterial species. The whole process resulted in the identification of Bacillus aerius, Bacillus altitudinis, Bacillus anthracis, Bacillus cereus, Bacillus ginsengisoli, Bacillus pumilus, Bacillus safensis, Bacillus stratosphericus, Bacillus subtilis, Bacillus tequilensis, Bacillus thermocopriae, Bacillus thuringiensis, Brevibacillus agri strain, Lysinibacillus boronitolerans, Lysinibacillus pakistanensis and Lysinibacillus sphaericus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive.

    PubMed

    Paracchini, Valentina; Petrillo, Mauro; Reiting, Ralf; Angers-Loustau, Alexandre; Wahler, Daniela; Stolz, Andrea; Schönig, Birgit; Matthies, Anastasia; Bendiek, Joachim; Meinel, Dominik M; Pecoraro, Sven; Busch, Ulrich; Patak, Alex; Kreysa, Joachim; Grohmann, Lutz

    2017-09-01

    Many food and feed additives result from fermentation of genetically modified (GM) microorganisms. For vitamin B2 (riboflavin), GM Bacillus subtilis production strains have been developed and are often used. The presence of neither the GM strain nor its recombinant DNA is allowed for fermentation products placed on the EU market as food or feed additive. A vitamin B 2 product (80% feed grade) imported from China was analysed. Viable B. subtilis cells were identified and DNAs of two bacterial isolates (LHL and LGL) were subjected to three whole genome sequencing (WGS) runs with different devices (MiSeq, 454 or HiSeq system). WGS data revealed the integration of a chloramphenicol resistance gene, the deletion of the endogenous riboflavin (rib) operon and presence of four putative plasmids harbouring rib operons. Event- and construct-specific real-time PCR methods for detection of the GM strain and its putative plasmids in food and feed products have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A major protein component of the Bacillus subtilis biofilm matrix.

    PubMed

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  10. Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis.

    PubMed

    Calderone, Christopher T; Kowtoniuk, Walter E; Kelleher, Neil L; Walsh, Christopher T; Dorrestein, Pieter C

    2006-06-13

    The pksX gene cluster from Bacillus subtilis is predicted to encode the biosynthesis of an as yet uncharacterized hybrid nonribosomal peptide/polyketide secondary metabolite. We used a combination of biochemical and mass spectrometric techniques to assign functional roles to the proteins AcpK, PksC, PksL, PksF, PksG, PksH, and PksI, and we conclude that they act to incorporate an acetate-derived beta-methyl branch on an acetoacetyl-S-carrier protein and ultimately generate a Delta(2)-isoprenyl-S-carrier protein. This work highlights the power of mass spectrometry to elucidate the functions of orphan biosynthetic enzymes, and it details a mechanism by which single-carbon beta-branches can be inserted into polyketide-like structures. This pathway represents a noncanonical route to the construction of prenyl units and serves as a prototype for the intersection of isoprenoid and polyketide biosynthetic manifolds in other natural product biosynthetic pathways.

  11. Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases

    PubMed Central

    Li, Xiaohui; Ding, Xuezhi; Xia, Liqiu; Sun, Yunjun; Yuan, Can; Yin, Jia

    2012-01-01

    The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs) including Cry1Ac(3), Cry2Aa, and BTRX28, immune inhibitor (InhA), and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains. PMID:22649324

  12. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.

    PubMed

    Donia, D; Divizia, M; Pana', A

    2005-06-01

    Armored Enterovirus RNA was used to standardize a real-time reverse transcription (RT)-PCR for environmental testing. Armored technology is a system to produce a robust and stable RNA standard, trapped into phage proteins, to be used as internal control. The Armored Enterovirus RNA protected sequence includes 263 bp of highly conserved sequences in 5' UTR region. During these tests, Armored RNA has been used to produce a calibration curve, comparing three different fluorogenic chemistry: TaqMan system, Syber Green I and Lux-primers. The effective evaluation of three amplifying commercial reagent kits, in use to carry out real-time RT-PCR, and several extraction procedures of protected viral RNA have been carried out. The highest Armored RNA recovery was obtained by heat treatment while chemical extraction may decrease the quantity of RNA. The best sensitivity and specificity was obtained using the Syber Green I technique since it is a reproducible test, easy to use and the cheapest one. TaqMan and Lux-primer assays provide good RT-PCR efficiency in relationship to the several extraction methods used, since labelled probe or primer request in these chemistry strategies, increases the cost of testing.

  13. Near-infrared laser-induced fluorescence detection in capillary electrophoresis.

    PubMed

    McWhorter, S; Soper, S A

    2000-04-01

    As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.

  14. Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis.

    PubMed

    Ezaki, J; Takeda-Ezaki, M; Oda, K; Kominami, E

    2000-02-24

    Endopeptidase activities of the CLN2 gene product (Cln2p)/tripeptidyl peptidase I (TPP-I), purified from rat spleen, were studied using the synthetic fluorogenic substrates. We designed and constructed decapeptides, based on the known sequence cleavage specificities of bacterial pepstatin-insensitive carboxyl proteases (BPICP). MOCAc-Gly-Lys-Pro-Ile-Pro-Phe-Phe-Arg-Leu-Lys(Dnp)r-NH(2) is readily hydrolyzed by Cln2p/TPP-I (K(cat)/K(m) = 7.8 s(-1) mM(-1)). The enzyme had a maximal activity at pH 3.0 for an endopeptidase substrate, but at pH 4.5 with respect to tripeptidyl peptidase activity. Both endopeptidase and tripeptidyl peptidase activities were strongly inhibited by Ala-Ala-Phe-CH(2)Cl, but not inhibited by tyrostatin, an inhibitor of bacterial pepstatin-insensitive carboxyl proteases, pepstatin, or inhibitors of serine proteases. Fibroblasts from classical late infantile neuronal ceroid lipofuscinosis patients have less than 5% of the normal tripeptidyl peptidase activity and pepstatin-insensitive endopeptidase activity. Cln2p/TPP-I is a unique enzyme with both tripeptidyl peptidase and endopeptidase activities for certain substrate specificity. Copyright 2000 Academic Press.

  15. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    NASA Astrophysics Data System (ADS)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  16. Construction of a Bacterial Cell that Contains Only the Set of Essential Genes Necessary to Impart Life

    DTIC Science & Technology

    2014-05-16

    native uncharacterized genes for characterized genes from Bacillus subtilis , that is presented in a constitutive expression module. If the B... subtilis gene containing M. mycoides mutant is viable than the function of the conserved hypothetical gene is the same as the input B. subtilis gene...Characterized genes from B. subtilis were swapped with similar, but not so similar as to be clearly the same, essential genes from M. mycoides. The B. subtilis

  17. Function of the SpoVAEa and SpoVAF Proteins of Bacillus subtilis Spores

    DTIC Science & Technology

    2014-06-01

    outer surface of the spore’s inner membrane, as SpoVAEa was accessible to an external biotinylation agent in spores and SpoVAEa disappeared in parallel...codon was PCR amplified from PS832 chromosomal DNA with primers that inserted BamHI and PstI restriction sites upstream and downstream, respectively... chromosomal structure, and this strain was termed PS4348 (spoVAEa mutant). A B. subtilis strain with a deletion of the spoVF gene was constructed by a two

  18. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.

    PubMed

    Li, Kaifeng; Cai, Dongbo; Wang, Zhangqian; He, Zhili; Chen, Shouwen

    2018-03-15

    Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN , which codes for nattokinase in Bacillus subtilis , was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S sacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S sacC Finally, the engineered strain DWc9nΔ7 (Δ epr Δ wprA Δ mpr Δ aprE Δ vpr Δ bprA Δ bacABC ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research. IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in Bacillus licheniformis via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression. Copyright © 2018 American Society for Microbiology.

  19. Pyrylium-based dye and charge tagging in proteomics.

    PubMed

    Bayer, Malte; König, Simone

    2016-11-01

    The pyrylium group is a selective reagent for ε-amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N-hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py-1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py-1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N-terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py-1 recommends itself for N-terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a- and b-type ion series were observed for N-terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A non-toxic fluorogenic dye for mitochondria labeling.

    PubMed

    Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan

    2013-11-01

    Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. © 2013.

  1. A Non-Toxic Fluorogenic Dye for Mitochondria Labeling

    PubMed Central

    Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan

    2013-01-01

    Background Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. Methods A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. Results AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. Conclusions A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. General Significance The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. PMID:23850639

  2. Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging

    PubMed Central

    Zhang, Ming; Chakraborty, Subhasish K.; Sampath, Padma; Rojas, Juan J.; Hou, Weizhou; Saurabh, Saumya; Thorne, Steve H.; Bruchez, Marcel P.; Waggoner, Alan S.

    2015-01-01

    Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule–based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter–tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene. PMID:26348895

  3. Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates.

    PubMed

    Petrera, Agnese; Amstutz, Beat; Gioia, Magda; Hähnlein, Janine; Baici, Antonio; Selchow, Petra; Ferraris, Davide M; Rizzi, Menico; Sbardella, Diego; Marini, Stefano; Coletta, Massimo; Sander, Peter

    2012-07-01

    Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.

  4. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR

    PubMed Central

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs. PMID:28640824

  5. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR.

    PubMed

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam; Lucchi, Naomi W

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.

  6. Detection of Non-Nucleic Acid Targets with an Unmodified Aptamer and a Fluorogenic Competitor

    PubMed Central

    Li, Na

    2010-01-01

    Aptamers are oligonucleotides that can bind to various non-nucleic acid targets, ranging from proteins to small molecules, with a specificity and affinity comparable to that of antibodies. Most aptamer-based detection strategies require modification on the aptamer, which could lead to a significant loss in its affinity and specificity to the target. Here we reported a generic strategy to design aptamer-based optical probes. An unmodified aptamer specific to the target and a fluorogenic competitor complementary to the aptamer are utilized for target recognition and signal generation, respectively. The competitor is a hairpin oligonucleotide with a fluorophore attached on one end and a quencher attached on the other. When no target is present, the competitor binds to the aptamer. However, when the target is introduced, the competitor will be displaced from the aptamer by the target, thus resulting in a target-specific decrease in fluorescence signal. Successful application of this strategy to different types of targets (small molecules and proteins) as well as different types of aptamers (DNA and RNA) has been demonstrated. Furthermore, a thermodynamics-based prediction model was established to further rationalize the optimization process. Due to its rapidness and simplicity, this aptamer-based detection strategy holds great promise in high throughput applications. PMID:20563298

  7. Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution.

    PubMed

    Maeno, Takanori; Uzawa, Takanori; Kono, Izumi; Okano, Kazunori; Iino, Takanori; Fukita, Keisuke; Oshikawa, Yuki; Ogawa, Taro; Iwata, Osamu; Ito, Takuro; Suzuki, Kengo; Goda, Keisuke; Hosokawa, Yoichiroh

    2018-05-29

    Microalgae-based metabolic engineering has been proven effective for producing valuable substances such as food supplements, pharmaceutical drugs, biodegradable plastics, and biofuels in the past decade. The ability to accurately visualize and quantify intracellular metabolites in live microalgae is essential for efficient metabolic engineering, but remains a major challenge due to the lack of characterization methods. Here we demonstrate it by synthesizing fluorogenic peptide aptamers with specific binding affinity to a target metabolite and delivering them into live microalgae by femtosecond laser photoporation at single-cell resolution. As a proof-of-principle demonstration of our method, we use it to characterize Euglena gracilis, a photosynthetic unicellular motile microalgal species, which is capable of producing paramylon (a carbohydrate granule similar to starch). Specifically, we synthesize a peptide aptamer containing a paramylon-binding fluorescent probe, 7-nitrobenzofurazan, and introduce it into E. gracilis cells one-by-one by suppressing their mobility with mannitol and transiently perforating them with femtosecond laser pulses at 800 nm for photoporation. To demonstrate the method's practical utility in metabolic engineering, we perform spatially and temporally resolved fluorescence microscopy of single live photoporated E. gracilis cells under different culture conditions. Our method holds great promise for highly efficient microalgae-based metabolic engineering.

  8. Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging.

    PubMed

    Lou, Xiaoding; Zhao, Zujin; Tang, Ben Zhong

    2016-12-01

    Two-photon fluorescence imaging technique is a powerful bioanalytical approach in terms of high photostability, low photodamage, high spatiotemporal resolution. Recently, fluorescent organic dots comprised of organic emissive cores and a polymeric matrix are emerging as promising contrast reagents for two-photon fluorescence imaging, owing to their numerous merits of high and tunable fluorescence, good biocompatibility, strong photobleaching resistance, and multiple surface functionality. The emissive core is crucial for organic dots to get high brightness but many conventional chromophores often encounter a severe problem of fluorescence quenching when they form aggregates. To solve this problem, fluorogens featuring aggregation-induced emission (AIE) can fluoresce strongly in aggregates, and thus become ideal candidates for fluorescent organic dots. In addition, two-photon absorption property of the dots can be readily improved by just increase loading contents of AIE fluorogen (AIEgen). Hence, organic dots based on AIEgens have exhibited excellent performances in two-photon fluorescence in vitro cellular imaging, and in vivo vascular architecture visualization of mouse skin, muscle, brain and skull bone. In view of the rapid advances in this important research field, here, we highlight representative fluorescent organic dots with an emissive core of AIEgen aggregate, and discuss their great potential in bioimaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    PubMed

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  10. Production of a thermostable 1,3-1,4-β-glucanase mutant in Bacillus subtilis WB600 at a high fermentation capacity and its potential application in the brewing industry.

    PubMed

    Niu, Chengtuo; Liu, Chunfeng; Li, Yongxian; Zheng, Feiyun; Wang, Jinjing; Li, Qi

    2018-02-01

    1,3-1,4-β-glucanase was an important biotechnological aid in the brewing industry. In a previous research, a Bacillus BglTO mutant (BglTO) with high tolerance towards high temperature and low-pH conditions was constructed and expressed in Escherichia coli. However, E. coli was not a suitable host for enzyme production in food industry. Therefore, the present work aimed to achieve the high-level expression of BglTO in Bacillus subtilis WB600 and to test its effect in Congress mashing. The β-glucanase mutant was successfully expressed in B. subtilis WB600 and favorable plasmid segregation and structural stability were observed. The maximal extracellular activity of β-glucanase in recombinant B. subtilis WB600 reached 4840.4UmL -1 after cultivation condition optimization, which was 1.94-fold higher than that before optimization. The fermentation capacity of recombinant B. subtilis reached 242.02UmL -1 h -1 , which was the highest among all reported β-glucanases. The addition of BglTO in Congress mashing significantly reduced the filtration time and viscosity of mash by 29.7% and 12.3%, respectively, which was superior to two commercial enzymes. These favorable properties indicated that B. subtilis WB600 was a suitable host for production of BglTO, which was promising for application in the brewing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sequence comparison of phoR, gyrB, groEL, and cheA genes as phylogenetic markers for distinguishing Bacillus amyloliquefaciens and B. subtilis and for identifying Bacillus strain B29.

    PubMed

    Yu, C; Jin, J; Meng, L-Q; Xia, H-H; Yuan, H-F; Wang, J; Yu, D-S; Zhao, X-Y; Sha, C-Q

    2017-05-20

    Given the close genetic relationship between Bacillus amyloliquefaciens and B. subtilis, distinguishing the two solely based on their physiological and biochemical characteristics and 16S rRNA sequences is difficult. Molecular identification was used to discover suitable genes for distinguishing the two bacteria, and to identify the bio-controlling strain B29, due to molecular identification has been paid more and more attention. The similarity of four genes, cheA, gyrB, groEL and phoR, of the two species was compared by the software BLASTN and MAGA, and phylogenetic tree was constructed. The B29 strain was re-identified by using the screened genes. The similarities of the four genes, gyrB, groEL, cheA and phoR, of the two species were 93-95%, 82-84%, 76-78% and 76-77%, respectively. The homologies of the four genes of the strain B29 and the strains of B. amyloliquefaciens strains were more than 95%. We determined how well the phoR and cheA genes could be used to differentiate B. amyloliquefacien and B. subtilis. The previously isolated biological control strain B29, initially classified as B. subtilis, was re-classified as B. amyloliquefaciens. Our data indicate that other than the phoR gene, the cheA gene might be a useful phylogenetic marker for differentiating B. subtilis and B. amyloliquefaciens.

  12. Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes.

    PubMed

    Hassan, A K; Moriya, S; Ogura, M; Tanaka, T; Kawamura, F; Ogasawara, N

    1997-04-01

    We constructed Bacillus subtilis strains in which chromosome replication initiates from the minimal replicon of a plasmid isolated from Bacillus natto, independently of oriC. Integration of the replicon in either orientation at the proA locus (115 degrees on the genetic map) suppressed the temperature-sensitive phenotype caused by a mutation in dnaA, a gene required for initiation of replication from oriC. In addition, in a strain with the plasmid replicon integrated into the chromosome, we were able to delete sequences required for oriC function. These strains were viable but had a slower growth rate than the oriC+ strains. Marker frequency analysis revealed that both pyrD and metD, genes close to proA, showed the highest values among the markers (genes) measured, and those of other markers decreased symmetrically with distance from the site of the integration (proA). These results indicated that the integrated plasmid replicon operated as a new and sole origin of chromosome replication in these strains and that the mode of replication was bidirectional. Interestingly, these mutants produced anucleate cells at a high frequency (about 40% in exponential culture), and the distribution of chromosomes in the cells was irregular. A change in the site and mechanism (from oriC to a plasmid system) of initiation appears to have resulted in a drastic alteration in coordination between chromosome replication and chromosome partition or cell division.

  13. Bacterial Growth in Tray Pack Acidified Rice

    DTIC Science & Technology

    1987-01-01

    Bacillus coagulans , which were able to survive the pasteurization processing temperature. Because of the potential for spoilage that was indicated...Inoculum A miKed inoculum consisting o-f Bacillus sphaericus, Bacillus circulans and iour strains of Bacillus coagulans was prepared. All cultures...ineffective in preventing growth of sporeforming bacillus species. Moreover, there was nonuniform distribution of the acidulant, which resulted in

  14. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.

    PubMed

    Faille, C; Bénézech, T; Blel, W; Ronse, A; Ronse, G; Clarisse, M; Slomianny, C

    2013-04-01

    This study was designed to evaluate the respective roles of mechanical and chemical effects on the removal of Bacillus spores during cleaning-in-place. This analysis was performed on 12 strains belonging to the Bacillus cereus group (B. cereus, Bacillus anthracis, Bacillus thuringiensis) or to less related Bacillus species (Bacillus pumilus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus subtilis). Adherent spores were subjected to rinsing-in-place (mechanical action) and cleaning-in-place (mechanical and chemical actions) procedures, the latter involving NaOH 0.5% at 60°C. Results revealed that mechanical action alone only removed between 53 and 89% of the attached spores at a shear stress of 500 Pa. This resistance to shear was not related to spore surface properties. Conversely, in the presence of NaOH at a shear stress of 4 Pa, spores were readily detached, with between 80 and 99% of the adherent spores detached during CIP and the chemical action greatly depended on the strain. This finding suggests that chemical action plays the major role during CIP, whose efficacy is significantly governed by the spore surface chemistry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Lee, Mi Young; Lee, Jang Ho; Lee, Hyuck; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2006-11-01

    Two Gram-positive bacilli, designated as strains SMC 4352-1T and SMC 4352-2T, were isolated sequentially from the blood of a newborn child with sepsis. They could not be identified by using conventional clinical microbiological methods. 16S rRNA gene sequencing and phylogenetic analysis revealed that both strains belonged to the genus Bacillus but clearly diverged from known Bacillus species. Strain SMC 4352-1T and strain SMC 4352-2T were found to be closely related to Bacillus firmus NCIMB 9366T (98.2% sequence similarity) and Bacillus cibi JG-30T (97.1% sequence similarity), respectively. They also displayed low DNA-DNA reassociation values (less than 40%) with respect to the most closely related Bacillus species. On the basis of their polyphasic characteristics, strain SMC 4352-1T and strain SMC 4352-2T represent two novel species of the genus Bacillus, for which the names Bacillus infantis sp. nov. (type strain SMC 4352-1T=KCCM 90025T=JCM 13438T) and Bacillus idriensis sp. nov. (type strain SMC 4352-2T=KCCM 90024T=JCM 13437T) are proposed.

  16. Acid and bile tolerance of spore-forming lactic acid bacteria.

    PubMed

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  17. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis.

    PubMed

    Chen, Po Ting; Shaw, Jei-Fu; Chao, Yun-Peng; David Ho, Tuan-Hua; Yu, Su-May

    2010-05-12

    Bacillus subtilis is most commonly employed for secretion of recombinant proteins. To circumvent the problems caused by using plasmids, the T7 expression system known for its high efficiency was rebuilt in B. subtilis. Accordingly, a markerless and replicon-free method was developed for genomic insertion of DNAs. By the act of homologous recombination via the guide DNA, a suicidal vector carrying the gene of interest was integrated into genomic loci of bacteria. Removal of the inserted selection marker and replicon flanked by FRT sites was mediated by the FLP recombinase. By using the mentioned system, B. subtilis strain PT5 was constructed to harbor a genomic copy of the spac promoter-regulated T7 gene 1 located at wprA (encoding the cell wall-associated protease). Similarly, the T7 promoter-driven nattokinase or endoglucanase E1 of Thermomonospora fusca genes were also integrated into mpr (encoding an extracellular protease) of strain PT5. Consequently, the integrant PT5/Mmp-T7N or PT5/MT1-E1 resulted in a "clean" producer strain deprived of six proteases. After 24 h, the strain receiving induction was able to secret nattokinase and endoglucanase E1 with the volumetric activity reaching 10860 CU/mL and 8.4 U/mL, respectively. This result clearly indicates the great promise of the proposed approach for high secretion of recombinant proteins in B. subtilis.

  18. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime-boost immunization strategy.

    PubMed

    Baillie, Leslie W J; Rodriguez, Ana L; Moore, Stephen; Atkins, Helen S; Feng, Chiguang; Nataro, James P; Pasetti, Marcela F

    2008-11-11

    We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [Stokes MG, Titball RW, Neeson BN, et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 2007;75(April (4)):1827-34]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax.

  19. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    PubMed

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.

  20. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov.

    PubMed

    Heyrman, Jeroen; Logan, Niall A; Rodríguez-Díaz, Marina; Scheldeman, Patsy; Lebbe, Liesbeth; Swings, Jean; Heyndrickx, Marc; De Vos, Paul

    2005-01-01

    A group of 24 strains was isolated from deteriorated mural paintings situated in Spain (necropolis of Carmona) and Germany (church of Greene-Kreiensen). (GTG)5-PCR genomic fingerprinting was performed on these strains to assess their genomic variability and the strains were delineated into four groups. Representatives were studied by 16S rRNA gene sequencing and were found to be closely related to Bacillus simplex and the species 'Bacillus macroides' (strain NCIMB 8796) and 'Bacillus maroccanus' (names not validly published) according to a fasta search. The close similarity between B. simplex, 'B. macroides' NCIMB 8796, 'B. maroccanus' and the mural painting isolates was confirmed by additional (GTG)5-PCR, ARDRA, FAME and SDS-PAGE analyses. Furthermore, these techniques revealed that strains of 'Bacillus carotarum', another name that has not been validly published, also showed high similarity to this group of organisms. On the other hand, it was shown that the strains labelled 'B. macroides' in different collections do not all belong to the same species. Strain NCIMB 8796 can be allocated to B. simplex, while strain DSM 54 (=ATCC 12905) shares the highest 16S rRNA gene sequence similarity with Bacillus sphaericus and Bacillus fusiformis (both around 98.6 %). On the basis of further DNA-DNA hybridization data and the study of phenotypic characteristics, one group of five mural painting strains was attributed to a novel species in the genus Bacillus, for which the name Bacillus muralis sp. nov. is proposed. Finally, the remaining mural painting strains, one (LMG 18508=NCIMB 8796) of two strains belonging to 'B. macroides' and strains belonging to 'B. maroccanus' and 'B. carotarum' are allocated to the species B. simplex and an emended description of B. simplex is given.

  1. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  2. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  3. Field Evaluation of a Fluorogenic Probe-Based PCR Assay for Identification of a Visceral Leishmaniasis Gene Target

    DTIC Science & Technology

    2004-06-01

    encodes protein required for amastigote development, which can ultimately be expressed in humans as VL (3, 4, 5). The leishmaniasises are also expressed ...Leishmania surveillance at Tallil Air Base, south central Iraq, expressed concern of a potential leishmaniasis outbreak situation. In response, we...site. That L. donovani promastigote-to-amastigote development, and VL pathogenesis, requires an A2 gene family encoded factor defines this protein

  4. [Diversity of Bacillus species inhabiting on the surface and endophyte of lichens collected from Wuyi Mountain].

    PubMed

    Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun

    2015-05-04

    The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.

  5. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  6. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    PubMed

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin.

    PubMed

    Agbobatinkpo, Pélagie B; Thorsen, Line; Nielsen, Dennis S; Azokpota, Paulin; Akissoe, Noèl; Hounhouigan, Joseph D; Jakobsen, Mogens

    2013-05-15

    Yanyanku and Ikpiru made by the fermentation of Malcavene bean (Hibiscus sabdariffa) are used as functional additives for Parkia biglobosa seed fermentations in Benin. A total of 355 aerobic endospore-forming bacteria (AEFB) isolated from Yanyanku and Ikpiru produced in northern and southern Benin were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal toxin encoding genes cytK-1, cytK-2, hblA, hblC, and hblD were present in 0%, 91% 15%, 34% and 35% of B. cereus isolates, respectively. 9% of them harbored the emetic toxin genetic determinant, cesB. This study is the first to identify the AEFB of Yanyanku and Ikpiru to species level and perform a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs.

    PubMed

    Mou, Chunxiao; Zhu, Liqi; Xing, Xianping; Lin, Jian; Yang, Qian

    2016-07-01

    Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    PubMed

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The CasKR Two-Component System Is Required for the Growth of Mesophilic and Psychrotolerant Bacillus cereus Strains at Low Temperatures

    PubMed Central

    Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique

    2014-01-01

    The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924

  11. Rational Design of Bacillus coagulans NL01 l-Arabinose Isomerase and Use of Its F279I Variant in d-Tagatose Production.

    PubMed

    Zheng, Zhaojuan; Mei, Wending; Xia, Meijuan; He, Qin; Ouyang, Jia

    2017-06-14

    d-Tagatose is a prospective functional sweetener that can be produced by l-arabinose isomerase (AI) from d-galactose. To improve the activity of AI toward d-galactose, the AI of Bacillus coagulans was rationally designed on the basis of molecular modeling and docking. After alanine scanning and site-saturation mutagenesis, variant F279I that exhibited improved activity toward d-galactose was obtained. The optimal temperature and pH of F279I were determined to be 50 °C and 8.0, respectively. This variant possessed 1.4-fold catalytic efficiency compared with the wild-type (WT) enzyme. The recombinant Escherichia coli overexpressing F279I also showed obvious advantages over the WT in biotransformation. Under optimal conditions, 67.5 and 88.4 g L -1 d-tagatose could be produced from 150 and 250 g L -1 d-galactose, respectively, in 15 h. The biocatalyst constructed in this study presents a promising alternative for large-scale d-tagatose production.

  12. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures.

    PubMed

    Raut, Supriya H; Sarode, D D; Lele, S S

    2014-01-01

    Microbiologically induced calcite precipitation in bricks by bacterium Bacillus pasteurii (NCIM 2477) using a media especially optimized for urease production (OptU) was demonstrated in this study. Effect of biocalcification activity on compressive strength and water absorption capacity of bricks was investigated. Various other parameters such as pH, growth profile, urease activity, urea breakdown and calcite precipitated were monitored during the 28 days curing period. Efficiency of B. pasteurii to form microbial aided calcite precipitate in OptU media resulted into 83.9% increase in strength of the bricks as compared to only 24.9% with standard media, nutrient broth (NB). In addition to significant increase in the compressive strength, bricks treated with B. pasteurii grown in OptU media resulted in 48.9 % reduction in water absorption capacity as compared to control bricks immersed in tap water. Thus it was successfully demonstrated that microbial calcification in optimized media by Bacillus pasteurii has good potential for commercial application to improve the life span of structures constructed with bricks, particularly structures of heritage importance.

  13. A novel expression vector for the secretion of abaecin in Bacillus subtilis.

    PubMed

    Li, Li; Mu, Lan; Wang, Xiaojuan; Yu, Jingfeng; Hu, Ruiping; Li, Zhen

    This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5μM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5μM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.

  15. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM.

    PubMed

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-04-20

    Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l(-1)) and high productivity (2.3 g l(-1) h(-1)) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.

  16. Construction and properties of a temperature-sensitive mutation in the gene for the bacteriophage SPO1 DNA-binding protein TF1.

    PubMed

    Sayre, M H; Geiduschek, E P

    1990-08-01

    The Bacillus subtilis bacteriophage SPO1 encodes the DNA-binding protein TF1, a homolog of the ubiquitous type II DNA-binding proteins that are components of bacterial chromatin. The known three-dimensional structure of a related protein was used in devising a scheme of site-directed mutagenesis that led to the creation of a temperature-sensitive mutation in the TF1 gene. At the nonpermissive temperature, this mutation disrupted the temporal regulation of viral protein synthesis and processing, altered the kinetics of accumulation of at least one viral transcript, and prohibited the production of infective progeny phage. We suggest that TF1 function is required to shut off the expression of several early-middle and middle viral genes and that TF1 plays a role in phage head morphogenesis. Spontaneous second-site mutations of the temperature-sensitive mutant TF1 allele that suppressed its associated phenotypes were analyzed. These suppressor mutations conferred greater amino acid sequence homology with the type II DNA-binding protein from the thermophile Bacillus stearothermophilus.

  17. Phase 1 Testing of Bioflash Technology for White Powder Identification

    DTIC Science & Technology

    2012-06-01

    limit of detection for the test bed system for powdered spores of Bacillus anthracis and Bacillus subtilis , and (2) to determine if common nonhazardous... Bacillus subtilis ; and (2) if common nonhazardous white powders trigger a false positive response or subsequently interfere with the ability of the...Isolated from Flour and Ropy Bread. Letters in App Microbiol. 2003, 37, 169-173. Te Giffel, M.C. Incidence of Bacillus cereus and Bacillus subtilis in

  18. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    PubMed Central

    Chandra, P. Manish; Brannigan, James A.; Prabhune, Asmita; Pundle, Archana; Turkenburg, Johan P.; Dodson, G. Guy; Suresh, C. G.

    2005-01-01

    The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme. PMID:16508111

  19. Construction of a Cell Based Sensor for the Detection of Autoinducer-2 (Reprint)

    DTIC Science & Technology

    2012-09-01

    transporting pipelines, the distribution of species was found to be B. cereus ACE4 (30%), S . marcescens ACE2 (10%), and 10% of each species of B. subtilis...AR12, P. aeruginosa AI1, K. oxytoca ACP, P. stutzeri AP2, B. litoralis AN1, and Bacillus sp. AN5 [1]. Of these, B. cereus, S . marcescens , and B...NUMBER 6. AUTHOR( S ) Matthew D. Servinsky, Patrick C. Allen, Chen-Yu Tsao, Christopher M. Byrd, Christian J. Sund, and William E. Bentley 5d

  20. In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics

    PubMed Central

    Prieto, Maria Luz; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2014-01-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  1. Effects of Mn2+ Levels on the Resistance Properties of Bacillus cereus Spores

    DTIC Science & Technology

    2013-01-01

    In contrast, Bacillus subtilis spores with over a 200-fold range of protoplast Mn levels exhibited no significant differences in resistance to... Bacillus subtilis . J. Bacteriol. 189:8458-8466. Coleman WH, Zhang P, Li YQ, Setlow P (2010). Mechanism of killing of spores of Bacillus cereus and...Gaidamakova EK, Matrosova VY, Daly MJ, Setlow P (2011). Effects of levels of Mn and Fe on Bacillus subtilis spore resistance, and effects of Mn 2

  2. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance.

    PubMed

    Jeyaram, Kumaraswamy; Romi, Wahengbam; Singh, Thangjam Anand; Adewumi, Gbenga Adedeji; Basanti, Khundrakpam; Oguntoyinbo, Folarin Anthony

    2011-11-01

    PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Purification, Characterization and Comparison between Two New L-asparaginases from Bacillus PG03 and Bacillus PG04

    PubMed Central

    Rahimzadeh, Mahsa; Poodat, Manijeh; Javadpour, Sedigheh; Qeshmi, Fatemeh Izadpanah; Shamsipour, Fereshteh

    2016-01-01

    Background: L-asparaginase has been used as a chemotherapeutic agent in treatment of lymphoblastic leukemia. In the present investigation, Bacillus sp. PG03 and Bacillus sp. PG04 were studied. Methods: L- asparaginases were produced using different culture media and were purified using ion exchange chromatography. Results: Maximum productivity was obtained when asparagine was used as the nitrogen source at pH 7 and 48 h after cultivation. New intracellular L-asparaginases showed an apparent molecular weight of 25 kDa and 30 kDa by SDS-PAGE respectively. These enzymes were active in a wide pH range (3-9) with maximum activity at pH 6 for Bacillus PG03 and pH 7 for Bacillus PG04 L-asparaginase. Bacillus PG03 enzyme was optimally active at 37 ˚C and Bacillus PG04 maximum activity was observed at 40˚C. Kinetic parameters km and Vmax of both enzymes were studied using L-asparagine as the substrate. Thermal inactivation studies of Bacillus PG03 and Bacillus PG04 L-asparaginase exhibited t1/2 of 69.3 min and 34.6 min in 37 ˚C respectively. Also T50 and ∆G of inactivation were measured for both enzymes. Conclusion: The results revealed that both enzymes had appropriate characteristics and thus could be a potential candidate for medical applications. PMID:27999622

  4. Immunochemical Methods for Quantitation of Vitamin B6

    DTIC Science & Technology

    1981-09-30

    pANk K:E:: Z P a . LIST OF FIGURES Page Figure 1. Synthesis of N-Carboxymethylpyridoxine 15 Figure 2. Pyridoxine and N- Substituted Derivatives 16...Pyridoxine Substituted in the 3 Position 23 Figure 6. Synthesis of as -Pyridoxylformic Acid and as - 25 Pyridoxylacetic Acid Figure 7. Fluorogenic Galactosides...CH20 (Vill) (X Figure 2. Pyridoxine and N- Substituted Derivatives 16 hinder the formation of quaternary salts (Kirpal, 1910).’" We found this to be true

  5. Functionalized Ni@SiO2 core/shell magnetic nanoparticles as a chemosensor and adsorbent for Cu2+ ion in drinking water and human blood.

    PubMed

    Park, Minsung; Seo, Sungmin; Lee, Soo Jin; Jung, Jong Hwa

    2010-11-01

    Fluorogenic based nitrobenzofuran-functionalized Ni@SiO(2) core/shell magnetic nanoparticles have been prepared by sol-gel grafting reaction. Their ability to detect and remove metal ions was evaluated by fluorophotometry. The nanoparticles exhibited a high affinity and selectivity for Cu(2+) over competing metal ions. Furthermore, the nanoparticles efficiently removed Cu(2+) in drinking water and human blood.

  6. Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier.

    PubMed

    Won, Sang Ho; Lee, Jong Uk; Sim, Sang Jun

    2013-06-01

    A crucial issue for current liposomal carriers in clinical applications is the sustained-release property of the encapsulated drugs. We have developed novel fluorogenic pH-sensitive polymerized liposomes composed of polydiacetylene (PDA) lipids and other types of lipids. Unilamellar liposomes containing 10,12-pentacosadiynoic acid (PCDA), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and N-palmitoyl homocysteine (PHC) were loaded with ampicillin. These liposomes fused to each other rapidly when the medium pH was lowered from 7 to 4. The polymerized liposomes were characterized in terms of particle size distribution. The liposome size increased approximately 20-fold from 110.0 +/- 19.3 nm to 2046.7 +/- 487.4 nm as the pH was lowered. Cross-linking of the diacetylene lipids prevents drug leakage and the encapsulated drug can be instantaneously released at acidic pH condition. The ampicillin was nearly completely released (74.4 +/- 3.9%) from liposomes within 4 h under acidic pH conditions and the released amounts of ampicillin were analyzed by HPLC. Finally, the therapeutic effect was observed by the appearance of plaques on a lawn of E. coli, and fluorescent images of the PDA liposomes were taken from the plaques for drug release monitoring. As a result, this research demonstrates that such novel pH-sensitive polymerized liposomes have great prospects as a drug carrier.

  7. Fluorescence Spectrometric Determination of Drugs Containing α-Methylene Sulfone/Sulfonamide Functional Groups Using N-Methylnicotinamide Chloride as a Fluorogenic Agent.

    PubMed

    Elokely, Khaled M; Eldawy, Mohamed A; Elkersh, Mohamed A; El-Moselhy, Tarek F

    2011-01-01

    A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing α-methylene sulfone/sulfonamide functional groups using N(1)-methylnicotinamide chloride (NMNCl) as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM) (1), tinidazole (2), rofecoxib (3), and nimesulide (4) in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 μg/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 μg/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods.

  8. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  9. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  10. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.

    PubMed

    Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2016-09-01

    Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.

  11. Detection of tripeptidyl peptidase I activity in living cells by fluorogenic substrates.

    PubMed

    Steinfeld, Robert; Fuhrmann, Jens C; Gärtner, Jutta

    2006-09-01

    Tripeptidyl peptidase I (TPP-I) is a lysosomal peptidase with unclear physiological function. TPP-I deficiency is associated with late-infantile neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease of childhood that is characterized by loss of neurons and photoreceptor cells. We have developed two novel fluorogenic substrates, [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110, that are cleaved by TPP-I in living cells. Fluorescence of liberated rhodamine 110 was detected by flow cytometry and was dependent on the level of TPP-I expression. Rhodamine-related fluorescence could be suppressed by preincubation with a specific inhibitor of TPP-I. When investigated by fluorescent confocal microscopy, rhodamine signals colocalized with lysosomal markers. Thus, cleavage of these rhodamide-derived substrates is a marker for mature enzymatically active TPP-I. In addition, TPP-I-induced cleavage of [Ala-Ala-Phe]2-rhodamine 110 could be visualized in primary neurons. We conclude that [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110 are specific substrates for determining TPP-I activity and intracellular localization in living cells. Further, these substrates could be a valuable tool for studying the neuronal pathology underlying classical late-infantile NCL. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

  12. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  13. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  14. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers

    USDA-ARS?s Scientific Manuscript database

    Bacillus subtilis consists of a large collection of strains from which several cryptic species have been delineated, and most of these along with strains within the species are important biocontrol agents. Bacillus mojavensis, a species recently distinguished from this broad Bacillus subtilis grou...

  15. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine.

    PubMed

    Li, Yang; Zhu, Xujun; Zhang, Xueyu; Fu, Jing; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2016-06-03

    Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved properties compared to the wild-type strain as chassis cells for the production of these two products. These strains also have great potential for the production of other nucleosides and similar derived chemicals.

  16. Differentiation of Bacillus Anthracis and Other Bacillus Species by Use of Lectins

    DTIC Science & Technology

    1983-07-18

    TITL9 fAnd Subtfitle) S.TypeO REPORT gi PZRCC rvt 4 DIFFERENTIATION OF BACIL-LUSg’ ANTHRAtgACIS D OTHER BACILLUS , SPECIES BY-USE OYLECTINS" Inter[im...Ricinus communis. Some strains of Bacillus cer-eus var. m-ycoides (B. Mycoides) were strongly reactive with the lectin from Helbi pomtia and weakly reacti...ve with the Glycine max lectin. The differential iCnteractions between Bacillus species and lectins af forded a means of distinguishing B. anthracis

  17. Effect of corona electric field on the production of gamma-poly glutamic acid based on bacillus natto

    NASA Astrophysics Data System (ADS)

    Qi, Hong; Na, Ri; Xin, Jiletu; Jie Xie, Ya; Guo, Jiu Feng

    2013-03-01

    Bacillus Natto is an important strain for gamma-poly glutamic acid (γ-PGA) production. The mutagenesis of Bacillus Natto 20646 under corona electric field and the screening of high γ-PGA producing mutant were investigated. A new mutant bacillus natto Ndlz01 was isolated from Bacillus Natto 20646 after mutation in corona electric field at 9kV for 2min. The Ndlz01 exhibited genetic stability of high γ-PGA producing ability even after five generation cultures. When the bacterium was mutated in streamer discharge state at 9kV for 2min, its death rate was more than 90%. Compared with the yield of γ-PGA based on the original Bacillus Natto 20646, the γ-PGA yield of mutant bacillus natto Ndlz01 increased from 2.6 to 5.94 g/L, with an increase rate of 129.78%.

  18. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis.

    PubMed

    Fujinami, Shun; Ito, Masahiro

    2018-01-01

    It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.

  19. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis

    PubMed Central

    Obuchowski, Michał; Nidzworski, Dawid

    2016-01-01

    Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human—avian—swine—human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system. PMID:27902762

  20. Expression of recombinant green fluorescent protein in Bacillus methanolicus.

    PubMed

    Nilasari, Dewi; Dover, Nir; Rech, Sabine; Komives, Claire

    2012-01-01

    Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  1. 77 FR 2910 - Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of a Tolerance; Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2010-0944; FRL-9334-3] Bacillus... requirement of a tolerance for residues of Bacillus amyloliquefaciens strain D747 (formerly known as Bacillus subtilis variant amyloliquefaciens strain D747). This document is being issued to correct the typographical...

  2. 40 CFR 180.1243 - Bacillus subtilis var. amyloliquefaciens strain FZB24; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis var... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1243 Bacillus subtilis... the requirement of a tolerance for residues of the Bacillus subtilis var. amyloliquefaciens strain...

  3. Disinfection of Vegetative Cells of Bacillus anthracis

    DTIC Science & Technology

    2016-03-01

    1. INTRODUCTION Disinfection of Bacillus anthracis spores in drinking water is well documented in peer-reviewed literature (Adcock et al., 2004... Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  4. 40 CFR 180.1269 - Bacillus mycoides Isolate J: exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus mycoides Isolate J: exemption... FOOD Exemptions From Tolerances § 180.1269 Bacillus mycoides Isolate J: exemption from the requirement of a tolerance. Bacillus mycoides isolate J is temporarily exempt from the requirement of a tolerance...

  5. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics.

    PubMed

    Gu, Fenglin; Chen, Yonggan; Fang, Yiming; Wu, Guiping; Tan, Lehe

    2015-10-09

    Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58%±0.05% and 3.48%±0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09%±0.14% and 3.21%±0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.

  6. Diversity of Bacillus-like bacterial community in the sediments of the Bamenwan mangrove wetland in Hainan, China.

    PubMed

    Liu, Min; Cui, Ying; Chen, Yuqing; Lin, Xiangzhi; Huang, Huiqin; Bao, Shixiang

    2017-03-01

    Members of the genus Bacillus and related spore-forming genera are ubiquitous. However, Bacillus-like species isolated from marine sediments have attracted less interest than their terrestrial relatives. Here, we investigated the diversity of Bacillus-like bacterial communities in the sediments of the Bamenwan mangrove wetland in Hainan, China, using culture-dependent and culture-independent methods, and present the first report on this subject. We also discovered some potential novel species from the sediment samples. Four families, Bacillaceae (58%), Paenibacillaceae (22%), Alicyclobacillaceae (15%), and Planococcaceae (5%), and 9 genera, Bacillus (42%), Paenibacillus (16%), Halobacillus (13%), Alicyclobacillus (11%), Rummeliibacillus (5%), Cohnella (5%), Tumebacillus (4%), Pontibacillus (3%), and Aneurinibacillus (2%), were identified by pyrosequencing. In contrast, only 4 genera, Bacillus (57%), Paenibacillus (23%), Halobacillus (14%), and Virgibacillus (6%), were detected by the culture-dependent method. In the 16S rDNA sequencing analysis, the isolates HB12036 and HB12037 were closest to Bacillus okuhidensis Kh10-101 T and Paenibacillus xylanilyticus XIL14 T with similarities of 94.8% and 95.9%, respectively, indicating that these were novel species. Bacillus sp. HB12035 and HB12040 exhibited antimicrobial activity against Staphylococcus aureus ATCC 25923, and Bacillus sp. HB12033 exhibited antimicrobial activity against Ustilago scitaminea Syd.

  7. Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments

    PubMed Central

    Fajardo-Cavazos, Patricia; Nicholson, Wayne

    2006-01-01

    As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992

  8. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere.

    PubMed

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Zhang, Lei; Zhang, Cai-Wen; Ma, Xiao-Tong; Zhang, Jun

    2016-09-01

    The taxonomy of strain 1DS3-10T, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus Bacillus and appeared to be closely related to the type strains Bacillus benzoevorans DSM 5391T (97.9 %), Bacillus circulans DSM 11T (97.7 %), Bacillus novalis JCM 21709T (97.3 %), Bacillus soli JCM 21710T (97.3 %), Bacillus oceanisediminis CGMCC 1.10115T (97.3 %) and BacillusnealsoniiFO-92T (97.1 %). The fatty acid profile of strain 1DS3-10T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus. The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained meso-diaminopimelic acid. DNA-DNA hybridization values between strain 1DS3-10T and the type strains of closely related species were 25-33 %, which supported that 1DS3-10T represented a novel species in the genus Bacillus. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10T represents a novel species of the genus Bacillus, for which the name Bacillus oryzisoli sp. nov. is proposed. The type strain of the novel species is 1DS3-10T (=ACCC 19781T=DSM 29761T).

  9. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.

  10. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    PubMed Central

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants. PMID:28932199

  11. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments.

    PubMed

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas . Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus -induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus -induced physiological changes, including the regulation of water transport, nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants.

  12. Anti-angiogenic effects of the superantigen staphylococcal enterotoxin B and bacillus Calmette-Guérin immunotherapy for nonmuscle invasive bladder cancer.

    PubMed

    Reis, Leonardo O; Ferreira, Ubirajara; Billis, Athanase; Cagnon, Valéria H A; Fávaro, Wagner J

    2012-02-01

    We compared and characterized the effects of intravesical bacillus Calmette-Guérin and/or staphylococcal enterotoxin B for nonmuscle invasive bladder cancer. A total of 75 female Fisher 344 rats were anesthetized. Of the rats 15 received 0.3 ml saline (control) and 60 received 1.5 mg/kg MNU (N-methyl-n-nitrosourea) intravesically every other week for 6 weeks. The rats were divided into 5 groups. The MNU and control groups received 0.3 ml saline. The bacillus Calmette-Guérin group received 10(6) cfu bacillus Calmette-Guérin. The staphylococcal enterotoxin B group received 10 μg/ml staphylococcal enterotoxin B. The bacillus Calmette-Guérin plus staphylococcal enterotoxin B group received the 2 treatments simultaneously. Each group was treated intravesically for 6 weeks. At 15 weeks all bladders were collected for histopathological and immunological evaluation, and Western blot. Papillary carcinoma (pTa) and high grade intraepithelial neoplasia (carcinoma in situ) were more common in the MNU group. Papillary hyperplasia was more common in the bacillus Calmette-Guérin and enterotoxin groups. Flat hyperplasia was more common in the bacillus Calmette-Guérin plus enterotoxin group. No significant toxicity was observed. The apoptosis and cellular proliferation indexes decreased in the bacillus Calmette-Guérin, enterotoxin and bacillus Calmette-Guérin plus enterotoxin groups compared to the MNU group. Intensified vascular endothelial growth factor, matrix metalloproteinase-9, Ki-67 and insulin-like growth factor receptor-1 immunoreactivity was verified in the MNU group, moderate in the bacillus Calmette-Guérin and enterotoxin groups, and weak in the bacillus Calmette-Guérin plus enterotoxin and control groups. In contrast, intense endostatin immunoreactivity was verified in the control and bacillus Calmette-Guérin plus enterotoxin groups. Bacillus Calmette-Guérin and staphylococcal enterotoxin B showed similar anti-angiogenic effects. Bacillus Calmette-Guérin plus enterotoxin treatment had additional activity compared to that of monotherapy. It was more effective in restoring apoptosis and balancing cellular proliferation, and it correlated with increased endostatin, and decreased vascular endothelial growth factor, matrix metalloproteinase-9, Ki-67 and insulin-like growth factor receptor-1 reactivity. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Bacillus Calmette-Guérin with or without interferon α-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer.

    PubMed

    Nepple, Kenneth G; Lightfoot, Andrew J; Rosevear, Henry M; O'Donnell, Michael A; Lamm, Donald L

    2010-11-01

    In a multicenter, prospectively randomized study we evaluated bacillus Calmette-Guérin alone vs bacillus Calmette-Guérin plus interferon α-2b and megadose vitamins vs recommended daily allowance vitamins during induction and maintenance intravesical therapy in the treatment of nonmuscle invasive bladder cancer. Patients who were bacillus Calmette-Guérin naïve with carcinoma in situ, Ta or T1 urothelial cancer were randomized to receive intravesical bacillus Calmette-Guérin or bacillus Calmette-Guérin plus interferon α-2b. Patients were further randomized to receive a recommended daily allowance or megadose vitamin preparation. Induction bacillus Calmette-Guérin treatment was given weekly for 6 weeks, and patients who were recurrence-free received maintenance treatment at 4, 7, 13, 19, 25 and 37 months. Patients were followed with quarterly cystoscopy for 2 years, then semiannually through year 4 and then annually. The primary end point was biopsy confirmed tumor recurrence or positive cytology. A total of 670 patients were accrued and randomized. At 24-month median followup recurrence-free survival was similar in all groups with 63% in the bacillus Calmette-Guérin with recommended daily allowance vitamins group, 59% in bacillus Calmette-Guérin with megadose vitamins, 55% in bacillus Calmette-Guérin/interferon α-2b with recommended daily allowance vitamins and 61% in bacillus Calmette-Guérin/interferon α-2b with megadose vitamins (p >0.05). The addition of interferon α-2b was associated with a more frequent incidence of fever (11% vs 5%) and constitutional symptoms (18% vs 11%) vs bacillus Calmette-Guérin alone (p <0.05). Interferon α-2b added to bacillus Calmette-Guérin induction and maintenance intravesical therapy did not decrease tumor recurrence in bacillus Calmette-Guérin naïve cases, but was associated with increased fever and constitutional symptoms. No difference in time to recurrence was present in patients receiving recommended daily allowance vs high dose vitamins. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Dietary Pyridoxine Controls Efficacy of Vitamin B6-Auxotrophic Tuberculosis Vaccine Bacillus Calmette-Guérin ΔureC::hly Δpdx1 in Mice

    PubMed Central

    Vogelzang, Alexis; Schuerer, Stefanie; Lazar, Doris; Kaiser, Peggy

    2014-01-01

    ABSTRACT The only tuberculosis (TB) vaccine in use today, bacillus Calmette-Guérin (BCG), provides insufficient protection and can cause adverse events in immunocompromised individuals, such as BCGosis in HIV+ newborns. We previously reported improved preclinical efficacy and safety of the recombinant vaccine candidate BCG ΔureC::hly, which secretes the pore-forming listeriolysin O of Listeria monocytogenes. Here, we evaluate a second-generation construct, BCG ΔureC::hly Δpdx1, which is deficient in pyridoxine synthase, an enzyme that is required for biosynthesis of the essential cofactor vitamin B6. This candidate was auxotrophic for vitamin B6 in a concentration-dependent manner, as was its survival in vivo. BCG ΔureC::hly Δpdx1 showed markedly restricted dissemination in subcutaneously vaccinated mice, which was ameliorated by dietary supplementation with vitamin B6. The construct was safer in severe combined immunodeficiency mice than the parental BCG ΔureC::hly. A prompt innate immune response to vaccination, measured by secretion of interleukin-6, granulocyte colony-stimulating factor, keratinocyte cytokine, and macrophage inflammatory protein-1α, remained independent of vitamin B6 administration, while acquired immunity, notably stimulation of antigen-specific CD4 T cells, B cells, and memory T cells, was contingent on vitamin B6 administration. The early protection provided by BCG ΔureC::hly Δpdx1 in a murine Mycobacterium tuberculosis aerosol challenge model consistently depended on vitamin B6 supplementation. Prime-boost vaccination increased protection against the canonical M. tuberculosis H37Rv laboratory strain and a clinical isolate of the Beijing/W lineage. We demonstrate that the efficacy of a profoundly attenuated recombinant BCG vaccine construct can be modulated by external administration of a small molecule. This principle fosters the development of safer vaccines required for immunocompromised individuals, notably HIV+ infants. PMID:24895310

  15. Thermoadaptation-Directed Enzyme Evolution in an Error-Prone Thermophile Derived from Geobacillus kaustophilus HTA426

    PubMed Central

    Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi

    2014-01-01

    Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes. PMID:25326311

  16. Thermoadaptation-directed enzyme evolution in an error-prone thermophile derived from Geobacillus kaustophilus HTA426.

    PubMed

    Suzuki, Hirokazu; Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi

    2015-01-01

    Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  18. Decon Green (trademark)

    DTIC Science & Technology

    2004-11-17

    Bacillus stearothermophilus spores, a species considered extremely resistant to peroxide sterilants . As seen for Decon GreenTM Classic, New Decon...Additional data is given for Bacillus anthracis and Bacillus stearothermophilus demonstrating that Decon GreenTM is also effective against bio...GreenTM retains excellent bio decon efficacy. TABLE 4. Decontamination of Bacillus stearothermophilus by New Decon GreenTM Challenge CFU Recovered

  19. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  20. 40 CFR 180.1209 - Bacillus subtilis strain QST 713; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis strain QST 713... RESIDUES IN FOOD Exemptions From Tolerances § 180.1209 Bacillus subtilis strain QST 713; exemption from the... the microbial pesticide Bacillus subtilis strain QST 713 when used in or on all food commodities. [65...

  1. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from post...

  2. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  3. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  4. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  5. Towards the fluorogenic detection of peroxide explosives through host-guest chemistry.

    PubMed

    Almenar, Estefanía; Costero, Ana M; Gaviña, Pablo; Gil, Salvador; Parra, Margarita

    2018-04-01

    Two dansyl-modified β-cyclodextrin derivatives ( 1 and 2 ) have been synthesized as host-guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP.

  6. Genetically encoded pH sensor for tracking surface proteins through endocytosis.

    PubMed

    Grover, Anmol; Schmidt, Brigitte F; Salter, Russell D; Watkins, Simon C; Waggoner, Alan S; Bruchez, Marcel P

    2012-05-14

    Traffic cam: a tandem dye prepared from a FRET acceptor and a fluorogenic donor functions as a cell surface ratiometric pH indicator, which upon internalization serves to follow protein trafficking during endocytosis. This sensor was used to analyze agonist-dependent internalization of β(2)-adrenergic receptors. It was also used as a surrogate antigen to reveal direct surface-to-endosome antigen transfer between dendritic cells (not shown). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    NASA Astrophysics Data System (ADS)

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-03-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.

  8. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and "turn on" fluorescent sensors for fluoride anion sensing employing hydrogen bonding.

    PubMed

    Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A new pyrene based highly sensitive fluorescence probe for copper(II) and fluoride with living cell application.

    PubMed

    Goswami, Shyamaprosad; Chakraborty, Shampa; Paul, Sima; Halder, Sandipan; Panja, Sukanya; Mukhopadhyay, Subhra Kanti

    2014-05-21

    A new pyrene based fluorescence probe has been synthesized for fluorogenic detection of Cu(2+) in acetonitrile-aqueous media (7 : 3 CH3CN-HEPES buffer, v/v, at pH 7.5) with bioimaging in both prokaryotic (Candida albicans cells) and eukaryotic (Tecoma stans pollen cells) living cells. The anion recognition properties of the sensor have also been studied in acetonitrile by fluorescence methods which show remarkable sensitivity toward fluoride over other anions examined.

  10. Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola) and characterization of osmoregulatory genes in halophilic Bacilli.

    PubMed

    Mukhtar, Salma; Mehnaz, Samina; Mirza, Muhammad Sajjad; Mirza, Babur Saeed; Malik, Kauser Abdulla

    2018-04-27

    Salinity is one of the major abiotic stresses, with a total of 3% of the world's land mass being affected by salinity. Approximately 6.3 million hectares of land in Pakistan is affected by salinity to varying degree and most of the areas are arid to semiarid with low annual precipitation. The aim of present study is to identify and characterize Bacillus and Bacillus-derived bacterial genera from the rhizospheric and non-rhizospheric soil samples from Khewra Salt Mine, Pakistan by using culture-independent as well as culture-dependent methods. Seven Bacillus-like bacterial genera Bacillus, Halobacillus, Virgibacillus, Brevibacillus, Paenibacillus, Tumebacillus and Lysinibacillus were detected by using pyrosequencing analysis whereas only four genera Bacillus, Halobacillus, Oceanobacillus and Virgibacillus were identified by culture-dependent methods. Most of Bacillus-like isolates identified in this study were moderately halophilic, alkaliphilic and mesophilic bacteria and were considered as a good source of hydrolytic enzymes because of their ability to degrade proteins, carbohydrates and lipids. Eight Bacillus-like strains from the genera Bacillus, Halobacillus, Oceanobacillus and Virgibacillus showed positive results for the presence of ectABC gene cluster (ectoine), six strains could synthesize betaine from choline and six strains tested positive for the synthesis of proline from either glutamate or ornithine by using proline dehydrogenase enzyme.

  11. 77 FR 73934 - Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of a Tolerance for Bacillus subtilis Strain QST 713 To Include Residues of Bacillus subtilis Strain QST 713 Variant Soil... in or on all food commodities by including residues of Bacillus subtilis strain QST 713 variant soil...

  12. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  13. 40 CFR 180.1111 - Bacillus subtilis GB03; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis GB03; exemption from... FOOD Exemptions From Tolerances § 180.1111 Bacillus subtilis GB03; exemption from the requirement of a tolerance. The biofungicide Bacillus subtilis GB03 is exempted from the requirement of a tolerance in or on...

  14. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    PubMed Central

    Su, Fei; Tao, Fei; Tang, Hongzhi

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans. PMID:23105047

  15. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    PubMed

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  16. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Cry1F protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.504 Bacillus thuringiensis Cry1F protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry1F protein in the food...

  17. Inhibitory effects of spice essential oils on the growth of Bacillus species.

    PubMed

    Ozcan, Mehmet Musa; Sağdiç, Osman; Ozkan, Gülcan

    2006-01-01

    A series of essential oils of 11 Turkish plant spices [black thyme, cumin, fennel (sweet), laurel, marjoram, mint, oregano, pickling herb, sage, savory, and thyme], used in foods mainly for their flavor, aromas, and preservation, in herbal tea, in alternative medicines, and in natural therapies, were screened for antibacterial effects at 1:50, 1:100, 1:250, and 1:500 dilutions by the paper disc diffusion method against six Bacillus species (Bacillus amyloliquefaciens ATCC 3842, Bacillus brevis FMC 3, Bacillus cereus FMC 19, Bacillus megaterium DSM 32, Bacillus subtilis IMG 22, and B. subtilis var. niger ATCC 10). All of the tested essential oils (except for cumin) showed antibacterial activity against one or more of the Bacillus species used in this study. Generally, the essential oils at 1:50 and 1:100 levels were more effective. Only one essential oil (laurel) was not found effective against the tested bacteria. The bacterium most sensitive to all of the spice essential oils was B. amyloliquefaciens ATCC 3842. Based on the results of this study, it is likely that essential oils of some spices may be used as antimicrobial agents to prevent the spoilage of food products.

  18. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

    PubMed

    Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C

    2014-06-01

    Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    PubMed Central

    Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.

    2011-01-01

    Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187

  20. Re-examination of the taxonomic position of Bacillus silvestris Rheims et al. 1999 and proposal to transfer it to Solibacillus gen. nov. as Solibacillus silvestris comb. nov.

    PubMed

    Krishnamurthi, Srinivasan; Chakrabarti, Tapan; Stackebrandt, Erko

    2009-05-01

    Following the transfer of three of the six species enclosed in the original definition of rRNA group 2 of Bacillus to the genus Sporosarcina and two to Lysinibacillus, other species of this group, some of which were added later, still await taxonomic revision. In a recent publication, a set of 'core' characteristics was proposed for species to be included in the genus Bacillus (Kämpfer et al., 2006). Except for Bacillus silvestris, however, several or none of these properties are available for members of rRNA group 2. According to our analysis of data including the 'core' characteristics, Bacillus silvestris should not be a member of the genus Bacillus. We therefore propose the establishment of a new genus, Solibacillus gen. nov., and transfer Bacillus silvestris to this genus as Solibacillus silvestris comb. nov., with the type strain HR3-23(T) (=DSM 12223(T)=ATCC BAA-269(T)=CIP 106059(T)).

  1. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  2. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    Scanner Laser Mirror Cantilever Sample Probe Tip 16 cereus strain 569, and Bacillus globigii var. niger . Zolock determined that there wer...been used to measure the surface elasticities of a variety of microbial organisms including Pseudomonas putida, Bacillus subtilis, Aspergillus ...66:307-311 (2005). Zhao, Liming, David Schaefer, and Mark R. Marten. “Assessment of Elasticity and Topography of Aspergillus nidulans Spores via

  3. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  4. Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guérin ΔureC::hly Δpdx1 in mice.

    PubMed

    Gengenbacher, Martin; Vogelzang, Alexis; Schuerer, Stefanie; Lazar, Doris; Kaiser, Peggy; Kaufmann, Stefan H E

    2014-06-03

    The only tuberculosis (TB) vaccine in use today, bacillus Calmette-Guérin (BCG), provides insufficient protection and can cause adverse events in immunocompromised individuals, such as BCGosis in HIV(+) newborns. We previously reported improved preclinical efficacy and safety of the recombinant vaccine candidate BCG ΔureC::hly, which secretes the pore-forming listeriolysin O of Listeria monocytogenes. Here, we evaluate a second-generation construct, BCG ΔureC::hly Δpdx1, which is deficient in pyridoxine synthase, an enzyme that is required for biosynthesis of the essential cofactor vitamin B6. This candidate was auxotrophic for vitamin B6 in a concentration-dependent manner, as was its survival in vivo. BCG ΔureC::hly Δpdx1 showed markedly restricted dissemination in subcutaneously vaccinated mice, which was ameliorated by dietary supplementation with vitamin B6. The construct was safer in severe combined immunodeficiency mice than the parental BCG ΔureC::hly. A prompt innate immune response to vaccination, measured by secretion of interleukin-6, granulocyte colony-stimulating factor, keratinocyte cytokine, and macrophage inflammatory protein-1α, remained independent of vitamin B6 administration, while acquired immunity, notably stimulation of antigen-specific CD4 T cells, B cells, and memory T cells, was contingent on vitamin B6 administration. The early protection provided by BCG ΔureC::hly Δpdx1 in a murine Mycobacterium tuberculosis aerosol challenge model consistently depended on vitamin B6 supplementation. Prime-boost vaccination increased protection against the canonical M. tuberculosis H37Rv laboratory strain and a clinical isolate of the Beijing/W lineage. We demonstrate that the efficacy of a profoundly attenuated recombinant BCG vaccine construct can be modulated by external administration of a small molecule. This principle fosters the development of safer vaccines required for immunocompromised individuals, notably HIV(+) infants. Mycobacterium tuberculosis can synthesize the essential cofactor vitamin B6, while humans depend on dietary supplementation. Unlike the lipophilic vitamins A, D, and E, water-soluble vitamin B6 is well tolerated at high doses. We generated a vitamin B6 auxotroph of the phase II clinical tuberculosis vaccine candidate bacillus Calmette-Guérin ΔureC::hly. The next-generation candidate was profoundly attenuated compared to the parental strain. Adaptive immunity and protection in mice consistently depended on increased dietary vitamin B6 above the daily required dose. Control of vaccine efficacy via food supplements such as vitamin B6 could provide a fast track toward improved safety. Safer vaccines are urgently needed for HIV-infected individuals at high risk of adverse events in response to live vaccines. Copyright © 2014 Gengenbacher et al.

  5. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells.

    PubMed

    Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P

    2017-06-01

    We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.

  6. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  7. Identification of Bacillus Strains for Biological Control of Catfish Pathogens

    PubMed Central

    Ran, Chao; Carrias, Abel; Williams, Malachi A.; Capps, Nancy; Dan, Bui C. T.; Newton, Joseph C.; Kloepper, Joseph W.; Ooi, Ei L.; Browdy, Craig L.; Terhune, Jeffery S.; Liles, Mark R.

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×107 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (P<0.05). A similar challenge experiment conducted in Vietnam with four of the five Bacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture. PMID:23029244

  8. Effect of Hyperbaric Carbon Dioxide on Spores and Vegetative Cells of Bacillus stearothermophilus

    DTIC Science & Technology

    1994-05-01

    BACILLUS STEAROTHERMOPHILUS DTIC ELECTE JUN131994 D By Chester T. Roskey* Anthony Sikes *Framingham State College Framingham, MA 01701 94-18004...Spores and Vegetative Cells of Bacillus Stearothermophilus 6. AUTHOR(S) Dr. Chester T. Roskey* & Dr. Anthony Sikes 5 FUNDING NUMBERS PR: TB040...SUBJECT TERMS BACILLUS STEAROTHERMOPHILUS THERM0PHILIC BACTERIA THERM0PHILIC SPOILAGE 15. NUMBER OF PAGES 39 16 PRICE CODE 17. SECURITY

  9. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1973-01-01

    The project to evaluate thermal sterilization for unmanned landers is reported. A temperature controlled oven with a nitrogen gas supply containing a known concentration of water is discussed. The studies show that bacillus lentus, bacillus brevis, bacillus coagulans, atypical bacillus spp., and actinomycete are isolated heat survivors. The thermal resistance is given for naturally occurring airborne bacterial spores collected on exposed teflon ribbons.

  10. Capsule Depolymerase Overexpression Reduces Bacillus anthracis Virulence

    DTIC Science & Technology

    2010-01-01

    protein that autocatalytically forms a heterodimer consisting of 35 kDa and 15 kDa subunits. CapD shares 32 % identity with the Bacillus subtilis GGT and 35...Immun 49, 291–297. Kimura, K., Tran, L. S., Uchida, I. & Itoh, Y. (2004). Characterization of Bacillus subtilis gamma-glutamyltransferase and its...Capsule depolymerase overexpression reduces Bacillus anthracis virulence Angelo Scorpio,3 Donald J. Chabot, William A. Day,4 Timothy A. Hoover and

  11. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant.

    PubMed

    Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana R; Lobo-da-Cunha, Alexandre; Spröer, Cathrin; Schumann, Peter; Nunes, Olga C; Manaia, Célia M

    2012-01-01

    A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22(T), was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15-37 °C, at pH 7-10 and with <8% (w/v) NaCl (optimum growth: 30 °C, pH 7-8 and 1-3% NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22(T) was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162(T) (98.5% 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2(T) (97.9%), Bacillus infantis SMC 4352-1(T) (97.4%), Bacillus firmus IAM 12464(T) (96.8%) and Bacillus muralis LMG 20238(T) (96.8%). DNA-DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22(T) from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22(T) (=DSM 23494(T)=NRRL B-59432(T)=LMG 25783(T)).

  12. Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy.

    PubMed

    Dixon, P B; Hahn, D W

    2005-01-15

    The detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy (LIBS) is investigated using aerosolized Bacillus spores. Spores of Bacillus atrophaeous, Bacillus pumilus, and Bacillus stearothemophilus were introduced into an aerosol flow stream in a prescribed manner such that single-particle LIBS detection was realized. Bacillus spores were successfully detected based on the presence of the 393.4- and 396.9-nm calcium atomic emission lines. Statistical analyses based on the aerosol number density, the LIBS-based spore sampling frequency, and the distribution of the resulting calcium mass loadings support the conclusion of individual spore detection within single-shot laser-induced plasmas. The average mass loadings were in the range of 2-3 fg of calcium/Bacillus spore, which corresponds to a calcium mass percentage of approximately 0.5%. While individual spores were detected based on calcium emission, the resulting Bacillus spectra were free from CN emission bands, which has implications for the detection of elemental carbon, and LIBS-based detection of single spores based on the presence of magnesium or sodium atomic emission was unsuccessful. Based on the current instrumental setup and analyses, real-time LIBS-based detection and identification of single Bacillus spores in ambient (i.e., real life) conditions appears unfeasible.

  13. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.

    PubMed

    Lin, Johnson; Madida, Bafana B

    2015-10-01

    The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r =  0.64; p < 0.05). The addition of nitrate and Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases.

    PubMed

    Cao, Haojie; van Heel, Auke J; Ahmed, Hifza; Mols, Maarten; Kuipers, Oscar P

    2017-04-04

    Bacillus subtilis is widely used as a cell factory for numerous heterologous proteins of commercial value and medical interest. To explore the possibility of further enhancing the secretion potential of this model bacterium, a library of engineered strains with modified cell surface components was constructed, and the corresponding influences on protein secretion were investigated by analyzing the secretion of α-amylase variants with either low-, neutral- or high- isoelectric points (pI). Relative to the wild-type strain, the presence of overall anionic membrane phospholipids (phosphatidylglycerol and cardiolipin) increased dramatically in the PssA-, ClsA- and double KO mutants, which resulted in an up to 47% higher secretion of α-amylase. Additionally, we demonstrated that the appropriate net charge of secreted targets (AmyTS-23, AmyBs and AmyBm) was beneficial for secretion efficiency as well. In B. subtilis, the characteristics of cell membrane phospholipid bilayer and the pIs of heterologous α-amylases appear to be important for their secretion efficiency. These two factors can be engineered to reduce the electrostatic interaction between each other during the secretion process, which finally leads to a better secretion yield of α-amylases.

  15. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis.

    PubMed

    Sloma, A; Rufo, G A; Theriault, K A; Dwyer, M; Wilson, S W; Pero, J

    1991-11-01

    We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation.

  16. Monitoring biological aerosols using UV fluorescence

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  17. Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM

    PubMed Central

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-01-01

    Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering. PMID:21533054

  18. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  19. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    PubMed

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  20. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  1. Proteomics analysis of altered proteins in kidney of mice with aristolochic acid nephropathy using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method.

    PubMed

    Lin, Chia-En; Chang, Wen-Shin; Lee, Jen-Ai; Chang, Ting-Ya; Huang, Yu-Shen; Hirasaki, Yoshiro; Chen, Hung-Shing; Imai, Kazuhiro; Chen, Shih-Ming

    2018-03-01

    Aristolochic acid (AA) causes interstitial renal fibrosis, called aristolochic acid nephropathy (AAN). There is no specific indicator for diagnosing AAN, so this study aimed to investigate the biomarkers for AAN using a proteomics method. The C3H/He female mice were given ad libitum AA-distilled water (0.5 mg/kg/day) and distilled water for 56 days in the AA and normal groups, respectively. The AA-induced proteins in the kidney were investigated using a proteomics study, including fluorogenic derivatization with 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, followed by high-performance liquid chromatography analysis and liquid chromatography tandem mass spectrometry with a MASCOT database searching system. There were two altered proteins, thrombospondin type 1 (TSP1) and G protein-coupled receptor 87 (GPR87), in the kidney of AA-group mice on day 56. GPR87, a tumorigenesis-related protein, is reported for the first time in the current study. The renal interstitial fibrosis was certainly induced in the AA-group mice under histological examination. Based on the results of histological examination and the proteomics study, this model might be applied to AAN studies in the future. TSP1 might be a novel biomarker for AAN, and the further role of GPR87 leading to AA-induced tumorigenesis should be researched in future studies. Copyright © 2017 John Wiley & Sons, Ltd.

  2. [Development of a Fluorescence Probe for Live Cell Imaging].

    PubMed

    Shibata, Aya

    2017-01-01

     Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  3. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues.

    PubMed

    Collot, Mayeul; Fam, Tkhe Kyong; Ashokkumar, Pichandi; Faklaris, Orestis; Galli, Thierry; Danglot, Lydia; Klymchenko, Andrey S

    2018-04-25

    Lipid droplets (LDs) are intracellular lipid-rich organelles that regulate the storage of neutral lipids and were recently found to be involved in many physiological processes, metabolic disorders, and diseases including obesity, diabetes, and cancers. Herein we present a family of new fluorogenic merocyanine fluorophores based on an indolenine moiety and a dioxaborine barbiturate derivative. These so-called StatoMerocyanines (SMCy) fluoresce from yellow to the near-infrared (NIR) in oil with an impressive fluorescence enhancement compared to aqueous media. Additionally, SMCy display remarkably high molar extinction coefficients (up to 390 000 M -1 cm -1 ) and high quantum yield values (up to 100%). All the members of this new family specifically stain the LDs in live cells with very low background noise. Unlike Nile Red, a well-known lipid droplet marker, SMCy dyes possess narrow absorption and emission bands in the visible, thus allowing multicolor imaging. SMCy proved to be compatible with fixation and led to high-quality 3D images of lipid droplets in cells and tissues. Their high brightness allowed efficient tissue imaging of adipocytes and circulating LDs. Moreover their remarkably high two-photon absorption cross-section, especially SMCy5.5 (up to 13 300 GM), as well as their capacity to efficiently fluoresce in the NIR region led to two-photon multicolor tissue imaging (liver). Taking advantage of the available color palette, lipid droplet exchange between cells was tracked and imaged, thus demonstrating intercellular communication.

  4. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces

    PubMed Central

    Szent-Gyorgyi, Chris; Stanfield, Robyn L.; Andreko, Susan; Dempsey, Alison; Ahmed, Mushtaq; Capek, Sara; Waggoner, Alan; Wilson, Ian A.; Bruchez, Marcel P.

    2013-01-01

    We report that a symmetric small molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* Fluorogen Activating Protein (FAP) is a VL domain that binds malachite green dye (MG) to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity determining regions (CDRs) are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1,000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high affinity protein tags and capture reagents. PMID:23978698

  5. In Vitro Fluorogenic Real-time Assay of the Repair of Oxidative DNA Damage

    PubMed Central

    Edwards, Sarah K.; Ono, Toshikazu; Wang, Shenliang; Jiang, Wei; Franzini, Raphael M.; Jung, Jong Wha; Chan, Ke Min; Kool, Eric T.

    2015-01-01

    The repair of oxidative damage to DNA is essential to avoidance of mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a chief source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme. However, measuring the activity of the enzyme typically requires laborious gel-based measurements of radiolabeled DNAs. Here we report on the design and properties of fluorogenic probes that directly report on OGG1 (and bacterial homologue Fpg) activity in real time as the oxidized base is excised. The probes are short modified DNA oligomers containing fluorescent DNA bases and are designed to utilize the damaged DNA base itself as a fluorescence quencher. Screening of combinations of fluorophores and 8-oxoguanine revealed two fluorophores, pyrene and tCo, that are strongly quenched by the damaged base. We tested 42 potential probe designs containing these fluorophores, and we found an optimized probe OGR1 that yields a 60-fold light-up signal in vitro with OGG1 and Fpg, and can report on oxidative repair activity in mammalian cell lysate and with bacterial cells overexpressing a repair enzyme. Such probes may be useful in quantifying enzyme activity and performing competitive inhibition assays. PMID:26073452

  6. A Fluorescent Hypochlorite Probe Built on 1,10-Phenanthroline Scaffold and its Ion Recognition Features.

    PubMed

    Algi, Melek Pamuk

    2016-03-01

    In this study, the synthesis of 7-((Hydroxyimino)methyl)-1,10-phenanthroline-4-carbaldehyde oxime (1) in two steps starting from 4,7-dimethyl-1,10-phenanthroline (2) is reported. It is found that compound 1 can be used as a fluorogenic probe for the detection of hypochlorite ion in aqueous solution. NMR and mass spectral analysis indicate that probe 1 undergoes a chemical transformation through its oxime units upon treatment with hypochlorite, which results in a remarkable enhancement of the emission intensity. Also, metal ion recognition properties of probe 1 is investigated. It is noted that compound 1 is responsive to Zn(2+), Cd(2+), Ni(2+) and Cu(2+) metal ions, which reduced the emission intensity under identical conditions. Graphical Abstract The design, synthesis and properties of a new fluorescent hypochlorite probe is described. It is found that probe 1 immediately undergoes an oxidation reaction with NaClO through its oxime units in 0.1 M Na2CO3-NaHCO3 buffer containing DMF (pH = 9.0, 30:1 v/v) at room temperature, which resulted in a remarkable enhancement of the emission intensity. It is noteworthy that this novel probe 1 is highly selective to hypochlorite ion when compared to some other ROS and anions. On the other hand, probe 1 also induces turn-off fluorogenic responses to metal ions such as Zn(2+), Cd(2+), Ni(2+) and Cu(2+) ions under identical conditions.

  7. Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.

    PubMed

    Lucchi, Naomi W; Narayanan, Jothikumar; Karell, Mara A; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J; Hill, Vincent; Udhayakumar, Venkatachalam

    2013-01-01

    There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.

  8. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    PubMed Central

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  9. [Screening and antibacterial function of Bacillus amyloliquefaciens X030].

    PubMed

    He, Hao; Zhu, Yingling; Chi, Liqing; Zhao, Zizhao; Wang, Ting; Zuo, Mingxing; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Ding, Xuezhi

    2015-09-04

    We isolated 339 bacillus strains from 72 soil samples all over the country, then purified their antimicrobial compounds and studied the antibacterial activity, to enrich bacillus resources and explore their second metabolites. A bacillus strain with strong antibacterial activity was selected by dilution plate and water bath heating from a soil sample from a peanut plantation in Henan Province; this strain was identified according to morphological observation, physiological and biochemical characteristics, and consequences of 16S rRNA homologous analysis. Antibacterial compound from the identified strain, Bacillus amyloliquefaciens X030, was separated and purified by acetone precipitation, Sephadex chromatography, C18 reverse phase column chromatography. Its molecular weight was analyzed by LC-MS/MS. The antibacterial activity was characterized by disc diffusion and plate two-way cultivation. Bacillus amyloliquefaciens was isolated that not only has antibacterial activity against Staphylococcus aureus, Candida albican and Saccharomycetes; but also against Pyriculariaoryzae, Chili pointed cell anthrax, Gloeosporium eriobotryae speg and Phytophthora parasitica. The compound was confirmed as polypeptide. Bacillus amyloliquefaciens X030 can produce a polypeptide that inhibits pathogenic bacteria and plant pathogenic fungi.

  10. Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting.

    PubMed

    Otlewska, Anna; Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus belong to the B. cereus group. The last three species are characterized by different phenotype features and pathogenicity spectrum, but it has been shown that these species are genetically closely related. The macrorestriction analysis of the genomic DNA with the NotI enzyme was used to generate polymorphism of restriction profiles for 39 food-borne isolates (B. cereus, B. mycoides) and seven reference strains (B. mycoides, B. thuringiensis, B. weihenstephanensis, and B. cereus). The PFGE method was applied to differentiate the examined strains of the B. cereus group. On the basis of the unweighted pair group method with the arithmetic mean method and Dice coefficient, the strains were divided into five clusters (types A-E), and the most numerous group was group A (25 strains). A total of 21 distinct pulsotypes were observed. The RFLP-PFGE analysis was successfully used for the differentiation and characterization of B. cereus and B. mycoides strains isolated from different food products. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    PubMed

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (<3-kDa) with MALDI-TOF mass spectrometry. Caseicin A (IKHQGLPQE) and caseicin B (VLNENLLR), two previously characterized antimicrobial peptides, were identified in the fermentates of both Bacillus cereus and Bacillus thuringiensis isolates. The caseicin peptides were subsequently purified by RP-HPLC and antimicrobial assays indicated that the peptides maintained the previously identified inhibitory activity against the infant formula pathogen Cronobacter sakazakii. We report a new method using Bacillus sp. to generate two previously characterized antimicrobial peptides from casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  12. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.

    PubMed

    Wu, Pengfei; Wang, Genyu; Wang, Gehua; Børresen, Børre Tore; Liu, Hongjuan; Zhang, Jianan

    2016-01-14

    One major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06. Compared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase. The characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic environment. During fermentation process, the high ratio of Clostridium and low ratio of Bacillus composition indicated that this symbiotic system was an effective and easily controlled cultivation model for ABE fermentation under microaerobic conditions.

  13. Functional Assignment of YvgO, a Novel Set of Purified and Chemically Characterized Proteinaceous Antifungal Variants Produced by Bacillus thuringiensis SF361

    PubMed Central

    Manns, David C.; Churey, John J.

    2012-01-01

    This study reports a novel class of antifungal protein derived from bacterial origin. Bacillus thuringiensis SF361, the strain also responsible for producing the novel bacteriocin thurincin H, exhibits broad antifungal activity against select members of several fungal genera, including Aspergillus, Byssochlamys, and Penicillium, as well as the pathogenic yeast Candida albicans. Optimal antifungal production and secretion were observed after-log phase growth when incubated at 37°C in a carbohydrate-free growth medium. High-performance liquid chromatography purification was performed after pH-selective ammonium sulfate precipitation and size-exclusion chromatography. Intact mass analysis and peptide mass fingerprinting identified the 13,484-Da protein to be a mass homolog to the YvgO protein construct sequenced from Bacillus cereus AH 1134. Further analysis via amino-terminal sequencing also revealed the existence of four distinct yet equally efficacious YvgO variants differing only within the first four N-terminal residues. YvgO was found to be remarkably stable, maintaining its antifungal activity under a wide pH and temperature range. When assayed against the toxigenic species Byssochlamys fulva H25, the selected primary filamentous fungal indicator, the MIC was estimated to be 1.5 ppm. Candida albicans 3153 was more resistant, exhibiting MICs between 25 and 800 ppm, depending on growth conditions. YvgO is unique among antifungals, showing no known sequential or functional homology to the typical classes of antifungal proteins, including common membrane-acting agents such as cellulases and glucanases. Due to its activity against an array of pathogenic and spoilage fungi, the potentials for clinical, agricultural, and food-processing applications are encouraging. PMID:22307285

  14. Development of strain-specific PCR primers for quantitative detection of Bacillus mesentericus strain TO-A in human feces.

    PubMed

    Sato, Naoki; Seo, Genichiro; Benno, Yoshimi

    2014-01-01

    Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.

  15. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    PubMed

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    PubMed

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  17. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat.

    PubMed

    Zhou, Bin; Wirsching, Peter; Janda, Kim D

    2002-04-16

    A naive, human single-chain Fv (scFv) phage-display library was used in bio-panning against live, native spores of Bacillus subtilis IFO 3336 suspended in solution. A direct in vitro panning and enzyme-linked immunosorbent assay-based selection afforded a panel of nine scFv-phage clones of which two, 5B and 7E, were chosen for further study. These two clones differed in their relative specificity and affinity for spores of B. subtilis IFO 3336 vs. a panel of spores from 11 other Bacillus species/strains. A variety of enzyme-linked immunosorbent assay protocols indicated these scFv-phage clones recognized different spore epitopes. Notably, some spore epitopes markedly changed between the free and microtiter-plate immobilized state as revealed by antibody-phage binding. An additional library selection procedure also was examined by constructing a Fab chain-shuffled sublibrary from the nine positive clones and by using a subtractive panning strategy to remove crossreactivity with B. licheniformis 5A24. The Fab-phage clone 52 was improved compared with 5B and was comparable to 7E in binding B. subtilis IFO 3336 vs. B. licheniformis 5A24, yet showed a distinctive crossreactivity pattern with other spores. We also developed a method to directly detect individual spores by using fluorescently labeled antibody-phage. Finally, a variety of "powders" that might be used in deploying spores of B. anthracis were examined for antibody-phage binding. The strategies described provide a foundation to discover human antibodies specific for native spores of B. anthracis that can be developed as diagnostic and therapeutic reagents.

  18. Screening of Peptide Libraries Against Protective Antigen of Bacillus Anthracis in a Disposable Microfluidic Cartridge

    DTIC Science & Technology

    2011-11-28

    New Reprint Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge W911NF-09-D-0001...against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge Report Title ABSTRACT See attached. Screening of Peptide...Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge Joshua M. Kogot1, Yanting Zhang2, Stephen J. Moore3

  19. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    DOEpatents

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  20. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  1. Model of two infectious diseases in nettle caterpillar population

    NASA Astrophysics Data System (ADS)

    Firdausi, F. Z.; Nuraini, N.

    2016-04-01

    Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.

  2. [Effect of fluoride on gut microflora of silkworm (Bombyx mori)].

    PubMed

    Li, Guannan; Xia, Xuejuan; Sendegeya, Parfait; Zhao, Huanhuan; Long, Yaohang; Zhu, Yong

    2015-07-04

    We examined the effect of fluoride on gut microflora of silkworm. After DNA extraction and PCR amplification, clone libraries of 16S rRNA gene fragment were constructed. Amplified ribosomal DNA restriction analysis (ARDRA) was performed by digestion of the 16S rRNA gene, and each unique restriction fragment polymorphism pattern was designated as an operational taxonomic unit (OTU). A total of 14 OTUs were identified from intestinal samples of both T6 and 734. Phylogenetic trees of bacterial 16S rRNA nucleotide sequences were constructed and analyzed. Furthermore, the dominant bacteria were studied by the nested polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DDGE) technology. After fluorosis, the flora of Enterococcus and Bacillus reduced. However, the flora of Staphylococcus increased. Fluoride can destroy the balance of microflora in the gut of silkworm by changing the bacteria diversity and proportion, which has bigger effect to 734 than T6.

  3. Construction and characterization of a fusion β-1,3-1,4-glucanase to improve hydrolytic activity and thermostability.

    PubMed

    Sun, Juntao; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Dai, Yixing

    2011-11-01

    A new fusion gene (Bgl-licMB), encoding β-1,3-1,4-glucanase both from Bacillus amyloliquefaciens (Bgl) and Clostridium thermocellum (licMB), was constructed via end-to-end fusion and expressed in Escherichia coli to improve hydrolytic activity and thermostability of β-1,3-1,4-glucanase. The results of enzymatic properties showed that the catalytic efficiency (K(cat)/K(m)) of the fusion enzyme for oat β-glucan was 2.7 and 20-fold higher than that of the parental Bgl and licMB, respectively, and that the fusion enzyme can retain more than 50% of activity following incubation at 80°C for 30 min, whereas the residual activities of Bgl and licMB were both less than 30%. These properties make this particular β-1,3-1,4-glucanase a good candidate for application in brewing and animal-feed industries.

  4. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives

    PubMed Central

    Elshaghabee, Fouad M. F.; Rokana, Namita; Gulhane, Rohini D.; Sharma, Chetan; Panwar, Harsh

    2017-01-01

    Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration. PMID:28848511

  5. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    PubMed

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P < 0.01), MCP production (P < 0.01), and tended to elevate total VFA (P = 0.07), but decreased the ratio of acetate and propionate (P < 0.01). Autoclaved Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration.

  6. Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions.

    PubMed

    Zhou, Ziyao; Zhou, Xiaoxiao; Zhong, Zhijun; Wang, Chengdong; Zhang, Hemin; Li, Desheng; He, Tingmei; Li, Caiwu; Liu, Xuehan; Yuan, Hui; Ji, Hanli; Luo, Yongjiu; Gu, Wuyang; Fu, Hualin; Peng, Guangneng

    2014-12-01

    Bacillus group is a prevalent community of Giant Panda's intestinal flora, and plays a significant role in the field of biological control of pathogens. To understand the diversity of Bacillus group from the Giant Panda intestine and their functions in maintaining the balance of the intestinal microflora of Giant Panda, this study isolated a significant number of strains of Bacillus spp. from the feces of Giant Panda, compared the inhibitory effects of these strains on three common enteric pathogens, investigated the distributions of six universal antimicrobial genes (ituA, hag, tasA, sfp, spaS and mrsA) found within the Bacillus group by PCR, and analyzed the characterization of antimicrobial gene distributions in these strains using statistical methods. The results suggest that 34 strains of Bacillus spp. were isolated which has not previously been detected at such a scale, these Bacillus strains could be classified into five categories as well as an external strain by 16S rRNA; Most of Bacillus strains are able to inhibit enteric pathogens, and the antimicrobial abilities may be correlated to their categories of 16S rRNA; The detection rates of six common antimicrobial genes are between 20.58 %(7/34) and 79.41 %(27/34), and genes distribute in three clusters in these strains. We found that the antimicrobial abilities of Bacillus strains can be one of the mechanisms by which Giant Panda maintains its intestinal microflora balance, and may be correlated to their phylogeny.

  7. A biosensor platform for rapid detection of E. coli in drinking water.

    PubMed

    Hesari, Nikou; Alum, Absar; Elzein, Mohamad; Abbaszadegan, Morteza

    2016-02-01

    There remains a need for rapid, specific and sensitive assays for the detection of bacterial indicators for water quality monitoring. In this study, a strategy for rapid detection of Escherichia coli in drinking water has been developed. This strategy is based on the use of the substrate 4-methylumbelliferyl-β-d-glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-d-glucuronidase (GUD) enzyme to yield a fluorogenic 4-methylumbelliferone (4-MU) product that can be quantified and related to the number of E. coli cells present in water samples. In this study, the detection time required for the biosensor response ranged between 20 and 120 min, depending on the number of bacteria in the sample. This approach does not need extensive sample processing with a rapid detection capability. The specificity of the MUG substrate was examined in both, pure cultures of non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus. Non-target substrates that included 4-methylumbelliferyl-β-d-galactopyranoside (MUGal) and l-leucine β-naphthylamide aminopeptidase (LLβ-N) were also investigated to identify nonspecific patterns of enzymatic activities in E. coli. GUD activity was found to be specific for E. coli and no further enzymatic activity was detected by other species. In addition, fluorescence assays were performed for the detection of E. coli to generate standard curves; and the sensitivity of the GUD enzymatic response was measured and repeatedly determined to be less than 10 E. coli cells in a reaction vial. The applicability of the method was tested by performing multiple fluorescence assays under pure and mixed bacterial flora in environmental samples. The results of this study showed that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. Furthermore, this system can be applied independently or in conjunction with other methods as a part of an array of biochemical assays in order to reliably detect E. coli in water. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Preparation of AN Electrode Modified with a Thermostable Enzyme BACILLUS Subtilis COTA by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshio; Yamada, Yohei; Motonaka, Junko; Yabutani, Tomoki; Sakuraba, Haruhiko; Yasuzawa, Mikito

    In this study, electrodeposition of thermostable enzyme Bacillus subtilis CotA, which is a laccase and has a bilirubin oxidase (BOD) activity, was investigated. The electrodeposition was operated in a mixture of Bacillus subtilis CotA in the PBS (pH 8.0) and TritonX-100 under applying potential (1100 mV vs. Ag/AgCl for 5 min.). The current response was measured by linear sweep voltammetry technique (LSV). The thermostable enzyme Bacillus subtilis CotA electrodeposited electrode was compared with a mesophile BOD electrodeposited electrode. As a result, the Bacillus subtilis CotA modified electrode showed better sensitivity and long-term stability than the mesophile BOD modified electrode.

  9. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    DTIC Science & Technology

    2012-11-01

    REPORT Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Bacillus subtilis spores with a gerP mutation triggered spore germination via nutrient germinant receptors (GRs) slowly, although this defect was...gerP, Bacillus subtilis , dipicolinic acid Xuan Y. Butzin, Anthony J. Troiano, William H. Coleman, Keren K. Griffiths, Christopher J. Doona, Florence E

  10. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    DTIC Science & Technology

    2016-09-01

    The Bacillus-inoculated NSM agar plates were incubated at 35°C for at least 48 h until Gram stains revealed the presence of > 90% Bacillus spores in...longer visible in Gram stained samples. Finally, centrifugation was used to remove soluble debris from the preparation and spore concentrations were...minutes post treatment. Gram Stains . Gram stains were used to track the emergence of vegetative Bacillus cells from spores. In this assay, bacterial

  11. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  12. The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi

    NASA Astrophysics Data System (ADS)

    Sutariati, G. A. K.; Bande, L. O. S.; Khaeruni, A.; Muhidin; Mudi, L.; Savitri, R. M.

    2018-02-01

    Research was aimed to evaluate the bio-invigoration techniques using Bacillus sp. CKD061 in improving seed viability and vigor of local upland rice. The research is arranged in factorial with completely randomized design (CRD). The different upland rice cultivars as first factor that consists of 11 cultivars, namely: Pae Tinangge, Pae Rowu, Pae Uwa, Pae Tanta, Pae Waburi-Buri, Pae Mornene, Pae Indalibana, Pae Lawarangka, Pae Huko, Pae Wagamba and Pae Momea. The second factor is the seed bio-invigoration technique, consists of 5 treatments, namely: without seed bio-invigoration (B0), NaCl + Bacillus sp. CKD061 (B1), KNO3 + Bacillus sp. CKD061 (B2), Ground burned-rice husk + Bacillus sp. CKD061 (B3), and Ground brick + Bacillus sp. CKD061 (B4). The results showed that seed bio-invigoration using Bacillus sp. CKD061 gave effect on the seed viability and vigor. Interaction of the seed bio-invigoration and upland rice cultivars were able to improve seed viability and vigor. Seed bio-invigoration ttreatment using ground brick + Bacillus sp. CKD061 was the best treatment, which could improve the viability and vigor of Pae Waburi-Buri, Pae Mornene and Pae Indalibana. The treatment increased vigor index by 133% in Pae Waburi-Buri and 127% in Pae Mornene, and Pae Indalibana compared with control.

  13. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties.

    PubMed

    Moura, M C; Trentin, D S; Napoleão, T H; Primon-Barros, M; Xavier, A S; Carneiro, N P; Paiva, P M G; Macedo, A J; Coelho, L C B B

    2017-10-01

    To evaluate the antibiofilm potential of water-soluble Moringa oleifera seed lectin (WSMoL) on Serratia marcescens and Bacillus sp. WSMoL inhibited biofilm formation by S. marcescens at concentrations lower than 2·6 μg ml -1 and impaired bacterial growth at higher concentrations, avoiding biofilm formation. For Bacillus sp., the lectin inhibited bacterial growth at all concentrations. The antibiofilm action of WSMoL is associated with damage to bacterial cells. WSMoL did not disrupt preformed S. marcescens biofilms but was able to damage cells inside them. On the other hand, the lectin reduced the number of cells in Bacillus sp. biofilm treated with it. WSMoL was able to control biofilm formation when immobilized on glass surface (116 μg cm -2 ), damaging S. marcescens cells and avoiding adherence of Bacillus sp. cells on glass. The Bacillus sp. isolate is member of Bacillus subtilis species complex and closely related to species of the conspecific 'amyloliquefaciens' group. WSMoL prevented biofilm development by S. marcescens and Bacillus sp. and the antibiofilm effect is also observed when the lectin is immobilized on glass. Taking together, our results provide support to the potential use of WSMoL for controlling biofilm formation by bacteria. © 2017 The Society for Applied Microbiology.

  14. Microbial Growth under Supercritical CO2

    PubMed Central

    Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.

    2015-01-01

    Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188

  15. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants

    PubMed Central

    Holman, Devin B.; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W.

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  16. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    PubMed

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  17. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.

    PubMed

    Fan, Haiyan; Ru, Jinjiang; Zhang, Yuanyuan; Wang, Qi; Li, Yan

    2017-06-01

    Apple ring rot, caused by Botryosphaeria dothidea, is a serious apple disease in China. Bacillus subtilis 9407 was isolated from healthy apples and showed strong antifungal activity against B. dothidea. To identify the primary antifungal compound of B. subtilis 9407 and determine its role in controlling apple ring rot, a transposon mutant library was constructed using TnYLB-1, and a mutant completely defective in antifungal activity was obtained. The gene inactivated in the antifungal activity mutant had 98.5% similarity to ppsB in B. subtilis subsp. subtilis str. 168, which encodes one of the five synthetases responsible for synthesizing fengycin. A markerless ppsB deletion mutant was constructed. Compared with the wild-type strain, lipopeptide crude extracts from ΔppsB showed almost no inhibition of B. dothidea mycelial growth. Furthermore, fengycin-like lipopeptides (retention factor 0.1-0.2) that exhibited antifungal activity against B. dothidea were observed in the wild-type strain by thin-layer chromatography (TLC)-bioautography analysis, but not in ΔppsB. Semipreparative reverse-phase high performance liquid chromatography (RP-HPLC) detection revealed that ΔppsB lost the ability to synthesize fengycin. These results suggest that ppsB is responsible for synthesizing fengycin and that fengycin is the major antifungal compound produced by B. subtilis 9407 against B. dothidea. Moreover, a biocontrol assay showed that the control efficacy of ΔppsB was reduced by half compared with the wild-type strain, indicating that fengycin plays a major role in controlling apple ring rot disease. This is the first report on the use of a B. subtilis strain as a potential biological control agent to control apple ring rot disease by the production of fengycin. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Plumbagin inhibits cytokinesis in Bacillus subtilis by inhibiting FtsZ assembly--a mechanistic study of its antibacterial activity.

    PubMed

    Bhattacharya, Anusri; Jindal, Bhavya; Singh, Parminder; Datta, Anindya; Panda, Dulal

    2013-09-01

    The assembly of FtsZ plays a central role in construction of the cytokinetic Z-ring that orchestrates bacterial cell division. A naturally occurring naphthoquinone, plumbagin, is known to exhibit antibacterial properties against several types of bacteria. In this study, plumbagin was found to perturb formation of the Z-ring in Bacillus subtilis 168 cells and to cause elongation of these cells without an apparent effect on nucleoid segregation, indicating that it may inhibit FtsZ assembly. Furthermore, it bound to purified B. subtilis FtsZ (BsFtsZ) with a dissociation constant of 20.7 ± 5.6 μM, and inhibited the assembly and GTPase activity of BsFtsZ in vitro. Interestingly, plumbagin did not inhibit either the assembly or GTPase activity of Escherichia coli FtsZ (EcFtsZ) in vitro. Using docking analysis, a putative plumbagin-binding site on BsFtsZ was identified, and the analysis indicated that hydrophobic interactions and hydrogen bonds predominate. Based on the in silico analysis, two variants of BsFtsZ, namely D199A and V307R, were constructed to explore the binding interaction of plumbagin and BsFtsZ. The effects of plumbagin on the assembly and GTPase activity of the variant BsFtsZ proteins in vitro indicated that the residues D199 and V307 may be involved in the binding of plumbagin to BsFtsZ. The results suggest that plumbagin inhibits bacterial proliferation by inhibiting the assembly of FtsZ, and provide insight into the binding site of plumbagin on BsFtsZ, which may help in the design of potent FtsZ-targeted antibacterial agents. © 2013 FEBS.

  19. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.

    PubMed

    Brautaset, Trygve; Jakobsen, Øyvind M; Degnes, Kristin F; Netzer, Roman; Naerdal, Ingemar; Krog, Anne; Dillingham, Rick; Flickinger, Michael C; Ellingsen, Trond E

    2010-07-01

    We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.

  20. Characterization of the interaction between the small RNA-encoded peptide SR1P and GapA from Bacillus subtilis.

    PubMed

    Gimpel, Matthias; Maiwald, Caroline; Wiedemann, Christoph; Görlach, Matthias; Brantl, Sabine

    2017-08-01

    Small regulatory RNAs (sRNAs) are the most prominent post-transcriptional regulators in all kingdoms of life. A few of them, e.g. SR1 from Bacillus subtilis, are dual-function sRNAs. SR1 acts as a base-pairing sRNA in arginine catabolism and as an mRNA encoding the small peptide SR1P in RNA degradation. Both functions of SR1 are highly conserved among 23 species of Bacillales. Here, we investigate the interaction between SR1P and GapA by a combination of in vivo and in vitro methods. De novo prediction of the structure of SR1P yielded five models, one of which was consistent with experimental circular dichroism spectroscopy data of a purified, synthetic peptide. Based on this model structure and a comparison between the 23 SR1P homologues, a series of SR1P mutants was constructed and analysed by Northern blotting and co-elution experiments. The known crystal structure of Geobacillus stearothermophilus GapA was used to model SR1P onto this structure. The hypothetical SR1P binding pocket, composed of two α-helices at both termini of GapA, was investigated by constructing and assaying a number of GapA mutants in the presence and absence of wild-type or mutated SR1P. Almost all residues of SR1P located in the two highly conserved motifs are implicated in the interaction with GapA. A critical lysine residue (K332) in the C-terminal α-helix 14 of GapA corroborated the predicted binding pocket.

  1. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China.

    PubMed

    Li, Xinfei; Zhao, Lin; Adam, Mohamed

    2016-04-15

    This study aims at constructing an efficient bacterial consortium to biodegrade crude oil spilled in China's Bohai Sea. In this study, TCOB-1 (Ochrobactrum), TCOB-2 (Brevundimonas), TCOB-3 (Brevundimonas), TCOB-4 (Bacillus) and TCOB-5 (Castellaniella) were isolated from Bohai Bay. Through the analysis of hydrocarbon biodegradation, TCOB-4 was found to biodegrade more middle-chain n-alkanes (from C17 to C23) and long-chain n-alkanes (C31-C36). TCOB-5 capable to degrade more n-alkanes including C24-C30 and aromatics. On the basis of complementary advantages, TCOB-4 and TCOB-5 were chosen to construct a consortium which was capable of degrading about 51.87% of crude oil (2% w/v) after 1week of incubation in saline MSM (3% NaCl). It is more efficient compared with single strain. In order to biodegrade crude oil, the construction of bacterial consortia is essential and the principle of complementary advantages could reduce competition between microbes. Copyright © 2016. Published by Elsevier Ltd.

  2. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.

    PubMed

    Yin, Liang; Meng, Zhan; Zhang, Yuxiao; Hu, Kaikai; Chen, Wuya; Han, Kaibin; Wu, Bao-Yan; You, Rong; Li, Chu-Hua; Jin, Ying; Guan, Yan-Qing

    2018-02-10

    Oral drug delivery has attracted substantial attention due to its advantages over other administration routes. Bacillus spores, as oral probiotic agents, are applied widely. In this paper, a novel Bacillus spore-based oral colon targeted carrier loading curcumin was developed for colon cancer treatment. Curcumin was linked covalently with the outer coat of Bacillus spore and folate, respectively (SPORE-CUR-FA). Bacillus spores are capable of delivering drugs to the colon area through gastric barrier, taking the advantage of its tolerance to the harsh conditions and disintegration of the outer coat of spores after germination in the colon. The drug release in vitro and in vivo of SPORE-CUR-FA was investigated. Results showed that SPORE-CUR-FA had the characteristics of colon-targeted drug release. Pharmacokinetic studies confirmed that Bacillus spore-based carriers could efficiently improve the oral bioavailability of curcumin. In vitro and in vivo anti-tumor studies showed that SPORE-CUR-FA had substantial ability for inhibiting colon cancer cells. These findings suggest that this Bacillus spore-based oral drug delivery system has a great potential for the treatment of colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Screening and identification of low temperature-adapted antagonistic Bacillus isolated from Kekexili region of West China and the analysis of the isolates lipopeptide compounds].

    PubMed

    Xie, Yong-Li; Gao, Xue-Wen

    2013-01-01

    The research and exploitation of special microbial resources in extreme environment is of scientific significance and has broad applied prospect. In this paper, eight Bacillus strains isolated from the vegetation rhizospheres in Kekexili extreme region of Qinghai Province and presented good growth status at low temperature 4 and 10 degrees C were identified. Through physiological and biochemical analysis, rep-PCR fingerprinting, and 16S rDNA and gyrB partial sequence analyses, the eight strains were identified as Bacillus mojavensis (3 isolates), Bacillus amyloliquefaciens (1 isolate), and Bacillus simplex (4 isolates). The agar plate antagonistic test showed that four of the isolates presented distinct antagonistic activity to Sclerotinia sclerotiorum and Xanthomonas oryzae pv. oryzae. The MALDI-TOF-MS analysis showed that the strain KKD1 (B. mojavensis) produced fengycin and surfactin, whereas the strain KKD2 (B. amyloliquefaciens) produced iturin A, surfactin and fengycin, suggesting that the bio-control efficacy of the Bacillus strains could be related to the synthesis and excretion of the antifungal lipopeptide compounds. This study provided the bacterial resources for the research and exploitation of low temperature-adapted Bacillus bio-fertilizers and bio-pesticides.

  4. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  5. Towards the fluorogenic detection of peroxide explosives through host–guest chemistry

    PubMed Central

    Almenar, Estefanía; Costero, Ana M.; Gil, Salvador; Parra, Margarita

    2018-01-01

    Two dansyl-modified β-cyclodextrin derivatives (1 and 2) have been synthesized as host–guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP. PMID:29765646

  6. Molecular Modulation of Inhibitors of Apoptosis as a Novel Approach for Radiosensitization of Human Prostate Cancer

    DTIC Science & Technology

    2006-11-01

    6 well plate at the concentration of 2X105/ml, then exposed by SH130 (10 uM) with or without the pan-caspase inhibitor zVAD (2.5 uM) ( Biovision ...treated with SH- 130 and radiation. DU-145 cell were treated as described in Figure 7. Cells were lysed by the lysis buffer ( Biovision ) as indicated...Total extracted proteins were determined and normalized, and then reacted with fluorogenic substrates ( Biovision , DEVD-AFC and LEHD- AFC for Caspase

  7. Fluorogenic Substrate Detection of Viable Intracellular and Extracellular Pathogenic Protozoa

    NASA Astrophysics Data System (ADS)

    Jackson, Peter R.; Pappas, Michael G.; Hansen, Brian D.

    1985-01-01

    Viable Leishmania promastigotes and amastigotes were detected by epifluorescence microscopy with fluorescein diacetate being used to mark living parasites and the nucleic acid-binding compound ethidium bromide to stain dead cells. This procedure is superior to other assays because it is faster and detects viable intracellular as well as extracellular Leishmania. Furthermore, destruction of intracellular pathogens by macrophages is more accurately determined with fluorescein diacetate than with other stains. The procedure may have applications in programs to develop drugs and vaccines against protozoa responsible for human and animal disease.

  8. RNA fluorescence with light-up aptamers

    NASA Astrophysics Data System (ADS)

    Ouellet, Jonathan

    2016-06-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way.

  9. In silico design, synthesis, and assays of specific substrates for proteinase 3: influence of fluorogenic and charged groups.

    PubMed

    Narawane, Shailesh; Budnjo, Adnan; Grauffel, Cédric; Haug, Bengt Erik; Reuter, Nathalie

    2014-02-13

    Neutrophil serine proteases are specific regulators of the immune response, and proteinase 3 is a major target antigen in antineutrophil cytoplasmic antibody-associated vasculitis. FRET peptides containing 2-aminobenzoic acid (Abz) and N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) as fluorophore and quencher groups, respectively, have been widely used to probe proteases specificity. Using in silico design followed by enzymatic assays, we show that Abz and EDDnp significantly contribute to substrate hydrolysis by PR3. We also propose a new substrate specific for PR3.

  10. BOOK REVIEW – BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE BACILLUS THURINGIENSIS

    EPA Science Inventory

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  11. Improving the selection efficiency of the counter-selection marker pheS* for the genetic engineering of Bacillus amyloliquefaciens.

    PubMed

    Kharchenko, Maria S; Teslya, Petr N; Babaeva, Maria N; Zakataeva, Natalia P

    2018-05-01

    Bacillus subtilis pheS was genetically modified to obtain a counter-selection marker with high selection efficiency in Bacillus amyloliquefaciens. The application of the new replication-thermosensitive integrative vector pNZTM1, containing this marker, pheS BsT255S/A309G , with a two-step replacement recombination procedure provides an effective tool for the genetic engineering of industrially important Bacillus species. Copyright © 2018. Published by Elsevier B.V.

  12. Genetic and Physiological Studies of Bacillus anthracis Related to Development of an Improved Vaccine

    DTIC Science & Technology

    1987-07-01

    nontransformable Bacillus species such as B. anthracis. Our results suggest that plasmid pLS20 of Bacillus subtilis ( natto ), which promotes transfer of the...mobilizing pBC16, pLS20 mediates transfer of the B. subtills ( natto ) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. To facilitate direct...and (v) transformation of B. cereus and B. anthracis with plasmid DNA. The 55-kb plasmid, pLS20, of Bacillus subtilis ( natto ) 3335 promotes tr msfer

  13. MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides From a Range of Clinical and Environmental Sources as Determined by the Etest

    DTIC Science & Technology

    2004-08-01

    Nongastrointestinal infection ......... F77/1589c; bovine mastitis , serotype 12 F77/2809A; infant born very edematous, serotype 6 F78/660; facial burns, cellulitis...included in this study (n 76) ID Earlier ID and historya LSU34...........................................................Genotype 57, ASC 274; bovine ...1994 (AFLP cluster A3a) LSU62...........................................................Genotype 15; bovine isolate, Poland, 1962 (AFLP cluster Ala

  14. Geographical Distribution of Genotypic and Phenotypic Markers Among Bacillus Anthracis Isolates and Related Species by Historical Movement and Horizontal Transfer

    DTIC Science & Technology

    2009-01-09

    LOPEZ P., ESPINOSA M., PIECHOWSAK M., SHUGAR D., WARREN R.: Uptake and fate of ΦW-14 DNA in competent Bacillus subtilis . J.Bacteriol. 149, 595–605...Among Bacillus anthracis Isolates and Related Species by Historical Movement and Horizontal Transfer J.L. KIELa, J.E. PARKERa, E.A. HOLWITTa, R.P...The geographical distribution of Bacillus anthracis strains and isolates bearing some of the same genetic markers as the Amerithrax Ames isolate was

  15. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  16. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria.

    PubMed

    Pepe, Olimpia; Blaiotta, Giuseppe; Moschetti, Giancarlo; Greco, Teresa; Villani, Francesco

    2003-04-01

    Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96 degrees C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10(4) rope-producing B. subtilis G1 spores per cm(2) on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.

  17. Inverse electron demand Diels-Alder reactions in chemical biology.

    PubMed

    Oliveira, B L; Guo, Z; Bernardes, G J L

    2017-08-14

    The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.

  18. Involvement of human histamine N-methyltransferase gene polymorphisms in susceptibility to atopic dermatitis in korean children.

    PubMed

    Lee, Hee Seon; Kim, Seung-Hyun; Kim, Kyung Won; Baek, Ji Young; Park, Hae-Sim; Lee, Kyung Eun; Hong, Jung Yeon; Kim, Mi Na; Heo, Won Il; Sohn, Myung Hyun; Kim, Kyu-Earn

    2012-01-01

    Histamine N-methyltransferase (HNMT) catalyzes one of two major histamine metabolic pathways. Histamine is a mediator of pruritus in atopic dermatitis (AD). The aim of this study was to evaluate the association between HNMT polymorphisms and AD in children. We genotyped 763 Korean children for allelic determinants at four polymorphic sites in the HNMT gene: -465T>C, -413C>T, 314C>T, and 939A>G. Genotyping was performed using a TaqMan fluorogenic 5' nuclease assay. The functional effect of the 939A>G polymorphism was analyzed. Of the 763 children, 520 had eczema and 542 had atopy. Distributions of the genotype and allele frequencies of the HNMT 314C>T polymorphism were significantly associated with non-atopic eczema (P=0.004), and those of HNMT 939A>G were significantly associated with eczema in the atopy groups (P=0.048). Frequency distributions of HNMT -465T>C and -413C>T were not associated with eczema. Subjects who were AA homozygous or AG heterozygous for 939A>G showed significantly higher immunoglobulin E levels than subjects who were GG homozygous (P=0.009). In U937 cells, the variant genotype reporter construct had significantly higher mRNA stability (P<0.001) and HNMT enzyme activity (P<0.001) than the common genotype. Polymorphisms in HNMT appear to confer susceptibility to AD in Korean children.

  19. Dissecting substrate specificities of the mitochondrial AFG3L2 protease.

    PubMed

    Ding, Bojian; Martin, Dwight W; Rampello, Anthony J; Glynn, Steven E

    2018-06-22

    Human AFG3L2 is a compartmental AAA+ protease that performs ATP-fueled degradation at the matrix face of the inner mitochondrial membrane. Identifying how AFG3L2 selects substrates from the diverse complement of matrix-localized proteins is essential for understanding mitochondrial protein biogenesis and quality control. Here, we create solubilized forms of AFG3L2 to examine the enzyme's substrate specificity mechanisms. We show that conserved residues within the pre-sequence of the mitochondrial ribosomal protein, MrpL32, target the subunit to the protease for processing into a mature form. Moreover, these residues can act as a degron, delivering diverse model proteins to AFG3L2 for degradation. By determining the sequence of degra-dation products from multiple substrates using mass spectrometry, we construct a peptidase specificity pro-file that displays constrained product lengths and is dominated by the identity of the residue at the P1' posi-tion, with a strong preference for hydrophobic and small polar residues. This specificity profile is validated by examining the cleavage of both fluorogenic reporter peptides and full polypeptide substrates bearing different P1' residues. Together, these results demonstrate that AFG3L2 contains multiple modes of specificity, dis-criminating between potential substrates by recognizing accessible degron sequences, and performing peptide bond cleavage at preferred patterns of residues within the compartmental chamber.

  20. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR.

    PubMed

    Khowal, Sapna; Siddiqui, Md Zulquarnain; Ali, Shadab; Khan, Mohd Taha; Khan, Mather Ali; Naqvi, Samar Husain; Wajid, Saima

    2017-02-01

    The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  2. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns

    PubMed Central

    Syed, Shameer; Chinthala, Paramageetham

    2015-01-01

    The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and Energy Dispersive Spectroscopy (EDS) as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87–90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner. PMID:26525498

  3. Bacillus "next generation" diagnostics: moving from detection toward subtyping and risk-related strain profiling.

    PubMed

    Ehling-Schulz, Monika; Messelhäusser, Ute

    2013-01-01

    The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

  4. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry-Effects of Culture Conditions.

    PubMed

    Shu, Lin-Jie; Yang, Yu-Liang

    2017-11-14

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.

  5. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei).

    PubMed

    Nimrat, Subuntith; Suksawat, Sunisa; Boonthai, Traimat; Vuthiphandchai, Verapong

    2012-10-12

    Epidemics of epizootics and occurrence of multiresistant antibiotics of pathogenic bacteria in aquaculture have put forward a development of effective probiotics for the sustainable culture. This study examined the effectiveness of forms of mixed Bacillus probiotics (probiotic A and probiotic B) and mode of probiotic administration on growth, bacterial numbers and water quality during rearing of white shrimp (Litopenaeus vannamei) in two separated experiments: (1) larval stages and (2) postlarval (PL) stages. Forms of Bacillus probiotics and modes of probiotic administration did not affect growth and survival of larval to PL shrimp. The compositions of Bacillus species in probiotic A and probiotic B did not affect growth and survival of larvae. However, postlarvae treated with probiotic B exhibited higher (P<0.05) growth than probiotic A and controls, indicating Bacillus probiotic composition affects the growth of PL shrimp. Total heterotrophic bacteria and Bacillus numbers in larval and PL shrimp or culture water of the treated groups were higher (P<0.05) than in controls. Levels of pH, ammonia and nitrite of the treated shrimp were significantly decreased, compared to the controls. Microencapsulated Bacillus probiotic was effective for rearing of PL L. vannamei. This investigation showed that administration of mixed Bacillus probiotics significantly improved growth and survival of PL shrimp, increased beneficial bacteria in shrimp and culture water and enhanced water quality for the levels of pH, ammonia and nitrite of culture water. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand.

    PubMed

    Sumpavapol, Punnanee; Tongyonk, Linna; Tanasupawat, Somboon; Chokesajjawatee, Nipa; Luxananil, Plearnpis; Visessanguan, Wonnop

    2010-10-01

    A Gram-positive, endospore-forming, rod-shaped bacterium, strain PD-A10(T), was isolated from salted crab (poo-khem) in Thailand and subjected to a taxonomic study. Phenotypic and chemotaxonomic characteristics, including phylogenetic analyses, showed that the novel strain was a member of the genus Bacillus. The novel strain grew in medium with 0-14 % (w/v) NaCl, at 4-55°C and at pH4.5-9. The predominant quinone was a menaquinone with seven isoprene units (MK-7). The major fatty acids were anteiso-C₁₅:₀ and anteiso-C₁₇:₀. Polar lipid analysis revealed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol, glycolipid and unknown lipids. The DNA G+C content was 41.4 mol%. The 16S rRNA gene sequence similarities between strain PD-A10(T) and Bacillus amyloliquefaciens NBRC 15535(T), Bacillus subtilis DSM 10(T), Bacillus vallismortis DSM 11031(T) and Bacillus mojavensis IFO 15718(T) were 99.5, 99.4, 99.4 and 99.2 %, respectively. Strain PD-A10(T) showed a low degree similarity of rep-PCR fingerprints and low DNA-DNA relatedness with the above-mentioned species. On the basis of the data gathered in this study, strain PD-A10(T) should be classified as representing a novel species of the genus Bacillus, for which the name Bacillus siamensis sp. nov. is proposed. The type strain is PD-A10(T) (=BCC 22614(T)=KCTC 13613(T)).

  7. Lead (Pb) bioaccumulation; genera Bacillus isolate S1 and SS19 as a case study

    NASA Astrophysics Data System (ADS)

    Arifiyanto, Achmad; Apriyanti, Fitria Dwi; Purwaningsih, Puput; Kalqutny, Septian Hary; Agustina, Dyah; Surtiningsih, Tini; Shovitri, Maya; Zulaika, Enny

    2017-06-01

    Lead (Pb) includes a group of large heavy metal in nature was toxic either on animal or human and did not provide an advantage function biologically. Bacillus isolates S1 and SS19 known resistant to lead up to 50 mg / L PbCl2. In this research will be examined whether genera Bacillus isolates S1 and SS19 could accumulate metal lead (Pb), their capability in accumulating and profile protein differences when the bacteria genera Bacillus isolates S1 and SS19 get exposed metal lead (Pb). Inoculum at age ± 9 hours are used, with a Nutrient Broth (NB) containing 50, 75 and 100 mg / L PbCl2. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP) used to assessed Pb2+ concentrations. Bioaccumulation levels of Pb2+ by Bacillus isolate S1 and SS19 related to the distinction of beginning concentration to the final concentration. Bacillus isolate S1 achieved 53% and 51% bioaccumulation efficiency rate in lead presence concentration (75 and 100 mg/L) and 51% (50 mg/L). Another way Bacillus isolate SS19 was able to accumulate 57% (50 mg/L PbCl2) and kept stable on 36% bioaccumulation efficiency rate (75 and 100 mg/L PbCl2). Regarding SDS-PAGE electrophoresis protein profile result, protein in ± 127 kDa, molecule mass detected in the presence of Lead for Bacillus isolate S1.

  8. Emergence of multi drug resistance among soil bacteria exposing to insecticides.

    PubMed

    Rangasamy, Kirubakaran; Athiappan, Murugan; Devarajan, Natarajan; Parray, Javid A

    2017-04-01

    Impacts of pesticide exposure on the soil microbial flora and cross resistance to antibiotics have not been well documented. Development of antibiotic resistance is a common issue among soil bacteria which are exposing to pesticides continuously at sub-lethal concentration. The present study was focused to evaluate the correlation between pesticide exposures and evolution of multi drug resistance among isolates collected from soil applied with insecticides. Twenty five insecticide (Monochrotophos) degrading bacteria were isolated from contaminated agricultural soil. The bacterial isolates Bacillus Sps, Bacillus cereus, Bacillus firmus and Bacillus thuringiensis were found to be resistant against chloramphenical, monochrotophos, ampicillin, cefotaxime, streptomycin and tetracycline antibiotics used. Involvement of plasmid in drug as well as insecticide resistant was confirmed through plasmid curing among selected bacterial strains. Bacillus Sps (MK-07), Bacillus cereus (MK-11), Bacillus firmus (MK-13) and Bacillus thuringiensis (MK-24) lost their resistant against insecticides and antibiotics once after removal of plasmid by exposing to 2% sodium dodecyl sulphate. The plasmid was transformed back to bacteria which produced similar derivatives when cultured in Minimal Salt medium (pH 7.0) supplemented with 0.4% of insecticide. Homology modeling was used to prove that organophosphorus hydrolase and able to metabolize all the antibiotics showed positive interaction with high docking score. The present study revealed that persistent of insecticides in the agricultural soil may lead to increasing development of multidrug resistance among soil bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Micro-Etched Platforms for Thermal Inactivation of Bacillus Anthracis and Bacillus Thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    slips was first coated with a detergent wash. Commercially available Ivory soap shavings were diluted with sterile Millipore® water in a...environments. This removed controllable variability between the Bacillus species and increased the confidence in continued use of such surrogacy

  11. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil

    USDA-ARS?s Scientific Manuscript database

    Two isolates of Gram-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of Bacillus strains deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution ...

  12. SR450 and Superhawk XP applications of Bacillus thuringiensis israelensis de Barjac against Culex quinquefasciatus Say

    USDA-ARS?s Scientific Manuscript database

    Sprayer comparisons and larval morality assays were conducted following SR450 backpack mist blower and Superhawk XP thermal fogger applications of Vectobac® WDG Bacillus thuringiensis israelensis (Bti) de Barjac against Culex quinquefasciatus Say. Bacillus thuringiensis israelensis was applied at m...

  13. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  14. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  15. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  16. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  17. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  18. Isolation and Identification of cellulolytic bacteria from mangrove sediment in Bangka Island

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Prihanto, A. A.; Sari, S. P.; Febriyanti, D.; Kurniawan, A.; Sambah, A. B.; Asriani, E.

    2018-04-01

    Cellulolytic bacteria is bacteria which hydrolyze cellulose to reducing sugars. This research aims to obtain cellulolytic bacteria from the sediment of mangroves in Bangka island. Reasearch was conducted from March to August 2017. Sampling was conducted at Sungailiat, and Tukak Sadai, South of Bangka. Bacteria was isolated using 1% Carboxymetyl Cellulosa (CMC). The isolation resulted in four isolates from Sungailiat and nine isolates from Tukak Sadai. Total five isolates, namely Bacillus pumilus, Pseudomonas sp., Bacillus amyloliquefacien, Bacillus alvei, Bacillus coagulant were identified. The best isolates that produced cellulose was Pseudomonas aeruginosa.

  19. The Hemolytic Enterotoxin HBL Is Broadly Distributed among Species of the Bacillus cereus Group

    PubMed Central

    Prüß, Birgit M.; Dietrich, Richard; Nibler, Birgit; Märtlbauer, Erwin; Scherer, Siegfried

    1999-01-01

    The prevalence of the hemolytic enterotoxin complex HBL was determined in all species of the Bacillus cereus group with the exception of Bacillus anthracis. hblA, encoding the binding subunit B, was detected by PCR and Southern analysis and was confirmed by partial sequencing of 18 strains. The sequences formed two clusters, one including B. cereus and Bacillus thuringiensis strains and the other one consisting of Bacillus mycoides, Bacillus pseudomycoides, and Bacillus weihenstephanensis strains. From eight B. thuringiensis strains, the enterotoxin gene hblA could be amplified. Seven of them also expressed the complete HBL complex as determined with specific antibodies against the L1, L2, and B components. Eleven of 16 B. mycoides strains, all 3 B. pseudomyoides strains, 9 of 15 B. weihenstephanensis strains, and 10 of 23 B. cereus strains carried hblA. While HBL was not expressed in the B. pseudomycoides strains, the molecular assays were in accordance with the immunological assays for the majority of the remaining strains. In summary, the hemolytic enterotoxin HBL seems to be broadly distributed among strains of the B. cereus group and relates neither to a certain species nor to a specific environment. The consequences of this finding for food safety considerations need to be evaluated. PMID:10584001

  20. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Mirzabekov, A. D.; Stahl, D. A.

    2001-01-01

    The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli (Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus medusa and Bacillus subtilis) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe-target duplexes simultaneously. For this study, a hierarchical set of 30 oligonucleotide probes targeting the 16S ribosomal RNA of these bacilli at multiple levels of specificity (approximate taxonomic ranks of domain, kingdom, order, genus and species) was designed and immobilized in a high-density matrix of gel pads on a glass slide. Reproducible melting curves for probes with different levels of specificity were obtained using an optimized salt concentration. Clear discrimination between perfect match (PM) and mismatch (MM) duplexes was achieved. By normalizing the signals to an internal standard (a universal probe), a more than twofold discrimination (> 2.4x) was achieved between PM and 1-MM duplexes at the dissociation temperature at which 50% of the probe-target duplexes remained intact. This provided excellent differentiation among representatives of different Bacillus species, both individually and in mixtures of two or three. The overall pattern of hybridization derived from this hierarchical probe set also provided a clear 'chip fingerprint' for each of these closely related Bacillus species.

  1. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  2. Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation.

    PubMed

    Ramos, Cíntia L; de Sousa, Edinaira S O; Ribeiro, Jessimara; Almeida, Tayanny M M; Santos, Claudia Cristina A do A; Abegg, Maxwel A; Schwan, Rosane F

    2015-08-01

    The aim of this work was to identify and characterize the microbiota present during fermentation and in the final beverage, tarubá, by culture-dependent and -independent methods. In addition, target chemical compounds (carbohydrates, organic acids, and ethanol) were evaluated. Lactic acid bacteria (LAB) and mesophilic bacteria were the predominant microorganisms. Among them, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides, and Bacillus subtilis were frequently isolated and detected by DGGE analysis. Torulaspora delbrueckii was the dominant yeast species. Yeast isolates Pichia exigua, Candida rugosa, T. delbrueckii, Candida tropicalis, Pichia kudriavzevii, Wickerhamomyces anomalus, and Candida ethanolica and bacteria isolates Lb. plantarum, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus sp., and Chitinophaga terrae showed amylolytic activity. Only isolates of P. exigua and T. delbrueckii and all species of the genus Bacillus identified in this work exhibited proteolytic activity. All microbial isolates grew at 38 °C, and only the isolates belonging to Hanseniaspora uvarum species did not grow at 42 °C. These characteristics are important for further development of starter cultures; isolates of T. delbrueckii, P. exigua, and Bacillus species identified in this work displayed all of these properties and are potential strains for use as starter culture in cassava fermented food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. CuAAC-Based Click Chemistry in Self-Healing Polymers.

    PubMed

    Döhler, Diana; Michael, Philipp; Binder, Wolfgang H

    2017-10-17

    Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.

  4. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

  5. High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue.

    PubMed

    Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan; Schmidt, Brigitte F; Mun, Frederick; Bruchez, Marcel P

    2018-03-05

    The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.

  6. Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR

    PubMed Central

    Lucchi, Naomi W.; Narayanan, Jothikumar; Karell, Mara A.; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J.; Hill, Vincent; Udhayakumar, Venkatachalam

    2013-01-01

    There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs. PMID:23437209

  7. Confinement of caspase-12 proteolytic activity to autoprocessing

    PubMed Central

    Roy, Sophie; Sharom, Jeffrey R.; Houde, Caroline; Loisel, Thomas P.; Vaillancourt, John P.; Shao, Wei; Saleh, Maya; Nicholson, Donald W.

    2008-01-01

    Caspase-12 is a dominant-negative regulator of caspase-1 (IL-1β-converting enzyme) and an attenuator of cytokine responsiveness to septic infections. This molecular role for caspase-12 appears to be akin to the role of cFLIP in regulating caspase-8 in the extrinsic cell death pathway; however, unlike cFLIP/Usurpin, we demonstrate here that caspase-12 is catalytically competent. To examine these catalytic properties, rat caspase-12 was cloned, and the recombinant enzyme was used to examine the cleavage of macromolecular and synthetic fluorogenic substrates. Although caspase-12 could mediate autoproteolytic maturation of its own proenzyme, in both cis and trans, it was not able to cleave any other polypeptide substrate, including other caspase proenzymes, apoptotic substrates, cytokine precursors, or proteins in the endoplasmic reticulum that normally undergo caspase-mediated proteolysis. The dearth of potential substrates for caspase-12 also was confirmed by whole-cell diagonal-gel analysis. Autolytic cleavage within the caspase-12 proenzyme was mapped to a single site at the large–small subunit junction, ATAD319, and this motif was recognized by caspase-12 when incorporated into synthetic fluorogenic substrates. The specific activity of caspase-12 with these substates was several orders of magnitude lower than caspases-1 and -3, highlighting its relative catalytic paucity. In intact cells, caspase-12 autoproteolysis occurred in the inhibitory complex containing caspase-1. We propose that the proteolytic activity of caspase-12 is confined to its own proenzyme and that autocleavage within the caspase-1 complex may be a means for temporal limitation of the inhibitory effects of caspase-12 on proinflammatory cytokine maturation. PMID:18332441

  8. INTERSTITIAL PLASMIN ACTIVITY WITH EPSILON AMINOCAPROIC ACID: TEMPORAL AND REGIONAL HETEROGENEITY

    PubMed Central

    Reust, Daryl L.; Reeves, Scott T.; Abernathy, James H.; Dixon, Jennifer A.; Gaillard, William F.; Mukherjee, Rupak; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Background Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in-vivo region specific temporal changes in PLact following EACA administration. Methods Pigs (25-35kg) received EACA (75mg/kg, n=7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney and quadricep muscle. The microdialysate contained a plasmin specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90 and 120 minutes following EACA/vehicle infusion. Results EACA caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes and at 30, 60, 120 minutes respectively (p<0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p<0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes post infusion, and were 5-fold higher in the renal compartment and 4-fold higher in the myocardium, when compared to the liver or muscle (p<0.05). Conclusions Using a large animal model and in-vivo microdialysis measurements of plasmin activity, the unique findings from this study were 2-fold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. PMID:20417774

  9. Interstitial plasmin activity with epsilon aminocaproic acid: temporal and regional heterogeneity.

    PubMed

    Reust, Daryl L; Reeves, Scott T; Abernathy, James H; Dixon, Jennifer A; Gaillard, William F; Mukherjee, Rupak; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-05-01

    Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in vivo region specific temporal changes in PLact after EACA administration. Pigs (25 to 35 kg) received EACA (75 mg/kg, n = 7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney, and quadricep muscle. The microdialysate contained a plasmin-specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90, and 120 minutes after EACA/vehicle infusion. Epsilon aminocaproic acid caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes, and at 30, 60, and 120 minutes, respectively (p < 0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p < 0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes after infusion, and were fivefold higher in the renal compartment and fourfold higher in the myocardium, when compared with the liver or muscle (p < 0.05). Using a large animal model and in vivo microdialysis measurements of plasmin activity, the unique findings from this study were twofold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region-specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Transmating: conjugative transfer of a new broad host range expression vector to various Bacillus species using a single protocol.

    PubMed

    Heinze, Simon; Kornberger, Petra; Grätz, Christian; Schwarz, Wolfgang H; Zverlov, Vladimir V; Liebl, Wolfgang

    2018-06-08

    The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the P aprE -promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from a multitude of strains. This paves the way for the genetic modification and biotechnological exploitation of the broad diversity of species of Bacillus and related genera as well as different strains from these species.

  11. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  12. Putative Virulence Factor Expression by Clinical and Food Isolates of Bacillus spp. after Growth in Reconstituted Infant Milk Formulae

    PubMed Central

    Rowan, Neil J.; Deans, Karen; Anderson, John G.; Gemmell, Curtis G.; Hunter, Iain S.; Chaithong, Thararat

    2001-01-01

    Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors. PMID:11525980

  13. Selection and evaluation of Malaysian Bacillus spp. strains as potential probiotics in cultured tiger grouper (Epinephelus fuscoguttatus).

    PubMed

    Yasin, Ina-salwany Md; Razak, Nabilah Fatin; Natrah, F M I; Harmin, Sharr Azni

    2016-07-01

    A total of 58 Gram-positive bacteria strains were isolated from the marine environment and screened for potential probiotics for disease prevention and improving the productivity of tiger grouper Epinephelus fuscoguttatus larvae and juveniles. The bacteria were identified as Bacillus licheniformis, B. subtilis, B. circulans, B. sphaericus, B. cereus, Brevibacillus brevis, Corynebacterium propinquum, Leifsonia aquatica and Paenibacillus macerans. Only 24 strains showed antagonistic activities against four pathogenic strains; Vibrio alginolyticus, V. harveyi, V. parahaemolyticus and Aeromonas hydrophila, where two of the Bacillus strains, B12 and B45 demonstrated intermediate to highest level of inhibitory activity against these pathogenic strains, respectively. Further assessment by co-culture assay showed that Bacillus strain B12 exhibited a total inhibition of V. alginolyticus, while B45 strain displayed no inhibitory activity. Mixed culture of Bacillus B12 and B45 strains to outcompete V. alginolyticus was observed at a cell density of 10(7) CFU ml(-1). Molecular identification and phylogenetic tree analysis have categorized Bacillus strain B12 to the reference strains GQ340480 and JX290193 of? B. amyloliquafaciens, and Bacillus strain B45 with a reference strain JF496522 of B. subtilis. Safety tests of probionts by intraperitoneal administration of B12 and B45 strains at cell densities of 103, 105 and 10(7) CFU ml(-1) revealed no abnormalities and cent percent survival for healthy Epinephelus fuscoguttatus juveniles within 15 days of experimental period. Overall, the study revealed that Bacillus B12 strain possesses tremendous probiotic potential that could be used as a feed supplement in tiger grouper diets. ?

  14. Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci.

    PubMed

    Charles, Lauren; Carbone, Ignazio; Davies, Keith G; Bird, David; Burke, Mark; Kerry, Brian R; Opperman, Charles H

    2005-08-01

    Pasteuria penetrans is a gram-positive, endospore-forming eubacterium that apparently is a member of the Bacillus-Clostridium clade. It is an obligate parasite of root knot nematodes (Meloidogyne spp.) and preferentially grows on the developing ovaries, inhibiting reproduction. Root knot nematodes are devastating root pests of economically important crop plants and are difficult to control. Consequently, P. penetrans has long been recognized as a potential biocontrol agent for root knot nematodes, but the fastidious life cycle and the obligate nature of parasitism have inhibited progress on mass culture and deployment. We are currently sequencing the genome of the Pasteuria bacterium and have performed amino acid level analyses of 33 bacterial species (including P. penetrans) using concatenation of 40 housekeeping genes, with and without insertions/deletions (indels) removed, and using each gene individually. By application of maximum-likelihood, maximum-parsimony, and Bayesian methods to the resulting data sets, P. penetrans was found to cluster tightly, with a high level of confidence, in the Bacillus class of the gram-positive, low-G+C-content eubacteria. Strikingly, our analyses identified P. penetrans as ancestral to Bacillus spp. Additionally, all analyses revealed that P. penetrans is surprisingly more closely related to the saprophytic extremophile Bacillus haladurans and Bacillus subtilis than to the pathogenic species Bacillus anthracis and Bacillus cereus. Collectively, these findings strongly imply that P. penetrans is an ancient member of the Bacillus group. We suggest that P. penetrans may have evolved from an ancient symbiotic bacterial associate of nematodes, possibly as the root knot nematode evolved to be a highly specialized parasite of plants.

  15. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    PubMed

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

  16. Surfactin A Production and Isoform Characterizations in Strains of Bacillus mojavensis for Potential Control of Fusarium verticillioides and Fumonisin in Maize

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, a species recently distinguished as a cryptic species within Bacillus subtilis, was discovered in maize kernels and later determined to possess endophytic characteristics. The bacterium was also determined to have biocontrol potential due to its strong antagonism to the fungus...

  17. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field

    USDA-ARS?s Scientific Manuscript database

    We are developing a collection of Bacillus strains, isolated from different environments, for use in controlling Sclerotinia sclerotiorum on oilseed rape in China and elsewhere. Strain BY-2, isolated from internal tissues of an oilseed rape root, was demonstrated to be Bacillus subtilis based on bi...

  18. 76 FR 28688 - Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Controls Guidance Document: In Vitro Diagnostic Devices for Bacillus Species Detection AGENCY: Food and... Guidance Document: In Vitro Diagnostic Devices for Bacillus spp. Detection.'' This draft guidance document describes means by which in vitro diagnostic devices for Bacillus species (spp.) detection may comply with...

  19. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  20. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  1. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false α-Amylase enzyme preparation from Bacillus... Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture filtrate that results from a pure...

  2. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  3. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  4. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  5. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  6. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  7. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  8. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  9. Bioassay of formulations of Bacillus thuringiensis for use in forestry: panel discussion of the role of the bioassay in standardizing formulations of B. thuringiensis

    Treesearch

    H. T. Dulmage; C. C. Beegle; N. R. Dubois

    1985-01-01

    The panel discussed various aspects of Bacillus thuringiensis formulations and fermentations and concluded that the only means at present of standardizing these formulations or discovering more potent strains of the Bacillus is through carefully controlled bioassays.

  10. Spider mite infestations reduce Bacillus thuringiensis toxin concentration in corn leaves and predators avoid spider mites that have fed on Bacillus thuringiensis corn

    USDA-ARS?s Scientific Manuscript database

    Transgenic crops containing pyramid-stacked genes for Bacillus thuringiensis derived toxins for controlling coleopteran and lepidopteran pests are increasingly common. As part of environmental risk assessments, these crops are evaluated for toxicity against non-target organisms, and for their poten...

  11. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  12. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  13. Bacillus “next generation” diagnostics: moving from detection toward subtyping and risk-related strain profiling

    PubMed Central

    Ehling-Schulz, Monika; Messelhäusser, Ute

    2013-01-01

    The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains. PMID:23440299

  14. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    PubMed Central

    Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608

  15. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose.

    PubMed

    Kim, Jeong Do; Jeon, Byeong Jun; Han, Jae Woo; Park, Min Young; Kang, Sin Ae; Kim, Beom Seok

    2016-08-01

    Endophytic bacteria are viewed as a potential new source of biofungicides because they have beneficial characteristics as control agents for plant disease. This study was performed to examine the endophytic feature and disease control efficacy of Bacillus amyloliquefaciens strain GYL4 and to identify the antifungal compounds produced by this strain. B. amyloliquefaciens strain GYL4 was isolated from leaf tissue of pepper plants (Capsicum annuum L.). Anthracnose symptoms were markedly reduced in the leaves of pepper plants colonised by GYL4. An egfp-expressing strain of GYL4 (GYL4-egfp) was constructed and reintroduced into pepper plants, which confirmed its ability to colonise the internal tissues of pepper plants. GYL4-egfp was observed in the root and stem tissues 4 days after treatment and abundantly found in the internal leaf tissue 9 days after treatment. Bacillomycin derivatives purified from the culture extract of GYL4 displayed control efficacy on anthracnose development in cucumber (Cucumis sativus L. cv. Chunsim). The present study is the first report on evaluation of the endophytic and systemic nature of B. amyloliquefaciens strain GYL4 and its potential as a biocontrol agent for anthracnose management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. In vitro Ca(2+)-dependent maturation of milk-clotting recombinant Epr: minor extracellular protease: from Bacillus licheniformis.

    PubMed

    Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G

    2013-06-01

    The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.

  17. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis.

    PubMed Central

    Sloma, A; Rufo, G A; Theriault, K A; Dwyer, M; Wilson, S W; Pero, J

    1991-01-01

    We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation. Images FIG. 1 PMID:1938892

  18. Efficient production of artificially designed gelatins with a Bacillus brevis system.

    PubMed

    Kajino, T; Takahashi, H; Hirai, M; Yamada, Y

    2000-01-01

    Artificially designed gelatins comprising tandemly repeated 30-amino-acid peptide units derived from human alphaI collagen were successfully produced with a Bacillus brevis system. The DNA encoding the peptide unit was synthesized by taking into consideration the codon usage of the host cells, but no clones having a tandemly repeated gene were obtained through the above-mentioned strategy. Minirepeat genes could be selected in vivo from a mixture of every possible sequence encoding an artificial gelatin by randomly ligating the mixed sequence unit and transforming it into Escherichia coli. Larger repeat genes constructed by connecting minirepeat genes obtained by in vivo selection were also stable in the expression host cells. Gelatins derived from the eight-unit and six-unit repeat genes were extracellularly produced at the level of 0.5 g/liter and easily purified by ammonium sulfate fractionation and anion-exchange chromatography. The purified artificial gelatins had the predicted N-terminal sequences and amino acid compositions and a solgel property similar to that of the native gelatin. These results suggest that the selection of a repeat unit sequence stable in an expression host is a shortcut for the efficient production of repetitive proteins and that it can conveniently be achieved by the in vivo selection method. This study revealed the possible industrial application of artificially designed repetitive proteins.

  19. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    PubMed

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.

  20. Generation of mariner-based transposon insertion mutant library of Bacillus sphaericus 2297 and investigation of genes involved in sporulation and mosquito-larvicidal crystal protein synthesis.

    PubMed

    Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming

    2012-05-01

    Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. A part toolbox to tune genetic expression in Bacillus subtilis

    PubMed Central

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  2. Improvement of Fibrinolytic Activity of Bacillus subtilis 168 by Integration of a Fibrinolytic Gene into the Chromosome.

    PubMed

    Jeong, Seon-Ju; Park, Ji Yeong; Lee, Jae Yong; Lee, Kang Wook; Cho, Kye Man; Kim, Gyoung Min; Shin, Jung-Hye; Kim, Jong-Sang; Kim, Jeong Hwan

    2015-11-01

    Fibrinolytic enzyme genes (aprE2, aprE176, and aprE179) were introduced into the Bacillus subtilis 168 chromosome without any antibiotic resistance gene. An integration vector, pDG1662, was used to deliver the genes into the amyE site of B. subtilis 168. Integrants, SJ3-5nc, SJ176nc, and SJ179nc, were obtained after two successive homologous recombinations. The integration of each fibrinolytic gene into the middle of the amyE site was confirmed by phenotypes (Amy(-), Spec(S)) and colony PCR results for these strains. The fibrinolytic activities of the integrants were higher than that of B. subtilis 168 by at least 3.2-fold when grown in LB broth. Cheonggukjang was prepared by inoculating each of B. subtilis 168, SJ3-5nc, SJ176nc, and SJ179nc, and the fibrinolytic activity of cheonggukjang was 4.6 ± 0.7, 10.8 ± 0.9, 7.0 ± 0.6, and 8.0 ± 0.2 (U/g of cheonggukjang), respectively at 72 h. These results showed that construction of B. subtilis strains with enhanced fibrinolytic activities is possible by integration of a strong fibrinolytic gene via a marker-free manner.

  3. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids.

    PubMed

    van Beilen, Johan W A; Brul, Stanley

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5' end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0-7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations.

  4. Evaluation of a Stochastic Inactivation Model for Heat-Activated Spores of Bacillus spp. ▿

    PubMed Central

    Corradini, Maria G.; Normand, Mark D.; Eisenberg, Murray; Peleg, Micha

    2010-01-01

    Heat activates the dormant spores of certain Bacillus spp., which is reflected in the “activation shoulder” in their survival curves. At the same time, heat also inactivates the already active and just activated spores, as well as those still dormant. A stochastic model based on progressively changing probabilities of activation and inactivation can describe this phenomenon. The model is presented in a fully probabilistic discrete form for individual and small groups of spores and as a semicontinuous deterministic model for large spore populations. The same underlying algorithm applies to both isothermal and dynamic heat treatments. Its construction does not require the assumption of the activation and inactivation kinetics or knowledge of their biophysical and biochemical mechanisms. A simplified version of the semicontinuous model was used to simulate survival curves with the activation shoulder that are reminiscent of experimental curves reported in the literature. The model is not intended to replace current models to predict dynamic inactivation but only to offer a conceptual alternative to their interpretation. Nevertheless, by linking the survival curve's shape to probabilities of events at the individual spore level, the model explains, and can be used to simulate, the irregular activation and survival patterns of individual and small groups of spores, which might be involved in food poisoning and spoilage. PMID:20453137

  5. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.

    PubMed

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A; Mascher, Thorsten

    2012-11-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing).

  6. Expression and Secretion of Cyan Fluorescent Protein (CFP) in B. subtilis using the Chitinase Promoter from Bacillus pumilus SG2

    PubMed Central

    Shali, Abbas; Rigi, Garshasb; Pornour, Majid; Ahmadian, Gholamreza

    2017-01-01

    Background: Improved cyan fluorescent protein (ICFP) is a monochromic, green fluorescent protein (GFP) derivative produced by Aequorea macrodactyla in a process similar to GFP. This protein has strong absorption spectra at wavelengths 426-446 nm. ICFP can be used in cell, organelle or intracellular protein labeling, investigating the protein-protein interactions as well as assessing the promoter activities. Methods: In our previous study, the promoters of two chitinases (ChiS and ChiL) from Bacillus pumilus SG2 were assessed in B. subtilis and their regulatory elements were characterized. In the present study, icfp was cloned downstream of several truncated promoters obtained in the former study, and ICFP expression was evaluated in B. subtilis. Results: Extracellular expression and secretion of ICFP were analyzed under the control of different truncated versions of ChiSL promoters grown on different media. Results from SDS-PAGE and fluorimetric analyses showed that there were different expression rates of CFP; however, the UPChi-ICFP3 construct exhibited a higher level of expression and secretion in the culture medium. Conclusion: Our presented results revealed that inserting this truncated form of Chi promoter upstream of the ICFP, as a reporter gene, in B. subtilis led to an approximately ten fold increase in ICFP expression. PMID:28088132

  7. Cell Envelope Stress Response in Cell Wall-Deficient L-Forms of Bacillus subtilis

    PubMed Central

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A.

    2012-01-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing). PMID:22964256

  8. Structures of the Bacillus subtilis Glutamine Synthetase Dodecamer Reveal Large Intersubunit Catalytic Conformational Changes Linked to a Unique Feedback Inhibition Mechanism*

    PubMed Central

    Murray, David S.; Chinnam, Nagababu; Tonthat, Nam Ky; Whitfill, Travis; Wray, Lewis V.; Fisher, Susan H.; Schumacher, Maria A.

    2013-01-01

    Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg62, from an adjacent subunit. Notably, Arg62 must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens. PMID:24158439

  9. The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores

    PubMed Central

    Cangiano, Giuseppina; Sirec, Teja; Panarella, Cristina; Isticato, Rachele; Baccigalupi, Loredana; De Felice, Maurilio

    2014-01-01

    The multilayered surface of the Bacillus subtilis spore is composed of proteins and glycans. While over 70 different proteins have been identified as surface components, carbohydrates associated with the spore surface have not been characterized in detail yet. Bioinformatic data suggest that the 11 products of the sps operon are involved in the synthesis of polysaccharides present on the spore surface, but an experimental validation is available only for the four distal genes of the operon. Here, we report a transcriptional analysis of the sps operon and a functional study performed by constructing and analyzing two null mutants lacking either all or only the promoter-proximal gene of the operon. Our results show that both sps mutant spores apparently have normal coat and crust but have a small germination defect and are more hydrophobic than wild-type spores. We also show that spores lacking all Sps proteins are highly adhesive and form extensive clumps. In addition, sps mutant spores have an increased efficiency in adsorbing a heterologous enzyme, suggesting that hydrophobic force is a major determinant of spore adsorption and indicating that a deep understanding of the surface properties of the spore is essential for its full development as a surface display platform. PMID:25239894

  10. A Homolog of Bacillus subtilis Trigger Factor in Listeria monocytogenes Is Involved in Stress Tolerance and Bacterial Virulence

    PubMed Central

    Bigot, Armelle; Botton, Eleonore; Dubail, Iharilalao; Charbit, Alain

    2006-01-01

    Molecular chaperones play an essential role in the folding of nascent chain polypeptides, as well as in the refolding and degradation of misfolded or aggregated proteins. They also assist in protein translocation and participate in stress functions. We identified a gene, designated tig, encoding a protein homologous to trigger factor (TF), a cytosolic ribosome-associated chaperone, in the genome of Listeria monocytogenes. We constructed a chromosomal Δtig deletion and evaluated the impact of the mutation on bacterial growth in broth under various stress conditions and on pathogenesis. The Δtig deletion did not affect cell viability but impaired survival in the presence of heat and ethanol stresses. We also identified the ffh gene, encoding a protein homologous to the SRP54 eukaryotic component of the signal recognition particle. However, a Δffh deletion was not tolerated, suggesting that Ffh is essential, as it is in Bacillus subtilis and Escherichia coli. Thus, although dispensable for growth, TF is involved in the stress response of L. monocytogenes. The Δtig mutant showed no or very modest intracellular survival defects in eukaryotic cells. However, in vivo it showed a reduced capacity to persist in the spleens and livers of infected mice, revealing that TF has a role in the pathogenicity of L. monocytogenes. PMID:17021213

  11. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    PubMed Central

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility, reducing intestinal viscosity, maintaining a beneficial gut microbiota, and promoting healthy intestinal integrity in poultry. PMID:27812526

  12. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    PubMed

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  13. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative forward contaminants such as B. subtilis and B. pumilus under Earth laboratory conditions.

  14. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  15. Gangrenous mastitis caused by Bacillus species in six goats.

    PubMed

    Mavangira, Vengai; Angelos, John A; Samitz, Eileen M; Rowe, Joan D; Byrne, Barbara A

    2013-03-15

    6 lactating dairy goats were examined because of acute mastitis. Goats were considered to have endotoxemia on the basis of physical examination and clinicopathologic findings. The affected udder halves had gangrenous discolored distal portions with sharp demarcations from grossly normal tissue proximally. Udder secretions from the affected sides were serosanguineous in all cases. A Bacillus sp was isolated in pure cultures in all cases. In 1 case, the Bacillus sp was identified as Bacillus cereus. Goats were treated for mastitis and endotoxemia with polyionic IV fluid therapy, systemic and intramammary antimicrobial administration, anti-inflammatory drug administration, and other supportive treatment. All goats survived to discharge. All except 1 goat had follow-up information available. The affected udder halves sloughed in 1 to 2 months following discharge. In subsequent lactations after the mastitis episodes, milk production in 2 of 5 goats was above the mean, as determined on the basis of Dairy Herd Improvement records, and 3 of 5 goats were voluntarily withdrawn from lactation. All 5 goats had successful kiddings after the Bacillus mastitis episode. Bacillus sp should be considered as a causative agent in goats with gangrenous mastitis, especially when the Bacillus sp is isolated in a pure culture. Antimicrobial sensitivity testing is recommended for selection of an appropriate antimicrobial for treatment. Prognosis for survival appears to be good, although milk production may be decreased.

  16. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  17. 40 CFR 174.510 - Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance. 174.510 Section 174.510 Protection of... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.510 Bacillus thuringiensis...

  18. 40 CFR 180.1282 - Bacillus firmus I-1582; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus firmus I-1582; exemption from the requirement of a tolerance. 180.1282 Section 180.1282 Protection of Environment ENVIRONMENTAL..., for residues of Bacillus firmus I-1582 when used as a soil application or seed treatment. [73 FR 25528...

  19. Non-HACEK gram-negative bacillus endocarditis.

    PubMed

    Morpeth, Susan; Murdoch, David; Cabell, Christopher H; Karchmer, Adolf W; Pappas, Paul; Levine, Donald; Nacinovich, Francisco; Tattevin, Pierre; Fernández-Hidalgo, Núria; Dickerman, Stuart; Bouza, Emilio; del Río, Ana; Lejko-Zupanc, Tatjana; de Oliveira Ramos, Auristela; Iarussi, Diana; Klein, John; Chirouze, Catherine; Bedimo, Roger; Corey, G Ralph; Fowler, Vance G

    2007-12-18

    Infective endocarditis caused by non-HACEK (species other than Haemophilus species, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, or Kingella species) gram-negative bacilli is rare, is poorly characterized, and is commonly considered to be primarily a disease of injection drug users. To describe the clinical characteristics and outcomes of patients with non-HACEK gram-negative bacillus endocarditis in a large, international, contemporary cohort of patients. Observations from the International Collaboration on Infective Endocarditis Prospective Cohort Study (ICE-PCS) database. 61 hospitals in 28 countries. Hospitalized patients with definite endocarditis. Characteristics of non-HACEK gram-negative bacillus endocarditis cases were described and compared with those due to other pathogens. Among the 2761 case-patients with definite endocarditis enrolled in ICE-PCS, 49 (1.8%) had endocarditis (20 native valve, 29 prosthetic valve or device) due to non-HACEK, gram-negative bacilli. Escherichia coli (14 patients [29%]) and Pseudomonas aeruginosa (11 patients [22%]) were the most common pathogens. Most patients (57%) with non-HACEK gram-negative bacillus endocarditis had health care-associated infection, whereas injection drug use was rare (4%). Implanted endovascular devices were frequently associated with non-HACEK gram-negative bacillus endocarditis compared with other causes of endocarditis (29% vs. 11%; P < 0.001). The in-hospital mortality rate of patients with endocarditis due to non-HACEK gram-negative bacilli was high (24%) despite high rates of cardiac surgery (51%). Because of the small number of patients with non-HACEK gram-negative bacillus endocarditis in each treatment group and the lack of long-term follow-up, strong treatment recommendations are difficult to make. In this large, prospective, multinational cohort, more than one half of all cases of non-HACEK gram-negative bacillus endocarditis were associated with health care contact. Non-HACEK gram-negative bacillus endocarditis is not primarily a disease of injection drug users.

  20. Seasonal Outbreak of Bacillus Bacteremia Associated With Contaminated Linen in Hong Kong.

    PubMed

    Cheng, Vincent C C; Chen, Jonathan H K; Leung, Sally S M; So, Simon Y C; Wong, Shuk-Ching; Wong, Sally C Y; Tse, Herman; Yuen, Kwok-Yung

    2017-05-15

    A high seasonal incidence of Bacillus bacteremia was associated with the use of contaminated hospital linens. An outbreak investigation was conducted to study the incidence and source of Bacillus bacteremia during the baseline, outbreak, and postoutbreak period from 1 January 2012 through 31 July 2016 at a university-affiliated teaching hospital in Hong Kong. Replicate organism detection and counting plates were used for microbial screening of linen samples. The Bacillus species isolated from patient and linen samples were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were phylogenetically analyzed. During the study period, a total of 113 207 blood cultures were collected from 43 271 patients, of which 978 (0.86%) specimens from 744 (1.72%) patients were identified as Bacillus species. The incidence of Bacillus bacteremia per 10 000 patient admissions and per 10 000 patient-days was significantly higher during the summer outbreak as compared with baseline and 1 year postoutbreak after cessation of the linen supply from the designated laundry and change of laundry protocol (39.97 vs 18.21 vs 2.27; 13.36 vs 5.61 vs 0.73; P < .001). The mean total aerobic bacterial count per 100 cm2 was significantly higher among the 99 linen samples screened during the outbreak period compared to the 100 screened in the postoutbreak period (916.0 ± 641.6 vs 0.6 ± 1.6; P < .001). Blood culture isolates of Bacillus cereus group in 14 of 87 (16.1%) patients were phylogenetically associated with 9 linen sample isolates. Suboptimal conditions of hospital laundry contributed to the seasonal outbreak of Bacillus bacteremia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

Top