Sample records for constructing large bi-directed

  1. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.

    PubMed

    Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal

    2010-11-15

    Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.

  2. Fast bi-directional prediction selection in H.264/MPEG-4 AVC temporal scalable video coding.

    PubMed

    Lin, Hung-Chih; Hang, Hsueh-Ming; Peng, Wen-Hsiao

    2011-12-01

    In this paper, we propose a fast algorithm that efficiently selects the temporal prediction type for the dyadic hierarchical-B prediction structure in the H.264/MPEG-4 temporal scalable video coding (SVC). We make use of the strong correlations in prediction type inheritance to eliminate the superfluous computations for the bi-directional (BI) prediction in the finer partitions, 16×8/8×16/8×8 , by referring to the best temporal prediction type of 16 × 16. In addition, we carefully examine the relationship in motion bit-rate costs and distortions between the BI and the uni-directional temporal prediction types. As a result, we construct a set of adaptive thresholds to remove the unnecessary BI calculations. Moreover, for the block partitions smaller than 8 × 8, either the forward prediction (FW) or the backward prediction (BW) is skipped based upon the information of their 8 × 8 partitions. Hence, the proposed schemes can efficiently reduce the extensive computational burden in calculating the BI prediction. As compared to the JSVM 9.11 software, our method saves the encoding time from 48% to 67% for a large variety of test videos over a wide range of coding bit-rates and has only a minor coding performance loss. © 2011 IEEE

  3. Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation.

    PubMed

    Ju, Peng; Wang, Yi; Sun, Yan; Zhang, Dun

    2016-03-21

    In this study, a novel visible-light-sensitive Bi2WO6/BiVO4 composite photocatalyst was controllably synthesized through a facile one-pot hydrothermal method. The Bi2WO6/BiVO4 composite exhibited a perfect nest-like hierarchical microsphere structure, which was constructed by the self-assembly of nanoplates with the assistance of polyvinylpyrrolidone (PVP). The growth mechanism of the Bi2WO6/BiVO4 composite and the effect of its structure on its photocatalytic performance was investigated and proposed. Experimental results showed that the Bi2WO6/BiVO4 composites displayed enhanced photocatalytic antifouling activities under visible light irradiation compared to pure Bi2WO6 and BiVO4. Bi2WO6/BiVO4-1 exhibited the best photocatalytic antifouling performance, and almost all (99.99%) Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were killed within 30 min. Moreover, the Bi2WO6/BiVO4-1 composite exhibited excellent stability and reusability in the cycled experiments. The photocatalytic antifouling mechanism was proposed based on the active species trapping experiments, revealing that the photo-induced holes (h(+)) and hydroxyl radicals (˙OH) could attack the cell wall and cytoplasmic membrane directly and lead to the death of bacteria. The obviously enhanced photocatalytic activity of the Bi2WO6/BiVO4-1 composite could be mainly attributed to the formation of heterojunctions, accelerating the separation of photo-induced electrons and holes. Furthermore, the large BET surface area combined with the wide photoabsorption region further improved the photocatalytic performance of the Bi2WO6/BiVO4-1 composite. This study provides a new strategy to develop novel composite photocatalysts with enhanced photocatalytic performance for marine antifouling and water purification.

  4. Bulk from bi-locals in Thermo field CFT

    DOE PAGES

    Jevicki, Antal; Yoon, Junggi

    2016-02-15

    For this research, we study the Large N dynamics of the O(N) field theory in the Thermo field dynamics approach. The question of recovering the high temperature phase and the corresponding O(N) gauging is clarified. Through the associated bi-local representation we discuss the emergent bulk space-time and construction of (Higher spin) fields. In addition, we note the presence of ‘evanescent’ modes in this construction and also the mixing of spins at finite temperature.

  5. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    PubMed Central

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-01-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629

  6. Integrated capabilities in heavy vehicles : human factors research needs

    DOT National Transportation Integrated Search

    2003-10-09

    The Full Road Closure method uses facility closure and total traffic diversion, which may be for one direction or bi-directional traffic flow, to accelerate construction and reduce the negative impacts of work zones. With good planning, interagency c...

  7. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    PubMed

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.

    PubMed

    Chen, Shih-Wei; Lai, Jr-Jie; Chiang, Chen-Li; Chen, Cheng-Lung

    2012-06-01

    Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.

  9. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Wei; Lai-Jie, Jr.; Chiang, Chen-Li; Chen, Cheng-Lung

    2012-06-01

    Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.

  10. Performance and cavitation characteristics of bi-directional hydrofoils

    NASA Astrophysics Data System (ADS)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2013-11-01

    Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.

  11. Accommodating the Instrumental Genesis Framework within Dynamic Technology Environments

    ERIC Educational Resources Information Center

    Hegedus, Stephen J.; Moreno-Armella, Luis

    2010-01-01

    In certain digital environments, "hot-spots" are key infrastructural pieces that allow the dynamic construction and re-construction of mathematical figures. We shall discuss their existence with respect to what we call user-environment co-actions, describing how they are sustainable bi-directional processes that have the potential to ground and…

  12. Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O' studied by neutron total scattering

    NASA Astrophysics Data System (ADS)

    Shoemaker, Daniel P.; Seshadri, Ram; Hector, Andrew L.; Llobet, Anna; Proffen, Thomas; Fennie, Craig J.

    2010-04-01

    The oxide pyrochlore Bi2Ti2O6O' is known to be associated with large displacements of Bi and O' atoms from their ideal crystallographic positions. Neutron total scattering, analyzed in both reciprocal and real space, is employed here to understand the nature of these displacements. Rietveld analysis and maximum entropy methods are used to produce an average picture of the structural nonideality. Local structure is modeled via large-box reverse Monte Carlo simulations constrained simultaneously by the Bragg profile and real-space pair distribution function. Direct visualization and statistical analyses of these models show the precise nature of the static Bi and O' displacements. Correlations between neighboring Bi displacements are analyzed using coordinates from the large-box simulations. The framework of continuous symmetry measures has been applied to distributions of O'Bi4 tetrahedra to examine deviations from ideality. Bi displacements from ideal positions appear correlated over local length scales. The results are consistent with the idea that these nonmagnetic lone-pair containing pyrochlore compounds can be regarded as highly structurally frustrated systems.

  13. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhan, Guangming; Yu, Ying; Zhang, Lizhi

    2016-05-01

    Although photocatalytic hydrogen evolution (PHE) is ideal for solar-to-fuel conversion, it remains challenging to construct a highly efficient PHE system by steering the charge flow in a precise manner. Here we tackle this challenge by assembling 1T MoS2 monolayers selectively and chemically onto (Bi12O17) end-faces of Bi12O17Cl2 monolayers to craft two-dimensional (2D) Janus (Cl2)-(Bi12O17)-(MoS2) bilayer junctions, a new 2D motif different from van der Waals heterostructure. Electrons and holes from visible light-irradiated Bi12O17Cl2 are directionally separated by the internal electric field to (Bi12O17) and (Cl2) end-faces, respectively. The separated electrons can further migrate to MoS2 via Bi-S bonds formed between (Bi12O17) and MoS2 monolayers. This atomic-level directional charge separation endows the Janus bilayers with ultralong carrier lifetime of 3,446 ns and hence a superior visible-light PHE rate of 33 mmol h-1 g-1. Our delineated Janus bilayer junctions on the basis of the oriented assembly of monolayers presents a new design concept to effectively steer the charge flow for PHE.

  14. Bi-directional, buried-wire skin-friction gage

    NASA Technical Reports Server (NTRS)

    Higuchi, H.; Peake, D. J.

    1978-01-01

    A compact, nonobtrusive, bi-directional, skin-friction gage was developed to measure the mean shear stress beneath a three-dimensional boundary layer. The gage works by measuring the heat flux from two orthogonal wires embedded in the surface. Such a gage was constructed and its characteristics were determined for different angles of yaw in a calibration experiment in subsonic flow with a Preston tube used as a standard. Sample gages were then used in a fully three-dimensional turbulent boundary layer on a circular cone at high relative incidence, where there were regimes of favorable and adverse pressure gradients and three-dimensional separation. Both the direction and magnitude of skin friction were then obtained on the cone surface.

  15. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    PubMed Central

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  16. Antiviral Activity of HIV gp120 Targeting Bispecific T Cell Engager (BiTE®) Antibody Constructs.

    PubMed

    Brozy, Johannes; Schlaepfer, Erika; Mueller, Christina K S; Rochat, Mary-Aude; Rampini, Silvana K; Myburgh, Renier; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A; Muenz, Markus; Speck, Roberto F

    2018-05-02

    Today's gold standard in HIV therapy is the combined antiretroviral therapy (cART). It requires strict adherence by patients and life-long medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency, but cannot cure patients. The bispecific T cell engaging (BiTE®) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. We here generated BiTE® antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1+2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ϵ scFv. These engineered human BiTE® antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in PBMCs as well as in macrophages co-cultured with autologous CD8+ T-cells, the most potent being the human CD4(1+2) BiTE® antibody construct and the CD4(1+2)L17b BiTE® antibody construct. The CD4(1+2) h BiTE® antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE® antibody constructs as well as the CD4(1+2)L17b BiTE® antibody construct did not. Thus, BiTE® antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential. Importance HIV is a chronic infection well controlled with the current cART. However, we lack cure of HIV, and the HIV pandemic goes on. Here we showed in vitro and ex vivo t hat a bispecific T-cell engaging (BiTE®) antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE® antibody constructs display efficient killing of gp120 expressing cells and inhibited replication in ex vivo HIV-infected PBMCs or macrophages. We believe that BiTE® antibody constructs recognizing HIV gp120 could be a very valuable strategy for a cure of HIV in combination with cART and compounds, which reverse latency. Copyright © 2018 American Society for Microbiology.

  17. Constructing nanoporous carbon nanotubes/Bi2Te3 composite for synchronous regulation of the electrical and thermal performances

    NASA Astrophysics Data System (ADS)

    Zhang, Qihao; Xu, Leilei; Zhou, Zhenxing; Wang, Lianjun; Jiang, Wan; Chen, Lidong

    2017-02-01

    Porous nanograined thermoelectric materials exhibit low thermal conductivity due to scattering of phonons by pores, which are favorable for thermoelectric applications. However, the benefit is not large enough to overcome the deficiency in the electrical performance. Herein, an approach is presented to reduce the thermal conductivity and synchronously enhance the electrical conductivity through constructing a nanoporous thermoelectric composite. Carbon nanotubes (CNTs) are truncated and homogeneously dispersed within the Bi2Te3 matrix by a cryogenic grinding (CG) technique for the first time, which efficiently suppress the Bi2Te3 grain growth and create nanopores with the size ranging from dozens to hundreds of nanometers. The lattice thermal conductivity is substantially decreased by broad wavelength phonon scattering resulting from nanopores, increased grain boundaries, and newly formed interfaces. Meanwhile, the electrical conductivity is improved due to the enhanced carrier mobility, which may originate from the bridging effect between the Bi2Te3 grains and CNTs. The maximum ZT is improved by almost a factor of 2 due to the simultaneous optimization of electrical and thermal performances. Our study demonstrates the superiority of constructing a bulk thermoelectric composite with nanopores by the uniform dispersion of CNTs through a CG technique for enhanced thermoelectric properties, which provides a wider approach to thermoelectric nanostructure engineering.

  18. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  19. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Shengyao; Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin; Dai, Ke; Chen, Hao

    2017-01-01

    In this study, a direct Z-scheme heterojunction BiOBr-Bi2MoO6 with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi2MoO6 through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi2MoO6 occurred mainly on the (001) facets of BiOBr and (001) facets of Bi2MoO6. The photocatalytic activity of the BiOBr-Bi2MoO6 was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi2MoO6 could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  20. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    He, Rongan; Zhou, Jiaqian; Fu, Huiqing; Zhang, Shiying; Jiang, Chuanjia

    2018-02-01

    Constructing direct Z-scheme heterojunction is an effective approach to separating photogenerated charge carriers and improving the activity of semiconductor photocatalysts. Herein, a composite of bismuth(III) oxide (Bi2O3) and graphitic carbon nitride (g-C3N4) was in situ fabricated at room temperature by photoreductive deposition of Bi3+ and subsequent air-oxidation of the resultant metallic Bi. Quantum-sized ω-Bi2O3 nanoparticles approximately 6 nm in diameter were uniformly distributed on the surface of mesoporous g-C3N4. The as-prepared Bi2O3/g-C3N4 composite exhibited higher photocatalytic activity than pure Bi2O3 and g-C3N4 for photocatalytic degradation of phenol under visible light. Reactive species trapping experiments revealed that superoxide radicals and photogenerated holes played important roles in the photocatalytic degradation of phenol. The enhanced photocatalytic activity, identification of reactive species and higher rate of charge carrier recombination (as indicated by stronger photoluminescence intensity) collectively suggest that the charge migration within the Bi2O3/g-C3N4 composite followed a Z-scheme mechanism. Photogenerated electrons on the conduction band of Bi2O3 migrate to the valence band of g-C3N4 and combine with photogenerated holes therein. At the cost of these less reactive charge carriers, the Z-scheme heterojunction enables efficient charge separation, while preserving the photogenerated electrons and holes with stronger redox abilities, which is beneficial for enhanced photocatalytic activity.

  1. Suspended Ga2Se3 film and epitaxial Bi2Se3(221) on GaSb(001) by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Bin; Xia, Yipu; Ho, Wingkin; Xie, Maohai

    2017-02-01

    High-index Bi2Se3(221) has been successfully grown on partially suspended Ga2Se3(001). The Ga2Se3 layer was formed by selenation of GaSb(001) surface, which revealed a suspended structure supported only by some GaSb nano-pillars. Such a growth behavior may be beneficial for achieving heterostructures with large lattice misfits and suppressing the coupling between the substrate and deposit. Bi2Se3, a typical topological insulator, has been grown on Ga2Se3 along the high-index [221] direction despite of the large lattice mismatch.

  2. Phase transition studies of BiMnO3: Mean field theory approximations

    NASA Astrophysics Data System (ADS)

    Priya K. B, Lakshmi; Natesan, Baskaran

    2015-06-01

    We studied the phase transition and magneto-electric coupling effect of BiMnO3 by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO3, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO3.

  3. Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin.

    PubMed

    Chen, Xiaoqian; Wang, Qingxiang; Wang, Liheng; Gao, Feng; Wang, Wei; Hu, Zhengshui

    2015-04-15

    A broccoli-like bismuth sulfide (bBi2S3) was synthesized via a solvothermal method using a self-made imidazoline derivative of 2-undecyl-1-dithioureido-ethyl-imidazoline as the soft template. The morphology and chemical constitution of the product were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electrochemical characterization experiments show that the bBi2S3 has the higher specific surface area and standard heterogeneous electron transfer rate constant than the rod-like Bi2S3 (rBi2S3). Hemoglobin (Hb) was then chosen as a protein model to investigate the electrocatalytic property of the synthesized bBi2S3. The results show that Hb entrapped in the composite film of chitosan and bBi2S3 displays an excellent direct electrochemistry, and retains its biocatalytic activity toward the electro-reduction of hydrogen peroxide. The current response in the amperometry shows a linear response to H2O2 concentrations in the range from 0.4 to 4.8µM with high sensitivity (444µAmM(-1)) and low detection limit (0.096µM). The Michaelis-Menten constant (KM(app)) of the fabricated bioelectrode for H2O2 was determined as low as 1µM. These results demonstrate that the synthesized bBi2S3 offers a new path for the immobilization of redox-active protein and the construction of the third-generation biosensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Photoconductivity in BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  5. Parenting Control in Contexts of Political Violence: Testing Bi-directional Relations between Violence Exposure and Control in Post-Accord Belfast

    PubMed Central

    Merrilees, Christine E.; Cummings, E. Mark; Goeke-Morey, Marcie C.; Schermerhorn, Alice C.; Shirlow, Peter; Cairns, Ed

    2012-01-01

    SYNOPSIS Objective The goal of the present study is to examine bi-directional relations between youth exposure to sectarian and nonsectarian antisocial behavior and mothers’ efforts to control youth’s exposure to community violence in Belfast, Northern Ireland. Design Mother-child dyads (N=773) were interviewed in their homes twice over 2 years regarding youth’s exposure to sectarian (SAB) and nonsectarian (NAB) community antisocial behavior and mothers’ use of control strategies, including behavioral and psychological control. Results Youth’s exposure to NAB was related to increases in mothers’ use of both behavioral and psychological control strategies over time, controlling for earlier levels of these constructs. Reflecting bi-directional relations, mothers’ behavioral control strategies were associated with youth’s reduced exposure to both NAB and SAB over time, whereas psychological control was not related to reduced exposure. Conclusion Only nonsectarian community violence was associated longitudinally with mothers’ increased use of control strategies, and only behavioral control strategies were effective in reducing youth’s exposure to community antisocial behavior, including both sectarian and nonsectarian antisocial behavior. PMID:22523479

  6. BiSr3(YO)3(BO3)4: a new gaudefroyite-type rare-earth borate with moderate SHG response.

    PubMed

    Gao, Jianhua; Li, Shuai

    2012-01-02

    The synthesis, crystal structure, crystal growth, and characterization of a new noncentrosymmetric rare-earth borate BiSr(3)(YO)(3)(BO(3))(4) are reported. BiSr(3)(YO)(3)(BO(3))(4) belongs to gaudefroyite type of structure and crystallizes in the polar hexagonal space group P6(3) (no. 173) with a = 10.6975(16) Å and c = 6.7222(12) Å. In the structure, the YO(7) polyhedra share edges to form an one-dimensional chain along the [001] direction. These chains are interconnected by the BO(3) group to construct a three-dimensional framework, leaving two kinds of channels for Bi atoms and Sr atoms together with BO(3) groups, respectively. On the basis of the powder second-harmonic generation (SHG) measurement, BiSr(3)(YO)(3)(BO(3))(4) belongs to the phase-matchable class with a SHG response of about 3 × KDP.

  7. The Temporal Course of Anxiety Sensitivity in Outpatients with Anxiety and Mood Disorders: Relationships with Behavioral Inhibition and Depression

    PubMed Central

    Rosellini, Anthony J.; Fairholme, Christopher P.; Brown, Timothy A.

    2011-01-01

    The present study evaluated the temporal course of three dimensions of anxiety sensitivity (AS; concerns over physical symptoms, mental incapacitation, and social embarrassment) and their relationships with behavioral inhibition (BI) and depression (DEP) in 606 outpatients with anxiety and mood disorders. A semi-structured interview and self-report questionnaires were administered on three occasions over a two-year period. All three constructs decreased over the study period and AS temporally functioned more similar to DEP than BI. Cross-sectional and temporal correlations supported the discriminant validity of AS from BI. As expected, initial levels of BI predicted less improvement in all AS dimensions. In contrast, higher initial levels of mental incapacitation AS were associated with greater improvement in DEP. Our results are discussed in regard to the measurement of AS in clinical samples, conceptualizations of AS as a lower-order vulnerability, and prognostic implications of directional paths between BI and AS and AS and DEP. PMID:21377316

  8. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay.

    PubMed

    Hudry, Bruno; Viala, Séverine; Graba, Yacine; Merabet, Samir

    2011-01-28

    Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.

  9. Phase transition studies of BiMnO{sub 3}: Mean field theory approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmi Priya, K. B.; Natesan, Baskaran, E-mail: nbaski@nitt.edu

    We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports.more » Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.« less

  10. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pele, Vincent; Barreteau, Celine; CNRS, Orsay F-91405

    2013-07-15

    We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similarmore » to that of samples synthesized by a classical path.« less

  11. Improving foundation design in rock : load test at Burma Road Overpass, final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    This report describes the results of a bi-directional load test on a drilled shaft foundation in weak sandstone. The test was conducted in : conjunction with construction of a new bridge at Burma Road Overpass on I-90 in Gillette, Wyoming. The purpos...

  12. Agency as a Construct for Guiding the Establishment of Communication-Friendly Classrooms

    ERIC Educational Resources Information Center

    Alper, Rebecca M.; McGregor, Karla K.

    2015-01-01

    Educators face the challenge of creating classroom environments that are physically, socially, and didactically "communication friendly" for children with diverse communication needs and differences. In this article we propose that (1) communication and the development of agency are bi-directionally linked and, therefore, (2) the…

  13. Acceptance of Internet Banking Systems among Young Managers

    NASA Astrophysics Data System (ADS)

    Ariff, Mohd Shoki Md; M, Yeow S.; Zakuan, Norhayati; Zaidi Bahari, Ahamad

    2013-06-01

    The aim of this paper is to determine acceptance of internet banking system among potential young users, specifically future young managers. The relationships and the effects of computer self-efficacy (CSE) and extended technology acceptance model (TAM) on the behavioural intention (BI) to use internet banking system were examined. Measurement of CSE, TAM and BI were adapted from previous studies. However construct for TAM has been extended by adding a new variable which is perceived credibility (PC). A survey through questionnaire was conducted to determine the acceptance level of CSE, TAM and BI. Data were obtained from 275 Technology Management students, who are pursuing their undergraduate studies in a Malaysia's public university. The confirmatory factor analysis performed has identified four variables as determinant factors of internet banking acceptance. The first variable is computer self-efficacy (CSE), and another three variables from TAM constructs which are perceived usefulness (PU), perceived ease of use (PE) and perceived credibility (PC). The finding of this study indicated that CSE has a positive effect on PU and PE of the Internet banking systems. Respondents' CSE was positively affecting their PC of the systems, indicating that the higher the ability of one in computer skills, the higher the security and privacy issues of PC will be concerned. The multiple regression analysis indicated that only two construct of TAM; PU and PC were significantly associated with BI. It was found that the future managers' CSE indirectly affects their BI to use the internet banking systems through PU and PC of TAM. TAM was found to have direct effects on respondents' BI to use the systems. Both CSE and the PU and PC of TAM were good predictors in understanding individual responses to information technology. The role of PE of the original TAM to predict the attitude of users towards the use of information technology systems was surprisingly insignificant.

  14. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is evaluated.

  15. Plant Species Identification by Bi-channel Deep Convolutional Networks

    NASA Astrophysics Data System (ADS)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  16. Enhanced Photocatalytic Activity of Bismuth Precursor by Rapid Phase and Surface Transformation Using Structure-Guided Combustion Waves.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Kim, Tae Ho; Choi, Wonjoon

    2016-02-10

    The development of an efficient method for manipulating phase and surface transformations would facilitate the improvement of catalytic materials for use in a diverse range of applications. Herein, we present the first instance of a submicrosecond time frame direct phase and surface transformation of Bi(NO3)3 rods to nanoporous β-Bi2O3 rods via structure-guided combustion waves. Hybrid composites of the prepared Bi(NO3)3·H2O rods and organic fuel were fabricated by a facile preparation method. The anisotropic propagation of combustion waves along the interfacial boundaries of Bi(NO3)3·H2O rods induced direct phase transformation to β-Bi2O3 rods in the original structure due to the rapid pyrolysis, while the release of gas molecules enabled the formation of nanoporous structures on the surfaces of rods. The developed β-Bi2O3 rods showed improved photocatalytic activity for the photodegradation of rhodamine B in comparison with Bi(NO3)3·H2O rods and α-Bi2O3 rods due to the more suitable interdistance and the large contact areas of the porous surfaces. This new method of using structure-guided combustion waves for phase and surface transformation may contribute to the development of new catalysts as well as the precise manipulation of diverse micronanostructured materials.

  17. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion playsmore » a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.« less

  18. Validation of Spanish Language Evaluation Instruments for Body Dysmorphic Disorder and the Dysmorphic Concern Construct

    PubMed Central

    Senín-Calderón, Cristina; Valdés-Díaz, María; Benítez-Hernández, Ma M.; Núñez-Gaitán, Ma C.; Perona-Garcelán, Salvador; Martínez-Cervantes, Rafael; Rodríguez-Testal, Juan F.

    2017-01-01

    Dysmorphic concern (DC) refers to excessive preoccupation with a slight or imagined defect in physical appearance with social avoidance and behavior directed at controlling the defect in appearance. This study attempted to adapt the factor structure of two instruments that cover the DC construct, the Dysmorphic Concern Questionnaire (DCQ) and the Body Dysmorphic Disorder Examination Self-Report (BDDE-SR), to Spanish and establish their psychometric properties. A total of 920 subjects (62.7% women, Mage = 32.44 years) participated. Exploratory and Confirmatory Factor Analysis of both scales found adequate goodness of fit indices. A one-dimensional structure was found for the DCQ and two first-order factors (dissatisfaction/preoccupation with body image (BI) and BI avoidance behavior) were identified for the BDDE-SR. The psychometric test–retest reliability and validity properties (content, convergent, and discriminant) were satisfactory. It is suggested that the DC construct includes both cognitive and behavioral aspects and may represent a continuum of severity with Body Dysmorphic Disorder at the end. PMID:28713311

  19. Validation of Spanish Language Evaluation Instruments for Body Dysmorphic Disorder and the Dysmorphic Concern Construct.

    PubMed

    Senín-Calderón, Cristina; Valdés-Díaz, María; Benítez-Hernández, Ma M; Núñez-Gaitán, Ma C; Perona-Garcelán, Salvador; Martínez-Cervantes, Rafael; Rodríguez-Testal, Juan F

    2017-01-01

    Dysmorphic concern (DC) refers to excessive preoccupation with a slight or imagined defect in physical appearance with social avoidance and behavior directed at controlling the defect in appearance. This study attempted to adapt the factor structure of two instruments that cover the DC construct, the Dysmorphic Concern Questionnaire (DCQ) and the Body Dysmorphic Disorder Examination Self-Report (BDDE-SR), to Spanish and establish their psychometric properties. A total of 920 subjects (62.7% women, M age = 32.44 years) participated. Exploratory and Confirmatory Factor Analysis of both scales found adequate goodness of fit indices. A one-dimensional structure was found for the DCQ and two first-order factors (dissatisfaction/preoccupation with body image (BI) and BI avoidance behavior) were identified for the BDDE-SR. The psychometric test-retest reliability and validity properties (content, convergent, and discriminant) were satisfactory. It is suggested that the DC construct includes both cognitive and behavioral aspects and may represent a continuum of severity with Body Dysmorphic Disorder at the end.

  20. Translation and Clinical Development of Bispecific T‐cell Engaging Antibodies for Cancer Treatment

    PubMed Central

    Yuraszeck, T; Kasichayanula, S

    2017-01-01

    Bispecific T‐cell Engagers (BiTE®) antibody constructs enable a polyclonal T‐cell response to cell‐surface tumor‐associated antigens, bypassing the narrow specificities of T‐cell receptors and the need for antigen presentation through the major histocompatibility complex pathways. Blinatumomab, a CD19xCD3 BiTE® antibody construct, received accelerated approval for the treatment of relapsed/refractory Philadelphia chromosome negative acute lymphoblastic leukemia. Herein we review the pharmacology, safety, and efficacy observed in studies of blinatumomab and other BiTE® antibody constructs. Quantitative systems pharmacology is envisioned as a means to optimize dosing decisions for trials in which BiTE® antibody constructs are administered as monotherapy or in combination with other immunotherapies. PMID:28182247

  1. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay

    PubMed Central

    2011-01-01

    Background Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Results Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Conclusion Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development. PMID:21276241

  2. Classical gluon and graviton radiation from the bi-adjoint scalar double copy

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Prabhu, Siddharth G.; Thompson, Jedidiah O.

    2017-09-01

    We find double-copy relations between classical radiating solutions in Yang-Mills theory coupled to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics replacements we employ are motivated by the Bern-Carrasco-Johansson double-copy correspondence for on-shell amplitudes in gauge and gravity theories. They are identical to those recently used to establish relations between classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions are constructed to second order in a perturbative expansion, and map under the double copy onto gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence is found to persist to higher orders in perturbation theory, our results suggest the possibility of calculating gravitational radiation from colliding compact objects, directly from a scalar field with vastly simpler (purely cubic) Feynman vertices.

  3. Intimate contacted two-dimensional/zero-dimensional composite of bismuth titanate nanosheets supported ultrafine bismuth oxychloride nanoparticles for enhanced antibiotic residue degradation.

    PubMed

    Liu, Wenwen; Dai, Zhiqiang; Liu, Yi; Zhu, Anquan; Zhong, Donglin; Wang, Juan; Pan, Jun

    2018-05-31

    Constructing a two-dimensional/zero-dimensional (2D/0D) composite with matched crystal structure, suitable energy band structure as well as intimate contact interface is an effective way to improve carriers separation for achieving highly photocatalytic performance. In this work, a novel bismuth titanate/bismuth oxychloride (Bi 4 Ti 3 O 12 /BiOCl) composite consisting of 2D Bi 4 Ti 3 O 12 nanosheets and 0D BiOCl nanoparticles was constructed for the first time. Germinating ultrafine BiOCl nanoparticles on Bi 4 Ti 3 O 12 nanosheets can provide abundant contact interface and shorten migration distance of photoinduced carriers via two-step synthesis contained molten salt process and facile chemical transformation process. The obtained Bi 4 Ti 3 O 12 /BiOCl 2D/0D composites exhibited enhanced photocatalytic performance for antibiotic tetracycline hydrochloride degradation. The rate constant of optimal Bi 4 Ti 3 O 12 /BiOCl composite was about 4.4 times higher than that of bare Bi 4 Ti 3 O 12 although Bi 4 Ti 3 O 12 /BiOCl composite appeared lesser photoabsorption. The enhanced photocatalytic performance can be mainly ascribed to matched crystal structure, suitable energy band structure and intimate contact interface between Bi 4 Ti 3 O 12 nanosheets and ultrafine BiOCl nanoparticles as well as unique 2D/0D composite structure. Besides, a probable degradation mechanism on the basis of active species trapping experiments, electrochemical impedance spectroscopy, photocurrent responses and energy band structures was proposed. This work may be stretched to other 2D/0D composite photocatalysts construction, which is inspiring for antibiotic residue treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    NASA Astrophysics Data System (ADS)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  5. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO 3

    DOE PAGES

    Kezsmarki, I.; Fishman, Randy Scott

    2016-04-18

    Due to the complicated magnetic and crystallographic structures of BiFeO 3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO 3. A model motivated by first principles reproduces the absorption difference of counter-propagatingmore » light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less

  6. High-Tc superconducting materials for electric power applications.

    PubMed

    Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A

    2001-11-15

    Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.

  7. Composite ceramic superconducting wires for electric motor applications

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    1990-04-01

    Silver clad polycrystalline Y-123 wire is being fabricated with a continuous reel-to-reel process. Scale-up activities are underway to produce enough wire for the field coils of the HTSC motor. Green HTSC fiber were produced in kilometer lengths, and sintered wires up to 166 meters long. The 77K Jc values are 1000-2800 A/sq cm in self field. To improve Jc of the Y-123 wire, development began on directional crystallization, including preliminary work at A. D. Little and Oak Ridge National Lab. Large lots of BiSCCO material were produced to fabricated fibers and sintered polycrystalline BiSSCO wire as rolled tape. Work continued in collaboration with Sandia and Los Alamos National Laboratories on rapid thermal processing of Y-123, with most emphasis on characterizing the rapid oxygenation effect. The design of the HTSC homopolar motor has been improved to increase the output from field coils by using six smaller coils, each with separately optimized current. Motor construction is in progress. Preliminary design is underway on a dc heteropolar motor with HTSC field windings and armature and a brushless trapped flux permanent magnet dc motor, in which the field is produced by trapped flux in an HTSC rotor.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shengwei; Yu Jiaguo

    Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi{sub 2}WO{sub 6} assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process ismore » discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)« less

  9. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Technical Reports Server (NTRS)

    Witherow, William K. (Inventor)

    1988-01-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  10. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-09-02

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

  11. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  12. Study of foldable elastic tubes for large space structure applications, phase 1

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Boateng, C.; Williams, C. D.

    1980-01-01

    Structural members that might be suitable for strain energy deployable structures, are discussed with emphasis on a thin-walled cylindrical tube with a cross-section that is called 'bi-convex'. The design of bi-convex tube test specimens and their fabrication are described as well as the design and construction of a special purpose testing machine to determine the deployment characteristics. The results of the first series of tests were quite mixed, but clearly revealed that since most of the specimens failed to deploy completely, due to a buckling problem, this type of tube requires some modification in order to be viable.

  13. Statistical machine translation for biomedical text: are we there yet?

    PubMed

    Wu, Cuijun; Xia, Fei; Deleger, Louise; Solti, Imre

    2011-01-01

    In our paper we addressed the research question: "Has machine translation achieved sufficiently high quality to translate PubMed titles for patients?". We analyzed statistical machine translation output for six foreign language - English translation pairs (bi-directionally). We built a high performing in-house system and evaluated its output for each translation pair on large scale both with automated BLEU scores and human judgment. In addition to the in-house system, we also evaluated Google Translate's performance specifically within the biomedical domain. We report high performance for German, French and Spanish -- English bi-directional translation pairs for both Google Translate and our system.

  14. The evolving neurobiology of gut feelings.

    PubMed

    Mayer, E A; Naliboff, B; Munakata, J

    2000-01-01

    The bi-directional communication between limbic regions and the viscera play a central role in the generation and expression of emotional responses and associated emotional feelings. The response of different viscera to distinct, emotion-specific patterns of autonomic output is fed back to the brain, in particular to the cingulofrontal convergence region. Even though this process unfolds largely without conscious awareness, it plays an important role in emotional function and may influence rational decision making in the healthy individual. Alterations in this bi-directional process such as peripheral pathologies within the gut or alterations at the brain level may explain the close association between certain affective disorders and functional visceral syndromes.

  15. Magnetic spin structure and magnetoelectric coupling in BiFeO{sub 3}-BaTiO{sub 3} multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazenka, Vera, E-mail: Vera.Lazenka@fys.kuleuven.be; Modarresi, Hiwa; Bisht, Manisha

    2015-02-23

    Magnetic spin structures in epitaxial BiFeO{sub 3} single layer and an epitaxial BaTiO{sub 3}/BiFeO{sub 3} multilayer thin film have been studied by means of nuclear resonant scattering of synchrotron radiation. We demonstrate a spin reorientation in the 15 × [BaTiO{sub 3}/BiFeO{sub 3}] multilayer compared to the single BiFeO{sub 3} thin film. Whereas in the BiFeO{sub 3} film, the net magnetic moment m{sup →} lies in the (1–10) plane, identical to the bulk, m{sup →} in the multilayer points to different polar and azimuthal directions. This spin reorientation indicates that strain and interfaces play a significant role in tuning the magnetic spin order.more » Furthermore, large difference in the magnetic field dependence of the magnetoelectric coefficient observed between the BiFeO{sub 3} single layer and multilayer can be associated with this magnetic spin reorientation.« less

  16. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  17. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 4×10-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  18. Physical activity and self-esteem: testing direct and indirect relationships associated with psychological and physical mechanisms.

    PubMed

    Zamani Sani, Seyed Hojjat; Fathirezaie, Zahra; Brand, Serge; Pühse, Uwe; Holsboer-Trachsler, Edith; Gerber, Markus; Talepasand, Siavash

    2016-01-01

    In the present study, we investigated the relationship between physical activity (PA) and self-esteem (SE), while introducing body mass index (BMI), perceived physical fitness (PPF), and body image (BI) in adults (N =264, M =38.10 years). The findings indicated that PA was directly and indirectly associated with SE. BMI predicted SE neither directly nor indirectly, but was directly associated with PPF and both directly and indirectly with BI. Furthermore, PPF was directly related to BI and SE, and a direct association was found between BI and SE. The pattern of results suggests that among a sample of adults, PA is directly and indirectly associated with SE, PPF, and BI, but not with BMI. PA, PPF, and BI appear to play an important role in SE. Accordingly, regular PA should be promoted, in particular, among adults reporting lower SE.

  19. Physical activity and self-esteem: testing direct and indirect relationships associated with psychological and physical mechanisms

    PubMed Central

    Zamani Sani, Seyed Hojjat; Fathirezaie, Zahra; Brand, Serge; Pühse, Uwe; Holsboer-Trachsler, Edith; Gerber, Markus; Talepasand, Siavash

    2016-01-01

    In the present study, we investigated the relationship between physical activity (PA) and self-esteem (SE), while introducing body mass index (BMI), perceived physical fitness (PPF), and body image (BI) in adults (N =264, M =38.10 years). The findings indicated that PA was directly and indirectly associated with SE. BMI predicted SE neither directly nor indirectly, but was directly associated with PPF and both directly and indirectly with BI. Furthermore, PPF was directly related to BI and SE, and a direct association was found between BI and SE. The pattern of results suggests that among a sample of adults, PA is directly and indirectly associated with SE, PPF, and BI, but not with BMI. PA, PPF, and BI appear to play an important role in SE. Accordingly, regular PA should be promoted, in particular, among adults reporting lower SE. PMID:27789950

  20. Superconductivity in the 2-Dimensional Homologous Series AMm Bi3 Q5+m (m=1, 2) (A=Rb, Cs; M=Pb, Sn; Q=Se, Te).

    PubMed

    Malliakas, Christos D; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G

    2018-05-17

    Superconductivity in the two-dimensional AM m Bi 3 Q 5+m family of semimetals is reported. The AMBi 3 Te 6 (m=1) and AM 2 Bi 3 Te 7 (m=2) members of the homologous series with A=Rb, Cs and M=Pb, Sn undergo a bulk superconducting transition ranging from 2.7 to 1.4 K depending on the composition. The estimated superconducting volume fraction is about 90 %. Superconducting phase diagrams as a function of chemical pressure are constructed for the solid solution products of each member of the homologous series, AMBi 3-x Sb x Te 6-y Se y and AM 2 Bi 3-x Sb x Te 7-y Se y (0≤x≤3 or 0≤y≤2). The structural flexibility of the ternary AM m M' 3 Te 5+m semiconducting homology to form isostructural analogues with a variety of metals, M=Pb, Sn; M'=Bi, Sb, gives access to a large number of electronic configurations and superconductivity due to chemical pressure effects. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    EPA Science Inventory

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  2. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves

    PubMed Central

    Surendranath, Yogesh; Bediako, D. Kwabena; Nocera, Daniel G.

    2012-01-01

    An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf. PMID:22689962

  3. Extracting the Evaluations of Stereotypes: Bi-factor Model of the Stereotype Content Structure

    PubMed Central

    Sayans-Jiménez, Pablo; Cuadrado, Isabel; Rojas, Antonio J.; Barrada, Juan R.

    2017-01-01

    Stereotype dimensions—competence, morality and sociability—are fundamental to studying the perception of other groups. These dimensions have shown moderate/high positive correlations with each other that do not reflect the theoretical expectations. The explanation for this (e.g., halo effect) undervalues the utility of the shared variance identified. In contrast, in this work we propose that this common variance could represent the global evaluation of the perceived group. Bi-factor models are proposed to improve the internal structure and to take advantage of the information representing the shared variance among dimensions. Bi-factor models were compared with first order models and other alternative models in three large samples (300–309 participants). The relationships among the global and specific bi-factor dimensions with a global evaluation dimension (measured through a semantic differential) were estimated. The results support the use of bi-factor models rather than first order models (and other alternative models). Bi-factor models also show a greater utility to directly and more easily explore the stereotype content including its evaluative content. PMID:29085313

  4. Electronic Transport Properties of Bismuth Microwire Arrays

    NASA Astrophysics Data System (ADS)

    Solomon, S.; Huber, T. E.; Bouffard, M.; Graf, M. J.

    2002-03-01

    Bulk Bi, a semimetal, and Bi-Sb, have the highest thermoelectric figure of merit Z at 100 K. The thermoelectric properties of these materials are strongly anisotropic. The best thermoelectric performance is observed when the electrical current flows along the trigonal axis. However, Bi single crystals are easily cleaved along the trigonal planes. This lack of strength has largely prevented the use of these materials in practical thermoelectric coolers. Composite technology offers the opportunity to increase the toughness of Bi and Bi-Sb. Also, microengineering Bi into composites may lead to a significant improvement in their thermoelectric performance, because of the reduction of phonon conductivity from phonon scattering at the grain boundaries and interfaces. X-ray diffraction studies show that the microwires in the array are highly oriented along the crystal direction normal to the (003) lattice plane of the rombohedral crystal structure of Bi . Measurements of the resistance of arrays of 3 mm and 10 mm diameter wires have been carried out over a wide range of temperatures (1.8 K 300 K) and magnetic fields (0-8 T), and orientations of the sample with respect to the magnetic field (0-90o) which includes the magnetic and transverse orientation. The zero field resistivity was studied and it was found that, at low temperatures, the wire boundary scattering is the dominant process. The longitudinal magnetoresistance is negative, in contrast to the longitudinal magnetoresistance of bulk crystals oriented in direction perpendicular to the trigonal plane of the rhombohedral crystal lattice who exhibit negligible magnetoresistance. This results are interpreted in terms of a size effect. Research supported by NASA and NSF.

  5. Modeling the prediction of business intelligence system effectiveness.

    PubMed

    Weng, Sung-Shun; Yang, Ming-Hsien; Koo, Tian-Lih; Hsiao, Pei-I

    2016-01-01

    Although business intelligence (BI) technologies are continually evolving, the capability to apply BI technologies has become an indispensable resource for enterprises running in today's complex, uncertain and dynamic business environment. This study performed pioneering work by constructing models and rules for the prediction of business intelligence system effectiveness (BISE) in relation to the implementation of BI solutions. For enterprises, effectively managing critical attributes that determine BISE to develop prediction models with a set of rules for self-evaluation of the effectiveness of BI solutions is necessary to improve BI implementation and ensure its success. The main study findings identified the critical prediction indicators of BISE that are important to forecasting BI performance and highlighted five classification and prediction rules of BISE derived from decision tree structures, as well as a refined regression prediction model with four critical prediction indicators constructed by logistic regression analysis that can enable enterprises to improve BISE while effectively managing BI solution implementation and catering to academics to whom theory is important.

  6. Structure and optical properties of Bi2S3 nanorods and their thin film polymers: a combination study of photocatalysis for Rhodamine B removal from water

    NASA Astrophysics Data System (ADS)

    Qiu, W.; Sun, J.; Zheng, C.

    2017-12-01

    The dye wastewater draw an increasing attention as its high environmental risks. This research were fabricated novel catalysts including Bi2S3 nanorods, Bi2O3/Bi2S3 thin films, and ZnO/Bi2S3 thin films in order to solve the problem of dye wastewater, and the morphology and structure of as-synthesized catalysts were characterized. The hollow nanostructure of the Bi2O3/Bi2S3 samples have a large specific surface area and their direct band gap energy is 2.3 eV. The ZnO/Bi2S3 thin films form a homogeneously layered heterostructure and their average diameter is ranging from 70 to 80 nm. As a typical type of dye pollutant, rhodamine B (RhB) was degraded by these synthesized catalysts with UV irradiation to evaluate their application properties. As a result, ZnO/Bi2S3 thin films have the best performance, which degrade 95% of the RhB within 120 min with a rate constant (k) of 0.0113 min-1. Bi2O3/Bi2S3 thin films have a similar degradation efficacy with k of 0.0092 min-1. The Bi2S3 nanorods have a k of 0.0092 min-1 which is worse than the Bi2O3/Bi2S3 and ZnO/Bi2S3 thin films, however, still better than the common photocatalysts such as TiO2 and Bi2WO6 materials. Therefore, these novel catalysts synthesized in this research are worth to treat with the dye wastewater in the future application.

  7. CuI as Hole-Transport Channel for Enhancing Photoelectrocatalytic Activity by Constructing CuI/BiOI Heterojunction.

    PubMed

    Sun, Mingjuan; Hu, Jiayue; Zhai, Chunyang; Zhu, Mingshan; Pan, Jianguo

    2017-04-19

    In this paper, CuI, as a typical hole-transport channel, was used to construct a high-performance visible-light-driven CuI/BiOI heterostructure for photoelectrocatalytic applications. The heterostructure combines the broad visible absorption of BiOI and high hole mobility of CuI. Compared to pure BiOI, the CuI/BiOI heterostructure exhibited distinctly enhanced photoelectrocatalytic performance for the oxidation of methanol and organic pollutants under visible-light irradiation. The photogenerated electron-hole pairs of the excited BiOI can be separated efficiently through CuI, in which the CuI acts as a superior hole-transport channel to improve photoelectrocatalytic oxidization of methanol and organic pollutants. The outstanding photoelectrocatalytic activity shows that the p-type CuI works as a promising hole-transport channel to improve the photocatalytic performance of traditional semiconductors.

  8. Synthesis of Bi2S3/BiVO4 Heterojunction with a One-Step Hydrothermal Method Based on pH Control and the Evaluation of Visible-Light Photocatalytic Performance

    PubMed Central

    Zhao, Deqiang; Wang, Wenwen; Zong, Wenjuan; Xiong, Shimin; Zhang, Qian; Ji, Fangying; Xu, Xuan

    2017-01-01

    The band gaps of bismuth vanadate (BiVO4) and bismuth sulfide (Bi2S3) are about 2.40 eV and 1.30 eV, respectively. Although both BiVO4 and Bi2S3 are capable of strong visible light absorption, electron–hole recombination occurs easily. To solve this problem, we designed a one-step hydrothermal method for synthesizing a Bismuth sulfide (Bi2S3)/Bismuth vanadate (BiVO4) heterojunction using polyvinylpyrrolidone K-30 (PVP) as a structure-directing agent, and 2-Amino-3-mercaptopropanoic acid (l-cysteine) as a sulfur source. The pH of the reaction solution was regulated to yield different products: when the pH was 7.5, only monoclinic BiVO4 was produced (sample 7.5); when the pH was 8.0 or 8.5, both Bi2S3 and BiVO4 were produced (samples 8.0 and 8.5); and when the pH was 9.0, only Bi2S3 was produced (sample 9.0). In sample 8.0, Bi2S3 and BiVO4 were closely integrated with each other, with Bi2S3 particles formed on the surface of concentric BiVO4 layers, but the two compounds grew separately in a pH solution of 8.5. Visible-light photocatalytic degradation experiments demonstrated that the degradation efficiency of the Bi2S3/BiVO4 heterojunction was highest when prepared under a pH of 8.0. The initial rhodamine B in the solution (5 mg/L) was completely degraded within three hours. Recycling experiments verified the high stability of Bi2S3/BiVO4. The synthesis method proposed in this paper is expected to enable large-scale and practical use of Bi2S3/BiVO4. PMID:28767085

  9. Towards a 20 kA high temperature superconductor current lead module using REBCO tapes

    NASA Astrophysics Data System (ADS)

    Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.

    2018-01-01

    Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.

  10. The electronic structure and thermoelectric properties of BiTl{sub 9}Te{sub 6} and SbTl{sub 9}Te{sub 6}: First-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li Bin; Ye, Lingyun; Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn

    2015-12-21

    The electronic structure and thermoelectric properties of MTl{sub 9}Te{sub 6} (M = Bi, Sb) were studied using density functional theory and the semiclassical Boltzmann theory. It is found that the band gaps of BiTl{sub 9}Te{sub 6} and SbTl{sub 9}Te{sub 6} are equal to 0.59 eV and 0.72 eV, respectively. The relative large band gap and strong coupling between Sb s and Te p are helpful to the thermoelectric properties of SbTl{sub 9}Te{sub 6}. Near the bottom of the conduction bands, the number of band valleys of SbTl{sub 9}Te{sub 6} is four and is larger than that of BiTl{sub 9}Te{sub 6} (two band valleys),more » which will increase its Seebeck coefficient. Although BiTl{sub 9}Te{sub 6} has a larger electrical conductivity relative to relaxation time (σ/τ) along the z-direction than that of SbTl{sub 9}Te{sub 6}, the results show that the transport properties of SbTl{sub 9}Te{sub 6} are better than those of BiTl{sub 9}Te{sub 6} possibly due to its large Seebeck coefficient. The maximum value of power factor relative to relaxation time (S{sup 2}σ/τ) for SbTl{sub 9}Te{sub 6} reaches 4.30 × 10{sup 11 }W/K{sup 2} m s at 900 K, that is, originated from its relatively large Seebeck coefficient, suggesting its promising thermoelectric performance at high temperature.« less

  11. SPAR X Technical Report for Experiment 76-22 Directional Solidification of Magnetic Composites

    NASA Technical Reports Server (NTRS)

    Bethin, J.

    1984-01-01

    The effects of gravity on Bridgman-Stockbarger directional solidification of off-eutectic Bi/MnBi were studied in reduced gravity aboard the SPAR X flight and compared to normal-gravity investigations and previous eutectic Bi/MnBi SPAR flight experiments. The directional solidification of off-eutectic Bi/MnBi results in either a dendritic structure connected with local cooperative growth or a coupled low volume fraction faceted/non faceted aligned rod eutectic whose Mn macrosegregation, MnBi rod size, interrod spacing, and thermal and magnetic properties are sensitive functions of the solidification processing conditions. Two hypoeutectic and two hypereutectic samples were solidified during 605 sec of furnace travel, with an initial 265 sec low-gravity interval. Comparison Earth-gravity samples were solidified in the same furance assembly under identical processing conditions. Macrosegregation in the low-g samples was consistent with a metastable increase in Mn solubility in the Bi matrix, in partial agreement with previous Bi/MnBi SPAR findings of MnBi volume reduction.

  12. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    PubMed

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modified Eddington-inspired-Born-Infeld gravity with a trace term

    DOE PAGES

    Chen, Che -Yu; Bouhmadi-Lopez, Mariam; Chen, Pisin

    2016-01-22

    In this study, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term g μνR being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric g μν . This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutionsmore » which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.« less

  14. Exotic quantum properties under high magnetic fields and pressure-induced superconductivity in layered ZrTe5 and pyrite PtBi2

    NASA Astrophysics Data System (ADS)

    Tian, Mingliang; Tian, Zhaorong; Ning, Wei; Mingliang Tian Team

    Topological Dirac semimetal is a newly discovered class of materials which has attracted intense attention. This material can be viewed as a three-dimensional (3D) analog of graphene and has linear energy dispersion in bulk, leading to a range of exotic transport properties. Here we report direct quantum transport evidence of the 3D Dirac semimetal phase of semimetallic materials ZrTe5 and pyrite PtBi2 by angular-dependent magnetoresistance measurements under high magnetic fields up to 35 T, as well as the pressure-induced superconductivity. We observed very clear negative longitudinal magnetoresistance in ZrTe5 induced by chiral anomaly under the condition of the magnetic field aligned only along the current direction, and the extreme large unsaturated magnetoresistance in pyrite PtBi2 up to 11.2 million percent at T = 1.8 K and 33 T, which surpasses the previously reported Dirac materials, such as LaSb, WTe2 and NbP. Analysis of the Shubnikov de Haas oscillations suggest that both ZrTe5 and PtBi2\\ are likely a new topological semimetals.

  15. Surface Material Characterization from Non-resolved Multi-band Optical Observations

    DTIC Science & Technology

    2012-09-01

    functions ( BRDFs ) — then a forward model of the spectral signature of the entire body could be constructed by summing contributions from all reflecting...buffering). 3.3.2 Material Bi-directional Reflectance Distribution Functions ( BRDFs ) Notably, the satellite wire-frame and attitude models together...environments and/or created numerical BRDF models . For instance, BRDFs for several spacecraft materials — such as solar array panels, milled aluminum

  16. Directional solidification of Bi-Mn alloys using an applied magnetic field

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.

  17. Bismuth chalcohalides and oxyhalides as optoelectronic materials

    DOE PAGES

    Du, Mao -Hua; Shi, Hongliang; Ming, Wenmei

    2016-03-29

    Several Tl and Pb based halides and chalcohalides have recently been discovered as promising optoelectronic materials [i.e., photovoltaic (PV) and gamma-ray detection materials]. Efficient carrier transport in these materials is attributed partly to the special chemistry of ns 2 ions (e.g., Tl +, Pb 2+, and Bi 3+). However, the toxicity of Tl and Pb is challenging to the development and the wide use of Tl and Pb based materials. In this paper, we investigate materials that contain Bi 3+, which is also an ns 2 ion. By combining Bi halides with Bi chalcogenides or oxides, the resulting ternary compoundsmore » exhibit a wide range of band gaps, offering opportunities in various optoelectronic applications. Density functional calculations of electronic structure, dielectric properties, optical properties, and defect properties are performed on selected Bi 3+ based chalcohalides and oxyhalides, i.e., BiSeBr, BiSI, BiSeI, and BiOBr. We propose different applications for these Bi compounds based on calculated properties, i.e., n-BiSeBr, p-BiSI, and p-BiSeI as PV materials, BiSeBr and BiSI as room-temperature radiation detection materials, and BiOBr as a p-type transparent conducting material. BiSeBr, BiSI, and BiSeBr have chain structures while BiOBr has a layered structure. However, in BiSI, BiSeI, and BiOBr, significant valence-band dispersion is found in the directions perpendicular to the atomic chain or layer because the valence-band edge states are dominated by the halogen states that have strong interchain or interlayer coupling. We find significantly enhanced Born effective charges and anomalously large static dielectric constants of the Bi compounds, which should reduce carrier scattering and trapping and promote efficient carrier transport in these materials. The strong screening and the small anion coordination numbers in Bi chalcohalides should lead to weak potentials for electron localization at anion vacancies. As a result, defect calculations indeed show that the anion vacancies (Se and Br vacancies) in BiSeBr are shallow, which is beneficial to efficient electron transport.« less

  18. Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} sandwiched capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, R. L., E-mail: gaorongli2008@163.com, E-mail: jrsun@iphy.ac.cn; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190; Yang, H. W.

    2014-01-20

    The short circuit photocurrent (I{sub sc}) was found to be strongly dependent on the oxygen vacancies (V{sub Os}) distribution in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructures. In order to manipulate the V{sub Os} accumulated at either the Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} or the Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} interface by pulse voltages, switchable or nonswitchable photocurrent can be observed without or with changing the polarization direction. The sign of photocurrent could be independent of the direction of polarization when the variation of diffusion current and the modulation of the Schottky barrier at the Ag/Bi{sub 0.9}La{sub 0.1}FeO{submore » 3} interface induced by oxygen vacancies are large enough to offset those induced by polarization. Our work provides deep insights into the nature of photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.« less

  19. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  20. Synthesis and structural characterization of a novel Sillén - Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives

    NASA Astrophysics Data System (ADS)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Kazakov, Sergey M.; Kalmykov, Stepan N.; Akinfiev, Victor S.; Gorbachev, Anatoly V.; Batuk, Maria; Abakumov, Artem M.; Teterin, Yury A.; Maslakov, Konstantin I.; Teterin, Anton Yu; Ivanov, Kirill E.

    2018-01-01

    A new Sillén - Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X (X = halogen) synthetic perites and γ-form of Bi2VO5.5 solid electrolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-δCl (δ ≤ 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb - Bi vanadates. This reduction also stabilizes the γ polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M = Nb, Sb) solid solutions.

  1. Understanding the electronic and phonon transport properties of a thermoelectric material BiCuSeO: a first-principles study.

    PubMed

    Fan, D D; Liu, H J; Cheng, L; Zhang, J; Jiang, P H; Wei, J; Liang, J H; Shi, J

    2017-05-24

    Using the first-principles pseudopotential method and Boltzmann transport theory, we give a comprehensive understanding of the electronic and phonon transport properties of the thermoelectric material BiCuSeO. By choosing an appropriate hybrid functional for the exchange-correlation energy, we find that the system is a semiconductor with a direct band gap of ∼0.8 eV, which is quite different from those obtained previously using standard functionals. Detailed analysis of a three-dimensional energy band structure indicates that there is a valley degeneracy of eight around the valence band maximum, which leads to a sharp density of states and is responsible for a large p-type Seebeck coefficient. Moreover, we find that the density of states effective mass is much larger and results in a very low hole mobility for BiCuSeO. On the other hand, we discover two flat phonon branches contributed by the Cu and Se atoms, which can effectively block heat transfer. Combined with large atomic displacement parameters of the Cu atom, we believe that the intrinsically low lattice thermal conductivity in BiCuSeO is mainly caused by the Cu atoms, instead of the prevailingly believed Bi atoms. The thermoelectric figure-of-merit is also predicted and compared with available experimental results.

  2. Construction of an all-solid-state artificial Z-scheme system consisting of Bi2WO6/Au/CdS nanostructure for photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Wang, Meng; Han, Qiutong; Li, Liang; Tang, Lanqin; Li, Haijin; Zhou, Yong; Zou, Zhigang

    2017-07-07

    An all-solid-state Bi 2 WO 6 /Au/CdS Z-scheme system was constructed for the photocatalytic reduction of CO 2 into methane in the presence of water vapor. This Z-scheme consists of ultrathin Bi 2 WO 6 nanoplates and CdS nanoparticles as photocatalysts, and a Au nanoparticle as a solid electron mediator offering a high speed charge transfer channel and leading to more efficient spatial separation of electron-hole pairs. The photo-generated electrons from the conduction band (CB) of Bi 2 WO 6 transfer to the Au, and then release to the valence band (VB) of CdS to recombine with the holes of CdS. It allows the electrons remaining in the CB of CdS and holes in the VB of Bi 2 WO 6 to possess strong reduction and oxidation powers, respectively, leading the Bi 2 WO 6 /Au/CdS to exhibit high photocatalytic reduction of CO 2 , relative to bare Bi 2 WO 6 , Bi 2 WO 6 /Au, and Bi 2 WO 6 /CdS. The depressed hole density on CdS also enhances the stability of the CdS against photocorrosion.

  3. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  4. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  5. Healthcare professionals’ acceptance of BelRAI, a web-based system enabling person-centred recording and data sharing across care settings with interRAI instruments: a UTAUT analysis

    PubMed Central

    2013-01-01

    Background Healthcare and social care environments are increasingly confronted with older persons with long-term care needs. Consequently, the need for integrated and coordinated assessment systems increases. In Belgium, feasibility studies have been conducted on the implementation and use of interRAI instruments offering opportunities to improve continuity and quality of care. However, the development and implementation of information technology to support a shared dataset is a difficult and gradual process. We explore the applicability of the UTAUT theoretical model in the BelRAI healthcare project to analyse the acceptance of the BelRAI web application by healthcare professionals in home care, nursing home care and acute hospital care for older people with disabilities. Methods A structured questionnaire containing items based on constructs validated in the original UTAUT study was distributed to 661 Flemish caregivers. We performed a complete case analysis using data from 282 questionnaires to obtain information regarding the effects of performance expectancy (PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), anxiety (ANX), self-efficacy (SE) and attitude towards using technology (ATUT) on behavioural intention (BI) to use the BelRAI web application. Results The values of the internal consistency evaluation of each construct demonstrated adequate reliability of the survey instrument. Convergent and discriminant validity were established. However, the items of the ATUT construct cross-loaded on PE. FC proved to have the most significant influence on BI to use BelRAI, followed by SE. Other constructs (PE, EE, SI, ANX, ATUT) had no significant influence on BI. The ‘direct effects only’ model explained 30.8% of the variance in BI to use BelRAI. Conclusions Critical factors in stimulating the behavioural intention to use new technology are good-quality software, interoperability and compatibility with other information systems, easy access to computers, training facilities, built-in and online help and ongoing IT support. These findings can be used by policy makers to maximise the acceptance and the success of new technology. For researchers, the conclusions of the original UTAUT study with regards to the item and scale construction should not be copied blindly across different information systems. A bottom-up approach is preferred when building upon the UTAUT model. PMID:24279650

  6. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.

    PubMed

    Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping

    2018-05-16

    A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

  7. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    NASA Astrophysics Data System (ADS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited <001>-oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the <100> direction may contribute to the improved power generation.

  8. Computer-Communications Networks and Teletraffic.

    ERIC Educational Resources Information Center

    Switzer, I.

    Bi-directional cable TV (CATV) systems that are being installed today may not be well suited for computer communications. Older CATV systems are being modified to bi-directional transmission and most new systems are being built with bi-directional capability included. The extreme bandwidth requirement for carrying 20 or more TV channels on a…

  9. Development of oxygen meters for the use in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.

    2001-07-01

    Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.

  10. Dynamical implications of bi-directional resource exchange within a meta-ecosystem.

    PubMed

    Messan, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel C; Kang, Yun

    2018-05-05

    The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Gongping

    2018-05-01

    Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.

  12. Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Gongping

    2018-07-01

    Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.

  13. 47 CFR 90.1215 - Power limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...

  14. 47 CFR 90.1215 - Power limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...

  15. 47 CFR 90.1215 - Power limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...

  16. 47 CFR 90.1215 - Power limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...

  17. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  18. Electronic structure of the bismuth family of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Feng, Donglai

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the large superconducting phase transition temperature in a high temperature superconductor is associated with parameters that cause both large pairing strength and strong phase coherence in the system. The number of CuO2 layers in each unit cell is just one of the factors that affect these parameters.

  19. REVIEW ARTICLE: Hither and yon: a review of bi-directional microtubule-based transport

    NASA Astrophysics Data System (ADS)

    Gross, Steven P.

    2004-06-01

    Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.

  20. Linear optical properties of the monoclinic bismuth borate BiB3O6

    NASA Astrophysics Data System (ADS)

    Hellwig, H.; Liebertz, J.; Bohatý, L.

    2000-07-01

    New materials for nonlinear optical (NLO) applications are still of great interest. The monoclinic BiB3O6 (BIBO) shows exceptionally large NLO coefficients. In this article we will present the linear optical properties in the wavelength range between 350 and 2400 nm, the phase matching conditions calculated for second harmonic generation, and optical parametric oscillation. Angular bandwidth data are also given. The wide tuning range of phase matched directions together with the monoclinic symmetry allow a broad variety of applications. The laser damage threshold is comparable to high quality lithium triborate.

  1. Patients with haematological malignancies show a restricted body image focusing on function and emotion.

    PubMed

    Weber, C S; Fliege, H; Arck, P C; Kreuzer, K-A; Rose, M; Klapp, B F

    2005-05-01

    The diagnosis of cancer threatens the psychological and bodily integrity. Based on this assumption, we aimed to explore how newly diagnosed patients cope with special regard to the body image (BI). In total, 40 patients (32 haematological malignancies) were assessed by questionnaires on mood, complaints, self-regulation and quality of life (QOL). The BI was assessed by the 'Body Grid' which reveals the constructs patients choose to characterize the body. The constructs were categorized using a model of six predefined categories comprising: emotion, control, activity, strength, function and appearance. Tinnitus sufferers and medical students served as comparison groups. Cancer patients showed significantly more anxious depression and a significantly lower QOL than controls. Their BI was restricted, focusing the functional status of body organs (e.g. opposing healthy vs. ill organs) as well as emotional aspects (e.g. trust vs. fear). The data convey fundamental psychological distress in newly diagnosed cancer patients. Restriction of BI and use of functional constructs may help to buffer the threat to body integrity. The emotional constructs reflect the existential impact. The data give a clear indication for the need for early psychosocial support which should aim at stabilizing the psychological and bodily integrity of the patient.

  2. Enhanced electrostricitive properties and thermal endurance of textured (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Hao, Jigong; Ye, Chenggen; Shen, Bo; Zhai, Jiwei

    2013-08-01

    Textured 0.92(Bi0.5Na0.5)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 (BNT-BT-KNN) ceramics have been produced by tape casting with pure-phase (Bi0.5Na0.5)TiO3 templates. Through the approach of texture construction, enhanced electrostrictive response was obtained with an electrostrictive coefficient Q33 (˜0.024 m4/C2 at 60 kV/cm) and good thermostability comparable with that of traditional Pb-based electrostrictors. Even at an electric-field as low as 35 kV/cm or at a temperature as high as 180 °C, samples still possess a large electrostrictive response with Q33 > 0.022 m4/C2, suggesting it is very promising for practical applications as a lead-free electrostrictive material owning to its wide usage range. Moreover, reducing the applied electric-filed or increasing temperature can both induce the predominant to pure electrostriction transition due to the little contributions of electrostriction strain from ferroelectric domain switching. Our work may provide a new recipe for designing high-performance BNT-based lead-free electrostrictive materials by means of texture construction.

  3. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning.

  4. Anisotropic electrical and thermal conductivity in Bi2AE2Co2O8+δ [AE = Ca, Sr1-xBax (x = 0.0, 0.25, 0.5, 0.75, 1.0)] single crystals

    NASA Astrophysics Data System (ADS)

    Dong, Song-Tao; Zhang, Bin-Bin; Xiong, Ye; Lv, Yang-Yang; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Chen, Yan-Feng

    2015-09-01

    Bi2AE2Co2O8+δ (AE represents alkaline earth), constructed by stacking of rock-salt Bi2AE2O4 and triangle CoO2 layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi2AE2Co2O8+δ, as reported previously, is their electrical conductivity mainly lying along CoO2 plane, adjusting Bi2AE2O4 layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi2AE2Co2O8+δ (AE = Ca, Sr, Ba, Sr1-xBax) single crystals. The results substantiate that isovalence replacement in Bi2AE2Co2O8+δ remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi2AE2O4 layer in Bi2AE2Co2O8+δ cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.

  5. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning. PMID:25414644

  6. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jason; Kumar, Ravhi S.; Park, Changyong

    2016-01-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid–solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric materialmore » PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. Furthermore, this new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.« less

  7. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell.

    PubMed

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad

    2016-11-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid-solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.

  8. Nanoscale self-templating for oxide epitaxy with large symmetry mismatch

    DOE PAGES

    Gao, Xiang; Lee, Shinbuhm; Nichols, John A.; ...

    2016-12-02

    Direct observations using scanning transmission electron microscopy unveil an intriguing interfacial bi-layer that enables epitaxial growth of a strain-free, monoclinic, bronze-phase VO 2(B) thin film on a perovskite SrTiO 3 (STO) substrate. For this study, we observe an ultrathin (2–3 unit cells) interlayer best described as highly strained VO 2(B) nanodomains combined with an extra (Ti,V)O 2 layer on the TiO 2 terminated STO (001) surface. By forming a fully coherent interface with the STO substrate and a semi-coherent interface with the strain-free epitaxial VO 2(B) film above, the interfacial bi-layer enables the epitaxial connection of the two materials despitemore » their large symmetry and lattice mismatch.« less

  9. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry

    PubMed Central

    Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping

    2016-01-01

    The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction. PMID:27801857

  10. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry.

    PubMed

    Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping

    2016-10-28

    The construction industry is a demanding work environment where employees' work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee's work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee's work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.

  11. Development and Evaluation of an Ammonia Bi-Directional Flux Model for Air Quality Models

    EPA Science Inventory

    Ammonia is an important contributor to particulate matter in the atmosphere and can significantly impact terrestrial and aquatic ecosystems. Surface exchange between the atmosphere and biosphere is a key part of the ammonia cycle. Agriculture, in particular. is a large source of...

  12. Algorithms for Mathematical Programming with Emphasis on Bi-level Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, Donald; Iyengar, Garud

    2014-05-22

    The research supported by this grant was focused primarily on first-order methods for solving large scale and structured convex optimization problems and convex relaxations of nonconvex problems. These include optimal gradient methods, operator and variable splitting methods, alternating direction augmented Lagrangian methods, and block coordinate descent methods.

  13. Designing Biomedical Informatics Infrastructure for Clinical and Translational Science

    ERIC Educational Resources Information Center

    La Paz Lillo, Ariel Isaac

    2009-01-01

    Clinical and Translational Science (CTS) rests largely on information flowing smoothly at multiple levels, in multiple directions, across multiple locations. Biomedical Informatics (BI) is seen as a backbone that helps to manage information flows for the translation of knowledge generated and stored in silos of basic science into bedside…

  14. Approaching Piezoelectric Response of Pb-Piezoelectrics in Hydrothermally Synthesized Bi0.5(Na1- xK x)0.5TiO3 Nanotubes.

    PubMed

    Ghasemian, Mohammad Bagher; Rawal, Aditya; Liu, Yun; Wang, Danyang

    2018-06-20

    A large piezoelectric coefficient of 76 pm/V along the diameter direction, approaching that of lead-based piezoelectrics, is observed in hydrothermally synthesized Pb-free Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3 nanotubes. The 30-50 nm diameter nanotubes are formed through a scrolling and wrapping mechanism without the need of a surfactant or template. A molar ratio of KOH/NaOH = 0.5 for the mineralizers yields the Na/K ratio of ∼0.8:0.2, corresponding to an orthorhombic-tetragonal (O-T) phase boundary composition. X-ray diffraction patterns along with transmission electron microscopy analysis ascertain the coexistence of orthorhombic and tetragonal phases with (110) and (001) orientations along the nanotube length direction, respectively. 23 Na NMR spectroscopy confirms the higher degree of disorder in Bi 0.5 (Na 1- x K x ) 0.5 TiO 3 nanotubes with O-T phase coexistence. These findings present a significant advance toward the application of Pb-free piezoelectric materials.

  15. Interband absorption edge in the topological insulators Bi2(Te1-xSex) 3

    NASA Astrophysics Data System (ADS)

    Dubroka, A.; Caha, O.; Hronček, M.; Friš, P.; Orlita, M.; Holý, V.; Steiner, H.; Bauer, G.; Springholz, G.; Humlíček, J.

    2017-12-01

    We have investigated the optical properties of thin films of topological insulators Bi2Te3 , Bi2Se3 , and their alloys Bi2(Te1-xSex) 3 on BaF2 substrates by a combination of infrared ellipsometry and reflectivity in the energy range from 0.06 to 6.5 eV. For the onset of interband absorption in Bi2Se3 , after the correction for the Burstein-Moss effect, we find the value of the direct band gap of 215 ±10 meV at 10 K. Our data support the picture that Bi2Se3 has a direct band gap located at the Γ point in the Brillouin zone and that the valence band reaches up to the Dirac point and has the shape of a downward-oriented paraboloid, i.e., without a camel-back structure. In Bi2Te3 , the onset of strong direct interband absorption at 10 K is at a similar energy of about 200 meV, with a weaker additional feature at about 170 meV. Our data support the recent G W band-structure calculations suggesting that the direct interband transition does not occur at the Γ point but near the Z -F line of the Brillouin zone. In the Bi2(Te1-xSex) 3 alloy, the energy of the onset of direct interband transitions exhibits a maximum near x =0.3 (i.e., the composition of Bi2Te2Se ), suggesting that the crossover of the direct interband transitions between the two points in the Brillouin zone occurs close to this composition.

  16. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    DOEpatents

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  17. Better Axial Stiffness of a Bicortical Screw Construct Compared to a Cable Construct for Comminuted Vancouver B1 Proximal Femoral Fractures.

    PubMed

    Griffiths, Jamie T; Taheri, Arash; Day, Robert E; Yates, Piers J

    2015-12-01

    The aim of this study was to biomechanically evaluate the Locking attachment plate (LAP) construct in comparison to a Cable plate construct, for the fixation of periprosthetic femoral fractures after cemented total hip arthroplasty. Each construct incorporated a locking compression plate with bi-cortical locking screws for distal fixation. In the Cable construct, 2 cables and 2 uni-cortical locking screws were used for proximal fixation. In the LAP construct, the cables were replaced by a LAP with 4 bi-cortical locking screws. The LAP construct was significantly stiffer than the cable construct under axial load with a bone gap (P=0.01). The LAP construct offers better axial stiffness compared to the cable construct in the fixation of comminuted Vancouver B1 proximal femoral fractures. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00184b

  19. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.

    PubMed

    Yang, Bite; Liu, Feng; Ren, Chao; Ouyang, Zhangyi; Xie, Ziwei; Bo, Xiaochen; Shu, Wenjie

    2017-07-01

    Enhancer elements are noncoding stretches of DNA that play key roles in controlling gene expression programmes. Despite major efforts to develop accurate enhancer prediction methods, identifying enhancer sequences continues to be a challenge in the annotation of mammalian genomes. One of the major issues is the lack of large, sufficiently comprehensive and experimentally validated enhancers for humans or other species. Thus, the development of computational methods based on limited experimentally validated enhancers and deciphering the transcriptional regulatory code encoded in the enhancer sequences is urgent. We present a deep-learning-based hybrid architecture, BiRen, which predicts enhancers using the DNA sequence alone. Our results demonstrate that BiRen can learn common enhancer patterns directly from the DNA sequence and exhibits superior accuracy, robustness and generalizability in enhancer prediction relative to other state-of-the-art enhancer predictors based on sequence characteristics. Our BiRen will enable researchers to acquire a deeper understanding of the regulatory code of enhancer sequences. Our BiRen method can be freely accessed at https://github.com/wenjiegroup/BiRen . shuwj@bmi.ac.cn or boxc@bmi.ac.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Flexible and High-Performance All-2D Photodetector for Wearable Devices.

    PubMed

    Yao, Jiandong; Yang, Guowei

    2018-05-01

    Emerging novel applications at the forefront of innovation horizon raise new requirements including good flexibility and unprecedented properties for the photoelectronic industry. On account of diversity in transport and photoelectric properties, 2D layered materials have proven as competent building blocks toward next-generation photodetectors. Herein, an all-2D Bi 2 Te 3 -SnS-Bi 2 Te 3 photodetector is fabricated with pulsed-laser deposition. It is sensitive to broadband wavelength from ultraviolet (370 nm) to near-infrared (808 nm). In addition, it exhibits great durability to bend, with intact photoresponse after 100 bend cycles. Upon 370 nm illumination, it achieves a high responsivity of 115 A W -1 , a large external quantum efficiency of 3.9 × 10 4 %, and a superior detectivity of 4.1 × 10 11 Jones. They are among the best figures-of-merit of state-of-the-art 2D photodetectors. The synergistic effect of SnS's strong light-matter interaction, efficient carrier separation of Bi 2 Te 3 -SnS interface, expedite carrier injection across Bi 2 Te 3 -SnS interface, and excellent carrier collection of Bi 2 Te 3 topological insulator electrodes accounts for the superior photodetection properties. In summary, this work depicts a facile all-in-one fabrication strategy toward a Bi 2 Te 3 -SnS-Bi 2 Te 3 photodetector. More importantly, it reveals a novel all-2D concept for construction of flexible, broadband, and high-performance photoelectronic devices by integrating 2D layered metallic electrodes and 2D layered semiconducting channels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microwave impedance matching strategies of an applicator supplied by a bi-directional magnetron waveguide launcher.

    PubMed

    Roussy, Georges; Kongmark, Nils

    2003-01-01

    It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.

  2. Establishing the bidirectional relationship between depression and subclinical arteriosclerosis--rationale, design, and characteristics of the BiDirect Study.

    PubMed

    Teismann, Henning; Wersching, Heike; Nagel, Maren; Arolt, Volker; Heindel, Walter; Baune, Bernhard T; Wellmann, Jürgen; Hense, Hans-Werner; Berger, Klaus

    2014-06-13

    Depression and cardiovascular diseases due to arteriosclerosis are both frequent and impairing conditions. Depression and (subclinical) arteriosclerosis appear to be related in a bidirectional way, and it is plausible to assume a partly joint causal relationship. However, the biological mechanisms and the behavioral pathways that lead from depression to arteriosclerosis and vice versa remain to be exactly determined. This study protocol describes the rationale and design of the prospective BiDirect Study that aims at investigating the mutual relationship between depression and (subclinical) arteriosclerosis. BiDirect is scheduled to follow-up three distinct cohorts of individuals ((i) patients with acute depression (N = 999), (ii) patients after an acute cardiac event (N = 347), and (iii) reference subjects from the general population (N = 912)). Over the course of 12 years, four personal examinations are planned to be conducted. The core examination program, which will remain identical across follow-ups, comprises a personal interview (e.g. medical diagnoses, health care utilization, lifestyle and risk behavior), a battery of self-administered questionnaires (e.g. depressive symptoms, readiness to change health behavior, perceived health-related quality of life), sensory (e.g. olfaction, pain) and neuropsychological (e.g. memory, executive functions, emotional processing, manual dexterity) assessments, anthropometry, body impedance measurement, a clinical work-up regarding the vascular status (e.g. electrocardiogram, blood pressure, intima media thickness), the taking of blood samples (serum and plasma, DNA), and structural and functional resonance imaging of the brain (e.g. diffusion tensor imaging, resting-state, emotional faces processing). The present report includes BiDirect-Baseline, the first data collection wave. Due to its prospective character, the integration of three distinct cohorts, the long follow-up time window, the diligent diagnosis of depression taking depression subtypes into account, the consideration of relevant comorbidities and risk factors, the assessment of indicators of (subclinical) arteriosclerosis in different vascular territories, and the structural and functional brain imaging that is performed for a large number of participants, the BiDirect Study represents an innovative approach that combines population-based cohorts with sophisticated clinical work-up methods and that holds the potential to overcome many of the drawbacks characterizing earlier investigations.

  3. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale

    NASA Astrophysics Data System (ADS)

    Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang

    2017-12-01

    The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.

  4. Self-Poling of BiFeO3 Thick Films.

    PubMed

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  5. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  6. Rodent model of direct cranial blast injury.

    PubMed

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.

  7. ARINC 818 specification revisions enable new avionics architectures

    NASA Astrophysics Data System (ADS)

    Grunwald, Paul

    2014-06-01

    The ARINC 818 Avionics Digital Video Bus is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits. The Boeing 787, A350XWB, A400M, KC-46A, and many other aircraft use it. The ARINC 818 specification, which was initially release in 2006, has recently undergone a major update to address new avionics architectures and capabilities. Over the seven years since its release, projects have gone beyond the specification due to the complexity of new architectures and desired capabilities, such as video switching, bi-directional communication, data-only paths, and camera and sensor control provisions. The ARINC 818 specification was revised in 2013, and ARINC 818-2 was approved in November 2013. The revisions to the ARINC 818-2 specification enable switching, stereo and 3-D provisions, color sequential implementations, regions of interest, bi-directional communication, higher link rates, data-only transmission, and synchronization signals. This paper discusses each of the new capabilities and the impact on avionics and display architectures, especially when integrating large area displays, stereoscopic displays, multiple displays, and systems that include a large number of sensors.

  8. An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning

    PubMed Central

    Starek, Joseph A.; Gomez, Javier V.; Schmerling, Edward; Janson, Lucas; Moreno, Luis; Pavone, Marco

    2015-01-01

    Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners. PMID:27004130

  9. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Im, J.; DeGottardi, W.

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  10. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE PAGES

    Fang, L.; Im, J.; DeGottardi, W.; ...

    2016-10-12

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  11. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  12. Printable Silicon Nanomembranes for Solar-Powered, Bi-Directional Phased-Array-Antenna Communication System on Flexible Substrates

    DTIC Science & Technology

    2013-04-01

    Identification (RFID), Large Area Flexible Displays, Electronic Paper, Bio - Sensors , Large Area Conformal and Flexible Antennas, Smart and Interactive Textiles...Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator ...Ubiquitous Sensor Networks (USN), Vehicle Clickers Readers, Real Time Locating Systems, Lighting, Photovoltaics etc. FA9550-11-C-0014 STTR Phase II

  13. Bi-directional transition nets

    NASA Astrophysics Data System (ADS)

    Staines, Anthony Spiteri

    2017-06-01

    Ordinary Petri nets are forward directed transition systems. Modern transition systems events and event flows are reversible. Hence modeling structures that reflect this are important. The creation of a bi-directional Petri net extends the modeling power of Petri nets. This work presents the successful implementation of a bi-directional transition net. Some toy examples in comparison to Petri nets are given showing the increased modeling power in a compacted form. The results show some interesting findings on how the expressive power of these structures has been increased.

  14. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    NASA Astrophysics Data System (ADS)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads. The applied out-of-plane shear load was resolved in two equal out-of-plane shear components to construct tri-directional shear interaction diagrams.

  15. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films.

    PubMed

    Guo, Yiping; Guo, Bing; Dong, Wen; Li, Hua; Liu, Hezhou

    2013-07-12

    The diode and photovoltaic effects of BiFeO3 and Bi0.9Sr0.1FeO(3-δ) polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi0.9Sr0.1FeO(3-δ) thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.

  16. Radiomic modeling of BI-RADS density categories

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Zhou, Chuan; Hadjiiski, Lubomir

    2017-03-01

    Screening mammography is the most effective and low-cost method to date for early cancer detection. Mammographic breast density has been shown to be highly correlated with breast cancer risk. We are developing a radiomic model for BI-RADS density categorization on digital mammography (FFDM) with a supervised machine learning approach. With IRB approval, we retrospectively collected 478 FFDMs from 478 women. As a gold standard, breast density was assessed by an MQSA radiologist based on BI-RADS categories. The raw FFDMs were used for computerized density assessment. The raw FFDM first underwent log-transform to approximate the x-ray sensitometric response, followed by multiscale processing to enhance the fibroglandular densities and parenchymal patterns. Three ROIs were automatically identified based on the keypoint distribution, where the keypoints were obtained as the extrema in the image Gaussian scale-space. A total of 73 features, including intensity and texture features that describe the density and the parenchymal pattern, were extracted from each breast. Our BI-RADS density estimator was constructed by using a random forest classifier. We used a 10-fold cross validation resampling approach to estimate the errors. With the random forest classifier, computerized density categories for 412 of the 478 cases agree with radiologist's assessment (weighted kappa = 0.93). The machine learning method with radiomic features as predictors demonstrated a high accuracy in classifying FFDMs into BI-RADS density categories. Further work is underway to improve our system performance as well as to perform an independent testing using a large unseen FFDM set.

  17. Molecular motor traffic: From biological nanomachines to macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  18. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array.

    PubMed

    Je, Yub; Lee, Haksue; Park, Jongkyu; Moon, Wonkyu

    2010-06-01

    An ultrasonic radiator is developed to generate a difference frequency sound from two frequencies of ultrasound in air with a parametric array. A design method is proposed for an ultrasonic radiator capable of generating highly directive, high-amplitude ultrasonic sound beams at two different frequencies in air based on a modification of the stepped-plate ultrasonic radiator. The stepped-plate ultrasonic radiator was introduced by Gallego-Juarez et al. [Ultrasonics 16, 267-271 (1978)] in their previous study and can effectively generate highly directive, large-amplitude ultrasonic sounds in air, but only at a single frequency. Because parametric array sources must be able to generate sounds at more than one frequency, a design modification is crucial to the application of a stepped-plate ultrasonic radiator as a parametric array source in air. The aforementioned method was employed to design a parametric radiator for use in air. A prototype of this design was constructed and tested to determine whether it could successfully generate a difference frequency sound with a parametric array. The results confirmed that the proposed single small-area transducer was suitable as a parametric radiator in air.

  19. Variable mode bi-directional and uni-directional computer communication system

    DOEpatents

    Cornett, Frank N.; Jenkins, Philip N.; Bowman, Terrance L.; Placek, Joseph M.; Thorson, Gregory M.

    2004-12-14

    A variable communication systems comprising a plurality of transceivers and a control circuit connected to the transceivers to configure the transceivers to operate in a bi-directional mode and a uni-directional mode at different times using different transfer methods to transfer data.

  20. Property Characterization and Photocatalytic Activity Evaluation of BiGdO₃ Nanoparticles under Visible Light Irradiation.

    PubMed

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-09-08

    BiGdO₃ nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO₃ was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO₃ crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO₃ was 5.465 angstrom. The band gap of BiGdO₃ was estimated to be 2.25 eV. BiGdO₃ showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO₃ was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO₃ demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min(-1) with BiGdO₃ as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO₃ particles were also discussed in detail. BiGdO₃/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment.

  1. Changes in muscle and joint coordination in learning to direct forces.

    PubMed

    Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A

    2008-08-01

    While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.

  2. Social and Non-Social Behavioral Inhibition in Preschool-Age Children: Differential Associations with Parent-Reports of Temperament and Anxiety

    ERIC Educational Resources Information Center

    Dyson, Margaret W.; Klein, Daniel N.; Olino, Thomas M.; Dougherty, Lea R.; Durbin, C. Emily

    2011-01-01

    Behavioral inhibition (BI) has generally been treated as a unitary construct and assessed by combining ratings of fear, vigilance, and avoidance to both novel social and non-social stimuli. However, there is evidence suggesting that BI in social contexts is not correlated with BI in non-social contexts. The present study examined the distinction…

  3. Preparation and visible-light photocatalytic properties of BiNbO₄ and BiTaO₄ by a citrate method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hai-Fa, E-mail: haifazhai@126.com; Li, Ai-Dong, E-mail: adli@nju.edu.cn; Kong, Ji-Zhou

    2013-06-01

    Visible-light photcatalysts of BiNbO₄ and BiTaO₄ powders have been successfully synthesized by a citrate method. The formation of pure triclinic phase of BiNbO₄ and BiTaO₄ at low temperature of 700 °C can be attributed to the advantage of the citrate method. The photocatalytic activity and possible mechanism were investigated deeply. For BiNbO₄ particles, the mechanism of methyl violet (MV) degradation under visible light irradiation involves photocatalytic and photosensitization pathways and the catalyst specific surface area has dominant influence. While for BiTaO₄ particles, the dominant mechanism arises from photosensitization pathways and a trade off between high specific surface area and goodmore » crystallinity is achieved. BiNbO₄ powder calcined at 700 °C shows the best photocatalytic efficiency among these catalysts, which is ascribed to its large surface area and more positive conduction band level. The optimal catalyst loading, additive H₂O₂ concentration and pH value is around 1 g/L, 2 mmol/L and 8 mmol/L, respectively. - Graphical abstract: Photodegradation performance and adsorption ability of BiNbO₄ and BiTaO₄ powders, respectively. BNO700 with the best photocatalytic efficiency is ascribed to its large surface area and more positive conduction band level. Highlights: • Pure BiNbO₄ and BiTaO₄ powders were prepared by a citrate method. • Excellent performance of visible-light degradation of MV was observed. • Different MV degradation mechanism for BiNbO₄ and BiTaO₄ powders was proposed. • BNO700 has large surface area and more positive conduction band level.« less

  4. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.

  5. Successive field-induced transitions in BiFeO 3 around room temperature

    DOE PAGES

    Kawachi, Shiro; Miyake, Atsushi; Ito, Toshimitsu; ...

    2017-07-21

    The effects of high magnetic fields applied perpendicular to the spontaneous ferroelectric polarization on single crystals of BiFeO 3 were investigated in this paper through magnetization, magnetostriction, and neutron diffraction measurements. The magnetostriction measurements revealed lattice distortion of 2 x 10 -5 during the reorientation process of the cycloidal spin order by applied magnetic fields. Furthermore, anomalous changes in magnetostriction and electric polarization at a larger field demonstrate an intermediate phase between cycloidal and canted antiferromagnetic states, where a large magnetoelectric effect was observed. Neutron diffraction measurements clarified that incommensurate spin modulation along the [110] hex direction in the cycloidalmore » phase becomes Q = 0 commensurate along this direction in the intermediate phase. Finally, theoretical calculations based on the standard spin Hamiltonian of this material suggest an antiferromagnetic cone-type spin order in the intermediate phase.« less

  6. Comparative study of the compensated semi-metals LaBi and LuBi: a first-principles approach.

    PubMed

    Dey, Urmimala

    2018-05-23

    We have investigated the electronic structures of LaBi and LuBi, employing the full-potential all electron method as implemented in Wien2k. Using this, we have studied in detail both the bulk and the surface states of these materials. From our band structure calculations we find that LuBi, like LaBi, is a compensated semi-metal with almost equal and sizable electron and hole pockets. In analogy with experimental evidence in LaBi, we thus predict that LuBi will also be a candidate for extremely large magneto-resistance (XMR), which should be of immense technological interest. Our calculations reveal that LaBi, despite being gapless in the bulk spectrum, displays the characteristic features of a [Formula: see text] topological semi-metal, resulting in gapless Dirac cones on the surface, whereas LuBi only shows avoided band inversion in the bulk and is thus a conventional compensated semi-metal with extremely large magneto-resistance.

  7. Comparative study of the compensated semi-metals LaBi and LuBi: a first-principles approach

    NASA Astrophysics Data System (ADS)

    Dey, Urmimala

    2018-05-01

    We have investigated the electronic structures of LaBi and LuBi, employing the full-potential all electron method as implemented in Wien2k. Using this, we have studied in detail both the bulk and the surface states of these materials. From our band structure calculations we find that LuBi, like LaBi, is a compensated semi-metal with almost equal and sizable electron and hole pockets. In analogy with experimental evidence in LaBi, we thus predict that LuBi will also be a candidate for extremely large magneto-resistance (XMR), which should be of immense technological interest. Our calculations reveal that LaBi, despite being gapless in the bulk spectrum, displays the characteristic features of a topological semi-metal, resulting in gapless Dirac cones on the surface, whereas LuBi only shows avoided band inversion in the bulk and is thus a conventional compensated semi-metal with extremely large magneto-resistance.

  8. Outpatient blood pressure monitoring using bi-directional text messaging.

    PubMed

    Anthony, Chris A; Polgreen, Linnea A; Chounramany, James; Foster, Eric D; Goerdt, Christopher J; Miller, Michelle L; Suneja, Manish; Segre, Alberto M; Carter, Barry L; Polgreen, Philip M

    2015-05-01

    To diagnose hypertension, multiple blood pressure (BP) measurements are recommended. We randomized patients into three groups: EMR-only (patients recorded BP measurements in an electronic medical record [EMR] web portal), EMR + reminders (patients were sent text message reminders to record their BP measurements in the EMR), and bi-directional text messaging (patients were sent a text message asking them to respond with their current BP). Subjects were asked to complete 14 measurements. Automated messages were sent to each patient in the bi-directional text messaging and EMR + reminder groups twice daily. Among 121 patients, those in the bi-directional text messaging group reported the full 14 measurements more often than both the EMR-only group (P < .001) and the EMR + reminders group (P = .038). Also, the EMR + reminders group outperformed the EMR-only group (P < .001). Bi-directional automated text messaging is an effective way to gather patient BP data. Text-message-based reminders alone are an effective way to encourage patients to record BP measurements. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Social and Non-Social Behavioral Inhibition in Preschool-Age Children: Differential Associations with Parent-Reports of Temperament and Anxiety

    PubMed Central

    Dyson, Margaret W.; Klein, Daniel N.; Olino, Thomas M.; Dougherty, Lea R.; Durbin, C. Emily

    2012-01-01

    Behavioral inhibition (BI) has generally been treated as a unitary construct and assessed by combining ratings of fear, vigilance, and avoidance to both novel social and non-social stimuli. However, there is evidence suggesting that BI in social contexts is not correlated with BI in non-social contexts. The present study examined the distinction between social and non-social BI in a community sample of 559 preschool-age children using a laboratory assessment of child temperament, a diagnostic interview, and parent-completed questionnaires. Social and non-social BI were not significantly correlated and exhibited distinct patterns of associations with parent reports of temperament and anxiety symptoms. This study suggests that BI is heterogeneous, and that distinguishing between different forms of BI may help account for the variation in trajectories and outcomes exhibited by high BI children. PMID:21479511

  10. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  11. The Importance of Measuring Strength-of-Preference Scores for Health Care Options in Preference-Sensitive Care

    PubMed Central

    Crump, R. Trafford; Llewellyn-Thomas, Hilary A.

    2012-01-01

    Objective The objective was to determine whether a paired-comparison/leaning scale method: a) could feasibly be used to elicit strength-of-preference scores for elective health care options in large community-based survey settings; and b) could reveal preferential sub-groups that would have been overlooked if only a categorical-response format had been used. Study Design Medicare beneficiaries in four different regions of the United States were interviewed in person. Participants considered 8 clinical scenarios, each with 2 to 3 different health care options. For each scenario, participants categorically selected their favored option, then indicated how strongly they favored that option relative to the alternative on a paired-comparison bi-directional Leaning Scale. Results Two hundred and two participants were interviewed. For 7 of the 8 scenarios, a clear majority (> 50%) indicated that, overall, they categorically favored one option over the alternative(s). However, the bi-directional strength-of-preference Leaning Scale scores revealed that, in 4 scenarios, for half of those participants, their preference for the favored option was actually “weak” or “neutral”. Conclusion Investigators aiming to assess population-wide preferential attitudes towards different elective health care scenarios should consider gathering ordinal-level strength-of-preference scores and could feasibly use the paired-comparison/bi-directional Leaning Scale to do so. PMID:22494579

  12. Property Characterization and Photocatalytic Activity Evaluation of BiGdO3 Nanoparticles under Visible Light Irradiation

    PubMed Central

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-01-01

    BiGdO3 nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO3 was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO3 crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO3 was 5.465 angstrom. The band gap of BiGdO3 was estimated to be 2.25 eV. BiGdO3 showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO3 was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO3 demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min−1 with BiGdO3 as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO3 particles were also discussed in detail. BiGdO3/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment. PMID:27618018

  13. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  14. 47 CFR 15.407 - General technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi... reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p...

  15. Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-07-01

    The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.

  16. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  17. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    PubMed

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. © 2015 Wiley Periodicals, Inc.

  18. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)

    PubMed Central

    Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-01-01

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681

  19. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi₃ (A = Sr and Ba).

    PubMed

    Shao, D F; Luo, X; Lu, W J; Hu, L; Zhu, X D; Song, W H; Zhu, X B; Sun, Y P

    2016-02-19

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity.

  20. One-step construction of heterostructured metal-organics@Bi2O3 with improved photoinduced charge transfer and enhanced activity in photocatalytic degradation of sulfamethoxazole under solar light irradiation.

    PubMed

    Bao, Yueping; Lim, Teik-Thye; Goei, Ronn; Zhong, Ziyi; Wang, Rong; Hu, Xiao

    2018-08-01

    A facile one-step assembly method was developed for the preparation of metal-organics @Bi 2 O 3 composites for photocatalysis. Two kinds of metal-organics (Ti-bdc and Cu-btc)@Bi 2 O 3 composites were synthesized via the coordination of btc 3- /bdc 2- and metal ions (Ti 4+ /Cu 2+ ) as well as OH on the surface of Bi 2 O 3 . Compared with pure Bi 2 O 3, Ti-bdc@Bi 2 O 3 shows a 1.7 times higher photocatalytic activity in the degradation of sulfamethoxazole (SMX) under a simulated solar irradiation with a cumulative removal of 62% within 60 min. The high photocatalytic activity could be attributed to the high charge separation, enhanced electron transfer as well as the low recombination rate of photo-generated electrons and holes due to the construction of hetero-structures. The stability test showed that Ti-bdc@Bi 2 O 3 is more stable in water than Cu-btc@Bi 2 O 3 . Furthermore, through the radical-trapping experiments and main intermediates detection, it is demonstrated that the photo-generated holes as well as the OH and O 2 - formed dominate the photocatalytic decomposition of SMX. These findings demonstrate the potential usage of a facile method to synthesize metal-organics and metal oxides composites, some of which possess high water stability and thus could be employed for water treatment. Copyright © 2018. Published by Elsevier Ltd.

  1. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Wang, Guohong; Xiong, Zhenzhong; Tang, Hua; Jiang, Chuanjia

    2018-04-01

    A combined hydrothermal-calcination approach is developed to synthesize hierarchical β-Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced visible light photoactivity for Rhodamine B (RhB) degradation. First, Bi2O2CO3 microflowers were hydrothermally prepared using Bi(NO3)3·5H2O as feedstocks, and then a series of β-Bi2O3/g-C3N4 direct Z-scheme photocatalysts were synthesized via a facile calcination method using Bi2O2CO3 and g-C3N4 as precursors. The samples were systematically characterized by various characterization technologies including X-ray diffraction, scanning and transmission electron microscopes, Fourier transform infrared spectroscopy and N2 absorption-desorption equipment. It was found that the g-C3N4 content in the precursors played a key role in affecting the photocatalytic activity of the final products. The β-Bi2O3/g-C3N4 heterojunction exhibited higher photocatalytic activity than single active components (β-Bi2O3 and g-C3N4), indicating the presence of a synergistic effect between two active components in β-Bi2O3/g-C3N4 heterojunction. Among all as-prepared catalysts, the 70 wt.% g-C3N4/Bi2O2CO3 exhibits the highest activity for RhB degradation, and the apparent reaction rate constant k (42.2 × 10-3 min-1) is 3.1 and 1.7 times as high as that of pure β-Bi2O3 (13.5 × 10-3 min-1) and g-C3N4 (25.2 × 10-3 min-1), respectively. The enhanced photocatalytic performance of β-Bi2O3/g-C3N4 heterostructure photocatalysts is mainly due to the high surface area, closely contacted interfaces between the β-Bi2O3 and g-C3N4 component, and the formation of direct Z-scheme structure in the β-Bi2O3/g-C3N4 composites.

  2. Detection of Bi-Directionality in Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    2012-01-01

    An indicator variable was developed for both visualization and detection of bi-directionality in wind tunnel strain-gage balance calibration data. First, the calculation of the indicator variable is explained in detail. Then, a criterion is discussed that may be used to decide which gage outputs of a balance have bi- directional behavior. The result of this analysis could be used, for example, to justify the selection of certain absolute value or other even function terms in the regression model of gage outputs whenever the Iterative Method is chosen for the balance calibration data analysis. Calibration data of NASA s MK40 Task balance is analyzed to illustrate both the calculation of the indicator variable and the application of the proposed criterion. Finally, bi directionality characteristics of typical multi piece, hybrid, single piece, and semispan balances are determined and discussed.

  3. Bi-stem gripping apparatus

    NASA Technical Reports Server (NTRS)

    Sanders, Fred G. (Inventor)

    1988-01-01

    This invention relates to devices which grip cylindrical structures and more particularly to a device which has three arcuate gripping members having frictional surfaces for gripping and compressing a bi-stem. The bi-stem gripping apparatus is constructed having a pair of side gripping members, and an intermediate gripping member disposed between them. Sheets of a gum stock silicone rubber with frictional gripping surfaces are bonded to the inner region of the gripping members and provide frictional engagement between the bi-stem and the apparatus. A latch secures the gripping apparatus to a bi-stem, and removable handles are attached, allowing an astronaut to pull the bi-stem from its cassette. A tethering ring on the outside of the gripping apparatus provides a convenient point to which a lanyard may be attached.

  4. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    NASA Astrophysics Data System (ADS)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  5. Local structure in BaTi O 3 - BiSc O 3 dipole glasses

    DOE PAGES

    Levin, I.; Krayzman, V.; Woicik, J. C.; ...

    2016-03-14

    Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less

  6. Redundantly piezo-actuated XYθ z compliant mechanism for nano-positioning featuring simple kinematics, bi-directional motion and enlarged workspace

    NASA Astrophysics Data System (ADS)

    Zhu, Wu-Le; Zhu, Zhiwei; To, Suet; Liu, Qiang; Ju, Bing-Feng; Zhou, Xiaoqin

    2016-12-01

    This paper presents a novel redundantly piezo-actuated three-degree-of-freedom XYθ z compliant mechanism for nano-positioning, driven by four mirror-symmetrically configured piezoelectric actuators (PEAs). By means of differential motion principle, linearized kinematics and physically bi-directional motions in all the three directions are achieved. Meanwhile, the decoupled delivering of three-directional independent motions at the output end is accessible, and the essential parallel and mirror symmetric configuration guarantees large output stiffness, high natural frequencies, high accuracy as well as high structural compactness of the mechanism. Accurate kinematics analysis with consideration of input coupling indicates that the proposed redundantly actuated compliant mechanism can generate three-dimensional (3D) symmetric polyhedral workspace envelope with enlarged reachable workspace, as compared with the most common parallel XYθ z mechanism driven by three PEAs. Keeping a high consistence with both analytical and numerical models, the experimental results show the working ranges of ±6.21 μm and ±12.41 μm in X- and Y-directions, and that of ±873.2 μrad in θ z-direction with nano-positioning capability can be realized. The superior performances and easily achievable structure well facilitate practical applications of the proposed XYθ z compliant mechanism in nano-positioning systems.

  7. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  8. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  9. Synthesis and Analysis of Custom Bi-directional Reflectivity Distribution Functions in DIRSIG

    NASA Astrophysics Data System (ADS)

    Dank, J.; Allen, D.

    2016-09-01

    The bi-directional reflectivity distribution (BRDF) function is a fundamental optical property of materials, characterizing important properties of light scattered by a surface. For accurate radiance calculations using synthetic targets and numerical simulations such as the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, fidelity of the target BRDFs is critical. While fits to measured BRDF data can be used in DIRSIG, obtaining high-quality data over a large spectral continuum can be time-consuming and expensive, requiring significant investment in illumination sources, sensors, and other specialized hardware. As a consequence, numerous parametric BRDF models are available to approximate actual behavior; but these all have shortcomings. Further, DIRSIG doesn't allow direct visualization of BRDFs, making it difficult for the user to understand the numerical impact of various models. Here, we discuss the innovative use of "mixture maps" to synthesize custom BRDFs as linear combinations of parametric models and measured data. We also show how DIRSIG's interactive mode can be used to visualize and analyze both available parametric models currently used in DIRSIG and custom BRDFs developed using our methods.

  10. Design of Bi-Directional Hydrofoils for Tidal Current Turbines

    NASA Astrophysics Data System (ADS)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2015-11-01

    Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.

  11. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  12. Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals

    DOE PAGES

    McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; ...

    2014-11-18

    Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature T SR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropymore » of the atomic displacement parameters for Bi with increasing temperature above T SR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.« less

  13. Graphite-like carbon nitride coupled with tiny Bi2S3 nanoparticles as 2D/0D heterojunction with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhu, Chengzhang; Gong, Tingting; Xian, Qiming; Xie, Jimin

    2018-06-01

    Novel well-dispersed tiny Bi2S3 nanoparticles (NPs) with an average sizes of approximately 16.2 nm were used to decorate layered g-C3N4 nanosheets (NSs), with the purpose of constructing highly efficient 0D/2D heterojunction photocatalyst by a simple hydrothermal method in one step. The fabricated Bi2S3/g-C3N4 heterostructures exhibited superior visible-light-driven photocatalytic activity toward methyl orange (MO) degradation in contrast to that of individual Bi2S3 and g-C3N4, which could be mainly ascribed to the synergistic effect of the tiny size effect of 0D Bi2S3 NPs and 2D g-C3N4 NSs, the matched energy level positions, and the abundant coupling heterointerfaces between two moieties. More importantly, the photodegradation of methylene blue (MB), rhodamine B (RhB) and colorless tetracycline (TC), ciprofloxacin (CIP) further revealed the broad-spectrum photodegradation capacities of the heterojunction materials. The possible photoinduced charge transfer and pollutant degradation process over Bi2S3/g-C3N4 heterojunctions under visible-light irradiation were proposed. This work may provide a platform for constructing new visible light 0D/2D intimate contact heterostructures with stable and efficient photocatalytic performance.

  14. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy.

    PubMed

    Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2012-07-27

    Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

  15. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings

    NASA Astrophysics Data System (ADS)

    Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.

    2017-07-01

    Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.

  16. Tuning the ground state of the Kondo lattice in UT Bi2 (T = Ag, Au) single crystals

    NASA Astrophysics Data System (ADS)

    Rosa, Priscila; Luo, Yongkang; Pagliuso, Pascoal; Bauer, Eric; Thompson, Joe; Fisk, Zachary

    2015-03-01

    Motivated by the interesting magnetic anisotropy found in the Ce-based heavy fermion family Ce TX2 (T = transition metal, X = pnictogen), here we study the novel U-based parent compounds U TBi2 (T = Ag, Au) by combining magnetization, electrical resistivity, and heat-capacity measurements. The single crystals, synthesized by the self-flux method, also crystallize in the tetragonal HfCuSi2-type structure (space group P4/nmm). Interestingly, although UAgBi2 is a low- γ antiferromagnet below TN = 181 K, UAuBi2 is a moderately heavy uniaxial ferromagnet below Tc = 22 K. Nevertheless, both compounds display the easy-magnetization direction along the c-axis and a large magnetocrystalline anisotropy. Our results point out to an incoherent Kondo behaviour in the paramagnetic state and an intricate competition between crystal field effects and two anisotropic exchange interactions, which lead to the remarkable difference in the observed ground states.

  17. Crossing Cultural Borders through Ning

    ERIC Educational Resources Information Center

    Eamer, Allyson; Hughes, Janette; Morrison, Laura Jane

    2014-01-01

    The aim of this mixed methods research study was to examine the construction of adolescents' bi-cultural identities through an exploration of their social practices on the social networking site, Ning. More specifically, we ask: (1) how are new Canadian and first-generation adolescents' bi-cultural identities shaped and performed as they use…

  18. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.

    PubMed

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-09-07

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.

  19. Direct Observation of Pressure-Driven Valence Electron Transfer in Ba 3 BiRu 2 O 9 , Ba 3 BiIr 2 O 9 , and Ba 4 BiIr 3 O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter E. R.; Chapman, Karena W.; Heald, Steve M.

    The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9 and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi5+ is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual “4+” nominalmore » oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi3+/Bi5+ cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Fei; Liu, Huimei; Malliakas, Christos D.

    The new bismuth chalcogenide LaBiS3 crystallizes in the monoclinic space group C2/m with a = 27.997(5) Å, b = 4.0663(4) Å, c = 14.747(3) Å, and β = 118.55(3)°. The structure of LaBiS3 is built up of NaCl-type Bi2S5 blocks, and BiS4 and LaS5 infinitely long chains forming a compact three-dimensional framework. Optical spectroscopy and resistivity measurements reveal a semiconducting behavior with a direct band gap of 1.08(2) eV and activation energy of 0.36(1) eV. Thermopower measurements suggest the majority carriers of LaBiS3 are electrons. Heat capacity measurement indicates no phase transition from 2 to 300 K. Band structure calculationsmore » at the density function level support the presence of a direct band gap in LaBiS3.« less

  1. Two-dimensional bismuth-rich nanosheets through the evaporative thinning of Se-doped Bi2Te3

    NASA Astrophysics Data System (ADS)

    Hanson, Eve D.; Shi, Fengyuan; Chasapis, Thomas C.; Kanatzidis, Mercouri G.; Dravid, Vinayak P.

    2016-02-01

    High bulk conductance obscures the behavior of surface states in the prototypical topological insulators Bi2Te3 and Bi2Se3. However, ternary phases of Bi2Te3-ySey with balanced donor and acceptor levels may lead to large bulk resistivity, allowing for the observation of the surface states. Additionally, the contribution of the bulk conductance may be further suppressed by nanostructuring, increasing the surface-to-volume ratio. Herein we report the synthesis of a ternary tetradymite newly confined to two dimensions. Ultra-thin large-area stable nanosheets were fabricated via evaporative thinning of a Bi2Te2.9Se0.1 original phase. Owing to vapor pressure differences, a compositional shift to a final Bi-rich phase is observed. The Se/Te ratio of the nanosheet increases tenfold, due to the higher stability of the Bi-Se bonds. Hexagonal crystal symmetry is maintained despite dramatic changes in thickness and stoichiometry. Given that small variations in stoichiometry of this ternary system can incur large changes in carrier concentration and switch majority carrier type, the large compositional shifts found in this case imply that compositional analysis of similar CVD and PVD grown materials is critical to correctly interpret topological insulator performance. Further, the characterization techniques deployed, including STEM-EDS and ToF-SIMS, serve as a case study in determining such compositional shifts in two-dimensional form.

  2. A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control.

    PubMed

    Johnson, Keith C; Clemmens, Emilie; Mahmoud, Hani; Kirkpatrick, Robin; Vizcarra, Juan C; Thomas, Wendy E

    2017-01-01

    In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli ( E. coli ) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.

  3. Ferroelectric Self-Poling, Switching, and Monoclinic Domain Configuration in BiFeO 3 Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, C.; Siemons, W.; Chi, M.

    2016-05-23

    Self-poling of ferroelectric films, i.e., a preferred, uniform direction of the ferroelectric polarization in as-grown samples is often observed yet poorly understood despite its importance for device applications. The multiferroic perovskite BiFeO 3, which crystallizes in two distinct structural polymorphs depending on applied epitaxial strain, is well known to exhibit self-poling. This study investigates the effect of self-poling on the monoclinic domain configuration and the switching properties of the two polymorphs of BiFeO 3 (R' and T') in thin films grown on LaAlO 3 substrates with slightly different La 0.3Sr 0.7MnO 3 buffer layers. Our study shows that the polarizationmore » state formed during the growth acts as “imprint” on the polarization and that switching the polarization away from this self-poled direction can only be done at the expense of the sample's monoclinic domain configuration. We observed reduction of the monoclinic domain size and found that it was largely reversible; hence, the domain size is restored when the polarization is switched back to its original orientation. This is a direct consequence of the growth taking place in the polar phase (below T c). Finally, switching the polarization away from the preferred configuration, in which defects and domain patterns synergistically minimize the system's energy, leads to a domain state with smaller (and more highly strained and distorted) monoclinic domains.« less

  4. Anisotropic electrical and thermal conductivity in Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} [AE = Ca, Sr{sub 1−x}Ba{sub x} (x = 0.0, 0.25, 0.5, 0.75, 1.0)] single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Song-Tao; Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003; Zhang, Bin-Bin

    Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} (AE represents alkaline earth), constructed by stacking of rock-salt Bi{sub 2}AE{sub 2}O{sub 4} and triangle CoO{sub 2} layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ}, as reported previously, is their electrical conductivity mainly lying along CoO{sub 2} plane, adjusting Bi{sub 2}AE{sub 2}O{sub 4} layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ}more » (AE = Ca, Sr, Ba, Sr{sub 1−x}Ba{sub x}) single crystals. The results substantiate that isovalence replacement in Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi{sub 2}AE{sub 2}O{sub 4} layer in Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.« less

  5. The Role of PTSD in Bi-directional Intimate Partner Violence in Military and Veteran Populations: A Research Review.

    PubMed

    Misca, Gabriela; Forgey, Mary Ann

    2017-01-01

    Evidence supporting the higher prevalence of PTSD linked to combat-related trauma in military personnel and veteran populations is well-established. Consequently, much research has explored the effects that combat related trauma and the subsequent PTSD may have on different aspects of relationship functioning and adjustment. In particular, PTSD in military and veterans has been linked with perpetrating intimate partner violence (IPV). New research and theoretical perspectives suggest that in order to respond effectively to IPV, a more accurate understanding of the direction of the violence experienced within each relationship is critical. In both civilian and military populations, research that has examined the direction of IPV's, bi-directional violence have been found to be highly prevalent. Evidence is also emerging as to how these bi-directional violence differ in relation to severity, motivation, physical and psychological consequences and risk factors. Of particular importance within military IPV research is the need to deepen understanding about the role of PTSD in bi-directional IPV not only as a risk factor for perpetration but also as a vulnerability risk factor for victimization, as findings from recent research suggest. This paper provides a timely, critical review of emergent literature to disentangle what is known about bi-directional IPV patterns in military and veteran populations and the roles that military or veterans' PTSD may play within these patterns. Although, this review aimed to identify global research on the topic, the majority of research meeting the inclusion criteria was from US, with only one study identified from outside, from Canada. Strengths and limitations in the extant research are identified. Directions for future research are proposed with a particular focus on the kinds of instruments and designs needed to better capture the complex interplay of PTSD and bi-directional IPV in military populations and further the development of effective interventions.

  6. Understanding the interfacial properties of graphene-based materials/BiOI heterostructures by DFT calculations

    NASA Astrophysics Data System (ADS)

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-06-01

    Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C3N4) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C3N4 and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and promote the separation of photo-generated carriers, which provide useful hints for the applications in photocatalysis.

  7. Quadriphase DS-CDMA wireless communication systems employing the generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2012-05-01

    Probability of bit-error Per performance of asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless communication systems employing the generalized detector (GD) constructed based on the generalized approach to signal processing in noise is analyzed. The effects of pulse shaping, quadriphase or direct sequence quadriphase shift keying (DS-QPSK) spreading, aperiodic spreading sequences are considered in DS-CDMA based on GD and compared with the coherent Neyman-Pearson receiver. An exact Per expression and several approximations: one using the characterristic function method, a simplified expression for the improved Gaussian approximation (IGA) and the simplified improved Gaussian approximation are derived. Under conditions typically satisfied in practice and even with a small number of interferers, the standard Gaussian approximation (SGA) for the multiple-access interference component of the GD statistic and Per performance is shown to be accurate. Moreover, the IGA is shown to reduce to the SGA for pulses with zero excess bandwidth. Second, the GD Per performance of quadriphase DS-CDMA is shown to be superior to that of bi-phase DS-CDMA. Numerical examples by Monte Carlo simulation are presented to illustrate the GD Per performance for square-root raised-cosine pulses and spreading factors of moderate to large values. Also, a superiority of GD employment in CDMA systems over the Neyman-Pearson receiver is demonstrated

  8. Bi-Force: large-scale bicluster editing and its application to gene expression data biclustering

    PubMed Central

    Sun, Peng; Speicher, Nora K.; Röttger, Richard; Guo, Jiong; Baumbach, Jan

    2014-01-01

    Abstract The explosion of the biological data has dramatically reformed today's biological research. The need to integrate and analyze high-dimensional biological data on a large scale is driving the development of novel bioinformatics approaches. Biclustering, also known as ‘simultaneous clustering’ or ‘co-clustering’, has been successfully utilized to discover local patterns in gene expression data and similar biomedical data types. Here, we contribute a new heuristic: ‘Bi-Force’. It is based on the weighted bicluster editing model, to perform biclustering on arbitrary sets of biological entities, given any kind of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279–292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression datasets from Gene Expression Omnibus were analyzed. All resulting biclusters were subsequently investigated by Gene Ontology enrichment analysis to evaluate their biological relevance. The distinct theoretical foundation of Bi-Force (bicluster editing) is more powerful than strict biclustering. We thus outperformed existing tools with Bi-Force at least when following the evaluation protocols from Eren et al. Bi-Force is implemented in Java and integrated into the open source software package of BiCluE. The software as well as all used datasets are publicly available at http://biclue.mpi-inf.mpg.de. PMID:24682815

  9. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew.

    PubMed

    Eichmann, Ruth; Bischof, Melanie; Weis, Corina; Shaw, Jane; Lacomme, Christophe; Schweizer, Patrick; Duchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.

  10. CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.

    2010-06-01

    This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.

  11. Elastic, Optoelectronic and Thermoelectric Properties of the Lead-Free Halide Semiconductors Cs2AgBi X 6 ( X = Cl, Br): Ab Initio Investigation

    NASA Astrophysics Data System (ADS)

    Guechi, N.; Bouhemadou, A.; Bin-Omran, S.; Bourzami, A.; Louail, L.

    2018-02-01

    We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin-orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young's modulus and Poisson's ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (˜ 25 × 104 {cm}^{ - 1} ) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.

  12. Evidence for Busines Intelligence in Health Care: A Literature Review.

    PubMed

    Loewen, Liz; Roudsari, Abdul

    2017-01-01

    This paper outlines a systematic literature review undertaken to establish current evidence regarding the impact of Business Intelligence (BI) on health system decision making and organizational performance. The review also examined BI implementation factors contributing to these constructs. Following the systematic review, inductive content analysis was used to categorize themes within the eight articles identified. This study demonstrated there is little evidence based literature focused on BI impact on organizational decision making and performance within health care. There was evidence found that BI does improve decision making. Implementation success was found to be dependent on several factors, many of which relate to broader organizational culture and readiness.

  13. Compact stars in Eddington-inspired Born-Infeld gravity: Anomalies associated with phase transitions

    NASA Astrophysics Data System (ADS)

    Sham, Y.-H.; Leung, P. T.; Lin, L.-M.

    2013-03-01

    We study how generic phase transitions taking place in compact stars constructed in the framework of the Eddington-inspired Born-Infeld (EiBI) gravity can lead to anomalous behavior of these stars. For the case with first-order phase transitions, compact stars in EiBI gravity with a positive coupling parameter κ exhibit a finite region with constant pressure, which is absent in general relativity. However, for the case with a negative κ, an equilibrium stellar configuration cannot be constructed. Hence EiBI gravity seems to impose stricter constraints on the microphysics of stellar matter. Besides, in the presence of spatial discontinuities in the sound speed cs due to phase transitions, the Ricci scalar is spatially discontinuous and contains δ-function singularities proportional to the jump in cs2 acquired in the associated phase transition.

  14. Measurement of bi-directional ion acceleration along a convergent-divergent magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    Bi-directional plasma expansion resulting in the formation of ion beams travelling in opposite directions is respectively measured in the converging and diverging parts of a magnetic nozzle created using a low-pressure helicon radio-frequency plasma source. The axial profile of ion saturation current along the nozzle is closely correlated to that of the magnetic flux density, and the ion “swarm” has a zero convective velocity at the magnetic throat where plasma generation is localized, thereby balancing the bi-directional particle loss. The ion beam potentials measured on both sides of the magnetic nozzle show results consistent with the maximum plasma potential measuredmore » at the throat.« less

  15. Two-dimensional mapping of triaxial strain fields in a multiferroic BiFeO3 thin film using scanning x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Bark, Chung W.; Cho, Kyung C.; Koo, Yang M.; Tamura, Nobumichi; Ryu, Sangwoo; Jang, Hyun M.

    2007-03-01

    The dramatically enhanced polarizations and saturation magnetizations observed in the epitaxially constrained BiFeO3 (BFO) thin films with their pronounced grain-orientation dependence have attracted much attention and are attributed largely to the constrained in-plane strain. Thus, it is highly desirable to directly obtain information on the two-dimensional (2D) distribution of the in-plane strain and its correlation with the grain orientation of each corresponding microregion. Here the authors report a 2D quantitative mapping of the grain orientation and the local triaxial strain field in a 250nm thick multiferroic BFO film using a synchrotron x-ray microdiffraction technique. This direct scanning measurement demonstrates that the deviatoric component of the in-plane strain tensor is between 5×10-3 and 6×10-3 and that the local triaxial strain is fairly well correlated with the grain orientation in that particular region.

  16. First-principles study on doping and temperature dependence of thermoelectric property of Bi{sub 2}S{sub 3} thermoelectric material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Donglin; Hu, Chenguo, E-mail: hucg@cqu.edu.cn; Zhang, Cuiling

    2013-05-15

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10{sup 19} cm{sup −3}, the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi{sub 2}S{sub 3} depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10{sup 19} cm{sup −3}, the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value.more » ► By doping and temperature tuning, Bi{sub 2}S{sub 3} is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi{sub 2}S{sub 3} are investigated. The electron and hole effective mass of Bi{sub 2}S{sub 3} is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi{sub 2}S{sub 3} crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi{sub 2}S{sub 3}, the optimal doping concentration is found in the range of (1.0–5.0) × 10{sup 19} cm{sup −3}, in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant.« less

  17. Comparison of the One- and Bi-Direction Chained Equipercentile Equating

    ERIC Educational Resources Information Center

    Oh, Hyeonjoo; Moses, Tim

    2012-01-01

    This study investigated differences between two approaches to chained equipercentile (CE) equating (one- and bi-direction CE equating) in nearly equal groups and relatively unequal groups. In one-direction CE equating, the new form is linked to the anchor in one sample of examinees and the anchor is linked to the reference form in the other…

  18. An Observational Approach to Testing Bi-Directional Parent-Child Interactions as Influential to Child Eating and Weight

    ERIC Educational Resources Information Center

    Demir, Defne; Skouteris, Helen; Dell'Aquila, Daniela; Aksan, Nazan; McCabe, Marita P.; Ricciardelli, Lina A.; Milgrom, Jeannette; Baur, Louise A.

    2012-01-01

    Obesity among children has been on the rise globally for the past few decades. Previous research has centred mainly on self/parent-reported measures examining only uni-directional parental feeding styles and practices. Recent discussions in the literature have raised the importance of bi-directional parent-child interactions in influencing…

  19. Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering

    NASA Astrophysics Data System (ADS)

    Cui, Li; Wang, Wenjun; Ding, Guowen; Chen, Ke; Zhao, Junming; Jiang, Tian; Zhu, Bo; Feng, Yijun

    2017-11-01

    In this paper, we design a bi-functional metasurface with different spatial distribution of reflection phase responses depending on the incident polarization. The metasurface with a thickness of only 0.067 λ0 (λ0 is the working wavelength) is constructed by unit cells composing two orthogonal I-shaped metallic structures, and the reflection phase for x- and y-linearly polarized incidence can be independently controlled by the geometric parameters. The metasurface can work as a flat parabolic reflector antenna with a maximum gain reaching about 22 dBi around 9.5 GHz, when it is illuminated by the x-polarized feed source of an offset open-ended waveguide antenna. Meanwhile, designed with randomly distributed reflection phases, the proposed metasurface can behave as an electromagnetic (EM) diffusion-like surface, which is capable of suppressing the backward scattering in a broadband from 8.5 GHz to 14 GHz for y-polarized incidence. By this strategy of EM functionality integration, a metasurface reflector antenna equipped with stealth technique to achieve simultaneously high gain and low backward scattering is obtained. Finally, experiments have been carried out to demonstrate this design principle, which agree with the simulation results. The proposed metasurface could offer a promising route for designing EM devices with polarization-dependent multi-functionalities.

  20. Development and application of a general plasmid reference material for GMO screening.

    PubMed

    Wu, Yuhua; Li, Jun; Wang, Yulei; Li, Xiaofei; Li, Yunjing; Zhu, Li; Li, Jun; Wu, Gang

    The use of analytical controls is essential when performing GMO detection through screening tests. Additionally, the presence of taxon-specific sequences is analyzed mostly for quality control during GMO detection. In this study, 11 commonly used genetic elements involving three promoters (P-35S, P-FMV35S and P-NOS), four marker genes (Bar, NPTII, HPT and Pmi), and four terminators (T-NOS, T-35S, T-g7 and T-e9), together with the reference gene fragments from six major crops of maize, soybean, rapeseed, rice, cotton and wheat, were co-integrated into the same single plasmid to construct a general reference plasmid pBI121-Screening. The suitability test of pBI121-Screening plasmid as reference material indicated that the non-target sequence on the pBI121-Screening plasmid did not affect the PCR amplification efficiencies of screening methods and taxon-specific methods. The sensitivity of screening and taxon-specific assays ranged from 5 to 10 copies of pBI121-Screening plasmid, meeting the sensitivity requirement of GMO detection. The construction of pBI121-Screening solves the lack of a general positive control for screening tests, thereby reducing the workload and cost of preparing a plurality of the positive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Synthetical Two-Component Model with Peakon Solutions: One More Bi-Hamiltonian Case

    NASA Astrophysics Data System (ADS)

    Mengxia, Zhang; Xiaomin, Yang

    2018-05-01

    Compatible pairs of Hamiltonian operators for the synthetical two-component model of Xia, Qiao, and Zhou are derived systematically by means of the spectral gradient method. A new two-component system, which is bi-Hamiltonian, is presented. For this new system, the construction of its peakon solutions is considered.

  2. Hydrothermal synthesis of Bi2WO6 and photocatalytic reduction of aqueous Cr(VI) under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Jing; Shi, Qingzhu; Chen, Yan; Song, Ming

    2017-12-01

    Bi2WO6 was synthesized via a facile hydrothermal method using different inorganic acid or alkali varied pH of the solution at 180℃ for 12 h, and characterized by X-ray diffraction, FESEM and photocurrent. Furthermore, the photocatalytic activity of Bi2WO6 was investigated in the reduction of aqueous Cr(VI) under visible light (λ > 420 nm) irradiation. As a result, assynthesized Bi2WO6 was an orthorhombic phase, and well-crystallized with 3D hierarchical structure constructed by arranged 2D layers of nanoplates. All the as-synthesized Bi2WO6 exhibited the visible light photocatalytic activities on aqueous Cr(VI), and Bi2WO6-(2) exhibited the highest photocatalytic reduction efficiency based on much higher separation and transfer efficiency of photogenerated electrons and holes.

  3. Biomimetic Artificial Epigenetic Code for Targeted Acetylation of Histones.

    PubMed

    Taniguchi, Junichi; Feng, Yihong; Pandian, Ganesh N; Hashiya, Fumitaka; Hidaka, Takuya; Hashiya, Kaori; Park, Soyoung; Bando, Toshikazu; Ito, Shinji; Sugiyama, Hiroshi

    2018-06-13

    While the central role of locus-specific acetylation of histone proteins in eukaryotic gene expression is well established, the availability of designer tools to regulate acetylation at particular nucleosome sites remains limited. Here, we develop a unique strategy to introduce acetylation by constructing a bifunctional molecule designated Bi-PIP. Bi-PIP has a P300/CBP-selective bromodomain inhibitor (Bi) as a P300/CBP recruiter and a pyrrole-imidazole polyamide (PIP) as a sequence-selective DNA binder. Biochemical assays verified that Bi-PIPs recruit P300 to the nucleosomes having their target DNA sequences and extensively accelerate acetylation. Bi-PIPs also activated transcription of genes that have corresponding cognate DNA sequences inside living cells. Our results demonstrate that Bi-PIPs could act as a synthetic programmable histone code of acetylation, which emulates the bromodomain-mediated natural propagation system of histone acetylation to activate gene expression in a sequence-selective manner.

  4. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  5. Constructing TiO2 decorated Bi2WO6 architectures with enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyuan; Chen, Lu; Yang, Yun; Wang, Junjie; Huang, Yongkui; Liu, Xiaoxia; Yang, Shuijin

    2017-06-01

    TiO2 nanoparticles modified Bi2WO6 photocatalysts were prepared via a facile hydrothermal process. The photocatalytic activity of as-prepared TiO2/Bi2WO6 composites was investigated sufficiently by the photodegradation of rhodamine B (RhB), tetracycline hydrochloride (TC) and ciprofloxacin (CIP). The TiO2/Bi2WO6 composites, in which the molar ratio of TiO2 to Bi2WO6 is 1:1, exhibited optimum photocatalytic activity, which is found to increase by about 2.4 times more than that of pristine Bi2WO6 for the photodegradation of TC. The enhanced photocatalytic activity may be attributed to the higher surface area and the highly efficient charge separation between Bi2WO6 nanosheets and TiO2 nanoparticles. The mechanism of the photocatalysts is investigated by the determination of reactive species in the photocatalytic reactions, the photoluminescence measurement and photoelectrochemical analyses.

  6. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture.

    PubMed

    Xin, Jia-Zhan; Fu, Chen-Guang; Shi, Wu-Jun; Li, Guo-Wei; Auffermann, Gudrun; Qi, Yan-Peng; Zhu, Tie-Jun; Zhao, Xin-Bing; Felser, Claudia

    2018-01-01

    Bismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However, BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering (SPS). Additionally, its thermoelectric properties above room temperature were investigated along both the in-plane and out-plane directions, and they exhibit strong anisotropy. Low sound velocity along two directions is found and contributes to its low lattice thermal conductivity. Polycrystalline BiTeBr exhibits relatively good thermoelectric performance along the in-plane direction, with a maximum dimensionless figure of merit (ZT) of 0.35 at 560 K. Further enhancements of ZT are expected by utilizing systematic optimization strategies.

  7. Predicted Growth of Two-Dimensional Topological Insulator Thin Films of III-V Compounds on Si(111) Substrate

    DOE PAGES

    Yao, Liang-Zi; Crisostomo, Christian P.; Yeh, Chun-Chen; ...

    2015-11-05

    We have carried out systematic first-principles electronic structure computations of growth of ultrathin films of compounds of group III (B, Al, In, Ga, and Tl) with group V (N, P, As, Sb, and Bi) elements on Si(111) substrate, including effects of hydrogenation. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs, and TlSb are found to support a topological phase over a wide range of strains, in addition to BBi, TlN, and TlBi which can be driven into the nontrivial phase via strain. A large band gap of 134 meV is identified in hydrogenated 2 BL film of InBi. One andmore » two BL films of GaBi and 2 BL films of InBi and TlAs on Si(111) surface possess nontrivial phases with a band gap as large as 121 meV in the case of 2 BL film of GaBi. Persistence of the nontrivial phase upon hydrogenations in the III-V thin films suggests that these films are suitable for growing on various substrates.« less

  8. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  9. Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance

    PubMed Central

    Gaviño, Michael A; Ford, Kevin J; Archila, Santiago; Davis, Graeme W

    2015-01-01

    Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release. DOI: http://dx.doi.org/10.7554/eLife.05473.001 PMID:25884248

  10. Predicting sugar-sweetened behaviours with theory of planned behaviour constructs: Outcome and process results from the SIPsmartER behavioural intervention.

    PubMed

    Zoellner, Jamie M; Porter, Kathleen J; Chen, Yvonnes; Hedrick, Valisa E; You, Wen; Hickman, Maja; Estabrooks, Paul A

    2017-05-01

    Guided by the theory of planned behaviour (TPB) and health literacy concepts, SIPsmartER is a six-month multicomponent intervention effective at improving SSB behaviours. Using SIPsmartER data, this study explores prediction of SSB behavioural intention (BI) and behaviour from TPB constructs using: (1) cross-sectional and prospective models and (2) 11 single-item assessments from interactive voice response (IVR) technology. Quasi-experimental design, including pre- and post-outcome data and repeated-measures process data of 155 intervention participants. Validated multi-item TPB measures, single-item TPB measures, and self-reported SSB behaviours. Hypothesised relationships were investigated using correlation and multiple regression models. TPB constructs explained 32% of the variance cross sectionally and 20% prospectively in BI; and explained 13-20% of variance cross sectionally and 6% prospectively. Single-item scale models were significant, yet explained less variance. All IVR models predicting BI (average 21%, range 6-38%) and behaviour (average 30%, range 6-55%) were significant. Findings are interpreted in the context of other cross-sectional, prospective and experimental TPB health and dietary studies. Findings advance experimental application of the TPB, including understanding constructs at outcome and process time points and applying theory in all intervention development, implementation and evaluation phases.

  11. Structural, Electronic, and Optical Properties of BiOX1-xYx (X, Y = F, Cl, Br, and I) Solid Solutions from DFT Calculations.

    PubMed

    Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu

    2016-08-23

    Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1-xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1-xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1-xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical-chemical properties with different halogen compositions indicates that the parameters of BiOX1-xYx solid solutions are determined by the differences of the physical-chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1-xYx solid solutions from Vegard's law observed in experiments can be explained. Moreover, the composition ratio of BiOX1-xYx solid solutions can be measured or monitored using optical measurements.

  12. Estimation of NH3 Bi-Directional Flux from Managed Agricultural Soils

    EPA Science Inventory

    The Community Multi-Scale Air Quality model (CMAQ v4.7) contains a bi-directional ammonia (NH3) flux option that computes emission and deposition of ammonia derived from commercial fertilizer via a temperature dependent parameterization of canopy and soil compensation ...

  13. An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification.

    PubMed

    Dong, Fan; Zhao, Zaiwang; Sun, Yanjuan; Zhang, Yuxin; Yan, Shuai; Wu, Zhongbiao

    2015-10-20

    To achieve efficient photocatalytic air purification, we constructed an advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid through the in-situ growth of Bi nanospheres on g-C3N4 nanosheets. This Bi-g-C3N4 compound exhibited an exceptionally high and stable visible-light photocatalytic performance for NO removal due to the surface plasmon resonance (SPR) endowed by Bi metal. The SPR property of Bi could conspicuously enhance the visible-light harvesting and the charge separation. The electromagnetic field distribution of Bi spheres involving SPR effect was simulated and reaches its maximum in close proximity to the Bi particle surface. When the Bi metal content was controlled at 25%, the corresponding Bi-g-C3N4 displayed outstanding photocatalytic capability and transcended those of other visible-light photocatalysts. The Bi-g-C3N4 exhibited a high structural stability under repeated photocatalytic runs. A new visible-light-induced SPR-based photocatalysis mechanism with Bi-g-C3N4 was proposed on the basis of the DMPO-ESR spin-trapping. The photoinduced electrons could transfer from g-C3N4 to the Bi metal, as revealed with time-resolved fluorescence spectra. The function of Bi semimetal as a plasmonic cocatalyst for boosting visible light photocatalysis was similar to that of noble metals, which demonstrated a great potential of utilizing the economically feasible Bi element as a substitute for noble metals for the advancement of photocatalysis efficiency.

  14. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  15. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

    NASA Astrophysics Data System (ADS)

    Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen

    2016-12-01

    This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

  16. A novel ion-exchange strategy for the fabrication of high strong BiOI/BiOBr heterostructure film coated metal wire mesh with tunable visible-light-driven photocatalytic reactivity.

    PubMed

    Wang, Yi; Long, Yang; Yang, Zhiqing; Zhang, Dun

    2018-06-05

    Visible-light-driven (VLD) BiOI/BiOBr heterostructure films with hierarchical microstructure have been firstly fabricated on 304 stainless steel wire mesh (304SSWM) substrates through a novel ion-exchange method using the BiOI film as precursor. The concentration of tetrabutylammonium bromide (TBAB) is the key factor to control the composition and microstructure of BiOI/BiOBr films. Physical, chemical, and optical properties of BiOI/BiOBr heterostructure films were characterized by X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, high resolution transmittance electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance absorption, and fluorescence spectrophotometer, respectively. The VLD photocatalytic ability of the BiOI/BiOBr heterostructure film coated 304SSWM was studied by degrading rhodamine B and pIRES2-EGFP plasmid as target water organic pollutants and pathogenic bacteria genetic materials. The BiOI/BiOBr heterostructure film coated 304SSWM fabricated with 50 mM TBAB has excellent photocatalytic activity, stability, and reusability in the cycled experiments. The reasons for these unique features can be ascribed to the formation of heterojuction structure and the open framework structure of the 304SSWM. The current work can provide new strategies to construct novel VLD photoactive functional films for water purification and disinfection. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    PubMed

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

    DOE PAGES

    Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; ...

    2016-05-09

    Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less

  19. MEASUREMENT OF BI-DIRECTIONAL AMMONIA FLUXES OVER SOYBEAN USING MODIFIED BOWEN-RATIO TECHNIQUE

    EPA Science Inventory

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8-week period during the summer of 2002. The modified Bowne-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy covar...

  20. 47 CFR 15.709 - General technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between the transmitter and the antenna. If transmitting antennas of directional gain greater than 6 dBi... gain of the antenna exceeds 6 dBi. (2) For personal/portable TVBDs, the maximum conducted output power... conducted output power shall not exceed 40 milliwatts. If transmitting antennas of directional gain greater...

  1. Sharing methodology: a worked example of theoretical integration with qualitative data to clarify practical understanding of learning and generate new theoretical development.

    PubMed

    Yardley, Sarah; Brosnan, Caragh; Richardson, Jane

    2013-01-01

    Theoretical integration is a necessary element of study design if clarification of experiential learning is to be achieved. There are few published examples demonstrating how this can be achieved. This methodological article provides a worked example of research methodology that achieved clarification of authentic early experiences (AEEs) through a bi-directional approach to theory and data. Bi-directional refers to our simultaneous use of theory to guide and interrogate empirical data and the use of empirical data to refine theory. We explain the five steps of our methodological approach: (1) understanding the context; (2) critique on existing applications of socio-cultural models to inform study design; (3) data generation; (4) analysis and interpretation and (5) theoretical development through a novel application of Metis. These steps resulted in understanding of how and why different outcomes arose from students participating in AEE. Our approach offers a mechanism for clarification without which evidence-based effective ways to maximise constructive learning cannot be developed. In our example it also contributed to greater theoretical understanding of the influence of social interactions. By sharing this example of research undertaken to develop both theory and educational practice we hope to assist others seeking to conduct similar research.

  2. Longitudinal, reciprocal effects of social skills and achievement from kindergarten to eighth grade.

    PubMed

    Caemmerer, Jacqueline M; Keith, Timothy Z

    2015-08-01

    Previous research suggests that students' social skills and achievement are interrelated, and some findings support bi-directional effects between the two constructs. The purpose of this research study was to estimate the possible longitudinal and reciprocal effects of social skills and achievement for kindergarten through eighth grade students. Data from the Early Childhood Longitudinal Study program were analyzed; teachers' ratings of students' social skills and students' standardized math and reading achievement performance were collected 4 and 5 times, respectively. Latent variable structural equation modeling was used to test a panel model of reciprocal, longitudinal effects of social skills and achievement. The results suggest that the effects of students' social skills and achievement are bi-directional, but the effects of students' achievement on their later social skills are stronger than the effects of social skills on achievement. The significant effects of students' social skills on their later achievement are mostly indirect. These findings suggest that the future social skills of students who struggle academically may be of particular concern to educators, and intervention and prevention efforts aimed to address both social and achievement skills may help remediate the other skill in the future. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  3. Magnetic field effect on the liquidus boundary of Bi-Mn binary system

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Koyama, Keiichi; Oikawa, Katsunari; Watanabe, Kazuo

    2014-10-01

    The magnetic field effect (MFE) on liquidus boundary of Bi-Mn binary system was investigated by differential thermal analysis (DTA) and the computer coupling of phase diagram method (CALPHAD). The liquidus boundary for Bi-18at.%Mn and Bi-24at.%Mn rose clearly by the application of the magnetic fields. The MFE for liquidus boundary temperature Tliq changed from ΔTliq∝B2 to ΔTliq∝B because of the large increase of the peritectic temperature from BiMn and BiMn1.08 by the application of magnetic field.

  4. Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang

    2017-12-01

    In this paper, the bi-orthogonal symbol mapping and detection scheme is investigated in time-spreading wavelength-hopping optical CDMA communication system. The carrier-hopping prime code is exploited as signature sequence, whose put-of-phase autocorrelation is zero. Based on the orthogonality of carrier-hopping prime code, the equal weight orthogonal signaling scheme can be constructed, and the proposed scheme using bi-orthogonal symbol mapping and detection can be developed. The transmitted binary data bits are mapped into corresponding bi-orthogonal symbols, where the orthogonal matrix code and its complement are utilized. In the receiver, the received bi-orthogonal data symbol is fed into the maximum likelihood decoder for detection. Under such symbol mapping and detection, the proposed scheme can greatly enlarge the Euclidean distance; hence, the system performance can be drastically improved.

  5. Optical anisotropy of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  6. Dependency-based long short term memory network for drug-drug interaction extraction.

    PubMed

    Wang, Wei; Yang, Xi; Yang, Canqun; Guo, Xiaowei; Zhang, Xiang; Wu, Chengkun

    2017-12-28

    Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the explosively increasing biomedical texts. In recent years, deep neural network based models have been developed to address such needs and they have made significant progress in relation identification. We propose a dependency-based deep neural network model for DDI extraction. By introducing the dependency-based technique to a bi-directional long short term memory network (Bi-LSTM), we build three channels, namely, Linear channel, DFS channel and BFS channel. All of these channels are constructed with three network layers, including embedding layer, LSTM layer and max pooling layer from bottom up. In the embedding layer, we extract two types of features, one is distance-based feature and another is dependency-based feature. In the LSTM layer, a Bi-LSTM is instituted in each channel to better capture relation information. Then max pooling is used to get optimal features from the entire encoding sequential data. At last, we concatenate the outputs of all channels and then link it to the softmax layer for relation identification. To the best of our knowledge, our model achieves new state-of-the-art performance with the F-score of 72.0% on the DDIExtraction 2013 corpus. Moreover, our approach obtains much higher Recall value compared to the existing methods. The dependency-based Bi-LSTM model can learn effective relation information with less feature engineering in the task of DDI extraction. Besides, the experimental results show that our model excels at balancing the Precision and Recall values.

  7. Strong Anisotropy of Dirac Cones in SrMnBi2 and CaMnBi2 Revealed by Angle-Resolved Photoemission Spectroscopy

    PubMed Central

    Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2014-01-01

    The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net. PMID:24947490

  8. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts.

    PubMed

    Wang, Fang; Cao, Kun; Zhang, Qian; Gong, Xuedong; Zhou, Ying

    2014-11-01

    This paper presents first-principle studies on the photoelectric properties of various Bi2O3 polymorphs. The intrinsic reason of different photocatalytic activities was revealed by electronic structures and optical features. Results showed that for α, β, and γ-Bi2O3, the top of valence bands were mainly constructed by Bi6s and O2p orbitals, and the bottom of conduction bands were dominantly composed by Bi6p orbital. However, two intermediate bands were found at the Fermi level for γ-Bi2O3, which leads to a two-step transition from the top of valence band to the bottom of conduction band and facilitates electron transition under irradiation. Absent forbidden gap was found in δ-Bi2O3, resulting in a semimetallic character due to its intrinsic oxygen vacancy and high ionic conductivity. Moreover, the optical properties of α, β, and γ-Bi2O3 were investigated by absorption spectrum, dielectric constant function, and energy loss spectroscopy. We concluded that the photocatalytic activities followed in the order of γ-Bi2O3 > β-Bi2O3 > α-Bi2O3, in accord with the experimental report. Calculation results illustrated the experimental observations and provided a useful guidance in exploring promising visible-light semiconductor photocatalysts.

  9. Bi-Force: large-scale bicluster editing and its application to gene expression data biclustering.

    PubMed

    Sun, Peng; Speicher, Nora K; Röttger, Richard; Guo, Jiong; Baumbach, Jan

    2014-05-01

    The explosion of the biological data has dramatically reformed today's biological research. The need to integrate and analyze high-dimensional biological data on a large scale is driving the development of novel bioinformatics approaches. Biclustering, also known as 'simultaneous clustering' or 'co-clustering', has been successfully utilized to discover local patterns in gene expression data and similar biomedical data types. Here, we contribute a new heuristic: 'Bi-Force'. It is based on the weighted bicluster editing model, to perform biclustering on arbitrary sets of biological entities, given any kind of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279-292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression datasets from Gene Expression Omnibus were analyzed. All resulting biclusters were subsequently investigated by Gene Ontology enrichment analysis to evaluate their biological relevance. The distinct theoretical foundation of Bi-Force (bicluster editing) is more powerful than strict biclustering. We thus outperformed existing tools with Bi-Force at least when following the evaluation protocols from Eren et al. Bi-Force is implemented in Java and integrated into the open source software package of BiCluE. The software as well as all used datasets are publicly available at http://biclue.mpi-inf.mpg.de. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The origin of the superstructure in Bi2Sr2CaCu2O(8+delta) as revealed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Kirk, M. D.; Nogami, J.; Baski, A. A.; Mitzi, D. B.; Kapitulnik, A.

    1988-12-01

    Real-space images with atomic resolution of the BiO plane of Bi2Sr2CaCu2O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revelaing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both 110-line directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  11. The Origin of the Superstructure in Bi2Sr2CaCu2O8+dgr as Revealed by Scanning Tunneling Microscopy.

    PubMed

    Kirk, M D; Nogami, J; Baski, A A; Mitzi, D B; Kapitulnik, A; Geballe, T H; Quate, C F

    1988-12-23

    Real-space images with atomic resolution of the BiO plane of Bi(2)Sr(2)CaCu(2)O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revealing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both (110) directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  12. The 2D Selfassembly of Benzimidazole and its Co-crystallization

    NASA Astrophysics Data System (ADS)

    Costa, Paulo; Teeter, Jacob; Kunkel, Donna; Sinitskii, Alexander; Enders, Axel

    Benzimidazoles (BI) are organic molecules that form ferroelectric crystals. Key to their ferroelectric behavior are the switchable N . . . HN type bonds and how they couple to the electron system of the molecules. We attempted to crystallize BI on various metal surfaces and studied them using STM. We observed that on Au and Ag, BI joins into zipper chains characteristic of its bulk structure that can pack into a continuous 2D layer. Because the dipole of BI lies in the direction of its switchable hydrogen bond, these zippers should in principle have reversible polarizations that point along the direction they run. BI's crystallization is reminiscent to how croconic acid (CA) crystallizes in 2D using O . . . HO bonding, suggesting that these molecules may be able to co-crystallize through OH . . . N bonds. This would present the opportunity to modify BI's properties, such as the energy needed to switch a hydrogen from a donor to acceptor site. When co-deposited, CA and BI successfully combine into a co-crystal formed by building blocks consisting of 2 CA and 2 BI molecules. These findings demonstrate the usefulness of using STM as a preliminary check to verify if two molecules are compatible with each other without having to attempt crystallization with multiple solvents and mixing methods.

  13. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed. • Bulk Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} with ZT of 1.16 was obtained from Bi{sub 2}Te{sub 3} based wastes. • Different from hydrometallurgy, the recycling method introduced here was green. • Directly recycling Bi{sub 2}Te{sub 3} wastes can lower raw material costs of manufacturers.« less

  14. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Woicik, J. C.

    Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less

  16. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO 3

    DOE PAGES

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; ...

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO 3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO 3 is dominated by the spin-currentmore » polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO 3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  17. Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.

    PubMed

    Yonemoto, Isaac T; Weyman, Philip D

    2017-01-01

    Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.

  18. Graph determined symbolic dynamics and hybrid systems

    NASA Astrophysics Data System (ADS)

    Ayers, Kimberly Danielle

    In this paper we explore the concept of symbolic dynamical systems whose structure is determined by a directed graph, and then discrete-continuous hybrid systems that arise from such dynamical systems. Typically, symbolic dynamics involve the study of a left shift of a bi-infinite sequence. We examine the case when the bi-infinite system is dictated by a graph; that is, the sequence is a bi-infinite path of a directed graph. We then use the concept to study a system of dynamical systems all on the same compact space M, where "switching" between the systems occurs as given by the bi-infinite sequence in question. The concepts of limit sets, chain recurrent sets, chaos, and Morse sets for these systems are explored.

  19. Bismuth(III) 5-sulfosalicylate complexes: structure, solubility and activity against Helicobacter pylori.

    PubMed

    Andrews, Philip C; Deacon, Glen B; Ferrero, Richard L; Junk, Peter C; Karrar, Abdulgader; Kumar, Ish; MacLellan, Jonathan G

    2009-08-28

    Treatment of 5-sulfosalicylic acid (H(3)Ssal) with BiPh(3) results in the formation of the first dianionic carboxylate-sulfonate bismuth complex, [PhBi(HSsal)H(2)O](infinity) 1a, and its ethanol analogue [PhBi(HSsal)EtOH](infinity) 1b (space group P2(1)/c), while Bi(OAc)(3) gives the mixed monoanionic and dianionic complex, {[Bi(HSsal)(H(2)Ssal)(H(2)O)(3)](2) x 2 H(2)O}(infinity) 2 (space group P1). The three complexes are all polymeric in the solid state as determined by single crystal X-ray diffraction, with extended frameworks constructed from dimeric [Bi(HSsal)](2), 1a and 1b, or from [Bi(HSsal)(H(2)Ssal)](2) units, 2. The heteroleptic bismuth complexes 1a and 2 display remarkable aqueous solubility, 10 and 2.5 mg ml(-1) respectively, resulting in a clear solution of pH 1.5. In contrast, 1b is essentially insoluble in aqueous environments. All three complexes show significant activity against the bacterium Helicobacter pylori of <6.25 microg ml(-1).

  20. Stabilization of a Metastable Fibrous Bi 21.2(1)(Mn 1–xCo x ) 20 Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux

    DOE PAGES

    Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA; ...

    2016-11-15

    Bi 21.2(1)(Mn 1–xCo x ) 20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangementmore » of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less

  1. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Ren, Xiaohui; Li, Zhongjun; Wang, Huide; Huang, Zongyu; Qiao, Hui; Tang, Pinghua; Zhao, Jinlai; Liang, Weiyuan; Ge, Yanqi; Liu, Jie; Li, Jianqing; Qi, Xiang; Zhang, Han

    2018-06-01

    Two dimensional Bi nanosheets have been employed to fabricate electrodes for broadband photo-detection. A series of characterization techniques including scanning electron microscopy and high-resolution transmission electron microscopy have verified that Bi nanosheets with intact lamellar structure have been obtained after facile liquid phase exfoliation. In the meanwhile, UV–vis and Raman spectra are also carried out and the inherent optical and physical properties of Bi nanosheets are confirmed. Inherited from the topological characteristics of Bi bulk counterpart, the resultant Bi nanosheet-based photo-detector exhibits preferable photo-response activity as well as environmental robustness. We then evaluate the photo-electrochemical (PEC) performance of the photodetector in 1 M NaOH and 0.5 M Na2SO4 electrolytes, and demonstrated that the as-prepared Bi nanosheets may possess a great potential as PEC-type photo-detector. Additional PEC measurements show that the current density of Bi nanosheets can reach up to 830 nA cm‑2, while an enhanced responsivity (1.8 μA W‑1) had been achieved. We anticipate that this contribution can provide feasibility towards the construction of high-performance elemental Bi nanosheets-based optoelectronic devices in the future.

  2. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance.

    PubMed

    Huang, Hao; Ren, Xiaohui; Li, Zhongjun; Wang, Huide; Huang, Zongyu; Qiao, Hui; Tang, Pinghua; Zhao, Jinlai; Liang, Weiyuan; Ge, Yanqi; Liu, Jie; Li, Jianqing; Qi, Xiang; Zhang, Han

    2018-06-08

    Two dimensional Bi nanosheets have been employed to fabricate electrodes for broadband photo-detection. A series of characterization techniques including scanning electron microscopy and high-resolution transmission electron microscopy have verified that Bi nanosheets with intact lamellar structure have been obtained after facile liquid phase exfoliation. In the meanwhile, UV-vis and Raman spectra are also carried out and the inherent optical and physical properties of Bi nanosheets are confirmed. Inherited from the topological characteristics of Bi bulk counterpart, the resultant Bi nanosheet-based photo-detector exhibits preferable photo-response activity as well as environmental robustness. We then evaluate the photo-electrochemical (PEC) performance of the photodetector in 1 M NaOH and 0.5 M Na 2 SO 4 electrolytes, and demonstrated that the as-prepared Bi nanosheets may possess a great potential as PEC-type photo-detector. Additional PEC measurements show that the current density of Bi nanosheets can reach up to 830 nA cm -2 , while an enhanced responsivity (1.8 μA W -1 ) had been achieved. We anticipate that this contribution can provide feasibility towards the construction of high-performance elemental Bi nanosheets-based optoelectronic devices in the future.

  3. Fern-like rGO/BiVO4 Hybrid Nanostructures for High-Energy Symmetric Supercapacitor.

    PubMed

    Patil, Santosh S; Dubal, Deepak P; Deonikar, Virendrakumar G; Tamboli, Mohaseen S; Ambekar, Jalindar D; Gomez-Romero, Pedro; Kolekar, Sanjay S; Kale, Bharat B; Patil, Deepak R

    2016-11-23

    Herein, we demonstrate the synthesis of rGO/BiVO 4 hybrid nanostructures by facile hydrothermal method. Morphological studies reveal that rGO sheets are embedded in the special dendritic fern-like structures of BiVO 4 . The rGO/BiVO 4 hybrid architecture shows the way to a rational design of supercapacitor, since these structures enable easy access of electrolyte ions by reducing internal resistance. Considering the unique morphological features of rGO/BiVO 4 hybrid nanostructures, their supercapacitive properties were investigated. The rGO/BiVO 4 electrode exhibits a specific capacitance of 151 F/g at the current density of 0.15 mA/cm 2 . Furthermore, we have constructed rGO/BiVO 4 symmetric cell which exhibits outstanding volumetric energy density of 1.6 mW h/cm 3 (33.7 W h/kg) and ensures rapid energy delivery with power density of 391 mW/cm 3 (8.0 kW/kg). The superior properties of symmetric supercapacitor can be attributed to the special dendritic fern-like BiVO 4 morphology and intriguing physicochemical properties of rGO.

  4. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    EPA Science Inventory

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  5. Model-measurement comparison of ammonia bi-directional air-surface exchange fluxes over agricultural fields

    EPA Science Inventory

    Modeling of the bi-directional fluxes (BDFs) of ammonia (NH3) over fertilized soybean and corn canopies was evaluated for three intensive sampling periods: the first, during the summer of 2002 in Warsaw, North Carolina (NC), USA; and the second and third during the summer of 2007...

  6. Longitudinal Bi-Directional Relationships between Sleep and Youth Substance Use

    ERIC Educational Resources Information Center

    Pasch, Keryn E.; Latimer, Lara A.; Cance, Jessica Duncan; Moe, Stacey G.; Lytle, Leslie A.

    2012-01-01

    Despite the known deficits in sleep that occur during adolescence and the high prevalence of substance use behaviors among this group, relatively little research has explored how sleep and substance use may be causally related. The purpose of this study was to explore the longitudinal bi-directional relationships between sleep duration, sleep…

  7. Performance assessment of bi-directional knotless tissue-closure devices in juvenile Chinook salmon surgically implanted with acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.

    Acoustic transmitters used in survival and telemetry studies are often surgically implanted in fish. While this is a well-established method, it has the potential to affect health, behavior, and survival, thus affecting study results. Much research has been done to try to minimize the harmful effects caused by the transmitter and tagging process. In 2009, we first investigated the use of a bi-directional knotless (barbed) suture material in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that it resulted in higher tag retention than the simple interrupted suture pattern; however, the occurrence of ulceration and redness increased. The objective of thismore » study was to refine the suturing patterns of the bi-directional knotless suture and retest suture performance in juvenile Chinook salmon. We tested the bi-directional suture using 3 different suture patterns and two needle types: 6-Point (12-mm needle circumference), Wide “N” (12-mm needle circumference), Wide “N” Knot 12 (12-mm needle circumference), and Wide “N” Knot 18 (18-mm needle circumference).« less

  8. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    PubMed Central

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106

  9. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.

    PubMed

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-30

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

  10. Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature

    NASA Astrophysics Data System (ADS)

    Yang, F. J.; Su, P.; Wei, C.; Chen, X. Q.; Yang, C. P.; Cao, W. Q.

    2011-12-01

    Ceramics of Nd/Co co-substituted Bi5Ti3FeO15, i.e., (Bi4Nd)Ti3(Fe0.5Co0.5)O15 were prepared by the conventional solid-state reaction method. The X-ray diffraction pattern demonstrates that the sample of the layered perovskite phase was successfully obtained, even if little Bi-deficient pyrochlore Bi2Ti2O7 also existed. The ferroelectric and magnetic Curie temperatures were determined to be 1077 K and 497 K, respectively. The multiferroic property of the sample at room temperature was demonstrated by ferroelectric and magnetic measurements. Remarkably, by Nd/Co co-substituting, the sample exhibited large magnetic response with 2Mr = 330 memu/g and 2Hc = 562 Oe at applied magnetic field of 8 kOe at room temperature. The present work suggests the possibility of doped Bi5Ti3FeO15 as a potential multiferroic.

  11. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    NASA Astrophysics Data System (ADS)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.

  12. Improving Model Representation of Reduced Nitrogen in the Greater Yellowstone Area

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.

    2015-12-01

    Human activity, including fossil fuel combustion and agriculture has greatly increased the amount of reactive nitrogen (RN) in the atmosphere and its subsequent deposition to land. Increases in deposition of RN compounds can adversely affect sensitive ecosystems and is a growing problem in many natural areas. The National Park Service in conjunction with Colorado State University researchers and assistance from the Forest Service conducted the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) involving spatially and temporally detailed measurements of RN during spring/summer 2011. In this work it was found that during summer months at the high elevation site Grand Targhee, 62% of the nitrogen deposition was due to reduced nitrogen, about equally split between dry and wet deposition, oxidized nitrogen accounted for 27% of the total, and the remaining was wet deposited organic nitrogen. An important next step to GrandTReNDS is the use of chemical transport models (CTMs) to estimate source contributions to RN in the park. Given the large contribution of reduced nitrogen species to total nitrogen deposition in the park, understanding and properly characterizing ammonia in CTMs is critical to estimating the total nitrogen deposition. A model performance evaluation of the CAMx uni-directional model and CMAQ bi-direction and uni-directional 2011 model simulations versus GrandTReNDS and other datasets was conducted. Preliminary results suggest that, in some areas, model performance of ambient ammonia concentration is more sensitive to the spatial resolution of the model and the accuracy of the spatial representation of emissions than to the incorporation of bi-directional flux. Additional model sensitivity runs, including sensitivity to resolution (with and without bi-directional flux capabilities), changes to model estimated ammonia dry deposition velocities, and improved representation of the spatial distribution of ammonia emissions, are used to identify the best set of options for GrandTReNDS modeling, and to provide a measure of uncertainties. This will help atmospheric scientists identify deficiencies in the models and inform future model development.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA

    Bi 21.2(1)(Mn 1–xCo x ) 20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangementmore » of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less

  14. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110

    PubMed Central

    Deisting, Wibke; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A.; Münz, Markus

    2015-01-01

    Background Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells. Methods The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells. Findings An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not. Conclusions Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct. PMID:26510188

  15. Predicting sugar-sweetened behaviours with theory of planned behaviour constructs: Outcome and process results from the SIPsmartER behavioural intervention

    PubMed Central

    Zoellner, Jamie M.; Porter, Kathleen J.; Chen, Yvonnes; Hedrick, Valisa E.; You, Wen; Hickman, Maja; Estabrooks, Paul A.

    2017-01-01

    Objective Guided by the theory of planned behaviour (TPB) and health literacy concepts, SIPsmartER is a six-month multicomponent intervention effective at improving SSB behaviours. Using SIPsmartER data, this study explores prediction of SSB behavioural intention (BI) and behaviour from TPB constructs using: (1) cross-sectional and prospective models and (2) 11 single-item assessments from interactive voice response (IVR) technology. Design Quasi-experimental design, including pre- and post-outcome data and repeated-measures process data of 155 intervention participants. Main Outcome Measures Validated multi-item TPB measures, single-item TPB measures, and self-reported SSB behaviours. Hypothesised relationships were investigated using correlation and multiple regression models. Results TPB constructs explained 32% of the variance cross sectionally and 20% prospectively in BI; and explained 13–20% of variance cross sectionally and 6% prospectively. Single-item scale models were significant, yet explained less variance. All IVR models predicting BI (average 21%, range 6–38%) and behaviour (average 30%, range 6–55%) were significant. Conclusion Findings are interpreted in the context of other cross-sectional, prospective and experimental TPB health and dietary studies. Findings advance experimental application of the TPB, including understanding constructs at outcome and process time points and applying theory in all intervention development, implementation and evaluation phases. PMID:28165771

  16. Enhancement of magnetic anisotropy in a Mn-Bi heterobimetallic complex.

    PubMed

    Pearson, Tyler J; Fataftah, Majed S; Freedman, Danna E

    2016-09-15

    A novel Mn 2+ Bi 3+ heterobimetallic complex, featuring the closest MnBi interaction for a paramagnetic molecular species, exhibits unusually large axial zero-field splitting. We attribute this enhancement to the proximity of Mn 2+ to a heavy main group element, namely, bismuth.

  17. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.

    PubMed

    Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie

    2018-05-18

    As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.

  18. Large and high-quality single-crystal growth of cuprate superconductor Bi-2223 using the traveling-solvent floating-zone (TSFZ) method

    NASA Astrophysics Data System (ADS)

    Adachi, Shintaro; Usui, Tomohiro; Kosugi, Kenta; Sasaki, Nae; Sato, Kentaro; Fujita, Masaki; Yamada, Kazuyoshi; Fujii, Takenori; Watanabe, Takao

    In high superconducting transition temperature (high-Tc) cuprates, it is empirically known that Tc increases on increasing the number of CuO2 planes in a unit cell n from 1 to 3. Bi-family cuprates are ideal for investigating the microscopic mechanism involved. However, it is difficult to grow tri-layered Bi-2223, probably owing to its narrow crystallization field. Here, we report improved crystal growth of this compound using the TSFZ method under conditions slightly different from those in an earlier report [J. Cryst. Growth 223, 175 (2001)]. A Bi-rich feed-rod composition of Bi2.2Sr1.9Ca2Cu3Oy and a slightly oxygen-reduced atmosphere (mixed gas flow of O2 (10%) and Ar (90%)) were adopted for the crystal growth. In addition, to increase the supersaturation of the melts, we applied a large temperature gradient along the solid-liquid interface by shielding a high-angle light beam using Al foil around the quartz tube. In this way, we succeeded in preparing large (2 × 2 × 0 . 05 mm3) and high-quality (almost 100% pure) Bi-2223 single crystals. Hirosaki University Grant for Exploratory Research by Young Scientists and Newly-appointed Scientists.

  19. Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing.

    PubMed

    Sun, Peng; Guo, Jiong; Baumbach, Jan

    2012-07-17

    The explosion of biological data has largely influenced the focus of today’s biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.

  20. Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing.

    PubMed

    Sun, Peng; Guo, Jiong; Baumbach, Jan

    2012-06-01

    The explosion of biological data has largely influenced the focus of today's biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.

  1. Compositional tuning in sputter-grown highly-oriented Bi-Te films and their optical and electronic structures.

    PubMed

    Saito, Yuta; Fons, Paul; Makino, Kotaro; Mitrofanov, Kirill V; Uesugi, Fumihiko; Takeguchi, Masaki; Kolobov, Alexander V; Tominaga, Junji

    2017-10-12

    Growth of Bi-Te films by helicon-wave magnetron sputtering is systematically explored using alloy targets. The film compositions obtained are found to strongly depend on both the sputtering and antenna-coil powers. The obtainable film compositions range from Bi 55 Te 45 to Bi 43 Te 57 when a Bi 2 Te 3 alloy target is used, and from Bi 42 Te 58 to Bi 40 Te 60 (Bi 2 Te 3 ) for a Te-rich Bi 30 Te 70 target. All films show strong orientation of the van der Waals layers (00l planes) parallel to the substrate. The atomic level stacking of Bi 2 Te 3 quintuple and Bi bi-layers has been directly observed by high resolution transmission electron microscopy. Band structure simulations reveal that Bi-rich Bi 4 Te 3 bulk is a zero band gap semimetal with a Dirac cone at the Gamma point when spin-orbit coupling is included. Optical measurements also confirm that the material has a zero band gap. The tunability of the composition and the topological insulating properties of the layers will enable the use of these materials for future electronics applications on an industrial scale.

  2. Magnetic properties of single-phase MnBi grown from MnBi{sub 49} melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, X. F.; Si, P. Z., E-mail: pzsi@cjlu.edu.cn; Feng, H.

    2014-05-07

    The single-phase NiAs-type MnBi, embedded in Bi matrix, was grown from homogeneous MnBi{sub 49} melt at low temperatures to prevent the formation of Mn{sub 1.08}Bi. An abrupt magnetization change was observed at ∼240 K. The origin of this change was ascribed to the movement of the Mn atoms between the regular sites and the interstitial sites in the MnBi lattices. The splitting of the x-ray photoelectron lines of MnBi indicates the presence of two binding states of Mn atoms, one of which was ascribed to interstitial Mn atoms. A large coercivity up to 1.79 T at 400 K was observed in the as-grownmore » bulk isotropic MnBi alloys.« less

  3. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yuan; Hao, Shaobo; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brainmore » tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.« less

  4. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    NASA Astrophysics Data System (ADS)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  5. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hongjian; Huang, Hongwei; Xu, Kang

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surfacemore » area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.« less

  6. Internet over a Bi-Directional Satellite Link

    NASA Technical Reports Server (NTRS)

    Griner, Jim; Allman, Mark; Mallasch, Paul; Stewart, David

    1998-01-01

    Various issues associated with "Internet over a Bi-Directional Satellite Link" are presented in viewgraph form. Specific topics include: 1) Comarison of HTTP over several network channels; 2) Improved performance of HTTP when compared to off-the-shelf software; 3) Demonstration setup of the link between Sheraton Airport Hotel, Dulles and NASA LeRC; and 4) HTTP comparison pages.

  7. Engineered Bi-Histidine Metal Chelation Sites Map the Structure of the Mechanical Unfolding Transition State of an Elastomeric Protein Domain GB1

    PubMed Central

    Shen, Tao; Cao, Yi; Zhuang, Shulin; Li, Hongbin

    2012-01-01

    Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The ϕM2+U-value is defined as ΔΔG‡-N/ΔΔGU-N, which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG‡-N) relative to its thermodynamic stability (ΔGU-N) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify ϕM2+U-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1’s mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs during the mechanical unfolding process, offering a potentially powerful new method for investigating the design of novel elastomeric proteins. PMID:22947942

  8. Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1.

    PubMed

    Shen, Tao; Cao, Yi; Zhuang, Shulin; Li, Hongbin

    2012-08-22

    Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The φ(M2+)(U)-value is defined as ΔΔG(‡-N)/ΔΔG(U-N), which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG(‡-N)) relative to its thermodynamic stability (ΔG(U-N)) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify φ(M2+)(U)-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1's mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs during the mechanical unfolding process, offering a potentially powerful new method for investigating the design of novel elastomeric proteins. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    NASA Astrophysics Data System (ADS)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  10. The Potential Role of Business Intelligence in Church Organizations

    ERIC Educational Resources Information Center

    Felder, Charmaine

    2012-01-01

    Business intelligence (BI) involves transforming data into actionable information to make better business decisions that may help improve operations. Although businesses have experienced success with BI, how leaders of church organizations might be able to exploit the advantages of BI in church organizations remains largely unexplored. The purpose…

  11. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    PubMed

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells

    PubMed Central

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi

    2015-01-01

    Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514

  13. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi 2O 2Se

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng

    Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less

  14. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi 2O 2Se

    DOE PAGES

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; ...

    2017-04-03

    Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less

  15. Novel experimental design for high pressure-high temperature electrical resistance measurements in a "Paris-Edinburgh" large volume press.

    PubMed

    Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron

    2015-04-01

    We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.

  16. Exchange of NO2 between spruces and the atmosphere is dominated by deposition

    NASA Astrophysics Data System (ADS)

    Breuninger, C.; Meixner, F. X.; Kesselmeier, J.

    2009-04-01

    The chemical budget of troposheric ozone is largely determined by the concentration of NOx (NO and NO2), which is in remote areas related to biological activities of soils and vegetation. The atmospheric concentration of NO2 is strongly influenced by the bi-directional exchange between the atmosphere and plants. The exchange depends on stomatal compensations points in close relation to the NO2 concentrations in ambient air. It is accepted that NO2 uptake by plants represents a large NO2 sink, but the magnitude is still unidentified. A better knowledge of compensation point values for the bi-directional NO2 exchange is a matter of recent discussions, as accurate estimates would help to reliably classify vegetation types. In close relation to our previous studies of Betula pendula, Fagus sylvatica, Quercus ilex und Pinus sylvestris we investigated a further representative of conifers, Picea abies, under field and laboratory conditions. The measurements were part of the DFG joined project EGER (ExchanGE processes in mountainous Regions). We used dynamic chambers and a sensitive and highly specific NO-NO2-Analysator. CO¬2 and H2O exchange were measured simultaneously to assess physiological comparative parameters such as photosynthesis, transpiration and stomatal conductance. Additionally O3 concentrations were recorded, to detect and estimate chemical reactions within the chamber. During the measurements the NO2 exchange was obviously dominated by deposition and depended on stomatal conductance.

  17. Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki

    2018-05-01

    The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.

  18. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  19. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B

    NASA Astrophysics Data System (ADS)

    Su, Xiangde; Yang, Jinjin; Yu, Xiang; Zhu, Yi; Zhang, Yuanming

    2018-03-01

    50%BiOCl/BiOI/reduced graphene oxide (50%BiOCl/BiOI/rGO) composite photocatalyst was synthesized successfully by a facile one-step solvothermal route in this work. Reduction of graphene oxide (GO) took place in the process of solvothermal reaction and a new Bi-C bond between rGO and 50%BiOCl/BiOI was formed. The introduction of rGO affected the morphology of 50%BiOCl/BiOI, resulting in the transformation of 50%BiOCl/BiOI from solid microspheres to hollow microspheres. Both the introduction of rGO and formation of 50%BiOCl/BiOI hollow microspheres can facilitate the light absorption. The strong interaction between 50%BiOCl/BiOI and rGO and the electrical conductivity of rGO greatly improved the effective separation of photogenerated carriers. Hence, GOB-5 demonstrated the highest photocatalytic activity which was over twice of the pristine 50%BiOCl/BiOI in the presence of visible light. Mechanism study revealed that 50%BiOCl/BiOI generated electrons and holes in the presence of visible light, and holes together with rad O2- generated from reduction of O2 by electrons degraded the pollutant directly. Overall, this work provides an excellent reference to the synthesis of chemically bonded BiOX/BiOY (X, Y = Cl, Br, I)/rGO nanocomposite and helps to promote their applications in environmental protection and photoelectric conversion.

  20. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation.

    PubMed

    Deng, Yaocheng; Tang, Lin; Feng, Chengyang; Zeng, Guangming; Wang, Jiajia; Zhou, Yaoyu; Liu, Yani; Peng, Bo; Feng, Haopeng

    2018-02-15

    To realize the full utilization of solar energy, the design of highly efficient photocatalyst with improved visible-near-infrared photocatalysis performance has attracted great attentions for environment pollutant removal. In this work, we rationally employed the surface plasmon resonance effect of metallic Ag in the phosphorus doped ultrathin g-C 3 N 4 nanosheets (PCNS) and BiVO 4 composites to construct a ternary Ag@PCNS/BiVO 4 photocatalyst. It was applied for the photodegradation of ciprofloxacin (CIP), exhibiting 92.6% removal efficiency under visible light irradiation (λ>420nm) for 10mg/L CIP, and presenting enhanced photocatalytic ability than that of single component or binary nanocomposites under near-infrared light irradiation (λ>760nm). The improved photocatalytic activity of the prepared Ag@PCNS/BiVO 4 nanocomposite can be attributed to the synergistic effect among the PCNS, BiVO 4 and Ag, which not only improves the visible light response ability and hinders the recombination efficiency of the photogenerated electrons and holes, but also retains the strong the redox ability of the photogenerated charges. According to the trapping experiment and ESR measurements results, OH, h + and O 2 - all participated in the photocatalytic degradation process. Considering the SPR effect of metallic Ag and the established local electric field around the interfaces, a dual Z-scheme electrons transfer mechanism was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction.

    PubMed

    Lou, Shuai; Liu, Yin; Yang, Fuyi; Lin, Shuren; Zhang, Ruopeng; Deng, Yang; Wang, Michael; Tom, Kyle B; Zhou, Fei; Ding, Hong; Bustillo, Karen C; Wang, Xi; Yan, Shancheng; Scott, Mary; Minor, Andrew; Yao, Jie

    2018-03-14

    Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi 2 Se 3 nanoplate and wavelike Bi 2 Te 3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi 2 Se 3 /Bi 2 Te 3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenqing; York-Nanjing Joint Centre for Spintronics and Nano Engineering; Physics Department, Hong Kong University

    One of the major obstacles of the magnetic topological insulators (TIs) impeding their practical use is the low Curie temperature (T{sub c}). Very recently, we have demonstrated the enhancement of the magnetic ordering in Cr-doped Bi{sub 2}Se{sub 3} by means of proximity to the high-T{sub c} ferrimagnetic insulator (FMI) Y{sub 3}Fe{sub 5}O{sub 12} and found a large and rapidly decreasing penetration depth of the proximity effect, suggestive of a different carrier propagation process near the TI surface. Here we further present a study of the interfacial magnetic interaction of this TI/FMI heterostrucutre. The synchrotron-based X-ray magnetic circular dichroism (XMCD) techniquemore » was used to probe the nature of the exchange coupling of the Bi{sub 2−x}Cr{sub x}Se{sub 3}/Y{sub 3}Fe{sub 5}O{sub 12} interface. We found that the Bi{sub 2−x}Cr{sub x}Se{sub 3} grown on Y{sub 3}Fe{sub 5}O{sub 12}(111) predominately contains Cr{sup 3+} cations, and the spin direction of the Cr{sup 3+} is aligned parallel to that of tetrahedral Fe{sup 3+} of the YIG, revealing a ferromagnetic exchange coupling between the Bi{sub 2−x}Cr{sub x}Se{sub 3} and the Y{sub 3}Fe{sub 5}O{sub 12}.« less

  3. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  4. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome.

    PubMed

    Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M

    2010-10-07

    Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways--selenoamino acid metabolism and steroid biosynthesis--illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.

  5. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    PubMed Central

    2010-01-01

    Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581

  6. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study.

    PubMed

    Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M

    2012-03-01

    Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Multi-phasic bi-directional chemotactic responses of the growth cone

    PubMed Central

    Naoki, Honda; Nishiyama, Makoto; Togashi, Kazunobu; Igarashi, Yasunobu; Hong, Kyonsoo; Ishii, Shin

    2016-01-01

    The nerve growth cone is bi-directionally attracted and repelled by the same cue molecules depending on the situations, while other non-neural chemotactic cells usually show uni-directional attraction or repulsion toward their specific cue molecules. However, how the growth cone differs from other non-neural cells remains unclear. Toward this question, we developed a theory for describing chemotactic response based on a mathematical model of intracellular signaling of activator and inhibitor. Our theory was first able to clarify the conditions of attraction and repulsion, which are determined by balance between activator and inhibitor, and the conditions of uni- and bi-directional responses, which are determined by dose-response profiles of activator and inhibitor to the guidance cue. With biologically realistic sigmoidal dose-responses, our model predicted tri-phasic turning response depending on intracellular Ca2+ level, which was then experimentally confirmed by growth cone turning assays and Ca2+ imaging. Furthermore, we took a reverse-engineering analysis to identify balanced regulation between CaMKII (activator) and PP1 (inhibitor) and then the model performance was validated by reproducing turning assays with inhibitions of CaMKII and PP1. Thus, our study implies that the balance between activator and inhibitor underlies the multi-phasic bi-directional turning response of the growth cone. PMID:27808115

  8. Synthesis of magnetic Bi2O2CO3/ZnFe2O4 composite with improved photocatalytic activity and easy recyclability

    NASA Astrophysics Data System (ADS)

    Liu, Yumin; Ren, Hao; Lv, Hua; Guang, Jing; Cao, Yafei

    2018-03-01

    Magnetic Bi2O2CO3/ZnFe2O4 heterojunction photocatalysts with varying content of ZnFe2O4 were constructed by modifying Bi2O2CO3 nanosheets with mesoporous ZnFe2O4 nanoparticles. The photoactivity of the products was investigated by decomposing RhodamineB (RhB) and it was found that the photoactivity of Bi2O2CO3/ZnFe2O4 composite was closely related to the loading amount of ZnFe2O4. Under simulant sunlight irradiation, the optimum photoactivity of Bi2O2CO3/ZnFe2O4 composite was almost 2.3 and 2.1 times higher than that by bare ZnFe2O4 and Bi2O2CO3, respectively. The improved photoactivity resulted from the synergistic effect of Bi2O2CO3 and ZnFe2O4, which not only extended the photoabsorption region but also significantly facilitated the interfacial charge transfer. Besides the high photocatalytic performance, Bi2O2CO3/ZnFe2O4 composite also exhibited excellent stable and recycling properties, which enabled it have great potential in a long-term practical use.

  9. Robotic Powered Transfer Mechanism modeling on Human Muscle Structure

    NASA Astrophysics Data System (ADS)

    Saito, Yukio

    It is considered in engineering that one power source can operate one joint. However, support movement mechanism of living organism is multi joint movement mechanism. Considerably different from mechanical movement mechanism, two pairs of uni-articular muscles and a pair of bi-articular muscles are involved in it. In leg, movements observed in short run including leg idling, heel contact and toeing are operated by bi-articular muscles of the thigh showing strong legs to support body weight. Pursuit of versatility in welfare robot brings its comparison with conventional machinery or industrial robot to the fore. Request for safety and technology allowing elderly people to operate the robot is getting stronger in the society. The robot must be safe when it is used together with other welfare equipment and simpler system avoiding difficult operation has to be constructed. Appearance of recent care and assistance robot is getting similar to human arm in comparison with industrial robot. Being easily able to imagine from industrial robot, mid-heavyweight articulated robot to support 60-70kgf combined with large output motor and reduction gears is next to impossible to be installed in the bath room. This research indicated that upper limb arm and lower limb thigh of human and animals are holding coalitional muscles and movement of uni-artcular muscle and bi-articular muscle conjure the image of new actuators.

  10. Design and hydraulic characteristics of a field-scale bi-phasic bioretention rain garden system for storm water management.

    PubMed

    Yang, H; Florence, D C; McCoy, E L; Dick, W A; Grewal, P S

    2009-01-01

    A field-scale bioretention rain garden system was constructed using a novel bi-phasic (i.e. sequence of anaerobic to aerobic) concept for improving retention and removal of storm water runoff pollutants. Hydraulic tests with bromide tracer and simulated runoff pollutants (nitrate-N, phosphate-P, Cu, Pb, and Zn) were performed in the system under a simulated continuous rainfall. The objectives of the tests were (1) to determine hydraulic characteristics of the system, and (2) to evaluate the movement of runoff pollutants through the system. For the 180 mm/24 h rainfall, the bi-phasic bioretention system effectively reduced both peak flow (approximately 70%) and runoff volume (approximately 42%). The breakthrough curves (BTCs) of bromide tracer suggest that the transport pattern of the system is similar to dispersed plug flow under this large runoff event. The BTCs of bromide showed mean 10% and 90% breakthrough times of 5.7 h and 12.5 h, respectively. Under the continuous rainfall, a significantly different transport pattern was found between each runoff pollutant. Nitrate-N was easily transported through the system with potential leaching risk from the initial soil medium, whereas phosphate-P and metals were significantly retained indicating sorption-mediated transport. These findings support the importance of hydraulics, in combination with the soil medium, when creating bioretention systems for bioremediation that are effective for various rainfall sizes and intervals.

  11. Identification of Nanocrystalline Inclusions in Bismuth-Doped Silica Fibers and Preforms.

    PubMed

    Iskhakova, Liudmila D; Milovich, Filipp O; Mashinsky, Valery M; Zlenko, Alexander S; Borisovsky, Sergey E; Dianov, Evgeny M

    2016-10-01

    The nature of nanocrystalline inclusions and dopant distribution in bismuth-doped silicate fibers and preforms are studied by scanning and transmission electron microscopy, and energy and wavelength-dispersive X-ray microanalysis. The core compositions are Bi:SiO2, Bi:Al2O3-SiO2, Bi:GeO2-SiO2, Bi:Al2O3-GeO2-SiO2, and Bi:P2O5-Al2O3-GeO2-SiO2. Nanocrystals of metallic Bi, Bi2O3, SiO2, GeO2, and Bi4(GeO4)3 are observed in these glasses. These inclusions can be the reason for the background optical loss in bismuth-doped optical fibers. The bismuth concentration of 0.0048±0.0006 at% is directly measured in aluminosilicate optical fibers with effective laser generation (slope efficiency of 27% at room temperature).

  12. Coming to an Understanding of the Signed Numbers: How Second and Third Grade Students Make Sense of the Integers

    ERIC Educational Resources Information Center

    Madsen, Mark S.

    2010-01-01

    The purpose of this research has been to generate learning environments that surrounded second and third grade students with bi-directional counting experiences, leading them to discover and come to an understanding of opposite numbers. While engaged in games and bi-directional activities, these young students eagerly counted, by jumping frogs…

  13. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation.

    PubMed

    Jia, Qingxin; Iwashina, Katsuya; Kudo, Akihiko

    2012-07-17

    An efficient BiVO(4) thin film electrode for overall water splitting was prepared by dipping an F-doped SnO(2) (FTO) substrate electrode in an aqueous nitric acid solution of Bi(NO(3))(3) and NH(4)VO(3), and subsequently calcining it. X-ray diffraction of the BiVO(4) thin film revealed that a photocatalytically active phase of scheelite-monoclinic BiVO(4) was obtained. Scanning electron microscopy images showed that the surface of an FTO substrate was uniformly coated with the BiVO(4) film with 300-400 nm of the thickness. The BiVO(4) thin film electrode gave an excellent anodic photocurrent with 73% of an IPCE at 420 nm at 1.0 V vs. Ag/AgCl. Modification with CoO on the BiVO(4) electrode improved the photoelectrochemical property. A photoelectrochemical cell consisting of the BiVO(4) thin film electrode with and without CoO, and a Pt counter electrode was constructed for water splitting under visible light irradiation and simulated sunlight irradiation. Photocurrent due to water splitting to form H(2) and O(2) was confirmed with applying an external bias smaller than 1.23 V that is a theoretical voltage for electrolysis of water. Water splitting without applying external bias under visible light irradiation was demonstrated using a SrTiO(3)Rh photocathode and the BiVO(4) photoanode.

  14. Investigation of PVdF active diaphragms for synthetic jets

    NASA Astrophysics Data System (ADS)

    Bailo, Kelly C.; Brei, Diann E.; Calkins, Frederick T.

    2000-06-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits by employing active flow control (AFC). One of the enabling technologies of AFC is the synthetic jet. Synthetic jets, also known as zero-net-mass flux actuators, act as bi-directional pumps injecting high momentum air into the local aerodynamic flow. Previous work has concentrated on high frequency synthetic jets based on piezoelectric active diaphragms such as Thunder actuators. Low frequency synthetic jets present a unique challenge requiring large displacements, which current technology has difficulty meeting. Boeing is investigating novel shaped low frequency synthetic jets that can modify the flow over fixed aircraft wings. This paper present the initial study of two promising active diaphragm concepts: a crescent shape and an opposing bender shape. These active diaphragms were numerically modeled utilizing the general-purpose finite element code ABAQUS. Using the ABAQUS results, the dynamic volume change within each jet was calculated and incorporated into an analytical linear Bernoulli model to predict the velocities and pressures at the nozzle. Simulations were performed to determine trends to assist in selection of prototype configurations. Prototypes of both diaphragm concepts were constructed from polyvinylidene fluoride and experimentally tested at Boeing with promising results.

  15. Changes in Muscle and Joint Coordination in Learning to Direct Forces

    PubMed Central

    Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.

    2008-01-01

    While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988

  16. The growth of metastable peritectic compounds

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.

    1984-01-01

    The influence of gravitationally driven convection on the directional solidification of peritectic alloys was evaluated. The Pb-Bi peritectic was studied as a model solidification system. Analyses of directionally solidified Pb-Bi peritectic samples indicate that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. The macrosegregation results in sequantial change of phase and morphology as solidification progresses down the length of the sample. Banding was eliminated when furnace conditions were selected which resulted in a planar solidification interface. The directional solidification that occurs in the vicinity of the Pb-Bi peritectic isothermal was found to be isocompositional and to consist solely of the equilibrium terminal solid solution and peritectic phases on an extremely fine scale. Evidence was found to support the peritectic supercooling mechanism, but not the proposed peritectic superheat mechanism.

  17. A deep learning method for classifying mammographic breast density categories.

    PubMed

    Mohamed, Aly A; Berg, Wendie A; Peng, Hong; Luo, Yahong; Jankowitz, Rachel C; Wu, Shandong

    2018-01-01

    Mammographic breast density is an established risk marker for breast cancer and is visually assessed by radiologists in routine mammogram image reading, using four qualitative Breast Imaging and Reporting Data System (BI-RADS) breast density categories. It is particularly difficult for radiologists to consistently distinguish the two most common and most variably assigned BI-RADS categories, i.e., "scattered density" and "heterogeneously dense". The aim of this work was to investigate a deep learning-based breast density classifier to consistently distinguish these two categories, aiming at providing a potential computerized tool to assist radiologists in assigning a BI-RADS category in current clinical workflow. In this study, we constructed a convolutional neural network (CNN)-based model coupled with a large (i.e., 22,000 images) digital mammogram imaging dataset to evaluate the classification performance between the two aforementioned breast density categories. All images were collected from a cohort of 1,427 women who underwent standard digital mammography screening from 2005 to 2016 at our institution. The truths of the density categories were based on standard clinical assessment made by board-certified breast imaging radiologists. Effects of direct training from scratch solely using digital mammogram images and transfer learning of a pretrained model on a large nonmedical imaging dataset were evaluated for the specific task of breast density classification. In order to measure the classification performance, the CNN classifier was also tested on a refined version of the mammogram image dataset by removing some potentially inaccurately labeled images. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to measure the accuracy of the classifier. The AUC was 0.9421 when the CNN-model was trained from scratch on our own mammogram images, and the accuracy increased gradually along with an increased size of training samples. Using the pretrained model followed by a fine-tuning process with as few as 500 mammogram images led to an AUC of 0.9265. After removing the potentially inaccurately labeled images, AUC was increased to 0.9882 and 0.9857 for without and with the pretrained model, respectively, both significantly higher (P < 0.001) than when using the full imaging dataset. Our study demonstrated high classification accuracies between two difficult to distinguish breast density categories that are routinely assessed by radiologists. We anticipate that our approach will help enhance current clinical assessment of breast density and better support consistent density notification to patients in breast cancer screening. © 2017 American Association of Physicists in Medicine.

  18. Bi-enhanced N incorporation in GaAsNBi alloys

    DOE PAGES

    Occena, J.; Jen, T.; Rizzi, E. E.; ...

    2017-06-12

    We have examined the influence of bismuth (Bi) and nitrogen (N) fluxes on N and Bi incorporation during molecular-beam epitaxy of GaAs 1-x-yN xBi y alloys. The incorporation of Bi is found to be independent of N flux, while the total N incorporation and the fraction of N atoms occupying non-substitutional lattice sites increase with increasing Bi flux. A comparison of channeling nuclear reaction analysis along the [100], [110], and [111] directions with Monte Carlo-Molecular Dynamics simulations indicates that the non-substitutional N primarily incorporate as (N-As) As interstitial complexes. We discuss the influence of Bi adatoms on the formation ofmore » arsenic-terminated [110]-oriented step-edges and the resulting enhancement in total N incorporation via the formation of additional (N-As) As.« less

  19. Large linear magnetoresistance in a new Dirac material BaMnBi2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Yan; Yu, Qiao-He; Xia, Tian-Long

    2016-10-01

    Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K) = 1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR ˜ H 2 dependence in low field to MR ˜ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2. Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).

  20. Data Mining of Chemogenomics Data Using Bi-Modal PLS Methods and Chemical Interpretation for Molecular Design.

    PubMed

    Hasegawa, Kiyoshi; Funatsu, Kimito

    2014-12-01

    Chemogenomics is a new strategy in drug discovery for interrogating all molecules capable of interacting with all biological targets. Because of the almost infinite number of drug-like organic molecules, bench-based experimental chemogenomics methods are not generally feasible. Several in silico chemogenomics models have therefore been developed for high-throughput screening of large numbers of drug candidate compounds and target proteins. In previous studies, we described two novel bi-modal PLS approaches. These methods provide a significant advantage in that they enable direct connections to be made between biological activities and ligand and protein descriptors. In this special issue, we review these two PLS-based approaches using two different chemogenomics datasets for illustration. We then compare the predictive and interpretive performance of the two methods using the same congeneric data set. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhance hospital performance from intellectual capital to business intelligence.

    PubMed

    Karami, Mahtab; Fatehi, Mansoor; Torabi, Mashallah; Langarizadeh, Mostafa; Rahimi, Azin; Safdari, Reza

    2013-01-01

    Business intelligence (BI) refers to technologies, tools, and practices for collecting, integrating, analyzing, and presenting large volumes of information to enable better decision making. The aim of this study is to provide a general overview of BI and its impacts on improving hospital performance. In this paper, literature is reviewed on the concept, classification, and structure of intellectual capital and BI. Research on the building of BI and its impact on the performance of hospitals are briefly summarized. Some areas in healthcare which can utilize BI benefits, including radiology, are also discussed. Used properly, BI is an effective communication tool that can enable hospitals to reach strategic goals and objectives and can also help eliminate information asymmetry.

  2. SAFRR Tsunami Scenario: Economic Impacts and Resilience

    NASA Astrophysics Data System (ADS)

    Wein, A. M.; Rose, A.; Sue Wing, I.; Wei, D.

    2013-12-01

    Business interruption (BI) losses for the SAFRR tsunami scenario are derived from the forecasted physical damages of about 100 million at the Ports of Los Angeles (LA) and Long Beach (LB), and 700 million in marina damages, and 2 billion in inundated property damages along the California coast. Economic impacts are measured by the reduction in California's gross domestic product (GDP). The analysis involves several steps. First, estimates are made of immediate business interruption losses due to physical damage to facilities or to disruption of production. Second, total economic impacts (consisting of both direct and indirect effects) are measured by a general equilibrium (quantity and price multiplier effects) of lost production in other sectors through ripple effects upstream and downstream along the supply chain. Third, many types of resilience are applied to demonstrate their potential reductions of the impacts. At the Ports of LA and LB, a two-day port shutdown, cargo losses, and additional terminal downtimes would expose 1.2 billion of trade (import and export) value associated with over 4 billion of BI losses. The sectors potentially most affected by trade disruptions are leather, metal, and motor vehicle manufacturing. Excess capacity, inventories, export conversion, and conservation could reduce the direct trade impacts by 85%. Production recapture alone (including clearing the backlog of waiting ships) could reduce BI losses by 85%. The Port of LA commercial fishing would be subject to damages to the fleet, perished fish that cannot be landed, and lost fishing days. Although BI losses are relatively small, the southern Californian fishing sector could incur a 4% drop in output. The impacts would depend on the speed at which boats are repaired and whether lost fishing days can be made up. Ship-building and repair could also be negatively affected, but these impacts would be offset somewhat by reconstruction. Effects on commercial fishing in other locations were not closely examined to assess the impacts. Extensive damages to marinas along the California coast could result in 30 million BI losses in terms of GDP. Interestingly, the service sectors including and relating to marinas (recreation, food services, and retail) indicate possible gains (of .02-1%) from price increases greater than the losses from quantity decreases. Sectors associated with development (residential construction, water and sewage, and health care) could suffer the most with losses of .03% or less. However, these sectors will likely also be bolstered by reconstruction. Economic hardships would be localized and the resilience of the marina sector would depend on alternative moorings and excess capacity elsewhere. Inundated coastal property damages could generate 1.7 billion of BI losses. Application of sector recapture factors (e.g., using overtime) alone could reduce these losses by 80%. For the overall set of loss categories, BI losses amount to 6 billion, and resilience strategies indicate the potential to reduce these economic impacts by 80-90%.

  3. Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity.

    PubMed

    Tian, Na; Huang, Hongwei; He, Ying; Guo, Yuxi; Zhang, Tierui; Zhang, Yihe

    2015-03-07

    We disclose the fabrication of a mediator-free direct Z-scheme photocatalyst system BiVO4/g-C3N4 using a mixed-calcination method based on the more reliable interfacial interaction. The facet coupling occurred between the g-C3N4 (002) and BiVO4 (121), and it was revealed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The crystal structure and optical properties of the as-prepared samples have also been characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectra (DRS) in details. The photocatalytic experiments indicated that the BiVO4/g-C3N4 composite photocatalysts display a significantly enhanced photocatalytic activity pertaining to RhB degradation and photocurrent generation (PC) compared to the pristine BiVO4 and g-C3N4. This remarkably improved photocatalytic performance should be attributed to the fabrication of a direct Z-scheme system of BiVO4/g-C3N4, which can result in a more efficient separation of photoinduced charge carriers than band-band transfer, thus endowing it with the much more powerful oxidation and reduction capability, as confirmed by the photoluminescence (PL) spectra and electrochemical impedance spectra (EIS). The Z-scheme mechanism of BiVO4/g-C3N4 heterostructure was verified by a series of combined techniques, including the active species trapping experiments, NBT transformation and terephthalic acid photoluminescence probing technique (TA-PL) over BiVO4/g-C3N4 composites and the pristine samples. The present work not only furthered the understanding of mediator-free Z-scheme photocatalysis, but also shed new light on the design of heterostructural photocatalysts with high-performance.

  4. BiNA: A Visual Analytics Tool for Biological Network Data

    PubMed Central

    Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael

    2014-01-01

    Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056

  5. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI{sub 3} and CuI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, Vladimir A., E-mail: kulb@mig.phys.msu.ru; Kytin, Vladimir G.; Kudryashov, Alexey A.

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin-orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi-X (X=Br, I) bond elongation compared to the Bi-Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within themore » frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI{sub 3} or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi-X (X=Br, I) bond elongation compared to the Bi-Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin-orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. The addition of 1 mass% of BiI{sub 3} or CuI to BiTeI effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. Highlights: Black-Right-Pointing-Pointer BiTeBr and BiTeI feature mixing of p states of Bi, Te, and halogen near Fermi level. Black-Right-Pointing-Pointer BiTeBr has thermoelectric figure-of-merit ZT=0.17, two times that of BiTeI. Black-Right-Pointing-Pointer 1% CuI or BiI{sub 3} decrease dramatically electron mobility in BiTeI. Black-Right-Pointing-Pointer 1% CuI decreases thermal conductivity of BiTeI by a factor of 4, reaching 0.5 W m{sup -1} K.« less

  6. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen

    1988-01-01

    The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.

  7. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  8. Chip-To-Chip Optical Interconnection Using MEMS Mirrors

    DTIC Science & Technology

    2009-03-26

    the Figure 2.3: SEM of a 2D micromirror with embedded polysilicon circuit paths within the frame structures which drives individual thermal actuation...single-crystal silicon micromirror for large bi-directional 2d scanning applications,” Sens. and Actuators, A, vol. 130-131, pp. 454–460, 8/14 2006. 14...thesis (m.s.), AFIT, Mar 2008. AFIT/GEO/ENP/08-03. 17. B. McCarthy, V. M. Bright, and J. A. Neff, “A multi-component solder self- assembled micromirror

  9. Reciprocal Influences Between Maternal Parenting and Child Adjustment in a High-risk Population: A Five-Year Cross-Lagged Analysis of Bidirectional Effects

    PubMed Central

    Barbot, Baptiste; Crossman, Elizabeth; Hunter, Scott R.; Grigorenko, Elena L.; Luthar, Suniya S.

    2014-01-01

    This study examines longitudinally the bidirectional influences between maternal parenting (behaviors and parenting stress) and mothers' perceptions of their children's adjustment, in a multivariate approach. Data was gathered from 361 low-income mothers (many with psychiatric diagnoses) reporting on their parenting behavior, parenting stress and their child's adjustment, in a two-wave longitudinal study over 5 years. Measurement models were developed to derive four broad parenting constructs (Involvement, Control, Rejection, and Stress) and three child adjustment constructs (Internalizing problems, Externalizing problems, and Social competence). After measurement invariance of these constructs was confirmed across relevant groups and over time, both measurement models were integrated in a single crossed-lagged regression analysis of latent constructs. Multiple reciprocal influence were observed between parenting and perceived child adjustment over time: Externalizing and internalizing problems in children were predicted by baseline maternal parenting behaviors, while child social competence was found to reduce parental stress and increase parental involvement and appropriate monitoring. These findings on the motherhood experience are discussed in light of recent research efforts to understand mother-child bi-directional influences, and their potential for practical applications. PMID:25089759

  10. Large field-induced strains in a lead-free piezoelectric material.

    PubMed

    Zhang, J X; Xiang, B; He, Q; Seidel, J; Zeches, R J; Yu, P; Yang, S Y; Wang, C H; Chu, Y-H; Martin, L W; Minor, A M; Ramesh, R

    2011-02-01

    Piezoelectric materials exhibit a mechanical response to electrical inputs, as well as an electrical response to mechanical inputs, which makes them useful in sensors and actuators. Lead-based piezoelectrics demonstrate a large mechanical response, but they also pose a health risk. The ferroelectric BiFeO(3) is an attractive alternative because it is lead-free, and because strain can stabilize BiFeO(3) phases with a structure that resembles a morphotropic phase boundary. Here we report a reversible electric-field-induced strain of over 5% in BiFeO(3) films, together with a characterization of the origins of this effect. In situ transmission electron microscopy coupled with nanoscale electrical and mechanical probing shows that large strains result from moving the boundaries between tetragonal- and rhombohedral-like phases, which changes the phase stability of the mixture. These results demonstrate the potential of BiFeO(3) as a substitute for lead-based materials in future piezoelectric applications.

  11. Bi-directional streaming of halo electrons in interplanetary plasma clouds observed between 0.3 and 1 AU

    NASA Technical Reports Server (NTRS)

    Ivory, K.; Schwenn, R.

    1995-01-01

    The solar wind data obtained from the two Helios solar probes in the years 1974 to 1986 were systematically searched for the occurrence of bi-directional electron events. Most often these events are found in conjunction with shock associated magnetic clouds. The implications of these observations for the topology of interplanetary plasma clouds are discussed.

  12. Indirect current control with separate IZ drop compensation for voltage source converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanetkar, V.R.; Dawande, M.S.; Dubey, G.K.

    1995-12-31

    Indirect Current Control (ICC) of boost type Voltage Source Converters (VSCs) using separate compensation of line IZ voltage drop is presented. A separate bi-directional VSC is used to produce the compensation voltage. This simplifies the ICC regulator scheme as the power flow is controlled through single modulation index. Experimental verification is provided for bi-directional control of the power flow.

  13. A nonlinear bi-level programming approach for product portfolio management.

    PubMed

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  14. Exploiting strain to enhance the Bi incorporation in GaAs-based III/V semiconductors using MOVPE

    NASA Astrophysics Data System (ADS)

    Nattermann, L.; Ludewig, P.; Sterzer, E.; Volz, K.

    2017-07-01

    Bi containing III/V semiconductors are frequently mentioned for their importance as part of the next generation of optoelectronic devices. Bi containing ternary and quaternary materials like Ga(AsBi), Ga(NAsBi) or Ga(PAsBi) are promising candidates to meet the requirements for new laser structures for telecommunications and solar cell applications. However, in previous studies it was determined that the incorporation of sufficient amounts of Bi still poses a challenge, especially when using MOVPE (metalorganic vapour phase epitaxy) as the growth technique. In order to figure out which mechanisms are responsible for the limitation of Bi incorporation, this work deals with the question of whether there is a relationship between strain, induced by the large Bi atoms, and the saturation level of Bi incorporation in Ga(AsBi). Ga(NAsBi) structures were grown by MOVPE at a low temperature, 400 °C, and compared to Ga(PAsBi) as well as Ga(AsBi) growth. By using the two group V atoms P and N, which have a smaller covalent radius than Bi, the effect of local strain compensation was investigated systematically. The comparison of Bi incorporation in the two quaternary materials systems proved the importance of local strain for the limitation of Bi incorporation, in addition to other effects, like Bi surface coverage and hydrocarbon groups at the growth surface. This, of course, also opens up ways to strain-state-engineer the Bi incorporation in semiconductor alloys.

  15. Tunable Intrinsic Spin Hall Conductivities in Bi2(Se,Te)3 Topological Insulators

    NASA Astrophysics Data System (ADS)

    Şahin, Cüneyt; Flatté, Michael E.

    2015-03-01

    It has been recently shown by spin-transfer torque measurements that Bi2Se3 exhibits a very large spin Hall conductivity (SHC). It is expected that Bi2Te3, a topological insulator with similar crystal and band structures as well as large spin-orbit coupling, would also exhibit a giant SHC. In this study we have calculated intrinsic spin Hall conductivities of Bi2Se3andBi2Te3 topological insulators from a tight-binding Hamiltonian including two nearest-neighbor interactions. We have calculated the Berry curvature, used the Kubo formula in the static, clean limit and shown that both materials exhibit giant spin Hall conductivities, consistent with the results of Ref. 1 and larger than previously reported Bi1-xSbx alloys. The density of Berry curvature has also been computed from the full Brillouin zone in order to compute the dependence of the SHC in these materials on the Fermi energy. Finally we report the intrinsic SHC for Bi2(Se,Te)3 topological insulators, which changes dramatically with doping or gate voltage. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  16. Experimental infection of calves, sheep, goats and pigs with HoBi-like viruses by direct inoculation or exposure to persistently infected calves

    USDA-ARS?s Scientific Manuscript database

    HoBi-like viruses are an emerging species of pestiviruses associated with respiratory and reproductive disease in cattle and in water buffaloes. Although cattle appear to be the main natural hosts, little is know about the potential for HoBi-like viruses to be transmitted to other livestock. In t...

  17. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi 2O 4 and Ag-Doped CuBi 2O 4 Photocathodes

    DOE PAGES

    Kang, Donghyeon; Hill, James C.; Park, Yiseul; ...

    2016-06-09

    Here, electrochemical synthesis methods were developed to produce CuBi 2O 4, a promising p-type oxide for use in solar water splitting, as high surface area electrodes with uniform coverage. These methods involved electrodepositing nanoporous Cu/Bi films with a Cu:Bi ratio of 1:2 from dimethyl sulfoxide or ethylene glycol solutions, and thermally oxidizing them to CuBi 2O 4 at 450°C in air. Ag-doped CuBi 2O 4 electrodes were also prepared by adding a trace amount of Ag+ in the plating medium and codepositing Ag with the Cu/Bi films. In the Ag-doped CuBi 2O 4, Ag+ ions substitutionally replaced Bi3+ ions andmore » increased the hole concentration in CuBi 2O 4. As a result, photocurrent enhancements for both O 2 reduction and water reduction were achieved. Furthermore, while undoped CuBi 2O 4 electrodes suffered from anodic photocorrosion during O 2 reduction due to poor hole transport, Ag-doped CuBiO 4 effectively suppressed anodic photocorrosion. The flat-band potentials of CuBi 2O 4 and Ag-doped CuBi 2O 4 electrodes prepared in this study were found to be more positive than 1.3 V vs RHE in a 0.1 M NaOH solution (pH 12.8), which make these photocathodes highly attractive for use in solar hydrogen production. The optimized CuBi 2O 4/Ag-doped CuBi 2O 4 photocathode showed a photocurrent onset for water reduction at 1.1 V vs RHE, achieving a photovoltage higher than 1 V for water reduction. The thermodynamic feasibility of photoexcited electrons in the conduction band of CuBi 2O 4 to reduce water was also confirmed by detection of H 2 during photocurrent generation. This study provides new understanding for constructing improved CuBi 2O 4 photocathodes by systematically investigating photocorrosion as well as photoelectrochemical properties of high-quality CuBi 2O 4 and Ag-doped CuBi 2O 4 photoelectrodes for photoreduction of both O 2 and water.« less

  18. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi 2O 4 and Ag-Doped CuBi 2O 4 Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Donghyeon; Hill, James C.; Park, Yiseul

    Here, electrochemical synthesis methods were developed to produce CuBi 2O 4, a promising p-type oxide for use in solar water splitting, as high surface area electrodes with uniform coverage. These methods involved electrodepositing nanoporous Cu/Bi films with a Cu:Bi ratio of 1:2 from dimethyl sulfoxide or ethylene glycol solutions, and thermally oxidizing them to CuBi 2O 4 at 450°C in air. Ag-doped CuBi 2O 4 electrodes were also prepared by adding a trace amount of Ag+ in the plating medium and codepositing Ag with the Cu/Bi films. In the Ag-doped CuBi 2O 4, Ag+ ions substitutionally replaced Bi3+ ions andmore » increased the hole concentration in CuBi 2O 4. As a result, photocurrent enhancements for both O 2 reduction and water reduction were achieved. Furthermore, while undoped CuBi 2O 4 electrodes suffered from anodic photocorrosion during O 2 reduction due to poor hole transport, Ag-doped CuBiO 4 effectively suppressed anodic photocorrosion. The flat-band potentials of CuBi 2O 4 and Ag-doped CuBi 2O 4 electrodes prepared in this study were found to be more positive than 1.3 V vs RHE in a 0.1 M NaOH solution (pH 12.8), which make these photocathodes highly attractive for use in solar hydrogen production. The optimized CuBi 2O 4/Ag-doped CuBi 2O 4 photocathode showed a photocurrent onset for water reduction at 1.1 V vs RHE, achieving a photovoltage higher than 1 V for water reduction. The thermodynamic feasibility of photoexcited electrons in the conduction band of CuBi 2O 4 to reduce water was also confirmed by detection of H 2 during photocurrent generation. This study provides new understanding for constructing improved CuBi 2O 4 photocathodes by systematically investigating photocorrosion as well as photoelectrochemical properties of high-quality CuBi 2O 4 and Ag-doped CuBi 2O 4 photoelectrodes for photoreduction of both O 2 and water.« less

  19. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    PubMed

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  20. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingting, E-mail: tingtingli1983@hotmail.com; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082; Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area,more » strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup −}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Occena, J.; Jen, T.; Rizzi, E. E.

    We have examined the influence of bismuth (Bi) and nitrogen (N) fluxes on N and Bi incorporation during molecular-beam epitaxy of GaAs 1-x-yN xBi y alloys. The incorporation of Bi is found to be independent of N flux, while the total N incorporation and the fraction of N atoms occupying non-substitutional lattice sites increase with increasing Bi flux. A comparison of channeling nuclear reaction analysis along the [100], [110], and [111] directions with Monte Carlo-Molecular Dynamics simulations indicates that the non-substitutional N primarily incorporate as (N-As) As interstitial complexes. We discuss the influence of Bi adatoms on the formation ofmore » arsenic-terminated [110]-oriented step-edges and the resulting enhancement in total N incorporation via the formation of additional (N-As) As.« less

  2. Developmental relations between behavioral inhibition, anxiety, and attention biases to threat and positive information

    PubMed Central

    White, Lauren K.; Degnan, Kathryn A.; Henderson, Heather A.; Pérez-Edgar, Koraly; Walker, Olga L.; Shechner, Tomer; Leibenluft, Ellen; Bar-Haim, Yair; Pine, Daniel S.; Fox, Nathan A.

    2016-01-01

    The current study examined relations between behavioral inhibition (BI) assessed in toddlerhood (n=268) and attention biases (AB) to threat and positive faces and maternal reported anxiety assessed when children were 5 and 7-years old. Results revealed that BI predicted anxiety at age 7 in children with AB toward threat, away from positive, or with no bias, at age 7; BI did not predict anxiety for children displaying AB away from threat or toward positive. Five-year AB did not moderate the link between BI and 7-year anxiety. No direct association between AB and BI or anxiety was detected; moreover, children did not show stable AB across development. These findings extend our understanding of the developmental links between BI, AB, and anxiety. PMID:28042902

  3. Bi-enhanced N incorporation in GaAsNBi alloys

    NASA Astrophysics Data System (ADS)

    Occena, J.; Jen, T.; Rizzi, E. E.; Johnson, T. M.; Horwath, J.; Wang, Y. Q.; Goldman, R. S.

    2017-06-01

    We have examined the influence of bismuth (Bi) and nitrogen (N) fluxes on N and Bi incorporation during molecular-beam epitaxy of GaAs1-x-yNxBiy alloys. The incorporation of Bi is found to be independent of N flux, while the total N incorporation and the fraction of N atoms occupying non-substitutional lattice sites increase with increasing Bi flux. A comparison of channeling nuclear reaction analysis along the [100], [110], and [111] directions with Monte Carlo-Molecular Dynamics simulations indicates that the non-substitutional N primarily incorporate as (N-As)As interstitial complexes. We discuss the influence of Bi adatoms on the formation of arsenic-terminated [110]-oriented step-edges and the resulting enhancement in total N incorporation via the formation of additional (N-As)As.

  4. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Liu, Yazi; Xu, Jian; Wang, Liqiong; Zhang, Huayang; Xu, Ping; Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin

    2017-01-01

    Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2 evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future. PMID:28336897

  5. Investigations on the Synthesis and Properties of Fe2O3/Bi2O2CO3 in the Photocatalytic and Fenton-like Process

    NASA Astrophysics Data System (ADS)

    Sun, Dongxue; Shen, Tingting; Sun, Jing; Wang, Chen; Wang, Xikui

    2018-01-01

    Catalyst of Bi2O2CO3 and Fe2O3 modified Bi2O2CO3 (Fe2O3/Bi2O2CO3) were prepared by hydrothermal method and characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and UV-vis DRS. The catalytic activity of Bi2O2CO3 and Fe2O3/Bi2O2CO3 were comparatively investigated in the photodegradation and Fento-like process. Rhodamine B(RhB) was selected as the target pollutant under the irradiation of 300 W xenon lamp. The results indicated that Fe2O3 plays a great role in the enhancing the treatment efficiency and the and the maximum reaction rate was achieved at the Fe2O3 loading of 1.5%. The Fenton-like degradation rate constant of RhB with bare Bi2O2CO3 in dark is 0.4 min-1, while that with 1.5 Fe2O3/Bi2O2CO3 increases to 28.4 min-1 under visible light irradiation, a 71-fold improvement. It is expected to shed a new light for the constructing novel composite photocatalyst and also provide a potential method for the removal of dyes in the aqueous system.

  6. In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward High-Energy and Stable Nickel-Bismuth Batteries.

    PubMed

    Zeng, Yinxiang; Lin, Ziqi; Wang, Zifan; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2018-05-01

    To achieve high-energy and stable aqueous rechargeable batteries, state-of-the art of anode materials are needed. Bismuth (Bi) has recently emerged as an attractive anode material due to its highly reversible redox reaction and suitable negative operating working window. However, the capacity and durability of currently reported Bi anodes are still far from satisfactory. Here, an in situ activation strategy is reported to prepare a 3D porous high-density Bi nanoparticles/carbon architecture (P-Bi-C) as an efficient anode for nickel-bismuth batteries. Taking advantages of the fast channels for charge transfer and ion diffusion, enhanced wettability, and accessible surface area, the highly loaded P-Bi-C electrode delivers a remarkable capacity of 2.11 mA h cm -2 as well as high rate capability (1.19 mA h cm -2 at 120 mA cm -2 ). To highlight, a robust aqueous rechargeable Ni//Bi battery based on the P-Bi-C anode is first constructed, achieving decent capacity (141 mA h g -1 ), impressive durability (94% capacity retention after 5000 cycles), and admirable energy density (16.9 mW h cm -3 ). This work paves the way for designing superfast nickel-bismuth batteries with high energy and long-life and may inspire new development for aqueous rechargeable batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    PubMed

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Patients' Body Image Improves After Mohs Micrographic Surgery for Nonmelanoma Head and Neck Skin Cancer.

    PubMed

    Beal, Brandon T; White, Emily K; Behera, Anit K; Zavell, Amy E; McGuinness, Ashley E; Blangger, Holly; Armbrecht, Eric S; Maher, Ian A

    2018-05-24

    Most skin cancers occur on the head and neck, areas of the body that are significant to an individual's body image (BI) perception. Poor BI is a robust risk factor for depression and decreased quality of life. Thus, patients with nonmelanoma head and neck skin cancer (NMHNSC) may be more vulnerable to BI disturbance and the negative sequelae of poor BI. Describe the nature of BI concerns in patients diagnosed with NMHNSC and assess how BI changes with treatment. Patients undergoing Mohs micrographic surgery (MMS) for NMHNSC completed assessments of BI and well-being before (N = 239) and 6 months after (N = 80) treatment with MMS. Demographic and tumor data were gathered through retrospective chart review. Body image improved significantly 6 months after MMS, and the magnitude of this change was large (η = 0.18). Repair length (length of final scar irrespective of repair type) >4 cm predicted poorer BI at 6-month follow-up. Patients' BI improves after treatment with MMS for NMHNSC.

  9. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    NASA Astrophysics Data System (ADS)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less

  11. Preparation and Optical Properties of GeBi Films by Using Molecular Beam Epitaxy Method

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Liao, Yulong; Jin, Lichuan; Wen, Qi-Ye; Zhong, Zhiyong; Wen, Tianlong; Xiao, John Q.

    2017-12-01

    Ge-based alloys have drawn great interest as promising materials for their superior visible to infrared photoelectric performances. In this study, we report the preparation and optical properties of germanium-bismuth (Ge1-xBix) thin films by using molecular beam epitaxy (MBE). GeBi thin films belong to the n-type conductivity semiconductors, which have been rarely reported. With the increasing Bi-doping content from 2 to 22.2%, a series of Ge1-xBix thin film samples were obtained and characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. With the increase of Bi content, the mismatch of lattice constants increases, and the GeBi film shifts from direct energy band-gaps to indirect band-gaps. The moderate increase of Bi content reduces optical reflectance and promotes the transmittance of extinction coefficient in infrared wavelengths. The absorption and transmittance of GeBi films in THz band increase with the increase of Bi contents.

  12. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  13. A comparative In vivo efficacy of three spiral techniques versus incremental technique in obturating primary teeth.

    PubMed

    Chandrasekhar, Shalini; Prasad, Madu Ghanashyam; Radhakrishna, Ambati Naga; Saujanya, Kaniti; Raviteja, N V K; Deepthi, B; Ramakrishna, J

    2018-01-01

    The aim of this study was to evaluate the efficiency of four different obturating techniques in filling the radicular space in primary teeth. This clinical trial was carried out on 34 healthy, cooperative children (5-9 years) who had 63 carious primary teeth indicated for pulpectomy. They were divided into four groups, such that in each group, a total of 40 canals were allotted for obturation with respective technique. The root canals of selected primary teeth were filled with Endoflas obturating material using either bi-directional spiral (Group 1); incremental technique (Group 2), past inject (Group 3) or lentulo spiral (Group 4) according to the groups assigned. The effectiveness of the obturation techniques was assessed using postoperative radiographs. The assessment was made for a depth of fill in the canal, the presence of any voids using Modified Coll and Sadrian criteria. The obtained data were analyzed by using ANOVA test and unpaired t-test. Bi-directional spiral and lentulo spiral were superior to other techniques in providing optimally filled canals (P< 0.05). The bi-directional spiral was superior to lentulo spiral in preventing overfill (P< 0.05). Based on the present study results, bi-directional spiral can be recommended as an alternate obturating technique in primary teeth.

  14. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.

  15. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  16. Synthesis and characterization of nanostructured bismuth selenide thin films.

    PubMed

    Sun, Zhengliang; Liufu, Shengcong; Chen, Lidong

    2010-12-07

    Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1).

  17. Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3

    NASA Astrophysics Data System (ADS)

    Birks, E.; Dunce, M.; Peräntie, J.; Hagberg, J.; Sternberg, A.

    2017-06-01

    Direct and indirect studies of the electrocaloric effect were carried out in poled and depoled Na0.5Bi0.5TiO3. For this purpose, polarization and electrocaloric effect temperature change measurements were made at different electric field pulses as a function of temperature. The applicability of the widely used indirect electrocaloric effect determination method, using the Maxwell relation, was critically analyzed with respect to the reliable direct measurements. Quantitative differences were observed between the results obtained by both approaches in the case of the poled Na0.5Bi0.5TiO3 sample. These differences can be explained by the temperature-dependent concentration of domains oriented in the direction of the applied electric field. Whereas in depoled Na0.5Bi0.5TiO3, which is characterized by the electric field dependence of polar nanoregions embedded in a nonpolar matrix, the Maxwell relation is not applicable at all, as it is indicated by the obtained results. Possible mechanisms which could be responsible for the electrocaloric effect in the relaxor state were considered. The results of this study are used to evaluate the numerous results obtained and published by other authors, using the Maxwell relation to indirectly determine the electrocaloric effect. The reason for the negative values of the electrocaloric effect, obtained in such a way and widely discussed in the literature in the case of Na0.5Bi0.5TiO3, has been explained in this study.

  18. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery.

    PubMed

    Deepthi, S; Nivedhitha Sundaram, M; Vijayan, Ponni; Nair, Shantikumar V; Jayakumar, R

    2018-04-01

    Electrospun tri-layered fibrous scaffold incorporating VEGF and Platelet Factor Concentrate (PFC) in multiple layers having different layer architectures was designed to mimic native artery. The scaffold consisted of longitudinally aligned poly(hydroxy butyrate-co-hydroxy valerate) (PHBV) and poly(vinyl alcohol) (PVA) nanofibers (inner layer), radially aligned PHBV-elastin nanofibers (middle layer) to provide the bi-directional alignment and combination of longitudinally aligned PHBV-elastin and random PHBV/PVA multiscale fibers (peripheral layer). Tubular constructs of diameter <6 mm were developed. The developed electrospun fibers were characterised by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy and Tensile tests. Further the burst strength, compliance and stiffness index of tri-layered tubular scaffold was evaluated. SEM images of fibrous layers showed the typical longitudinal and radial alignment of fibers in the tubular construct. SEM images showed that the prepared PHBV nanofibers were in the range of 500-800 nm and PHBV microfibers were of 1-2 μm in diameter in the tri-layered electrospun membrane. PVA nanofibers were of size 200-250 nm. The tensile strength, percentage compliance and stiffness index of tri-layered membrane was in accordance with that of native small blood vessels. The developed tri-layered membrane was blood compatible, with hemolysis degree 0.85 ± 0.21% and did not activate platelets. Controlled release of VEGF and PFC was observed from the scaffold. The biocompatibility of the tri-layered scaffold was evaluated using HUVECs, SMCs and MSCs and SMCs infiltration from the outer layer was also evaluated. Specific protein expression for the HUVECs and SMCs was evaluated by flow cytometry and immunocytochemistry. HUVECs and SMCs exhibited good elongation and alignment along the direction of fibers and was found to maintain its CD31, VE-Cadherin and αSMA expression respectively. The results highlight the importance of bi-directional fiber alignment on the tri-layered electrospun scaffold as a suitable architectural prototype for vascular scaffolds to mimic the native arteries. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Wang, Qing; Ran, Jingrun; Hao, Ying-Juan; Wang, Xiao-Jing; Zhao, Dishun; Qiao, Shi Zhang

    2014-12-01

    Heterostructured BiOBr/Bi24O31Br10 nanocomposites with surface oxygen vacancies are constructed by a facile in situ route of one-step self-combustion of ionic liquids. The compositions can be easily controlled by simply adjusting the fuel ratio of urea and 2-bromoethylamine hydrobromide (BTH). BTH serves not only as a fuel, but also as a complexing agent for ionic liquids and a reactant to supply the Br element. The heterojunctions show remarkable adsorptive ability for both the cationic dye of rhodamine B (RhB) and the anionic dye of methylene orange (MO) at high concentrations, which is attributed to the abundant surface oxygen vacancies. The sample containing 75.2% BiOBr and 24.8% Bi24O31Br10 exhibits the highest photocatalytic activity. Its reaction rate constant is 4.0 and 9.0 times that of pure BiOBr in degrading 50 mg L-1 of RhB and 30 mg L-1 of MO under visible-light (λ > 400 nm) irradiation, respectively, which is attributed to the narrow band gap and highly efficient transfer efficiency of charge carriers. Different photocatalytic reaction processes and mechanisms over pure BiOBr and heterojunctions are proposed.Heterostructured BiOBr/Bi24O31Br10 nanocomposites with surface oxygen vacancies are constructed by a facile in situ route of one-step self-combustion of ionic liquids. The compositions can be easily controlled by simply adjusting the fuel ratio of urea and 2-bromoethylamine hydrobromide (BTH). BTH serves not only as a fuel, but also as a complexing agent for ionic liquids and a reactant to supply the Br element. The heterojunctions show remarkable adsorptive ability for both the cationic dye of rhodamine B (RhB) and the anionic dye of methylene orange (MO) at high concentrations, which is attributed to the abundant surface oxygen vacancies. The sample containing 75.2% BiOBr and 24.8% Bi24O31Br10 exhibits the highest photocatalytic activity. Its reaction rate constant is 4.0 and 9.0 times that of pure BiOBr in degrading 50 mg L-1 of RhB and 30 mg L-1 of MO under visible-light (λ > 400 nm) irradiation, respectively, which is attributed to the narrow band gap and highly efficient transfer efficiency of charge carriers. Different photocatalytic reaction processes and mechanisms over pure BiOBr and heterojunctions are proposed. Electronic supplementary information (ESI) available: XRD pattern for composition calculation (Fig. S1), SEM photographs (Fig. S2), N2 absorption-desorption isotherms (Fig. S3), STEM images (Fig. S4), time-course variation of ln(C0/C) of dyes (Fig. S5), Appearance photographs for adsorption of dyes (Fig. S6), UV-Vis absorption spectra of NBT (Fig. S7), pseudo-first order rate constants for RhB and MO degradation (Tables S1 and S2), electronegativity, calculated CB and VB edge positions (Table S3). See DOI: 10.1039/c4nr05451b

  20. Financial hardship after traumatic brain injury: a brief scale for family caregivers.

    PubMed

    Sabella, Scott A; Andrzejewski, Joshua H; Wallgren, Alexandrea

    2018-05-02

    Financial hardship is frequently posited as a significant factor influencing family health and adjustment after brain injury, though traditional methods of measurement have shown limited usefulness. The purpose of this study was to adapt and test the utility of a brief scale of financial hardship (BSFH-BI) for use with family caregivers after TBI. The researchers constructed the BSFH-BI using financial well-being items adapted from three survey instruments. The BSFH-BI questionnaire was completed by 136 family caregivers of individuals with TBIs. Scale utility was evaluated through reliability analysis, factor analysis, and correlations with a measure of life satisfaction. The factor analysis revealed that the BSFH-BI had a meaningful two factor structure consisting of items related to (a) meeting essential living expenses and (b) financial changes after the injury. The scale showed high internal consistency (α = 0.92) and moderate negative correlations with life satisfaction (r s  = -0.58). The preliminary findings indicate that the BSFH-BI can be a reliable and valid scale for use with family caregivers after TBI. The authors recommend further study of financial hardship within models of adaptation to TBI using psychometrically validated instruments such as the BSFH-BI.

  1. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  2. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  3. Wavelength-dependent ultrafast charge carrier separation in the WO 3/BiVO 4 coupled system

    DOE PAGES

    Grigioni, Ivan; Stamplecoskie, Kevin G.; Jara, Danilo H.; ...

    2017-05-08

    Due to its ~2.4 eV band gap, BiVO 4 is a very promising photoanode material for harvesting the blue portion of the solar light for photoelectrochemical (PEC) water splitting applications. In WO 3/BiVO 4 heterojunction films, the electrons photoexcited in BiVO 4 are injected into WO 3, overcoming the lower charge carriers’ diffusion properties limiting the PEC performance of BiVO 4 photoanodes. Here, we investigate by ultrafast transient absorption spectroscopy the charge carrier interactions occurring at the interface between the two oxides in heterojunction systems to directly unveil their wavelength dependence. Under selective BiVO 4 excitation, a favorable electron transfermore » from photoexcited BiVO 4 to WO 3 occurs immediately after excitation and leads to an increase of the trapped holes’ lifetime in BiVO4. However, a recombination channel opens when both oxides are simultaneously excited, evidenced by a shorter lifetime of trapped holes in BiVO 4. As a result, PEC measurements reveal the implication of these wavelength-dependent ultrafast interactions on the performances of the WO 3/BiVO 4 heterojunction.« less

  4. Wavelength-dependent ultrafast charge carrier separation in the WO 3/BiVO 4 coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigioni, Ivan; Stamplecoskie, Kevin G.; Jara, Danilo H.

    Due to its ~2.4 eV band gap, BiVO 4 is a very promising photoanode material for harvesting the blue portion of the solar light for photoelectrochemical (PEC) water splitting applications. In WO 3/BiVO 4 heterojunction films, the electrons photoexcited in BiVO 4 are injected into WO 3, overcoming the lower charge carriers’ diffusion properties limiting the PEC performance of BiVO 4 photoanodes. Here, we investigate by ultrafast transient absorption spectroscopy the charge carrier interactions occurring at the interface between the two oxides in heterojunction systems to directly unveil their wavelength dependence. Under selective BiVO 4 excitation, a favorable electron transfermore » from photoexcited BiVO 4 to WO 3 occurs immediately after excitation and leads to an increase of the trapped holes’ lifetime in BiVO4. However, a recombination channel opens when both oxides are simultaneously excited, evidenced by a shorter lifetime of trapped holes in BiVO 4. As a result, PEC measurements reveal the implication of these wavelength-dependent ultrafast interactions on the performances of the WO 3/BiVO 4 heterojunction.« less

  5. The coupling to matter in massive, bi- and multi-gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noller, Johannes; Melville, Scott, E-mail: noller@physics.ox.ac.uk, E-mail: scott.melville@queens.ox.ac.uk

    2015-01-01

    In this paper we construct a family of ways in which matter can couple to one or more 'metrics'/spin-2 fields in the vielbein formulation. We do so subject to requiring the weak equivalence principle and the absence of ghosts from pure spin-2 interactions generated by the matter action. Results are presented for Massive, Bi- and Multi-Gravity theories and we give explicit expressions for the effective matter metric in all of these cases.

  6. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  7. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  8. Nonlinear optical modulation in a plasmonic Bi:YIG Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2017-02-01

    In this work, we propose a magnetoplasmonic modulator for nonlinear radio-frequency (RF) modulation of an integrated optical signal. The modulator consists of a plasmonic Mach-Zehnder interferometer (MZI), constructed of the ferrimagnetic garnet, bismuth-substituted yttrium iron garnet (Bi:YIG). The transverse component of the Bi:YIG magnetization induces a nonreciprocal phase shift (NRPS) onto the guided optical mode, which can be actively modulated through external magnetic fields. In an MZI, the modulated phase shift in turn modulates the output optical intensity. Due to the highly nonlinear evolution of the Bi:YIG magnetization, we show that the spectrum of the output modulated intensity signal can contain harmonics of the driving RF field, frequency splitting around the driving frequency, down-conversion, or mixing of multiple RF signals. This device provides a unique mechanism of simultaneously generating a number of modulation frequencies within a single device.

  9. Facile and one-pot solution synthesis of several kinds of 3D hierarchical flower-like α-Bi2O3 microspheres

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Li, Zexue; Yu, Haiyang; Feng, Changgen

    2016-09-01

    Several kinds of three-dimensional (3D) hierarchical constructed flower-like α-Bi2O3 microspheres were prepared successfully via a simple solution precipitation synthesis at 95∘C and ambient atmospheric pressure in 1h. The synthesis process was operated in ethanol-water system as solvent with the assistance of glycerin and oleic acid as capping agents. These flower-like α-Bi2O3 architectures with diameter of several micrometers were 3D self-assembled from nanorods or nanocubes step by step. By adjusting the concentration of the capping agents, various flower-like α-Bi2O3 microspheres were obtained. The formation of the flower-like superstructures was attributed to the modification of nucleation and growth kinetics, and the guidance of self-assembly approach by capping agents. The formation mechanism of these microstructures was discussed briefly.

  10. Electronic transport and photovoltaic properties in Bi2Sr2Co2Oyepitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Hai-Zhong; Gu, Lin; Yang, Zhen-Zhong; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Le; Jin, Kui-Juan; Lu, Hui-Bin; Wang, Can; Ge, Chen; He, Meng; Yang, Guo-Zhen

    2013-08-01

    Epitaxial heterostructures constructed from the thermoelectric cobalt Bi2Sr2Co2Oy thin films and SrTiO3 as well as SrTi0.993Nb0.007O3 substrates were fabricated by pulsed-laser deposition. The scanning transmission electron microscopy results confirm that the heterostructures are epitaxial, with sharp and coherent interfaces. The temperature-dependent electrical transport properties and the Hall effects were systematically investigated. The Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 p-n heterostructure exhibits good rectifying current-voltage characteristics over a wide temperature range. A strong photovoltaic effect was observed in the Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 heterostructure, with the temperature-dependent photovoltage being systematically investigated. The present work shows a great potential of this new heterostructures as photoelectric devices.

  11. Enhanced magnetoelectric effect in M-type hexaferrites by Co substitution into trigonal bi-pyramidal sites

    NASA Astrophysics Data System (ADS)

    Beevers, J. E.; Love, C. J.; Lazarov, V. K.; Cavill, S. A.; Izadkhah, H.; Vittoria, C.; Fan, R.; van der Laan, G.; Dhesi, S. S.

    2018-02-01

    The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.

  12. Bi-directional gap junction-mediated soma-germline communication is essential for spermatogenesis.

    PubMed

    Smendziuk, Christopher M; Messenberg, Anat; Vogl, A Wayne; Tanentzapf, Guy

    2015-08-01

    Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In the Drosophila testis, secreted signalling molecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling between the soma and germ line. When gap junctions between the soma and germ line are disrupted, germline differentiation is blocked and germline stem cells are not maintained. In the soma, gap junctions are required to regulate proliferation and differentiation. Localization and RNAi-mediated knockdown studies reveal that gap junctions in the fly testis are heterotypic channels containing Zpg (Inx4) and Inx2 on the germ line and the soma side, respectively. Overall, our results show that bi-directional gap junction-mediated signalling is essential to coordinate the soma and germ line to ensure proper spermatogenesis in Drosophila. Moreover, we show that stem cell maintenance and differentiation in the testis are directed by gap junction-derived cues. © 2015. Published by The Company of Biologists Ltd.

  13. A review of the structure-property relationships in lead-free piezoelectric (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuade, Ryan R.; Dolgos, Michelle R., E-mail: Michelle.Dolgos@oregonstate.edu

    2016-10-15

    Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field. - Graphical abstract: This reviewmore » of (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) summarizes the large body of literature regarding the structure-property relationships of this complex material. We highlight structural studies of the average and local structures of both unpoled and poled samples of NBT-BT at its morphotropic phase boundary and discuss them in context of the observed piezoelectric properties. - Highlights: • Local and average structure of NBT-BT at morphotropic phase boundary is reviewed. • Average structure of poled and unpoled samples of NBT-BT is discussed. • Structure-property relationships in NBT-BT and future directions are summarized.« less

  14. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes.

    PubMed

    Wang, Chenchen; Wang, Liubin; Li, Fujun; Cheng, Fangyi; Chen, Jun

    2017-09-01

    Sodium-ion batteries (SIBs) have attracted great interest for large-scale electric energy storage in recent years. However, anodes with long cycle life and large reversible capacities are still lacking and therefore limiting the development of SIBs. Here, a bulk Bi anode with surprisingly high Na storage performance in combination with glyme-based electrolytes is reported. This study shows that the bulk Bi electrode is gradually developed into a porous integrity during initial cycling, which is totally different from that in carbonate-based electrolytes and ensures facile Na + transport and structural stability. The achievable capacity of bulk Bi in the NaPF 6 -diglyme electrolyte is high up to 400 mAh g -1 , and the capacity retention is 94.4% after 2000 cycles, corresponding to a capacity loss of 0.0028% per cycle. It exhibits two flat discharge/charge plateaus at 0.67/0.77 and 0.46/0.64 V, ascribed to the typical two-phase reactions of Bi ↔ NaBi and NaBi ↔ Na 3 Bi, respectively. The excellent performance is attributed to the unique porous integrity, stable solid electrolyte interface, and good electrode wettability of glymes. This interplay between electrolyte and electrode to boost Na storage performance will pave a new pathway for high-performance SIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Dou, Ruixia; Du, Zhen; Bao, Tao; Dong, Xinghua; Zheng, Xiaopeng; Yu, Miao; Yin, Wenyan; Dong, Binbin; Yan, Liang; Gu, Zhanjun

    2016-06-01

    Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately resulting in the enhancement of the therapeutic efficacy of anticancer drugs. Here, we developed a novel system for synergistic cancer therapy based on bismuth sulfide (Bi2S3) nanoparticle-decorated graphene functionalized with polyvinylpyrrolidone (PVP) (named PVP-rGO/Bi2S3). The as-prepared PVP-rGO/Bi2S3 nanocomposite has a high storage capacity for anticancer drugs (~500% for doxorubicin (DOX)) and simultaneously has perfect photothermal conversion efficiency in the NIR region. The results of the in vitro accumulative drug release test manifests that the PVP-rGO/Bi2S3 nanocomposite could be applied as a dual pH- and NIR-responsive nanotherapeutic carrier for the controlled release of DOX from DOX-loaded PVP-rGO/Bi2S3 (PVP-rGO/Bi2S3@DOX). Moreover, the treatment of both cancer cells (including Hela, MCF-7, HepG2 and BEL-7402 cells) and BEL-7402 tumor-bearing mice with the PVP-rGO/Bi2S3@DOX complex followed by NIR laser irradiation produces significantly greater inhibition of cancer cell growth than the treatment with NIR irradiation alone or DOX alone, exhibiting a synergistic antitumor effect. Furthermore, due to the obvious NIR and X-ray absorption ability, the PVP-rGO/Bi2S3 nanocomposite could be employed as a dual-modal contrast agent for both photoacoustic tomography and X-ray computed tomography imaging. In addition to the good biocompatibility, the PVP-rGO/Bi2S3 nanocomposite paves a potential way for the fabrication of theranostic agents for dual-modal imaging-guided chemo-photothermal combined cancer therapy.Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately resulting in the enhancement of the therapeutic efficacy of anticancer drugs. Here, we developed a novel system for synergistic cancer therapy based on bismuth sulfide (Bi2S3) nanoparticle-decorated graphene functionalized with polyvinylpyrrolidone (PVP) (named PVP-rGO/Bi2S3). The as-prepared PVP-rGO/Bi2S3 nanocomposite has a high storage capacity for anticancer drugs (~500% for doxorubicin (DOX)) and simultaneously has perfect photothermal conversion efficiency in the NIR region. The results of the in vitro accumulative drug release test manifests that the PVP-rGO/Bi2S3 nanocomposite could be applied as a dual pH- and NIR-responsive nanotherapeutic carrier for the controlled release of DOX from DOX-loaded PVP-rGO/Bi2S3 (PVP-rGO/Bi2S3@DOX). Moreover, the treatment of both cancer cells (including Hela, MCF-7, HepG2 and BEL-7402 cells) and BEL-7402 tumor-bearing mice with the PVP-rGO/Bi2S3@DOX complex followed by NIR laser irradiation produces significantly greater inhibition of cancer cell growth than the treatment with NIR irradiation alone or DOX alone, exhibiting a synergistic antitumor effect. Furthermore, due to the obvious NIR and X-ray absorption ability, the PVP-rGO/Bi2S3 nanocomposite could be employed as a dual-modal contrast agent for both photoacoustic tomography and X-ray computed tomography imaging. In addition to the good biocompatibility, the PVP-rGO/Bi2S3 nanocomposite paves a potential way for the fabrication of theranostic agents for dual-modal imaging-guided chemo-photothermal combined cancer therapy. Electronic supplementary information (ESI) available: Figures. See DOI: 10.1039/c6nr01543c

  16. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives.

    PubMed

    Hückelhoven, R

    2004-05-01

    BAX Inhibitor-1 (BI-1) was originally described as testis enhanced gene transcript in mammals. Functional screening in yeast for human proteins that can inhibit the cell death provoking function of BAX, a proapoptotic Bcl-2 family member, led to functional characterisation and renaming of BI-1. The identification of functional homologues of BI-1 in plants and yeast widened the understanding of BI-1 function as an ancient suppressor of programmed cell death. BI-1 is one of the few cell death suppressors conserved in animals and plants. Computer predictions and experimental data together suggest that BI-1 is a membrane spanning protein with 6 to 7 transmembrane domains and a cytoplasmic C-terminus sticking in the endoplasmatic reticulum and nuclear envelope. Proteins similar to BI-1 are present in other eukaryotes, bacteria, and even viruses encode BI-1 like proteins. BI-1 is involved in development, response to biotic and abiotic stress and probably represents an indispensable cell protectant. BI-1 appears to suppress cell death induced by mitochondrial dysfunction, reactive oxygen species or elevated cytosolic Ca(2+) levels. This review focuses on the present understanding about BI-1 and suggests potential directions for further analyses of this increasingly noticed protein.

  17. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers.

    PubMed

    Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M C; Lee, Chao-Kuei; Tu, Chao-Yang

    2015-10-07

    Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm(2) at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices.

  18. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers

    PubMed Central

    Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M. C.; Lee, Chao-Kuei; Tu, Chao-Yang

    2015-01-01

    Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm2 at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices. PMID:26442909

  19. Development and Analysis of a Bi-Directional Tidal Turbine

    DTIC Science & Technology

    2012-03-01

    commercial CFD software ANSYS CFX was utilized to build a turbine map. The basic turbine map was developed for a 25 blade bi-axial turbine under...directional turbine created for this purpose. In the present study, the commercial CFD software ANSYS CFX was utilized to build a turbine map. The...sheath C. PROBLEM SPECIFICATIONS AND BOUNDARY CONDITIONS The simulation definition was created using ANSYS CFX -Pre. The best measurements to determine

  20. Longitudinal Bi-directional Effects of Disordered Eating, Depression and Anxiety.

    PubMed

    Puccio, Francis; Fuller-Tyszkiewicz, Matthew; Youssef, George; Mitchell, Sarah; Byrne, Michelle; Allen, Nick; Krug, Isabel

    2017-09-01

    The present study aims to explore the potentially longitudinal bi-directional effects of disordered eating (DE) symptoms with depression and anxiety. Participants were 189 (49.5% male) adolescents from Melbourne, Australia. DE, depressive and anxiety symptoms were assessed at approximately 15, 16.5 and 18.5 years of age. Analysis of longitudinal bi-directional effects assessed via cross-lagged models indicated that DE symptoms of eating and shape/weight concerns were risk factors for anxiety. Results also showed that depression was a risk factor for eating concerns. Our findings provide preliminary evidence that preventative measures designed to target concerns about eating and shape/weight might be most efficacious in reducing the transmission of effects between symptoms of DE, depression and anxiety. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  1. Mechanical and electrical properties of low temperature phase MnBi

    DOE PAGES

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; ...

    2016-01-21

    The low temperature phase (LTP) MnBi is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and its large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have started to consider MnBi magnet for motor applications. In addition to the magnetic properties, there are other physical properties that could significantly affect a motor design. Here, we report the results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their dependence on temperature. We found at room temperature the sintered MnBi magnet fractures when the compression stressmore » exceeds 193 MPa; and its room temperature electric resistance is about 6.85 μΩ-m.« less

  2. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    PubMed

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.

  3. Metal-Metal Single Bonds with the Magnetic Anisotropy of Quadruple Bonds: A Systematic Series of Heterobimetallic Bismuth(II)-Rhodium(II) Formamidinate Complexes.

    PubMed

    Sunderland, Travis L; Berry, John F

    2016-12-19

    The first set of five heterobimetallic MM'(form) 4 (form=formamidinate) complexes containing a BiRh core has been successfully synthesized. The Bi-Rh bond lengths lie between 2.5196(6) and 2.572(2) Å, consistent with Bi-Rh single bonds. All complexes have rich electrochemistry, with the [BiRh] 4+/5+ redox couples spanning approximately 700 mV and showing a strong correlation to remote ligand substitution. Visible spectroscopy showed two features for complexes 1-5 at approximately 459 and 551 nm, unique to BiRh paddlewheel complexes that are attributed to LMCT bands into the Bi-Rh σ* orbital. The large spin-orbit coupling (SOC) of Bi creates a massive Bi-Rh magnetic anisotropy, Δχ, approximately -4800×10 -36  m 3 molecule -1 , which is the largest value reported for any single bond to date. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming.

    PubMed

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2015-05-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed.

  5. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming

    PubMed Central

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2014-01-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed. PMID:26052168

  6. Development of television tubes for the large space telescope

    NASA Technical Reports Server (NTRS)

    Lowrance, J. L.; Zucchino, P.

    1971-01-01

    Princeton Observatory has been working for several years under NASA sponsorship to develop television type sensors to use in place of photographic film for space astronomy. The performance of an SEC-vidicon with a 25 mm x 25 mm active area, MgF2 window, and bi-alkali photocathode is discussed. Results from ground based use on the Coude spectrograph of the 200-inch Hale telescope are included. The intended use of this tube in an echelle spectrograph sounding rocket payload and on Stratoscope 2 for direct high resolution imagery is also discussed. The paper also discusses the large space telescope image sensor requirements and the development of a larger television tube for this mission.

  7. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Cheng, Guang; Tay, See Leng

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  8. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE PAGES

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; ...

    2017-08-10

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  9. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO6

    NASA Astrophysics Data System (ADS)

    Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.

    2014-10-01

    The bismuth lutetium tungstate phase BiLuWO6 has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO6 with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO6 octahedron distortions in the structure.

  10. Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Claus, H.; ...

    2018-05-16

    Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less

  11. Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Willa, K.; Claus, H.

    Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less

  12. Effects of electric field on the properties of 2D topological insulators

    NASA Astrophysics Data System (ADS)

    Salmankurt, Bahadır; Gürel, Hikmet Hakan

    2018-02-01

    Two-Dimensional (2D) topological insulators (TIs), are new and promising materials for the applications such as spintronics and optoelectronics due to their unique surface states that are topologically protected and thus robust against nonmagnetic impurities and disorders. The existence of these remarkable electronic states in TIs can be attributed to the large spin-orbit (SO) coupling. The researchers have paid attention to Bi based two-dimensional materials due to high SO coupling effect. Among them, GaBi, InBi, GaBi3 and InBi3 are good candidates for 2D Tls materials. Although there are a lot of studies in these 2D Tls, a detailed understanding of the effect of E-Field is lacking. Applying external E-field can change the electronic properties, which may enable to realize the change on the properties of the materials. We have performed theoretical study of GaBi, InBi, GaBi3 and InBi3 to investigate the effect of E-field to explore band structure, charge distribution and geometries.

  13. Superconducting and normal-state anisotropy of the doped topological insulator Sr0.1Bi2Se3.

    PubMed

    Smylie, M P; Willa, K; Claus, H; Koshelev, A E; Song, K W; Kwok, W-K; Islam, Z; Gu, G D; Schneeloch, J A; Zhong, R D; Welp, U

    2018-05-16

    Sr x Bi 2 Se 3 and the related compounds Cu x Bi 2 Se 3 and Nb x Bi 2 Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c  ~3 K in Sr x Bi 2 Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2 Se 3 . Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1 Bi 2 Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr 0.1 Bi 2 Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr x Bi 2 Se 3 .

  14. Longitudinal effects of dysfunctional perfectionism and avoidant personality style on postpartum mental disorders: Pathways through antepartum depression and anxiety.

    PubMed

    Oddo-Sommerfeld, Silvia; Hain, Sarah; Louwen, Frank; Schermelleh-Engel, Karin

    2016-02-01

    There is first evidence that some personality characteristics raise the risk of postpartum depression (PPD). The present longitudinal study investigates whether dysfunctional perfectionism and avoidant personality style predict PPD, postpartum anxiety (PPA) and bonding impairment (BI) directly or indirectly through antepartum anxiety (APA) and antepartum depression (APD). Pregnant women were recruited in two obstetric departments in Germany. The assessment occurred at two measurement time points: In the third trimester of pregnancy (N=297) and twelve weeks postpartum (N=266). Six questionnaires were administered during pregnancy: perfectionism, personality styles, anxiety, and depression. Postpartum, data on PPA, PPD and BI were collected. We conducted two path analyses in order to examine direct and indirect effects of the two personality characteristics on postpartum disorders. Testing for direct effects of dysfunctional perfectionism and avoidant personality style on PPD, PPA, and BI did not yield significant results. Instead, significant indirect effects were found: PPD, PPA, and BI were influenced indirectly by dysfunctional perfectionism and avoidant personality style via APD and APA. This model explained high portions of the variance of PPD, PPA, and impaired bonding. Each of the two personality characteristics explained a unique part of the outcome measures. The influence on BI was mediated by PPD. APD affected PPD and PPA more strongly than APA. Path models with manifest (observed) variables may lead to measurement errors. Self-rating questionnaires may raise the problem of social desirability. Dysfunctional perfectionism and avoidant personality style are significant risk factors for PPD, PPA, and BI. Screenings of both variables, as well as of APA and APD, which mediated the effect of personality traits on postpartum syndromes, are necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  16. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rongming, E-mail: rmliu@iphy.ac.cn, E-mail: shenbg@iphy.ac.cn; Zhang, Ming; Niu, E

    2014-05-07

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tensmore » of nanometers, an average diameter of ∼1.5 μm, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437 K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.« less

  17. An Integrative Theory of Psychotherapy: Research and Practice

    PubMed Central

    Epstein, Seymour; Epstein, Martha L.

    2016-01-01

    A dual-process personality theory and supporting research are presented. The dual processes comprise an experiential system and a rational system. The experiential system is an adaptive, associative learning system that humans share with other higher-order animals. The rational system is a uniquely human, primarily verbal, reasoning system. It is assumed that when humans developed language they did not abandon their previous ways of adapting, they simply added language to their experiential system. The two systems are assumed to operate in parallel and are bi-directionally interactive. The validity of these assumptions is supported by extensive research. Of particular relevance for psychotherapy, the experiential system, which is compatible with evolutionary theory, replaces the Freudian maladaptive unconscious system that is indefensible from an evolutionary perspective, as sub-human animals would then have only a single system that is maladaptive. The aim of psychotherapy is to produce constructive changes in the experiential system. Changes in the rational system are useful only to the extent that they contribute to constructive changes in the experiential system. PMID:27672302

  18. An Integrative Theory of Psychotherapy: Research and Practice.

    PubMed

    Epstein, Seymour; Epstein, Martha L

    2016-06-01

    A dual-process personality theory and supporting research are presented. The dual processes comprise an experiential system and a rational system. The experiential system is an adaptive, associative learning system that humans share with other higher-order animals. The rational system is a uniquely human, primarily verbal, reasoning system. It is assumed that when humans developed language they did not abandon their previous ways of adapting, they simply added language to their experiential system. The two systems are assumed to operate in parallel and are bi-directionally interactive. The validity of these assumptions is supported by extensive research. Of particular relevance for psychotherapy, the experiential system, which is compatible with evolutionary theory, replaces the Freudian maladaptive unconscious system that is indefensible from an evolutionary perspective, as sub-human animals would then have only a single system that is maladaptive. The aim of psychotherapy is to produce constructive changes in the experiential system. Changes in the rational system are useful only to the extent that they contribute to constructive changes in the experiential system.

  19. A statistical model for predicting the inter-annual variability of birch pollen abundance in Northern and North-Eastern Europe.

    PubMed

    Ritenberga, Olga; Sofiev, Mikhail; Siljamo, Pilvi; Saarto, Annika; Dahl, Aslog; Ekebom, Agneta; Sauliene, Ingrida; Shalaboda, Valentina; Severova, Elena; Hoebeke, Lucie; Ramfjord, Hallvard

    2018-02-15

    The paper suggests a methodology for predicting next-year seasonal pollen index (SPI, a sum of daily-mean pollen concentrations) over large regions and demonstrates its performance for birch in Northern and North-Eastern Europe. A statistical model is constructed using meteorological, geophysical and biological characteristics of the previous year). A cluster analysis of multi-annual data of European Aeroallergen Network (EAN) revealed several large regions in Europe, where the observed SPI exhibits similar patterns of the multi-annual variability. We built the model for the northern cluster of stations, which covers Finland, Sweden, Baltic States, part of Belarus, and, probably, Russia and Norway, where the lack of data did not allow for conclusive analysis. The constructed model was capable of predicting the SPI with correlation coefficient reaching up to 0.9 for some stations, odds ratio is infinitely high for 50% of sites inside the region and the fraction of prediction falling within factor of 2 from observations, stays within 40-70%. In particular, model successfully reproduced both the bi-annual cycle of the SPI and years when this cycle breaks down. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cenozoic sea level and the rise of modern rimmed atolls

    USGS Publications Warehouse

    Toomey, Michael; Ashton, Andrew; Raymo, Maureen E.; Perron, J. Taylor

    2016-01-01

    Sea-level records from atolls, potentially spanning the Cenozoic, have been largely overlooked, in part because the processes that control atoll form (reef accretion, carbonate dissolution, sediment transport, vertical motion) are complex and, for many islands, unconstrained on million-year timescales. Here we combine existing observations of atoll morphology and corelog stratigraphy from Enewetak Atoll with a numerical model to (1) constrain the relative rates of subsidence, dissolution and sedimentation that have shaped modern Pacific atolls and (2) construct a record of sea level over the past 8.5 million years. Both the stratigraphy from Enewetak Atoll (constrained by a subsidence rate of ~ 20 m/Myr) and our numerical modeling results suggest that low sea levels (50–125 m below present), and presumably bi-polar glaciations, occurred throughout much of the late Miocene, preceding the warmer climate of the Pliocene, when sea level was higher than present. Carbonate dissolution through the subsequent sea-level fall that accompanied the onset of large glacial cycles in the late Pliocene, along with rapid highstand constructional reef growth, likely drove development of the rimmed atoll morphology we see today.

  1. First Tests of Prototype SCUBA-2 Superconducting Bolometer Array

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike

    2006-09-01

    We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.

  2. BiVO{sub 4} photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Haibo; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin; Freudenberg, Norman

    2016-04-15

    Photoactive bismuth vanadate (BiVO{sub 4}) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO{sub 4} films were investigated. Phase-pure monoclinic BiVO{sub 4} films, which are more photoactive than the tetragonal BiVO{sub 4} phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO{sub 4} films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO{sub 4} film thickness, the photocurrent densities (without a catalyst or a blocking layer ormore » a hole scavenger) exceeded 1.2 mA/cm{sup 2} at a potential of 1.23 V{sub RHE} under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO{sub 4} films opens new possibilities for the fabrication of large-scale devices for water splitting.« less

  3. Investigation of Voronoi diagram based direction choices using uni- and bi-directional trajectory data

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Chraibi, Mohcine; Qu, Yunchao; Tordeux, Antoine; Gao, Ziyou

    2018-05-01

    In a crowd, individuals make different motion choices such as "moving to destination," "following another pedestrian," and "making a detour." For the sake of convenience, the three direction choices are respectively called destination direction, following direction, and detour direction in this paper. Here, it is found that the featured direction choices could be inspired by the shape characteristics of the Voronoi diagram. To be specific, in the Voronoi cell of a pedestrian, the direction to a Voronoi node is regarded as a potential "detour" direction and the direction perpendicular to a Voronoi link is regarded as a potential "following" direction. A pedestrian generally owns several alternative Voronoi nodes and Voronoi links in a Voronoi cell, and the optimal detour and following direction are determined by considering related factors such as deviation. Plus the destination direction which is directly pointing to the destination, the three basic direction choices are defined in a Voronoi cell. In order to evaluate the Voronoi diagram based basic directions, the empirical trajectory data in both uni- and bi-directional flow experiments are extracted. A time series method considering the step frequency is used to reduce the original trajectories' swaying phenomena which might disturb the recognition of actual forward direction. The deviations between the empirical velocity direction and the basic directions are investigated, and each velocity direction is classified into a basic direction or regarded as an inexplicable direction according to the deviations. The analysis results show that each basic direction could be a potential direction choice for a pedestrian. The combination of the three basic directions could cover most empirical velocity direction choices in both uni- and bi-directional flow experiments.

  4. BiVO4 thin film photoanodes grown by chemical vapor deposition.

    PubMed

    Alarcón-Lladó, Esther; Chen, Le; Hettick, Mark; Mashouf, Neeka; Lin, Yongjing; Javey, Ali; Ager, Joel W

    2014-01-28

    BiVO4 thin film photoanodes were grown by vapor transport chemical deposition on FTO/glass substrates. By controlling the flow rate, the temperatures of the Bi and V sources (Bi metal and V2O5 powder, respectively), and the temperature of the deposition zone in a two-zone furnace, single-phase monoclinic BiVO4 thin films can be obtained. The CVD-grown films produce global AM1.5 photocurrent densities up to 1 mA cm(-2) in aqueous conditions in the presence of a sacrificial reagent. Front illuminated photocatalytic performance can be improved by inserting either a SnO2 hole blocking layer and/or a thin, extrinsically Mo doped BiVO4 layer between the FTO and the CVD-grown layer. The incident photon to current efficiency (IPCE), measured under front illumination, for BiVO4 grown directly on FTO/glass is about 10% for wavelengths below 450 nm at a bias of +0.6 V vs. Ag/AgCl. For BiVO4 grown on a 40 nm SnO2/20 nm Mo-doped BiVO4 back contact, the IPCE is increased to over 40% at wavelengths below 420 nm.

  5. ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems

    PubMed Central

    Expósito, Roberto R.

    2018-01-01

    Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/. PMID:29608567

  6. ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.

    PubMed

    González-Domínguez, Jorge; Expósito, Roberto R

    2018-01-01

    Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.

  7. High UV light performance for the degradation of Rhodamine B dye by synthesized Bi2S3ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Sangareswari, M.; Meenakshi Sundaram, M.

    2017-05-01

    Heterogeneous photocatalytic degradation of organics in water and wastewater by large band gap semiconductors has offered an attractive alternative for environmental remediation. Zinc oxide is a very fast and efficient catalyst because of its wide band gap and large exciton binding energy. In this study, an efficient Bi2S3ZnO was synthesized by sonochemical method. The obtained product was further characterized by TEM, SEM, XRD, FT-IR and UV-DRS analysis. Scanning electron microscopy images revealed that Bi2S3ZnO has flower-like structure. The synthesized flower-like Bi2S3ZnO nanocomposites were more efficient than commercial ZnO for the degradation of organic contaminants under UV light irradiation. The prepared material shows enhanced photocatalytic activity on Rhodamine B dye solution under UV light irradiation. The percentage removal of dye was calculated by UV-Vis spectrophotometer. In addition, Bi2S3ZnO showed tremendous photocatalytic stability after seven cycles under UV light irradiation. A possible mechanism for the photocatalytic oxidative degradation was also discussed. It is concluded that the Bi2S3ZnO nanocomposite acts as an excellent photocatalyst for the decomposition of RhB and it could be a potential material for essential wastewater treatment.

  8. DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.

    PubMed

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-04-12

    Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.

  9. Attention Alters Neural Responses to Evocative Faces in Behaviorally Inhibited Adolescents

    PubMed Central

    Pérez-Edgar, Koraly; Roberson-Nay, Roxann; Hardin, Michael G.; Poeth, Kaitlin; Guyer, Amanda E.; Nelson, Eric E.; McClure, Erin B.; Henderson, Heather A.; Fox, Nathan A.; Pine, Daniel S.; Ernst, Monique

    2007-01-01

    Behavioral inhibition (BI) is a risk factor for anxiety disorders. While the two constructs bear behavioral similarities, previous work has not extended these parallels to the neural level. This study examined amygdala reactivity during a task previously used with clinically anxious adolescents. Adolescents were selected for enduring patterns of BI or non-inhibition (BN). We examined amygdala response to evocative emotion faces in BI (N=10, mean 12.8 years) and BN (N=17, mean 12.5 years) adolescents while systematically manipulating attention. Analyses focused on amygdala response during subjective ratings of internal fear (constrained attention) and passive viewing (unconstrained attention) during the presentation of emotion faces (Happy, Angry, Fearful, and Neutral). BI adolescents, relative to BN adolescents, showed exaggerated amygdala response during subjective fear ratings and deactivation during passive viewing, across all emotion faces. In addition, the BI group showed an abnormally high amygdala response to a task condition marked by novelty and uncertainty (i.e., rating fear state to a Happy face). Perturbations in amygdala function are evident in adolescents temperamentally at risk for anxiety. Attention state alters the underlying pattern of neural processing, potentially mediating the observed behavioral patterns across development. BI adolescents also show a heightened sensitivity to novelty and uncertainty, which has been linked to anxiety. These patterns of reactivity may help sustain early temperamental biases over time and contribute to the observed relation between BI and anxiety. PMID:17376704

  10. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    PubMed

    Li, Mingze; Wang, Zhenhua; Yang, Liang; Pan, Desheng; Li, Da; Gao, Xuan P A; Zhang, Zhidong

    2018-08-03

    Controlling the growth direction (planar versus vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional layered materials. We report a simple method to fabricate continuous films of vertical Bi 2 Se 3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi 2 Se 3 nanoplate film, vertical Bi 2 Se 3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi 2 Se 3 nanoplates, we realized an effective tuning of the weak antilocalization effect from topological surface states in Bi 2 Se 3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film.

  11. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi 2 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaba, Tomoya; Lawson, B. J.; Tinsman, Colin

    2017-01-27

    The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi 2Se 3) is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb)-doped Bi 2Se 3. As a result,more » the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi 2Se 3.« less

  12. On the Full-Discrete Extended Generalised q-Difference Toda System

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; Meng, Anni

    2017-08-01

    In this paper, we construct a full-discrete integrable difference equation which is a full-discretisation of the generalised q-Toda equation. Meanwhile its soliton solutions are constructed to show its integrable property. Further the Lax pairs of an extended generalised full-discrete q-Toda hierarchy are also constructed. To show the integrability, the bi-Hamiltonian structure and tau symmetry of the extended full-discrete generalised q-Toda hierarchy are given.

  13. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton is a world’s leading crop important to the world’s textile and energy industries, and a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction and extensive analysis of a binary bacterial artificial chromosome (BI...

  14. Safe distance car-following model including backward-looking and its stability analysis

    NASA Astrophysics Data System (ADS)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  15. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations

    PubMed Central

    Dennis, Robin L.; Schwede, Donna B.; Bash, Jesse O.; Pleim, Jon E.; Walker, John T.; Foley, Kristen M.

    2013-01-01

    Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent. PMID:23713122

  16. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations.

    PubMed

    Dennis, Robin L; Schwede, Donna B; Bash, Jesse O; Pleim, Jon E; Walker, John T; Foley, Kristen M

    2013-07-05

    Reactive nitrogen (Nr) is removed by surface fluxes (air-surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air-surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1-4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.

  17. Bibliography of Short Wavelength Chemical Laser Research

    DTIC Science & Technology

    1993-05-01

    a ). The potential energy curves reported in Figure 6 were computed by H . Michaels. Note that...observe a chemiluminescent reaction between H and NF2 that produced both NF( a -X) and NF(b-X) emissions.ŗ 14 Lasant Excitation Mechanism BiF( A -X) NF( a ) + Bi...elimination reaction that directly produces singlet NF: H ( 2S) + NF 2 ( 2BI) -- > HNF 2 -- > HF(’Z) + NF(’ A ) Malins and Setser,"’ and more

  18. The optical very large array and its moon-based version

    NASA Technical Reports Server (NTRS)

    Labeyrie, Antoine

    1992-01-01

    An Optical Very Large Array (OVLA) is currently in early prototyping stages for ground-based sites, such as Mauna Kea and perhaps the VLT site in Chile. Its concept is also suited for a moon-based interferometer. With a ring of bi-dimensionally mobile telescopes, there is maximal flexibility in the aperture pattern, and no need for delay lines. A circular configuration of many free-flying telescopes, TRIO, is also considered for space interferometers. Finally, the principle of gaseous mirrors may become applicable for moon-based optical arrays. Fifteen years after the first coherent linkage of two optical telescopes, the design of an ambitious imaging array, the OVLA, is now well advanced. Two 1.5 m telescopes have been built and now provide astronomical results. Elements of the OVLA are under construction. Although primarily conceived for ground-based sites, the OVLA structure appears to meet the essential requirements for operation on the Moon.

  19. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity.

    PubMed

    Hersoug, L-G; Møller, P; Loft, S

    2016-04-01

    The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue. © 2015 World Obesity.

  20. Electronic structure of the ingredient planes of the cuprate superconductor Bi 2Sr 2CuO 6+δ: A comparison study with Bi 2Sr 2CaCu 2O 8+δ

    DOE PAGES

    Yan -Feng Lv; Gu, G. D.; Wang, Wen -Lin; ...

    2016-04-15

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi 2Sr 2CuO 6+δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi 2Sr 2CaCu 2O 8+δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose themore » interstitial oxygen dopants (δ in the formulas) as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Furthermore, our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.« less

  1. Microstructure and phase composition of hypoeutectic Te-Bi alloy as evaporation source for photoelectric cathode

    NASA Astrophysics Data System (ADS)

    Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai

    2018-05-01

    A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.

  2. The role of Bi2O3 on the thermal, structural, and optical properties of tungsten-phosphate glasses.

    PubMed

    Manzani, Danilo; de Araújo, Cid B; Boudebs, Georges; Messaddeq, Younès; Ribeiro, Sidney J L

    2013-01-10

    Glasses in the ternary system (70 - x)NaPO(3)-30WO(3)-xBi(2)O(3), with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi(2)O(3) on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, T(g), increases from 405 to 440 °C for 0 ≤ x ≤ 15 mol % and decreases to 417 °C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 °C with the increase of the Bi(2)O(3) content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi(2)O(3) formation of BiO(6) clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q(0) units. The linear refractive index, n(0), was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n(2) was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n(0) ≤ 1.88, n(2) ≥ 10(-15) cm(2)/W and NL absorption coefficient, α(2) ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi(2)O(3) concentration. The large values of n(0) and n(2), as well as the very small α(2), indicate that these materials have large potential for all-optical switching applications in the near-infrared.

  3. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

    NASA Astrophysics Data System (ADS)

    Opoku, Francis; Govender, Krishna Kuben; Sittert, Cornelia Gertina Catharina Elizabeth van; Govender, Penny Poomani

    2018-01-01

    Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g-C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of the heterostructures. This work is useful for designing new types of Z-scheme photocatalyst and offers new insight into Z-scheme charge transfer mechanism for applications in the field of solar energy conversion.

  4. Lead-free multilayer piezoelectric transformer.

    PubMed

    Guo, Mingsen; Jiang, X P; Lam, K H; Wang, S; Sun, C L; Chan, Helen L W; Zhao, X Z

    2007-01-01

    In this article, a multilayer piezoelectric transformer based on lead-free Mn-doped 0.94(Bi(12)Na(12))TiO(3)-0.06BaTiO(3) ceramics is presented. This piezoelectric transformer, with a multilayered construction in the thickness direction, is 8.3 mm long, 8.3 mm wide, and 2.3 mm thick. It operates in the second thickness extensional vibration mode. For a temperature rise of 20 degrees C, the transformer has an output power of >0.3 W. With a matching load resistance of 10 Omega, its maximum efficiency approaches 81.5%, and the maximum voltage gain is 0.14. It has potential to be used in low voltage power supply units such as low power adapter and other electronic circuits.

  5. Enhancing Scheduling Performance for a Wafer Fabrication Factory: The Biobjective Slack-Diversifying Nonlinear Fluctuation-Smoothing Rule

    PubMed Central

    Chen, Toly; Wang, Yu Cheng

    2012-01-01

    A biobjective slack-diversifying nonlinear fluctuation-smoothing rule (biSDNFS) is proposed in the present work to improve the scheduling performance of a wafer fabrication factory. This rule was derived from a one-factor bi-objective nonlinear fluctuation-smoothing rule (1f-biNFS) by dynamically maximizing the standard deviation of the slack, which has been shown to benefit scheduling performance by several previous studies. The efficacy of the biSDNFS was validated with a simulated case; evidence was found to support its effectiveness. We also suggested several directions in which it can be exploited in the future. PMID:23509446

  6. Applying the technology acceptance model to explore public health nurses' intentions towards web-based learning: a cross-sectional questionnaire survey.

    PubMed

    Chen, I Ju; Yang, Kuei-Feng; Tang, Fu-In; Huang, Chun-Hsia; Yu, Shu

    2008-06-01

    In the era of the knowledge economy, public health nurses (PHNs) need to update their knowledge to ensure quality of care. In pre-implementation stage, policy makers and educators should understand PHNs' behavioural intentions (BI) toward web-based learning because it is the most important determinant of actual behaviour. To understand PHNs' BI toward web-based learning and further to identify the factors influencing PHNs' BI based on the technology acceptance model (TAM) in pre-implementation stage. A nationwide-based cross-sectional research design was used in this study. Three hundred and sixty-nine health centres in Taiwan. A randomly selected sample, 202 PHNs participated in this study. Data were collected by mailing in a questionnaire. The majority of PHNs (91.6%, n=185) showed an affirmative BI toward web-based learning. PHNs rated moderate values of perceived usefulness (U), perceived ease of use (EOU) and attitude toward web-based learning (A). Multiple regression analyses indicated that only U revealed a significantly direct influence on BI. U and EOU had significantly direct relationships with A; however, no significant relationship existed between A and BI. Additionally, EOU and an individual's computer competence revealed significant relationships with U; Internet access at the workplace revealed a significant relationship with EOU. In the pre-implementation stage, PHNs perceived a high likelihood of adopting web-based learning as their way of continuing education. In pre-implementation stage, perceived usefulness is the most important factor for BI instead of the attitude. Perceived EOU, an individual's computer competency, and Internet access at workplaces revealed indirect effects on BI. Therefore, increasing U, EOU, computer competence, and Internet access at workplace will be helpful in increasing PHNs' BI. Moreover, we suggest that future studies should focus on clarifying problems in different stages of implementation to build a more complete understanding of implementing web-based learning.

  7. GaAsBi Synthesis: From Band Structure Modification to Nanostructure Formation

    NASA Astrophysics Data System (ADS)

    Collar, Kristen N.

    Research and development bismides have proven bismides to be a promising field for material science with important applications in optoelectronics. However, the development of a complete description of the electrical and material properties of bismide ternaries is not comprehensive or straightforward. One of the main benefits of this ternary system is the opportunity for bandgap tuning, which opens doors to new applications. Tuning the bandgap is achieved by means of varying the composition; this allows access to a wider energy spectrum with particular applications in long wavelength emitters and detectors. In addition to bandgap tuning, Bi provides an opportunity to decrease lasing threshold currents, the temperature sensitivity and a major loss mechanism of today's telecom lasers. We propose to characterize the electronic and chemical structure of GaAsBi grown by molecular beam epitaxy. We probe the binding structure using x-ray photoelectron spectroscopy. This provides insights into the antisite incorporation of Bi and the reactivity of the surface. Furthermore, we use XPS to track the energy variation in the valence band with dilute Bi incorporation into GaAs. These insights provide valuable perspective into improving the predictability of bandgaps and of heterostructure band offsets for the realization of bismides in future electronics. The stringent growth conditions required by GaAsBi and the surfactant properties of Bi provide a unique opportunity to study nanostructure formation and epitaxial growth control mechanisms. The GaAsBi epitaxial films under Ga-rich growth conditions self-catalyze Ga droplet seeds for Vapor-Liquid-Solid growth of embedded nanowires. We demonstrate a means to direct the nanowires unidirectionally along preferential crystallographic directions utilizing the step-flow growth mode. We mediated the step-flow growth by employing vicinal surfaces and Bi's surfactant-like properties to enhance the properties of the step-flow growth mode. Semiconductor nanostructures are becoming a cornerstone of future optoelectronics and the work presented herein exploits the power of a bottom-up architecture to self-assemble aligned unidirectional planar nanowires.

  8. Spatial charge inhomogeneity and defect states in topological Dirac semimetal thin films of Na3Bi

    PubMed Central

    Edmonds, Mark T.; Collins, James L.; Hellerstedt, Jack; Yudhistira, Indra; Gomes, Lídia C.; Rodrigues, João N. B.; Adam, Shaffique; Fuhrer, Michael S.

    2017-01-01

    Topological Dirac semimetals (TDSs) are three-dimensional analogs of graphene, with carriers behaving like massless Dirac fermions in three dimensions. In graphene, substrate disorder drives fluctuations in Fermi energy, necessitating construction of heterostructures of graphene and hexagonal boron nitride (h-BN) to minimize the fluctuations. Three-dimensional TDSs obviate the substrate and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. We map the potential fluctuations in TDS Na3Bi using a scanning tunneling microscope. The rms potential fluctuations are significantly smaller than the thermal energy room temperature (ΔEF,rms = 4 to 6 meV = 40 to 70 K) and comparable to the highest-quality graphene on h-BN. Surface Na vacancies produce a novel resonance close to the Dirac point with surprisingly large spatial extent and provide a unique way to tune the surface density of states in a TDS thin-film material. Sparse defect clusters show bound states whose occupation may be changed by applying a bias to the scanning tunneling microscope tip, offering an opportunity to study a quantum dot connected to a TDS reservoir. PMID:29291249

  9. Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

    PubMed

    Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi

    2018-03-24

    In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

  10. Structural and optical characterization of bismuth sulphide nanorods

    NASA Astrophysics Data System (ADS)

    Shah, N. M.; Poria, K. C.

    2017-05-01

    In this work Bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity is synthesized via hydrothermal method from aqueous solution of Bismuth Nitrate Pentahydrate and elemental Sulphur using Triethanolamine (TEA) as capping agent. The microstructures of Bi2S3 nanorods were investigated by X-ray diffraction (XRD) analysis. The positions and relative intensities of all the peaks in XRD pattern are in good agreement with those of the orthorhombic crystal structure of Bi2S3. TEM images shows that synthesized Bi2S3 has morphology of nanorods while selected area electron diffraction pattern indicates single crystalline nature. The analysis of diffuse reflectance (DR) spectrum of as synthesized Bi2S3 using Kubelka - Munk theory suggests direct energy band gap of 1.5 eV.

  11. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications

    PubMed Central

    Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon

    2015-01-01

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443

  12. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications.

    PubMed

    Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon

    2015-12-10

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.

  13. Defects controlling electrical and optical properties of electrodeposited Bi doped Cu2O

    NASA Astrophysics Data System (ADS)

    Brandt, Iuri S.; Tumelero, Milton A.; Martins, Cesar A.; Plá Cid, Cristiani C.; Faccio, Ricardo; Pasa, André A.

    2018-04-01

    Doping leading to low electrical resistivity in electrodeposited thin films of Cu2O is a straightforward requirement for the construction of efficient electronic and energy devices. Here, Bi (7 at. %) doped Cu2O layers were deposited electrochemically onto Si(100) single-crystal substrates from aqueous solutions containing bismuth nitrate and cupric sulfate. X-ray photoelectron spectroscopy shows that Bi ions in a Cu2O lattice have an oxidation valence of 3+ and glancing angle X-ray diffraction measurements indicated no presence of secondary phases. The reduction in the electrical resistivity from undoped to Bi-doped Cu2O is of 4 and 2 orders of magnitude for electrical measurements at 230 and 300 K, respectively. From variations in the lattice parameter and the refractive index, the electrical resistivity decrease is addressed to an increase in the density of Cu vacancies. Density functional theory (DFT) calculations supported the experimental findings. The DFT results showed that in a 6% Bi doped Cu2O cell, the formation of Cu vacancies is more favorable than in an undoped Cu2O one. Moreover, from DFT data was observed that there is an increase (decrease) of the Cu2O band gap (activation energy) for 6% Bi doping, which is consistent with the experimental results.

  14. Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers.

    PubMed

    Dong, Fan; Sun, Yanjuan; Fu, Min; Wu, Zhongbiao; Lee, S C

    2012-06-15

    This research represents a highly enhanced visible light photocatalytic removal of 450 ppb level of nitric oxide (NO) in air by utilizing flower-like hierarchical porous BiOI/BiOCl composites synthesized by a room temperature template free method for the first time. The facile synthesis method avoids high temperature treatment, use of organic precursors and production of undesirable organic byproducts during synthesis process. The result indicated that the as-prepared BiOI/BiOCl composites samples were solid solution and were self-assembled hierarchically with single-crystal nanoplates. The aggregation of the self-assembled nanoplates resulted in the formation of 3D hierarchical porous architecture containing tri-model mesopores. The coupling to BiOI with BiOCl led to down-lowered valence band (VB) and up-lifted conduction band (CB) in contrast to BiOI, making the composites suitable for visible light excitation. The BiOI/BiOCl composites samples exhibited highly enhanced visible light photocatalytic activity for removal of NO in air due to the large surface areas and pore volume, hierarchical structure and modified band structure, exceeding that of P25, BiOI, C-doped TiO(2) and Bi(2)WO(6). This research results could provide a cost-effective approach for the synthesis of porous hierarchical materials and enhancement of photocatalyst performance for environmental and energetic applications owing to its low cost and easy scaling up. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Bi-directional thruster development and test report

    NASA Technical Reports Server (NTRS)

    Jacot, A. D.; Bushnell, G. S.; Anderson, T. M.

    1990-01-01

    The design, calibration and testing of a cold gas, bi-directional throttlable thruster are discussed. The thruster consists of an electro-pneumatic servovalve exhausting through opposite nozzles with a high gain pressure feedback loop to optimize performance. The thruster force was measured to determine hysteresis and linearity. Integral gain was used to maximize performance for linearity, hysteresis, and minimum thrust requirements. Proportional gain provided high dynamic response (bandwidth and phase lag). Thruster performance is very important since the thrusters are intended to be used for active control.

  16. Bi-directional communication interface for microprocessor-to-system/370

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1981-01-01

    The design and operation of a bi-directional communication interface between a microcomputer and the IBM System/370 is documented. The hardware unit interconnects a modem to interface to the S/370, the microcomputer with an EIA I/O port, and a terminal for sending and receiving data from either the microcomputer or the S/370. Also described is the software necessary for the two-way interface. This interface is designed so that no modifications need to be made to the terminal, modem, or microcomputer.

  17. Bi-Directional Fast Charging Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  18. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation.

    PubMed

    Zhang, Jin; Yan, Ming; Yuan, Xingzhong; Si, Mengying; Jiang, Longbo; Wu, Zhibin; Wang, Hou; Zeng, Guangming

    2018-05-31

    A novel nitrogen doped carbon quantum dots (N-CQDs) mediated Ag 3 PO 4 /BiVO 4 Z-scheme photocatalyst was synthesized through a solvothermal-precipitation method. The as-prepared photocatalysts were comprehensive characterized by X-ray diffraction, X-ray photo-electron spectroscopy, scanning electron microscopy, transmission electron micrograph, UV-vis diffuse reflection spectroscopy, vis photoluminescence and electron spin resonance analysis. The photocatalytic performances of as-prepared photocatalysts were used for degradation of tetracycline (TC) under visible-light illumination. Results exhibited the increased photocatalytic efficiency of BiVO 4 /N-CQDs/Ag 3 PO 4 -10 (Ag 3 PO 4 with the mass ratio of BiVO 4 /N-CQDs/Ag 3 PO 4  = 10%) to photodegrade TC is up to 88.9% in 30 min and 59.8% mineralization in 90 min. The degradation reaction coefficient (k) is about 6.00, 2.78 and 1.80 times higher than that of BiVO 4, N-CQDs/BiVO 4 and Ag 3 PO 4 /BiVO 4 , respectively. The excellent photocatalytic performance of the Z-scheme BiVO 4 /N-CQDs/Ag 3 PO 4 was attributed to the construction of Z-scheme system, increased light harvesting capacity and improved molecular oxygen activation ability. Moreover, the photocatalytic activity of BiVO 4 /N-CQDs/Ag 3 PO 4 remained 79.9% after five cycling runs, indicating the high stability and reusability of the as-prepared photocatalyst. Additionally, a possible photocatalytic mechanism of the novel Z-scheme BiVO 4 /N-CQDs/Ag 3 PO 4 was proposed. Copyright © 2018. Published by Elsevier Inc.

  19. I Situ Surface X-Ray Diffraction Studies of Electrochemically Deposited Monolayers

    NASA Astrophysics Data System (ADS)

    Yee, Dennis

    1995-01-01

    In situ x-ray diffraction has been used to determine the detailed atomic structure of electrochemically deposited lead, thallium, and bismuth monolayers on the silver (111) electrode surface. A review of our previously published lead and thallium monolayer results and the first in situ surface x-ray crystallographic study of the bismuth monolayer structure is presented. The crystallographic analysis of the bismuth Bragg rod intensities and the interference between the bismuth Bragg rod and silver crystal truncation rod scattering were used to determine the detailed atomic structure of the bismuth on silver (111) system at the liquid-solid interface. Our previous in situ x-ray diffraction studies showed that the bismuth monolayer lattice is rectangular and uniaxially incommensurate with the underlying hexagonal silver surface. A crystallographic analysis of the measured structure factor magnitudes reveals that the monolayer forms chains of atoms on the silver surface, similar to the bulk Bi(110)_{rh} plane, with a near neighbor distance of 3.12 +/- 0.01 A and a bond angle of 93 +/- 1^circ, consistent with the bulk Bi(110) _{rh} plane values. The crystallographic refinement also shows that the bismuth monolayer atoms are anisotropically disordered with a rms disorder of 0.25 +/- 0.03 A in the incommensurate direction and 0.09 +/- 0.03 A rms in the commnensurate direction. The interference between the Bi(20) Bragg rod and the Ag(10L)_ {h} crystal truncation rod scattering reveals that one set of bismuth atoms is registered near the bridge sites of the silver (111) surface while another set is registered near the 3-fold hollow sites. In addition, the Bi-Ag d-spacing (3.1 +/- 0.1 A) is found to be consistent with the bulk bismuth near neighbor distance. The bismuth z-direction rms disorder (1.01 +/- 0.08 A) is found to be dominated by the roughness of the underlying silver (sigma_{Ag} = 0.9 +/- 0.1 A rms). Using the estimated bismuth-bismuth spring constant of 1.41 +/- 0.07 eV/A^2 from our measured bismuth two-dimensional compressibility, two simple models are used to try and understand the origin of the anisotropic disorder. A simple two-dimensional isotropic thermal fluctuation model shows that thermal fluctuations are not large enough to account for all of the measured excess disorder in the incommensurate direction. A simple one-dimensional Frenkel-Kontorova model shows that the substrate-induced disorder can account for the anisotropic disorder, assuming a substrate sinusoidal potential strength of 0.35 +/- 0.02 eV.

  20. Thermomagnetic coolers based on Bi and Bi-Sb nanocomposites

    NASA Astrophysics Data System (ADS)

    Huber, Tito E.; Constant, Pierre

    2001-02-01

    Bulk Bi, a semimetal, and Bi-Sb, have the highest thermoelectric figure of merit Z at 100 K. The thermoelectric properties of these materials are strongly anisotropic. The best thermoelectric performance is observed when the electrical current flows along the trigonal axis. However, Bi single crystals are easily cleaved along the trigonal planes. This lack of strength has largely prevented the use of these materials in practical thermoelectric coolers. Composite technology offers the opportunity to increase the toughness of Bi and Bi-Sb. Also, microengineering Bi into composites may lead to a significant improvement in their thermoelectric performance, because of the reduction of phonon conductivity from phonon scattering at the grain boundaries and interfaces. It has been shown theoretically that quantum-wire structures have the potential to significantly improve Z over the bulk value. We have synthesized microwire composites and present measurements of its electrical conductivity and Seebeck coefficient that are very encouraging. The role that a tough thermoelectric cooler could have in extending the lifetime of a space system such as Space InfraRed Telescope Facility (SIRTF) is briefly discussed. .

  1. Hepatic Scavenger Receptor BI Protects Against Polymicrobial-induced Sepsis through Promoting LPS Clearance in Mice*

    PubMed Central

    Guo, Ling; Zheng, Zhong; Ai, Junting; Huang, Bin; Li, Xiang-An

    2014-01-01

    Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1I179N mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1I179N mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1I179N mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis. PMID:24719333

  2. Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive

    NASA Astrophysics Data System (ADS)

    Fallah-Arani, Hesam; Baghshahi, Saeid; Sedghi, Arman; Stornaiuolo, Daniela; Tafuri, Francesco; Riahi-Noori, Nastaran

    2018-05-01

    By using a solid state method, Bi2Sr2Ca1Cu2O8+θ (Bi-2212) polycrystalline samples were synthesized with the addition of boron oxide additive, with the aim of improving the performance of this compound for large scale applications. As the first step, the parameters for the solid state method, in particular sintering temperature, were optimized in order to obtain pure Bi-2212 samples with an optimal microstructure. Then, based on this optimization, the properties of the Bi2Sr2Ca1Cu2BxOy samples with x = 0.05, 0.1, and 0.2 were studied using several characterization techniques. It was found that the sample having x = 0.05 showed a magnetic hysteresis loop larger than that of the pure Bi-2212 sample and a critical current density value of 3.71 × 105 A/cm2, comparable to the best results found in the literature for Bi-2212, while preserving well-stacked and oriented grains.

  3. Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement

    NASA Astrophysics Data System (ADS)

    Algueró, M.; Amorín, H.; Fernández-Posada, C. M.; Peña, O.; Ramos, P.; Vila, E.; Castro, A.

    2016-05-01

    Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3-BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB) between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3-BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3-PbTiO3 and BiFeO3-PbTiO3 binary systems, and the BiFeO3-BiMnO3-PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.

  4. Preparation and characterization of a possible topological insulator BiYO3: experiment versus theory.

    PubMed

    Zhang, Y; Deng, S; Pan, M; Lei, M; Kan, X; Ding, Y; Zhao, Y; Köhler, J

    2016-03-21

    The Bi-Y-O system has been investigated by X-ray powder diffraction, electron diffraction, UV-vis and IR experiments. A metastable cubic high temperature phase of BiYO3 with fluorite-type structure has been structurally characterized for the first time and shows a large band gap of ∼ 5.9 eV. A unified description for the numerous structural variants discovered in the Bi-Y-O system is established within the symmetry breaking approach. This rich structural phenomenon makes the Bi-Y-O system a promising candidate in the search for new topological insulators for applications. On this basis, a long standing controversy on the phase diagram of the Bi-Y-O system has been solved. Our DFT calculations predict a high pressure phase for BiYO3 with perovskite (ABO3) structure and ordering of Bi and Y on the A and B sites, respectively. However, our analysis of the nature of the low energy electronic structure shows that this phase is not a suitable candidate for a topological insulator.

  5. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.

    PubMed

    Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng

    2014-12-30

    This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  6. Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Bismarck Luiz, E-mail: bismarck_luiz@yahoo.com.br; Reinhart, Guillaume; Nguyen-Thi, Henri

    2015-09-15

    Sn–Bi solders may be applied for electronic applications where low-temperature soldering is required, i.e., sensitive components, step soldering and soldering LEDs. In spite of their potential to cover such applications, the mechanical response of soldered joints of Sn–Bi alloys in some cases does not meet the strength requirements due to inappropriate resulting microstructures. Hence, careful examination and control of as-soldered microstructures become necessary with a view to pre-programming reliable final properties. The present study aims to investigate the effects of solidification thermal parameters (growth rate — V{sub L} and cooling rate — T-dot{sub L}) on the microstructure of the Sn–52more » wt.%Bi solder solidified under unsteady-state conditions. Samples were obtained by upward directional solidification (DS), followed by characterization through metallography and scanning electron microscopy (SEM). The microstructures are shown to be formed by Sn-rich dendrites decorated with Bi precipitates surrounded by a complex regular eutectic mixture, with alternated Bi-rich and Sn-rich phases. Experimental correlations of primary (λ{sub 1}), secondary (λ{sub 2}), tertiary (λ{sub 3}) dendritic and eutectic spacings (λ{sub coarse} and λ{sub fine}) with cooling rate and growth rate are established. Two ranges of lamellar eutectic sizes were determined, described by two experimental equations λ = 1.1 V{sub L}{sup −1/2} and λ = 0.67 V{sub L}{sup −1/2}. The onset of tertiary branches within the dendritic array along the Sn–52 wt.%Bi alloy DS casting is shown to occur for cooling rates lower than 1.5 °C/s. - Highlights: • The Sn–52 wt.%Bi solder was shown to have two eutectic sizes. • The fishbone eutectic is preferably located adjacent to the Bi-rich lamellar phases. • The onset of tertiary dendritic branches in Sn–Bi is associated with T-dot{sub L} < 1.5 °C/s. • Higher eutectic fraction and λ{sub 3} provoked a reverse increase in σ{sub u} and σ{sub y}.« less

  7. Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica

    ERIC Educational Resources Information Center

    Acosta, César R.; Tapia, J. Alejandro; Cab, César

    2014-01-01

    Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…

  8. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  9. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.

    PubMed

    Liu, Liming; Wang, Honghang; Yi, Zichuan; Deng, Quanrong; Lin, Zhidong; Zhang, Xiaowen

    2018-02-01

    Bismuth (Bi) nanoparticles are prepared by using NaBi(MoO 4 ) 2 nanosheets in the beam of electrons emitted by transmission electron microscope. The formation and growth of Bi nanoparticles are investigated in situ. The sizes of Bi nanoparticles are confined within the range of 6-10nm by controlling irradiation time. It is also observed that once the diameter of nanoparticles is larger than 10nm, the Bi particles are stable as a result of the immobility of large nanoparticles. In addition, some nanoparticles on the edges form nanorods, which are explained as the result of a coalescence process, if the irradiation period is longer than 10min. The in situ research on Bi nanoparticles facilitates in-depth investigations of the physicochemical behavior and provides more potential applications in various fields such as sensors, catalysts and optical devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Localized Vibrations of Bi Bilayer Leading to Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Weak Topological Insulator n-Type BiSe.

    PubMed

    Samanta, Manisha; Pal, Koushik; Pal, Provas; Waghmare, Umesh V; Biswas, Kanishka

    2018-05-02

    Realization of high thermoelectric performance in n-type semiconductors is of imperative need on account of the dearth of efficient n-type thermoelectric materials compared to the p-type counterpart. Moreover, development of efficient thermoelectric materials based on Te-free compounds is desirable because of the scarcity of Te in the Earth's crust. Herein, we report the intrinsic ultralow thermal conductivity and high thermoelectric performance near room temperature in n-type BiSe, a Te-free solid, which recently has emerged as a weak topological insulator. BiSe possesses a layered structure consisting of a bismuth bilayer (Bi 2 ) sandwiched between two Bi 2 Se 3 quintuple layers [Se-Bi-Se-Bi-Se], resembling natural heterostructure. High thermoelectric performance of BiSe is realized through the ultralow lattice thermal conductivity (κ lat of ∼0.6 W/mK at 300 K), which is significantly lower than that of Bi 2 Se 3 (κ lat of ∼1.8 W/mK at 300 K), although both of them belong to the same layered homologous family (Bi 2 ) m (Bi 2 Se 3 ) n . Phonon dispersion calculated from first-principles and the experimental low-temperature specific heat data indicate that soft localized vibrations of bismuth bilayer in BiSe are responsible for its ultralow κ lat . These low energy optical phonon branches couple strongly with the heat carrying acoustic phonons, and consequently suppress the phonon mean free path leading to low κ lat . Further optimization of thermoelectric properties of BiSe through Sb substitution and spark plasma sintering (SPS) results in high ZT ∼ 0.8 at 425 K along the pressing direction, which is indeed remarkable among Te-free n-type thermoelectric materials near room temperature.

  11. A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.

    PubMed

    Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino

    2017-06-01

    In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.

  12. Micromachined Thermoelectric Sensors and Arrays and Process for Producing

    NASA Technical Reports Server (NTRS)

    Foote, Marc C. (Inventor); Jones, Eric W. (Inventor); Caillat, Thierry (Inventor)

    2000-01-01

    Linear arrays with up to 63 micromachined thermopile infrared detectors on silicon substrates have been constructed and tested. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi-Te and Bi-Sb-Te thermoelectric elements films. At room temperature and under vacuum these detectors exhibit response times of 99 ms, zero frequency D* values of 1.4 x 10(exp 9) cmHz(exp 1/2)/W and responsivity values of 1100 V/W when viewing a 1000 K blackbody source. The only measured source of noise above 20 mHz is Johnson noise from the detector resistance. These results represent the best performance reported to date for an array of thermopile detectors. The arrays are well suited for uncooled dispersive point spectrometers. In another embodiment, also with Bi-Te and Bi-Sb-Te thermoelectric materials on micromachined silicon nitride membranes, detector arrays have been produced with D* values as high as 2.2 x 10(exp 9) cm Hz(exp 1/2)/W for 83 ms response times.

  13. Fast Poisson noise removal by biorthogonal Haar domain hypothesis testing

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Fadili, M. J.; Starck, J.-L.; Digel, S. W.

    2008-07-01

    Methods based on hypothesis tests (HTs) in the Haar domain are widely used to denoise Poisson count data. Facing large datasets or real-time applications, Haar-based denoisers have to use the decimated transform to meet limited-memory or computation-time constraints. Unfortunately, for regular underlying intensities, decimation yields discontinuous estimates and strong “staircase” artifacts. In this paper, we propose to combine the HT framework with the decimated biorthogonal Haar (Bi-Haar) transform instead of the classical Haar. The Bi-Haar filter bank is normalized such that the p-values of Bi-Haar coefficients (p) provide good approximation to those of Haar (pH) for high-intensity settings or large scales; for low-intensity settings and small scales, we show that p are essentially upper-bounded by pH. Thus, we may apply the Haar-based HTs to Bi-Haar coefficients to control a prefixed false positive rate. By doing so, we benefit from the regular Bi-Haar filter bank to gain a smooth estimate while always maintaining a low computational complexity. A Fisher-approximation-based threshold implementing the HTs is also established. The efficiency of this method is illustrated on an example of hyperspectral-source-flux estimation.

  14. The emergence and diffusion of DNA microarray technology.

    PubMed

    Lenoir, Tim; Giannella, Eric

    2006-08-22

    The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow--namely; the flow of inventions into industry through the licensing of university-based technologies--has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental to transforming the research agendas of several fields within academe. The typical story told about the role of federal funding emphasizes the spillovers from federally funded academic research to industry. Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields.

  15. The emergence and diffusion of DNA microarray technology

    PubMed Central

    Lenoir, Tim; Giannella, Eric

    2006-01-01

    The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental to transforming the research agendas of several fields within academe. The typical story told about the role of federal funding emphasizes the spillovers from federally funded academic research to industry. Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields. PMID:16925816

  16. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  17. STM/STS studies for interplane disorder effects on the electronic states of the Cu-O plane in Bi2201

    NASA Astrophysics Data System (ADS)

    Kurosawa, T.; Hatta, G.; Miyazaki, H.; Yamaji, J.; Yoshikawa, K.; Nakagawa, Y.; Shibata, Y.; Yoshida, H.; Oda, M.; Ido, M.; Takeyama, K.; Momono, N.

    2015-08-01

    STM/STS experiments have been performed in Bi2Sr1.7R0.3CuO6+δ (R-Bi2201) systems with R = La and Eu, which are of a nearly optimal doping level po but have different Tc values, 35 K and 20 K, respectively, to examine interplane disorder effects on the superconducting (SC) gap and the pseudogap (PG) that is accompanied by a checkerboard-type charge order (CCO). We report that as interplane disorders are strengthened by replacing La with Eu in optimal Bi2201, the antinodal PG size Δ∗ increases from ˜ 30meV to ˜ 60meV, which is comparable to the value for an underdoping level p/po ˜ 0.5 in La-Bi2201. On the other hand, the period of CCO in optimal Eu-Bi2201 is the same as in optimal La-Bi2201, about five times lattice constant ˜ 5a along the Cu-O bond directions; it remains unchanged even if the PG develops markedly to the same degree as for p/po ˜ 0.5 in La-Bi2201, whose period is ˜ 4a.

  18. Synthesis of BiVO4-GO-PVDF nanocomposite: An excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies

    NASA Astrophysics Data System (ADS)

    Biswas, Md Rokon Ud Dowla; Oh, Won-Chun

    2018-06-01

    BiVO4-GO-PVDF (PVDF = Polyvinylidene Difluoride) photocatalyst is successfully synthesized by ultrasonication method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Morphology of BiVO4-GO-PVDF looks like a human embryo embedded inside an amniotic sac. Photocatalytic performance of BiVO4-GO-PVDF for decolorization of methylene blue is investigated. BiVO4-GO-PVDF system reveals enhanced photocatalytic activity degradation of methylene blue (MB), Rhodamine B (RhB) & Safranin-O (SO) in water under visible light irradiation as compared to the pure BiVO4 catalyst, BiVO4 & PTFE decorated on the graphene sheet. The experimental result reveals that the covering of graphene sheets in this composite catalyst enhances photocatalytic performance under visible light. This enhanced activity is mainly attributed to effective quenching of the photogenerated electron-hole pairs confirmed by photoluminescence spectra. Trapping experiments of radicals and holes were conducted to detect reactive species generated in the photocatalytic system, experimental results revealed that direct hole oxidation reaction is obviously dominant during photocatalytic reactions on the BiVO4-GO-PVDF system.

  19. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    NASA Astrophysics Data System (ADS)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  20. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues.

    PubMed

    Lubner, Sean D; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method-widely used for rigid, inorganic solids-as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  1. Bi-local holography in the SYK model

    DOE PAGES

    Jevicki, Antal; Suzuki, Kenta; Yoon, Junggi

    2016-07-01

    We discuss large N rules of the Sachdev-Ye-Kitaev model and the bi-local representation of holography of this theory. This is done by establishing 1/N Feynman rules in terms of bi-local propagators and vertices, which can be evaluated following the recent procedure of Polchinski and Rosenhaus. Lastly, these rules can be interpreted as Witten type diagrams of the dual AdS theory, which we are able to define at IR fixed point and off.

  2. Be a good loser: A theoretical model for subordinate decision-making on bi-directional sex change in haremic fishes.

    PubMed

    Sawada, Kota; Yamaguchi, Sachi; Iwasa, Yoh

    2017-05-21

    Among animals living in groups with reproductive skew associated with a dominance hierarchy, subordinates may do best by using various alternative tactics. Sequential hermaphrodites or sex changers adopt a unique solution, that is, being the sex with weaker skew when they are small and subordinate, and changing sex when they become larger. In bi-directionally sex-changing fishes, although most are haremic and basically protogynous, subordinate males can change sex to being females. We study a mathematical model to examine when and why such reversed sex change is more adaptive than dispersal to take over another harem. We attempt to examine previously proposed hypotheses that the risk of dispersal and low density favor reversed sex change, and to specify an optimal decision-making strategy for subordinates. As a result, while the size-dependent conditional strategy in which smaller males tend to change sex is predicted, even large males are predicted to change sex under low density and/or high risk of dispersal, supporting both previous hypotheses. The importance of spatiotemporal variation of social and ecological conditions is also suggested. We discuss a unified framework to understand hermaphroditic and gonochoristic societies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-12-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control.

  4. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    PubMed Central

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-01-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control. PMID:28004798

  5. Yangian symmetry for bi-scalar loop amplitudes

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Kazakov, Vladimir; Loebbert, Florian; Müller, Dennis; Zhong, De-liang

    2018-05-01

    We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N=4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.

  6. Does the Australian desert ant Melophorus bagoti approximate a Lévy search by an intrinsic bi-modal walk?

    PubMed

    Reynolds, Andy M; Schultheiss, Patrick; Cheng, Ken

    2014-01-07

    We suggest that the Australian desert ant Melophorus bagoti approximates a Lévy search pattern by using an intrinsic bi-exponential walk and does so when a Lévy search pattern is advantageous. When attempting to locate its nest, M. bagoti adopt a stereotypical search pattern. These searches begin at the location where the ant expects to find the nest, and comprise loops that start and end at this location, and are directed in different azimuthal directions. Loop lengths are exponentially distributed when searches are in visually familiar surroundings and are well described by a mixture of two exponentials when searches are in unfamiliar landscapes. The latter approximates a power-law distribution, the hallmark of a Lévy search. With the aid of a simple analytically tractable theory, we show that an exponential loop-length distribution is advantageous when the distance to the nest can be estimated with some certainty and that a bi-exponential distribution is advantageous when there is considerable uncertainty regarding the nest location. The best bi-exponential search patterns are shown to be those that come closest to approximating advantageous Lévy looping searches. The bi-exponential search patterns of M. bagoti are found to approximate advantageous Lévy search patterns. Copyright © 2013. Published by Elsevier Ltd.

  7. Lead-free Bi(Mg0.5Ti0.5)O3-modified 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 ferroelectric ceramics with tetragonal structure and large field-induced strains

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhu, Mankang; Ren, Xiaowei; Wei, Qiumei; Zheng, Mupeng; Hou, Yudong

    2017-12-01

    A electrostrictive ceramics were designed by introducing Bi(Mg0.5Ti0.5)O3 into 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 with tetragonal structure. All the specimens prepared by a conventional solid sintering technique exhibit the excellent sintering ability with a high relative density over 97%. It is found that, as BMT added, the specimens undergo a structure crossover from ferroelectric P4mm to ergodic P4bm, and the coexistence of both tetragonal structures takes bridge between them. A large field-induced strain of 0.30% and field-independent strain coefficient of 0.0254 m4/C2 occur at 4 mol.% BMT added. This material with excellent sinterability is suitable for the application in actuators and microposition controllers.

  8. Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi2

    NASA Astrophysics Data System (ADS)

    Gao, Wenshuai; Hao, Ningning; Zheng, Fa-Wei; Ning, Wei; Wu, Min; Zhu, Xiangde; Zheng, Guolin; Zhang, Jinglei; Lu, Jianwei; Zhang, Hongwei; Xi, Chuanying; Yang, Jiyong; Du, Haifeng; Zhang, Ping; Zhang, Yuheng; Tian, Mingliang

    2017-06-01

    While pyrite-type PtBi2 with a face-centered cubic structure has been predicted to be a three-dimensional (3D) Dirac semimetal, experimental study of its physical properties remains absent. Here we report the angular-dependent magnetoresistance measurements of a PtBi2 single crystal under high magnetic fields. We observed extremely large unsaturated magnetoresistance (XMR) up to (11.2 ×106)% at T =1.8 K in a magnetic field of 33 T, which is comparable to the previously reported Dirac materials, such as WTe2 , LaSb, and NbP. The crystals exhibit an ultrahigh mobility and significant Shubnikov-de Hass quantum oscillations with a nontrivial Berry phase. The analysis of Hall resistivity indicates that the XMR can be ascribed to the nearly compensated electron and hole. Our experimental results associated with the ab initio calculations suggest that pyrite PtBi2 is a topological semimetal candidate that might provide a platform for exploring topological materials with XMR in noble metal alloys.

  9. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi 1.5 Pb 0.55 Sr 1.6 La 0.4 CuO 6 + δ

    DOE PAGES

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-T c superconductor Bi 1.5Pb 0.55Sr 1.6La 0.4CuO 6+δ (OP-Bi2201, T c ≃ 34 K) are investigated by Cu L 3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, andmore » charge modes in this compound. We also compare the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi 1.5Pb 0.6Sr 1.54CaCu 2O 8+δ (OP-Bi2212, T c ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to T c, not even within the same family of cuprates.« less

  10. Anomalous thermoelectricity in strained Bi2Te3 films.

    PubMed

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-09-07

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization.

  11. Anomalous thermoelectricity in strained Bi2Te3 films

    PubMed Central

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-01-01

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization. PMID:27600406

  12. Crystalline and magnetooptical characteristics of (Tb,Bi)3(Fe,Ga)5O12 deposited on (Y,Nd)3Al5O12

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryohei; Goto, Taichi; Nakamura, Yuichi; Boey Lim, Pang; Uchida, Hironaga; Inoue, Mitsuteru

    2018-06-01

    We prepared Bi- and Ga-substituted Tb3Fe5O12 (BiGa:TIG) films on a Nd-substituted Y3Al5O12 (Nd:YAG) single crystal substrate by pulsed laser deposition, and investigated their magnetic, optical, and magnetooptical properties. A BiGa:TIG film deposited with a substrate temperature of 700 °C shows the easy axis of magnetization along the out-of-plane direction of the film and the Faraday rotation angle of 900°/cm at a wavelength of 1064 nm. The epitaxial growth of the film is confirmed by X-ray diffraction analysis.

  13. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor–BI mediate HDL-initiated signaling

    PubMed Central

    Assanasen, Chatchawin; Mineo, Chieko; Seetharam, Divya; Yuhanna, Ivan S.; Marcel, Yves L.; Connelly, Margery A.; Williams, David L.; de la Llera-Moya, Margarita; Shaul, Philip W.; Silver, David L.

    2005-01-01

    The binding of HDL to scavenger receptor–BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-β-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-β-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-β-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane. PMID:15841181

  14. Measuring bi-directional current through a field-effect transistor by virtue of drain-to-source voltage measurement

    DOEpatents

    Turner, Steven Richard

    2006-12-26

    A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.

  15. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI) available: IR spectra and TG profiles of as-made BiFeO3 NPs and MBFA samples, TEM images of 3-APA-capped BiFeO3 NPs, EDS spectrum of MBFAs, N2 adsorption-desorption isotherms of randomly aggregated BiFeO3 NPs and catalytic data for 4-NP reduction by MBFAs and other nanostructured catalysts. See DOI: 10.1039/c5nr00185d

  16. Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection.

    PubMed

    Okoth, Otieno Kevin; Yan, Kai; Liu, Yong; Zhang, Jingdong

    2016-12-15

    Bismuth sulphide (Bi2S3) nanorods doped with graphene (G) were synthesized and explored as photoactive materials for constructing a photoelectrochemical (PEC) aptasensor for sulfadimethoxine (SDM) detection. The formation of Bi2S3 nanorods and G nanosheets was observed by scanning electron microscopy (SEM) and further characterized by X-ray diffraction (XRD) spectroscopy. The PEC measurements indicated that the photocurrent response of Bi2S3 was obviously improved by doping suitable amount of G. The G-Bi2S3 composite coated electrode was utilized for fabricating a PEC aptasensor by covalently immobilizing a 5'-amino-terminated SDM aptamer on the electrode surface. Based on the specific interaction between SDM and the aptamer, a PEC sensor responsive to SDM was obtained. Under optimal conditions, the proposed sensor showed a linear photocurrent response to SDM in the concentration range of 1.0-100nM, with a low detection limit (3S/N) of 0.55nM. Moreover, the sensor showed high sensitivity, stability and reproducibility. The potential applicability of the PEC aptasensor was confirmed by detecting SDM in veterinary drug formulation and milk. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Anharmonic phonons and magnons in BiFeO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delaire, Olivier A; Ma, Jie; Stone, Matthew B

    2012-01-01

    The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed withmore » neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.« less

  18. Pt-Bi Antibonding Interaction: The Key Factor for Superconductivity in Monoclinic BaPt2Bi2.

    PubMed

    Gui, Xin; Xing, Lingyi; Wang, Xiaoxiong; Bian, Guang; Jin, Rongying; Xie, Weiwei

    2018-02-19

    In the search for superconductivity in a BaAu 2 Sb 2 -type monoclinic structure, we have successfully synthesized the new compound BaPt 2 Bi 2 , which crystallizes in the space group P2 1 /m (No. 11; Pearson symbol mP10) according to a combination of powder and single-crystal X-ray diffraction and scanning electron microscopy. A sharp electrical resistivity drop and large diamagnetic magnetization below 2.0 K indicates it owns superconducting ground state. This makes BaPt 2 Bi 2 the first reported superconductor in a monoclinic BaAu 2 Sb 2 -type structure, a previously unappreciated structure for superconductivity. First-principles calculations considering spin-orbit coupling indicate that Pt-Bi antibonding interaction plays a critical role in inducing superconductivity.

  19. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+δ)NbSe2.

    PubMed

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-02

    (BiSe)(1+δ)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation.

  20. Construction Site Environmental Impact in Civil Engineering Education

    ERIC Educational Resources Information Center

    Teixeira, Jose M. Cardoso

    2005-01-01

    The environmental impact of construction activity has gained increasing importance in the last few years and become a key subject for civil engineering education. A survey of Portuguese higher education institutions shows that concern with this topic is mostly directed at the impact of large construction projects and especially focused on their…

  1. Synthesis, crystal structure, and physical properties of the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Scott; Yuan, Fang; Kosuda, Kosuke

    The second and third known rare-earth bismuthide oxides, Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, have been discovered via high temperature reactions at 1300 °C. Like its Gd–Sb–O counterparts, the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases crystallize in the monoclinic C2/m space group, with the latter containing disordered Bi atoms along the b direction of the unit cell. Unlike the RE{sub 8}Sb{sub 3}O{sub 8} series, the formation of the Gd{sub 3}BiO{sub 3} phase does not necessarily precede the formation of Gd{sub 8}Bi{sub 3}O{sub 8}, which is likely due to the difficulty of accommodating bismuth in themore » RE–O framework due to its larger size. Physical property measurements performed on a pure Gd{sub 8}Bi{sub 3}O{sub 8} sample reveal semiconducting behavior. Although electronic structure calculations predict metallic behavior due to an unbalanced electron count, the semiconducting behavior originates from the Anderson localization of the Bi p states near the Fermi level as a result of atomic disorder. - Graphical abstract: Reaction of GdBi and Gd{sub 2}O{sub 3} at high temperatures yields Gd–Bi–O phases. - Highlights: • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, the second and third rare-earth bismuthide oxides, have been discovered. • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} are isostructural with RE{sub 3}SbO{sub 3} and RE{sub 8}Sb{sub 3}O{sub 8}. • Gd{sub 8}Bi{sub 3}O{sub 8} displays semiconducting behavior despite an unbalanced electron count. • Anderson localization of Bi p states results in semiconducting behavior in Gd{sub 8}Bi{sub 3}O{sub 8}.« less

  2. Bi-Static Deep Electromagnetic Soundings for Martian Subsurface Characterization: Experimental Validation in the Egyptian Western Desert

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Le Gall, A.; Berthelier, J. J.; Corbel, Ch.; Dolon, F.; Ney, R.; Reineix, A.; Guiffaud, Ch.; Clifford, S.; Heggy, E.

    2007-03-01

    A bi-static version of the HF GPR TAPIR developed for martian deep soundings has been operated in the Egyptian Western Desert. The study presented focuses on the retrieval of the direction of arrival of the observed echoes on both simulated and measured d

  3. Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarangella, Adriana; Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania; Reitano, Riccardo

    2015-07-27

    The process of energy transfer (ET) between optically active ions has been widely studied to improve the optical efficiency of a system for different applications, from lighting and photovoltaics to silicon microphotonics. In this work, we report the influence of Bi on the Er optical emission in erbium-yttrium oxide thin films synthesized by magnetron co-sputtering. We demonstrate that this host permits to well dissolve Er and Bi ions, avoiding their clustering, and thus to stabilize the optically active Er{sup 3+} and Bi{sup 3+} valence states. In addition, we establish the ET occurrence from Bi{sup 3+} to Er{sup 3+} by themore » observed Bi{sup 3+} PL emission decrease and the simultaneous Er{sup 3+} photoluminescence (PL) emission increase. This was further confirmed by the coincidence of the Er{sup 3+} and Bi{sup 3+} excitation bands, analyzed by PL excitation spectroscopy. By increasing the Bi content of two orders of magnitude inside the host, though the occurrence of Bi-Bi interactions becomes deleterious for Bi{sup 3+} optical efficiency, the ET process between Bi{sup 3+} and Er{sup 3+} is still prevalent. We estimate ET efficiency of 70% for the optimized Bi:Er ratio equal to 1:3. Moreover, we have demonstrated to enhance the Er{sup 3+} effective excitation cross section by more than three orders of magnitude with respect to the direct one, estimating a value of 5.3 × 10{sup −18} cm{sup 2}, similar to the expected Bi{sup 3+} excitation cross section. This value is one of the highest obtained for Er in Si compatible hosts. These results make this material very promising as an efficient emitter for Si-compatible photonics devices.« less

  4. Uni-directional optical pulses, temporal propagation, and spatial and temporal dispersion

    NASA Astrophysics Data System (ADS)

    Kinsler, P.

    2018-02-01

    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The exact coupled bi-directional equations that this approach generates can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. They also permit a direct term-to-term comparison of the exact bi-directional theory with its corresponding approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxwell equation solvers.

  5. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+)

    PubMed Central

    Liu, Xiao; Fan, Huiqing; Shi, Jing; Li, Qiang

    2015-01-01

    Dielectric properties and dielectric relaxation behaviors of A/B sites co-substituted Bi0.5Na0.5TiO3 perovskite-type ferroelectrics are reported. The Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+) exhibits anomalous giant dielectric permittivity (ε’) of ~105 under a heterogeneous constitution with easily discernible grain and grain boundary conductivity. The lone pairs substitution theory as well as extrinsic disorders are used to clarify the significant structural evolution and the origin of the dielectric performance. A bigger free volume promotes the anomalous relaxation between oxygen sites, and the polarization direction on the nanoscale deviates from the average polarization direction at its ferroelectric state. Furthermore, no obvious phase transition indicates the considerable static substitutional disorder at the Bi/Na sites, which facilitates delocalized conduction of oxygen ions in the intermediate temperature range. PMID:26239525

  6. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors.

    PubMed

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-01-19

    In this work, bismuth selenides (Bi 2 Se 3 and Bi 3 Se 4 ), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi 2 Se 3 nanoplates exhibit much better performance as an electrode material than Bi 3 Se 4 nanoparticles do, delivering a higher specific capacitance (272.9 F g -1 ) than that of Bi 3 Se 4 (193.6 F g -1 ) at 5 mV s -1 . This result may be attributed to the fact that Bi 2 Se 3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi 3 Se 4 ). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi 2 Se 3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm -3 at 20 mV s -1 (Bi 3 Se 4 : 79.1 F cm -3 ), a high energy density of 17.9 mWh cm -3 and a high power density of 18.9 W cm -3 . The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi 2 Se 3 (Bi 3 Se 4 :90.3%). Clearly, Bi 2 Se 3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  7. Layer Structured Bismuth Selenides of Bi2Se3 and Bi3Se4 for High Energy and Flexible All-Solid-State Micro-Supercapacitors.

    PubMed

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2017-12-20

    Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.

  8. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-02-01

    In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  9. Presentation of a new BRDF measurement device

    NASA Astrophysics Data System (ADS)

    Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

    1998-12-01

    The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

  10. Anisotropic phonon coupling in the relaxor ferroelectric (Na1/2Bi1/2)TiO3 near its high-temperature phase transition

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Toulouse, Jean; Luo, Haosu; Tian, Wei

    2014-08-01

    The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the [110] and [001] directions and across the cubic-tetragonal phase transition at TC˜800 K. The phonon spectra are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric perovskites, a precipitous drop of the TO phonon into the TA branch or "waterfall" is observed at a certain qwf˜0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling mechanism are proposed to explain these observations.

  11. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm)

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Petersen, A. C.; Qu, Dongxia; Hor, Y. S.; Cava, R. J.; Ong, N. P.

    2012-02-01

    We report the observation of prominent Shubnikov-de Haas oscillations in a Topological Insulator, Bi2Te2Se, with large bulk resistivity (6 Ω cm at 4 K). By fitting the SdH oscillations, we infer a large metallicity parameter kFℓ=41, with a surface mobility (μs∼2800 cm2/V s) much larger than the bulk mobility (μb∼50 cm2/V s). The plot of the index fields Bν vs. filling factor ν shows a {1}/{2}-shift, consistent with massless, Dirac states.

  12. Evaluation of Tensile Young's Modulus and Poisson's Ratio of a Bi-modular Rock from the Displacement Measurements in a Brazilian Test

    NASA Astrophysics Data System (ADS)

    Patel, Shantanu; Martin, C. Derek

    2018-02-01

    Unlike metals, rocks show bi-modularity (different Young's moduli and Poisson's ratios in compression and tension). Displacements monitored during the Brazilian test are used in this study to obtain the Young's modulus and Poisson's ratio in tension. New equations for the displacements in a Brazilian test are derived considering the bi-modularity in the stress-strain relations. The digital image correlation technique was used to monitor the displacements of the Brazilian disk flat surface. To validate the Young's modulus and Poisson's ratio obtained from the Brazilian test, the results were compared with the values from the direct tension tests. The results obtained from the Brazilian test were repetitive and within 3.5% of the value obtained from the direct tension test for the rock tested.

  13. Synthesis and characterization study of n-Bi2O3/p-Si heterojunction dependence on thickness

    NASA Astrophysics Data System (ADS)

    Al-Maiyaly, Bushra K. H.; Hussein, Bushra H.; Salih, Ayad A.; Shaban, Auday H.; Mahdi, Shatha H.; Khudayer, Iman H.

    2018-05-01

    In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measurement were taken for the wave length range (400-1100) nm showed that the nature of the optical transition has been direct allowed with average band gap energies varies in the range of (2.9-2.25) eV with change thickness parameter. The extent and nature of transmittance, absorbance, reflectance and optimized band gap of the material assure to utilize it for photovoltaic applications. Hall measurements showed that all the films are n-type. The electrical properties of n-Bi2O3/p-Si heterojunction (HJ) were obtained by I-V (dark and illuminated) and C-V measurement at frequency (10 MHz) at different thickness. The ideality factor saturation current density, depletion width, built-in potential and carrier concentration are characterized under different thickness. The results show these HJ were of abrupt type. The photovoltaic measurements short-circuit current density, open-circuit voltage, fill factor and efficiencies are determined for all samples. Finally thermal oxidation allowed fabrication n-Bi2O3/p-Si heterojunction with different thickness for solar cell application.

  14. Photo-Sensitivity of Large Area Physical Vapor Deposited Mono and Bilayer MoS2 (Postprint)

    DTIC Science & Technology

    2014-07-01

    layer MoS2 without any apparent rectifying junctions , making device fabrication straightforward. For bi-layers, no such effect was present, suggesting...layer MoS2 without any apparent rectifying junctions , making device fabrication straightforward. For bi-layers, no such effect was present, suggesting...pressure below 5×10−9 Torr for atomically sharp and clean interfaces. The mono and bi-layer specimens were grown on 100 nm thick thermal oxide coated silicon

  15. Business intelligence: using insight to improve the value and performance of your practice.

    PubMed

    Coan, Tim

    2007-01-01

    Using information to improve the value of your practice can be a great way to create leverage and improve the performance of your practice. Business intelligence (BI) is the result of a complete system that produces meaningful insights by providing the information necessary to make business decisions. Changes made from these insights improve both the performance and value of your practice. It is important to identify the key elements required of a good BI system and the areas within a practice that can directly benefit from an effective BI system.

  16. Fluid driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  17. Fluid driven recipricating apparatus

    DOEpatents

    Whitehead, John C.

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  18. Generation of a conditional analog-sensitive kinase in human cells using CRISPR/Cas9-mediated genome engineering.

    PubMed

    Moyer, Tyler C; Holland, Andrew J

    2015-01-01

    The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  20. Performance metric comparison study for non-magnetic bi-stable energy harvesters

    NASA Astrophysics Data System (ADS)

    Udani, Janav P.; Wrigley, Cailin; Arrieta, Andres F.

    2017-04-01

    Energy harvesting employing non-linear systems offers considerable advantages over linear systems given the broadband resonant response which is favorable for applications involving diverse input vibrations. In this respect, the rich dynamics of bi-stable systems present a promising means for harvesting vibrational energy from ambient sources. Harvesters deriving their bi-stability from thermally induced stresses as opposed to magnetic forces are receiving significant attention as it reduces the need for ancillary components and allows for bio- compatible constructions. However, the design of these bi-stable harvesters still requires further optimization to completely exploit the dynamic behavior of these systems. This study presents a comparison of the harvesting capabilities of non-magnetic, bi-stable composite laminates under variations in the design parameters as evaluated utilizing established power metrics. Energy output characteristics of two bi-stable composite laminate plates with a piezoelectric patch bonded on the top surface are experimentally investigated for variations in the thickness ratio and inertial mass positions for multiple load conditions. A particular design configuration is found to perform better over the entire range of testing conditions which include single and multiple frequency excitation, thus indicating that design optimization over the geometry of the harvester yields robust performance. The experimental analysis further highlights the need for appropriate design guidelines for optimization and holistic performance metrics to account for the range of operational conditions.

  1. Mechanical and electrical properties of low temperature phase MnBi

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun

    2016-01-01

    Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.

  2. Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity.

    PubMed

    Zhang, Liping; Ghimire, Pramila; Phuriragpitikhon, Jenjira; Jiang, Baojiang; Gonçalves, Alexandre A S; Jaroniec, Mietek

    2018-03-01

    Bismuth/bismuth oxide heterojunction on porous carbon (Bi 0 /Bi 2 O 3 @C) was successfully prepared by a surfactant-assisted sol-gel method. This composite photocatalyst was fabricated by depositing Bi 2 O 3 and metallic bismuth nanoparticles (NPs) on porous carbon sheets. Bi NPs were created by in-situ reduction of Bi 2 O 3 with amorphous carbon. During the synthesis, bismuth and carbon precursors were mixed in different ratios, resulting in distinct amounts of metallic bismuth in the composites. The composites showed large specific surface area and pore volume as well as strong light absorption ability due to the existing carbon. In addition, the plasmonic bismuth NPs were found to behave as a noble metal, which is able to generate hot charge carriers under visible light irradiation. Photocatalytic performance of the Bi 0 /Bi 2 O 3 @C composites was investigated by degradation of methylene blue. It turned out that the composites showed much higher efficiency as compared to bare Bi 2 O 3 , which may be attributed to the synergistic effects of porous structures, improved optical absorption, and surface plasmon resonance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2015-06-01

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  4. Friction Angles of Open-Graded Aggregates from Large-Scale Direct Shear Testing : TechBrief

    DOT National Transportation Integrated Search

    2013-07-08

    State and local transportation agencies frequently use opengraded aggregates for wall, roadway, and bridge construction. The primary advantages of using this type of material in wall and abutment applications are ease of constructability, lighter in-...

  5. Experimental Acoustic Velocity Measurements in a Tidally Affected Stream

    USGS Publications Warehouse

    Storm, J.B.; ,

    2002-01-01

    The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.

  6. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells.

    PubMed

    Kerppola, Tom K

    2008-01-01

    Protein interactions are a fundamental mechanism for the generation of biological regulatory specificity. The study of protein interactions in living cells is of particular significance because the interactions that occur in a particular cell depend on the full complement of proteins present in the cell and the external stimuli that influence the cell. Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the association between two nonfluorescent fragments of a fluorescent protein when they are brought in proximity to each other by an interaction between proteins fused to the fragments. Numerous protein interactions have been visualized using the BiFC assay in many different cell types and organisms. The BiFC assay is technically straightforward and can be performed using standard molecular biology and cell culture reagents and a regular fluorescence microscope or flow cytometer.

  7. Selenium-assisted controlled growth of graphene-Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sun, Zhencui; Man, Baoyuan; Yang, Cheng; Liu, Mei; Jiang, Shouzhen; Zhang, Chao; Zhang, Jiaxin; Liu, Fuyan; Xu, Yuanyuan

    2016-03-01

    Se seed layers were used to synthesize the high-quality graphene-Bi2Se3 nanoplates hybrid Dirac materials via chemical vapor deposition (CVD) method. The morphology, crystallization and structural properties of the hybrid Dirac materials were characterized by SEM, EDS, Raman, XRD, AFM and HRTEM. The measurement results verify that the Se seed layer on the graphene surface can effectively saturate the surface dangling bonds of the graphene, which not only impel the uniform Bi2Se3 nanoplates growing along the horizontal direction but also can supply enough Se atoms to fill the Se vacancies. We also demonstrate the Se seed layer can effectively avoid the interaction of Bi2Se3 and the graphene. Further experiments testify the different Se seed layer on the graphene surface can be used to control the density of the Bi2Se3 nanoplates.

  8. Modeling Bi-induced changes in the electronic structure of GaAs1-xBix alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-12-01

    We suggested recently [V. Virkkala , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.88.035204 88, 035204 (2013)] that the band-gap narrowing in dilute GaAs1-xNx alloys can be explained to result from the broadening of the localized N states due to the N-N interaction along the zigzag chains in the <110> directions. In that study our tight-binding modeling based on first-principles density-functional calculations took into account the random distribution of N atoms in a natural way. In this work we extend our modeling to GaAs1-xBix alloys. Our results indicate that Bi states mix with host material states. However, the states near the valence-band edge agglomerate along the zigzag chains originating from individual Bi atoms. This leads to Bi-Bi interactions in a random alloy broadening these states in energy and causing the band-gap narrowing.

  9. Quantum oscillations in strong magnetic fields, berry phase, and superconductivity in three-dimensional topological Bi{sub 2–x}Cu{sub x}Se{sub 3} insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedeneev, S. I., E-mail: vedeneev@sci.lebedev.ru; Knyazev, D. A.; Prudkoglyad, V. A.

    2015-07-15

    Two-dimensional (2D) Shubnikov–de Haas oscillations and 2D Hall oscillations are observed in 3D copper-doped Bi{sub 2}Se{sub 3} single crystals in magnetic fields up to 19.5 T at temperatures down to 0.3 K. Three samples with a high bulk carrier concentration (n ≈ 10{sup 19}–10{sup 20} cm{sup –3}) are studied. The rotation of the samples in a magnetic field shows that these oscillations are related to numerous parallel 2D conducting channels 1–5 nm thick. Their basic kinetic parameters are found. Quantized Hall resistance R{sub xy} is detected in 1-nm-thick 2D conducting channels at high fields. The distance Δ(1/R{sub xy}) between themore » steps in the field dependence of 1/R{sub xy} is found to be constant for different Landau levels, 1.3e{sup 2}/h per 1-nm-thick layer. The constructed fan diagrams of 2D Landau levels for various angles of sample inclination with respect to the magnetic field direction allowed us to conclude that the Berry phase in the 2D conducting channels is γ ≈ π and independent of the magnetic field direction. When studying the angular dependence of upper resistive critical magnetic field H{sub c2} in one of the superconducting samples, we showed that it can be considered as a bulk superconductor consisting of superconducting layers with an effective thickness of about 50 nm.« less

  10. Bi-directional transmission of molecular information by photon or electron beams passing in the close vicinity of specific molecules, and its clinical and basic research applications: 1) Diagnosis of humans or animal patients without any direct contact; 2) Light microscopic and electron microscopic localization of neuro-transmitters, heavy metals, Oncogen C-fos (AB2), etc. of intracellular fine structures of normal and abnormal single cells using light or electro-microscopic indirect Bi-Digital O-Ring Test.

    PubMed

    Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T

    1992-01-01

    In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  12. A bi-objective model for robust yard allocation scheduling for outbound containers

    NASA Astrophysics Data System (ADS)

    Liu, Changchun; Zhang, Canrong; Zheng, Li

    2017-01-01

    This article examines the yard allocation problem for outbound containers, with consideration of uncertainty factors, mainly including the arrival and operation time of calling vessels. Based on the time buffer inserting method, a bi-objective model is constructed to minimize the total operational cost and to maximize the robustness of fighting against the uncertainty. Due to the NP-hardness of the constructed model, a two-stage heuristic is developed to solve the problem. In the first stage, initial solutions are obtained by a greedy algorithm that looks n-steps ahead with the uncertainty factors set as their respective expected values; in the second stage, based on the solutions obtained in the first stage and with consideration of uncertainty factors, a neighbourhood search heuristic is employed to generate robust solutions that can fight better against the fluctuation of uncertainty factors. Finally, extensive numerical experiments are conducted to test the performance of the proposed method.

  13. Load calculation on the nozzle in a flue gas desulphurization system

    NASA Astrophysics Data System (ADS)

    Róbert, Olšiak; Zoltán, Fuszko; Zoltán, Csuka

    2017-09-01

    The desulphurization system is used to remove sulfur oxides from exhaust, so-called flue gases through absorbing them via the sprayed suspension. The suspension delivered from the pump system to the atmospheric bi-directional double hollow cone nozzle has the prescribed working pressure. The unknown mechanical load on the solid body of the nozzle is present through the change of moment due to the flow of the suspension through the bi-directional outflow areas [1], [4]. The calculation of the acting forces and torques in the 3 directions was carried out with the methods of computational fluid dynamics (CFD) in the software ANSYS Fluent. The geometric model of the flow areas of the nozzle were created with the methods of reverse engineering. The computational mesh required by the CFD solver was created, and its quality verified with the standard criteria. The used boundary conditions were defined by the hydraulic parameters of the pump system, the properties of the suspension present in the hydraulic system were specified by sample analysis. The post-processed and analyzed results of the CFD calculation, the pressure-field and the velocity magnitudes in particular directions were further used as input parameters at the mechanical analysis of the load on the bi-directional nozzle.

  14. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  15. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    NASA Astrophysics Data System (ADS)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  16. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  17. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  18. Electrical tuning of spin splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin

    2018-01-01

    The effect of applying an external electric field on doping-induced spin-orbit splitting of the lowest conduction-band states in a bismuth-doped zinc oxide nanowire is studied by performing electronic structure calculations within the framework of density functional theory. It is demonstrated that spin splitting in Bi-doped ZnO nanowires could be tuned and enhanced electrically via control of the strength and direction of the applied electric field, thanks to the nonuniform and anisotropic response of the ZnO:Bi nanowire to external electric fields. The results reported here indicate that a single ZnO nanowire doped with a low concentration of Bi could function as a spintronic device, the operation of which is controlled by applied lateral electric fields.

  19. Stabilizing new bismuth compounds in thin film form [Stabilizing new thin film materials in bismuth compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiping; Zhou, Honghui; Zhu, Yuanyuan

    2016-11-10

    Growth of unexpected phases from a composite target of BiFeO 3:BiMnO 3 and/or BiFeO 3:BiCrO 3 has been explored using pulsed laser deposition. The Bi 2FeMnO 6 tetragonal phase can be grown directly on SrTiO 3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO 3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO 2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO 3:BiCrO 3 target. Puremore » X2 phase can be obtained on CeO 2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO 3 (R = Cr, Mn, Fe, Co, Ni) targets. Moreover, it also indicates that CeO 2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.« less

  20. Construction of a psb C deletion strain in Synechocystis 6803.

    PubMed

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

Top